Assessment of renal function before contrast media injection: right decisions based on inaccurate estimates
Objectives Information on renal function required before specified radiological examinations with contrast agents is usually obtained through prediction equations using serum creatinine and anthropometric data. The aim of our study was to demonstrate discrepancy between poor prediction and good diag...
Saved in:
Published in | European radiology Vol. 29; no. 6; pp. 3192 - 3199 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objectives
Information on renal function required before specified radiological examinations with contrast agents is usually obtained through prediction equations using serum creatinine and anthropometric data. The aim of our study was to demonstrate discrepancy between poor prediction and good diagnostic accuracy of glomerular filtration rate (GFR) estimated by prediction equations.
Methods
In 50 patients, reference GFR was measured as plasma clearance of 51-chromium labeled ethylene-diamine-tetraacetic-acid (
51
Cr-EDTA) and compared with GFR assayed by creatinine clearance (CC) and estimated by Cockcroft-Gault prediction equation (CG). For comparisons, CC and CG were considered as continuous, categorical, and binary variables. Accuracy of the reference GFR prediction was expressed in terms of prediction errors and diagnostic accuracy indices.
Results
As
continuous
variable, CG estimated individual values of GFR with large prediction error exceeding that of CC. As
categorical
variable, it classified the patient stage of chronic kidney disease (CKD) with medium diagnostic accuracy of 74% (CKD 3) and 62% (CKD 4). As
binary
variable, CG classified individual patient’s GFR below 30 and 60 ml/min/1.73 m
2
with good diagnostic accuracy of 80 and 94%, respectively. Performance of other prediction equations did not significantly differ from CG.
Conclusions
Despite large variance and poor prediction accuracy of individual GFR estimates, most of them correctly classified individual patient’s GFR below specified level. Results of prediction equations thus should be used and reported exclusively as binary variables, while numerical values of GFR, if required, should be measured by more accurate radionuclide or laboratory methods.
Key Points
•
Radiological guidelines on contrast media require estimation of glomerular filtration rate to assess kidney function before specified contrast examinations.
•
Estimated glomerular filtration rate is obtained through prediction equations using serum creatinine and anthropometric data as predictors.
•
While numerical estimates of glomerular filtration rate are inaccurate (their prediction accuracy is poor), diagnostic accuracy of binary estimates (ability to classify patient’s glomerular filtration rate below or above a specified level) is very good. |
---|---|
AbstractList | ObjectivesInformation on renal function required before specified radiological examinations with contrast agents is usually obtained through prediction equations using serum creatinine and anthropometric data. The aim of our study was to demonstrate discrepancy between poor prediction and good diagnostic accuracy of glomerular filtration rate (GFR) estimated by prediction equations.MethodsIn 50 patients, reference GFR was measured as plasma clearance of 51-chromium labeled ethylene-diamine-tetraacetic-acid (51Cr-EDTA) and compared with GFR assayed by creatinine clearance (CC) and estimated by Cockcroft-Gault prediction equation (CG). For comparisons, CC and CG were considered as continuous, categorical, and binary variables. Accuracy of the reference GFR prediction was expressed in terms of prediction errors and diagnostic accuracy indices.ResultsAs continuous variable, CG estimated individual values of GFR with large prediction error exceeding that of CC. As categorical variable, it classified the patient stage of chronic kidney disease (CKD) with medium diagnostic accuracy of 74% (CKD 3) and 62% (CKD 4). As binary variable, CG classified individual patient’s GFR below 30 and 60 ml/min/1.73 m2 with good diagnostic accuracy of 80 and 94%, respectively. Performance of other prediction equations did not significantly differ from CG.ConclusionsDespite large variance and poor prediction accuracy of individual GFR estimates, most of them correctly classified individual patient’s GFR below specified level. Results of prediction equations thus should be used and reported exclusively as binary variables, while numerical values of GFR, if required, should be measured by more accurate radionuclide or laboratory methods.Key Points• Radiological guidelines on contrast media require estimation of glomerular filtration rate to assess kidney function before specified contrast examinations.• Estimated glomerular filtration rate is obtained through prediction equations using serum creatinine and anthropometric data as predictors.• While numerical estimates of glomerular filtration rate are inaccurate (their prediction accuracy is poor), diagnostic accuracy of binary estimates (ability to classify patient’s glomerular filtration rate below or above a specified level) is very good. Information on renal function required before specified radiological examinations with contrast agents is usually obtained through prediction equations using serum creatinine and anthropometric data. The aim of our study was to demonstrate discrepancy between poor prediction and good diagnostic accuracy of glomerular filtration rate (GFR) estimated by prediction equations. In 50 patients, reference GFR was measured as plasma clearance of 51-chromium labeled ethylene-diamine-tetraacetic-acid ( Cr-EDTA) and compared with GFR assayed by creatinine clearance (CC) and estimated by Cockcroft-Gault prediction equation (CG). For comparisons, CC and CG were considered as continuous, categorical, and binary variables. Accuracy of the reference GFR prediction was expressed in terms of prediction errors and diagnostic accuracy indices. As continuous variable, CG estimated individual values of GFR with large prediction error exceeding that of CC. As categorical variable, it classified the patient stage of chronic kidney disease (CKD) with medium diagnostic accuracy of 74% (CKD 3) and 62% (CKD 4). As binary variable, CG classified individual patient's GFR below 30 and 60 ml/min/1.73 m with good diagnostic accuracy of 80 and 94%, respectively. Performance of other prediction equations did not significantly differ from CG. Despite large variance and poor prediction accuracy of individual GFR estimates, most of them correctly classified individual patient's GFR below specified level. Results of prediction equations thus should be used and reported exclusively as binary variables, while numerical values of GFR, if required, should be measured by more accurate radionuclide or laboratory methods. • Radiological guidelines on contrast media require estimation of glomerular filtration rate to assess kidney function before specified contrast examinations. • Estimated glomerular filtration rate is obtained through prediction equations using serum creatinine and anthropometric data as predictors. • While numerical estimates of glomerular filtration rate are inaccurate (their prediction accuracy is poor), diagnostic accuracy of binary estimates (ability to classify patient's glomerular filtration rate below or above a specified level) is very good. Objectives Information on renal function required before specified radiological examinations with contrast agents is usually obtained through prediction equations using serum creatinine and anthropometric data. The aim of our study was to demonstrate discrepancy between poor prediction and good diagnostic accuracy of glomerular filtration rate (GFR) estimated by prediction equations. Methods In 50 patients, reference GFR was measured as plasma clearance of 51-chromium labeled ethylene-diamine-tetraacetic-acid ( 51 Cr-EDTA) and compared with GFR assayed by creatinine clearance (CC) and estimated by Cockcroft-Gault prediction equation (CG). For comparisons, CC and CG were considered as continuous, categorical, and binary variables. Accuracy of the reference GFR prediction was expressed in terms of prediction errors and diagnostic accuracy indices. Results As continuous variable, CG estimated individual values of GFR with large prediction error exceeding that of CC. As categorical variable, it classified the patient stage of chronic kidney disease (CKD) with medium diagnostic accuracy of 74% (CKD 3) and 62% (CKD 4). As binary variable, CG classified individual patient’s GFR below 30 and 60 ml/min/1.73 m 2 with good diagnostic accuracy of 80 and 94%, respectively. Performance of other prediction equations did not significantly differ from CG. Conclusions Despite large variance and poor prediction accuracy of individual GFR estimates, most of them correctly classified individual patient’s GFR below specified level. Results of prediction equations thus should be used and reported exclusively as binary variables, while numerical values of GFR, if required, should be measured by more accurate radionuclide or laboratory methods. Key Points • Radiological guidelines on contrast media require estimation of glomerular filtration rate to assess kidney function before specified contrast examinations. • Estimated glomerular filtration rate is obtained through prediction equations using serum creatinine and anthropometric data as predictors. • While numerical estimates of glomerular filtration rate are inaccurate (their prediction accuracy is poor), diagnostic accuracy of binary estimates (ability to classify patient’s glomerular filtration rate below or above a specified level) is very good. |
Author | Trnka, Jiří Jiskrová, Hana Zogala, David Skibová, Daniela Ryšavá, Romana Ptáčník, Václav Tesař, Vladimír Šámal, Martin |
Author_xml | – sequence: 1 givenname: Václav surname: Ptáčník fullname: Ptáčník, Václav organization: Institute of Nuclear Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague – sequence: 2 givenname: David surname: Zogala fullname: Zogala, David organization: Institute of Nuclear Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague – sequence: 3 givenname: Daniela surname: Skibová fullname: Skibová, Daniela organization: Institute of Nuclear Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Department of Radiation Protection, General University Hospital in Prague – sequence: 4 givenname: Hana surname: Jiskrová fullname: Jiskrová, Hana organization: Institute of Nuclear Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague – sequence: 5 givenname: Jiří surname: Trnka fullname: Trnka, Jiří organization: Institute of Nuclear Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Department of Radiation Protection, General University Hospital in Prague – sequence: 6 givenname: Vladimír surname: Tesař fullname: Tesař, Vladimír organization: Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital in Prague – sequence: 7 givenname: Romana surname: Ryšavá fullname: Ryšavá, Romana organization: Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital in Prague – sequence: 8 givenname: Martin orcidid: 0000-0003-4904-8198 surname: Šámal fullname: Šámal, Martin email: samal@cesnet.cz organization: Institute of Nuclear Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30413953$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1PXCEUhkmj0XH0B3TTkHTj5uoB7hfdGeNXYuJG1wS4B3unM2A59y7015dxbJs0KRsg5znvgfc9YnsxRWTss4AzAdCdE4BSUIHoq6ZrVPX2iS1ErWQloK_32AK06qtO6_qQHRGtAECLujtghwpqoXSjFuzHBRESbTBOPAWeMdo1D3P005gidxhSRu5TnLKliW9wGC0f4wrf6994Hp-_T3xAP1K5E3eWcOClc4zW-znbCTnSNG7KgY7ZfrBrwpOPfcmerq8eL2-r-4ebu8uL-8qrTk6Vd62A2odBopVauqBaq2SQgx4c1LbvhS-v7xsMTvjGO2GtsNKhbp2z0oJastOd7ktOP-cy3mxG8rhe24hpJiOFklJq3XQF_foPukpzLh4Uqqy-E23fFkrsKJ8TUcZgXnL5Un41Asw2CbNLwpQkzDYJ81Z6vnwoz67Y9qfjt_UFkDuASik-Y_47-v-qvwCUJZft |
CitedBy_id | crossref_primary_10_1007_s00259_022_05850_5 crossref_primary_10_1007_s40336_023_00583_3 |
Cites_doi | 10.1159/000180580 10.1007/s00330-011-2157-8 10.1201/9781420035636 10.1016/0025-5564(72)90003-X 10.7326/0003-4819-145-4-200608150-00004 10.1681/ASN.2004060447 10.1016/S1570-0232(02)00960-1 10.1681/ASN.2004070549 10.1038/kisup.2012.73 10.1080/00365510902946992 10.7326/0003-4819-130-6-199903160-00002 10.1080/00365510701326891 10.1053/j.ajkd.2014.01.416 10.1093/ndt/gfg349 10.1097/MNM.0b013e3283591908 10.7326/0003-4819-141-12-200412210-00009 10.1080/00365510802566882 10.1542/peds.58.2.259 10.7326/0003-4819-150-9-200905050-00006 |
ContentType | Journal Article |
Copyright | European Society of Radiology 2018 European Radiology is a copyright of Springer, (2018). All Rights Reserved. |
Copyright_xml | – notice: European Society of Radiology 2018 – notice: European Radiology is a copyright of Springer, (2018). All Rights Reserved. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7QO 7RV 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ P5Z P62 P64 PQEST PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1007/s00330-018-5753-z |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1432-1084 |
EndPage | 3199 |
ExternalDocumentID | 10_1007_s00330_018_5753_z 30413953 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Czech Science Foundation (Grantová Agentura České Republiky) grantid: 303/07/0950 |
GroupedDBID | --- -53 -5E -5G -BR -EM -~C .86 .VR 04C 06C 06D 0R~ 0VY 1N0 203 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 36B 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 6PF 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARTL AATNV AATVU AAUYE AAWCG AAWTL AAYFA AAYIU AAYQN ABBBX ABBXA ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABPTK ABQBU ABSXP ABTEG ABTKH ABTMW ABUWG ABUWZ ABWNU ABXPI ACBMV ACBRV ACBYP ACGFO ACGFS ACHSB ACHVE ACHXU ACIGE ACIHN ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACREN ACTTH ACVWB ACWMK ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEFTE AEGAL AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFJLC AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJDOV AJRNO AJZVZ AKMHD AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BVXVI CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS ECF ECT EIHBH EIOEI EJD EMB EMOBN ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LAS LK8 LLZTM M1P M4Y M7P MA- N9A NAPCQ NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R89 R9I RHV RNS ROL RPX RRX RSV S16 S27 S37 S3B SAP SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW YLTOR Z45 Z5O Z7R Z7U Z7V Z7X Z7Y Z7Z Z81 Z82 Z83 Z85 Z86 Z87 Z88 Z8M Z8O Z8P Z8R Z8S Z8T Z8U Z8V Z8W Z8Z Z91 Z92 ZMTXR ZOVNA ~EX -Y2 1SB 2.D 28- 2P1 2VQ 3V. 53G 5QI AACDK AAEOY AAJBT AANXM AARHV AASML AAYTO AAYZH ABAKF ABULA ACAOD ACBXY ACDTI ACUDM ACZOJ ADOJX AEBTG AEFIE AEFQL AEKMD AEMSY AFBBN AFEXP AGGDS AGQEE AGRTI AIGIU AJBLW AJOOF ALIPV BBWZM CAG CGR COF CUY CVF ECM EIF EN4 GRRUI H13 KOW N2Q NDZJH NPM O9- OVD R4E RIG RNI RZK S1Z S26 S28 SCLPG T16 TEORI UDS AAYXX CITATION 7QO 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PQEST PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c372t-cb6104cfd2ea292bf36a32f2d9db04a881c41385efb1c5cb1aa1a2be96bba2a03 |
IEDL.DBID | BENPR |
ISSN | 0938-7994 |
IngestDate | Fri Oct 25 22:42:08 EDT 2024 Thu Oct 10 23:02:47 EDT 2024 Thu Sep 12 18:03:07 EDT 2024 Wed Oct 16 00:47:00 EDT 2024 Sat Dec 16 12:01:24 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Creatinine Kidney function tests Contrast media Glomerular filtration rate |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-cb6104cfd2ea292bf36a32f2d9db04a881c41385efb1c5cb1aa1a2be96bba2a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4904-8198 |
PMID | 30413953 |
PQID | 2222871686 |
PQPubID | 54162 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2132229957 proquest_journals_2222871686 crossref_primary_10_1007_s00330_018_5753_z pubmed_primary_30413953 springer_journals_10_1007_s00330_018_5753_z |
PublicationCentury | 2000 |
PublicationDate | 6-1-2019 2019-Jun 2019-6-00 20190601 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 6-1-2019 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | European radiology |
PublicationTitleAbbrev | Eur Radiol |
PublicationTitleAlternate | Eur Radiol |
PublicationYear | 2019 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Matrix Laboratory MATLAB version R2017b (programming environment, language, and mathematical software). Available via https://www.mathworks.com. Accessed 17 July 2018 National Kidney FoundationKDIGO Clinical Practice Guideline for the Evaluation and Management of CKDKidney Int Suppl20133115010.1038/kisup.2012.73Available via http://kdigo.org/guidelines/ckd-evaluation-and-management/. Accessed 17 July 2018 CockcroftDWGaultMHPrediction of creatinine clearance from serum creatinineNephron197616314110.1159/0001805801:STN:280:DyaE28%2FnsF2isw%3D%3D1244564 AgarwalRVasavadaNChaseSDLiquid chromatography for iothalamate in biological samplesJ Chromatogr B Analyt Technol Biomed Life Sci200378534535210.1016/S1570-0232(02)00960-11:CAS:528:DC%2BD3sXmtVaktrY%3D12554148 Levey AS, Stevens LA, Schmid CH et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612 RuleADLarsonTSBergstralhEJSlezakJMJacobsenSJCosioFGUsing serum creatinine to estimate glomerular filtration rate: accuracy in good health and in chronic kidney diseaseAnn Intern Med200414192993710.7326/0003-4819-141-12-200412210-000091:CAS:528:DC%2BD2MXks1Kmuw%3D%3D15611490 Fleming JS, Zivanovic MA, Blake GM, Burniston M, Cosgriff PS (2010) Guidelines for the measurement of glomerular filtration rate using plasma sampling. British Society of Nuclear Medicine. Available via https://www.bnms.org.uk/images/Guidelines_for_the_Measurement_of_Glomerular_Filtration_Rate_using_Plasma_Sampling_2016_NEW.pdf. Accessed 17 July 2018 National Kidney FoundationK/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratificationAm J Kidney Dis200239suppl.1S1S266Available via http://www.kdoqi.org. Accessed 17 July 2018 Šámal M, Valoušek J, Piepsz A, Brolin G, Heikkinen JO (2012) Database of dynamic renal scintigraphy. General University Hospital in Prague and M.G.P. s.r.o. Zlín. Available via http://www.dynamicrenalstudy.org. Accessed 17 July 2018 European Society of Urogenital Radiology (2012) ESUR guidelines on contrast media. Available via http://www.esur.org/guidelines/en/index.php. Accessed 17 July 2018 NymanUGrubbASternerGBjörkJDifferent equations to combine creatinine and cystatin C to predict GFR. Arithmetic mean of existing equations performs as well as complex combinationsScand J Clin Lab Invest20096961962710.1080/003655109029469921:CAS:528:DC%2BD1MXhtlWlur7F19731180 Piepsz A, Colarinha P, Gordon I et al (2000) Guidelines for glomerular filtration rate determination in children. European Association of Nuclear Medicine. Available via https://eanm.org/publications/guidelines/gl_paed_gfrd.pdf. Accessed 17 July 2018 JødalLBrøchner-MortensenJSimplified methods for assessment of renal function as the ratio of glomerular filtration rate to extracellular fluid volumeNucl Med Commun2012331243125310.1097/MNM.0b013e328359190823111354 National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases. (2018). Estimating glomerular filtration rate. Available via https://www.niddk.nih.gov/health-information/health-communication-programs/nkdep/lab-evaluation/gfr/estimating/pages/estimating.aspx. Accessed 17 July 2018 Martinez WL, Martinez AR (2002) Computational statistics handbook with MATLAB. Chapman & Hall/CRC, Boca Raton LeveyASCoreshJGreeneTUsing standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rateAnn Intern Med200614524725410.7326/0003-4819-145-4-200608150-000041:CAS:528:DC%2BD28XpsFejtbo%3D Schwartz GJ, Haycock GB, Edelmann CM Jr, Spitzer A (1976) A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 58:259–263 CraigAJBrittenAHeenanSDIrwinAGSignificant differences when using MDRD for GFR estimation compared to radionuclide measured clearanceEur J Radiol2011212211221710.1007/s00330-011-2157-81:STN:280:DC%2BC3Mfgtlygsw%3D%3D National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases (2018) Reporting glomerular filtration rate. Available via https://www.niddk.nih.gov/health-information/communication-programs/nkdep/laboratory-evaluation/glomerular-filtration-rate/reporting. Accessed 17 July 2018 Hoek FJ, Kemperman FA, Krediet RT (2003) A comparison between cystatin C, plasma creatinine and the Cockcroft and Gault formula for the estimation of glomerular filtration rate. Nephrol Dial Transplant 18:2024–2031 Björk J, Bäck SE, Sterner G et al (2007) Prediction of relative glomerular filtration rate in adults: new improved equations based on Swedish Caucasians and standardized plasma-creatinine assays. Scan J Clin Lab Invest 67:678–695 InkerLAAstorBCFoxCHKDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKDAm J Kidney Dis20146371373510.1053/j.ajkd.2014.01.41624647050 FroissartMRossertJJacquiotCPaillardMHouillierPPredictive performance of the modification of diet in renal disease and Cockcroft-Gault equations for estimating renal functionJ Am Soc Nephrol20051676377310.1681/ASN.200407054915659562 PoggioEDWangXGreeneTVan LenteFHallPMPerformance of the modification of diet in renal disease and Cockcroft-Gault equations in the estimation of GFR in health and in chronic kidney diseaseJ Am Soc Nephrol20051645946610.1681/ASN.200406044715615823 Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 130:461–470 JelliffeRWJelliffeSMA computer program for estimation of creatinine clearance from unstable serum creatinine levels, age, sex, and weightMath Biosci197214172410.1016/0025-5564(72)90003-X JødalLBrøchner-MortensenJReassessment of a classical single injection 51Cr-EDTA clearance method for determination of renal function in children and adults. Part I: analytically correct relationship between total and one-pool clearanceScand J Clin Lab Invest20096930531310.1080/003655108025668821:CAS:528:DC%2BD1MXjvFOmu78%3D19048437 5753_CR27 M Froissart (5753_CR9) 2005; 16 5753_CR26 5753_CR24 U Nyman (5753_CR14) 2009; 69 LA Inker (5753_CR7) 2014; 63 AD Rule (5753_CR25) 2004; 141 R Agarwal (5753_CR18) 2003; 785 5753_CR23 5753_CR21 RW Jelliffe (5753_CR2) 1972; 14 National Kidney Foundation (5753_CR5) 2002; 39 L Jødal (5753_CR20) 2012; 33 5753_CR1 5753_CR17 AS Levey (5753_CR22) 2006; 145 5753_CR16 5753_CR15 5753_CR4 5753_CR13 5753_CR8 ED Poggio (5753_CR10) 2005; 16 National Kidney Foundation (5753_CR6) 2013; 3 DW Cockcroft (5753_CR3) 1976; 16 AJ Craig (5753_CR11) 2011; 21 5753_CR12 L Jødal (5753_CR19) 2009; 69 |
References_xml | – volume: 16 start-page: 31 year: 1976 ident: 5753_CR3 publication-title: Nephron doi: 10.1159/000180580 contributor: fullname: DW Cockcroft – volume: 21 start-page: 2211 year: 2011 ident: 5753_CR11 publication-title: Eur J Radiol doi: 10.1007/s00330-011-2157-8 contributor: fullname: AJ Craig – ident: 5753_CR26 doi: 10.1201/9781420035636 – ident: 5753_CR15 – ident: 5753_CR17 – ident: 5753_CR8 – volume: 39 start-page: S1 issue: suppl.1 year: 2002 ident: 5753_CR5 publication-title: Am J Kidney Dis contributor: fullname: National Kidney Foundation – volume: 14 start-page: 17 year: 1972 ident: 5753_CR2 publication-title: Math Biosci doi: 10.1016/0025-5564(72)90003-X contributor: fullname: RW Jelliffe – volume: 145 start-page: 247 year: 2006 ident: 5753_CR22 publication-title: Ann Intern Med doi: 10.7326/0003-4819-145-4-200608150-00004 contributor: fullname: AS Levey – volume: 16 start-page: 459 year: 2005 ident: 5753_CR10 publication-title: J Am Soc Nephrol doi: 10.1681/ASN.2004060447 contributor: fullname: ED Poggio – volume: 785 start-page: 345 year: 2003 ident: 5753_CR18 publication-title: J Chromatogr B Analyt Technol Biomed Life Sci doi: 10.1016/S1570-0232(02)00960-1 contributor: fullname: R Agarwal – ident: 5753_CR27 – volume: 16 start-page: 763 year: 2005 ident: 5753_CR9 publication-title: J Am Soc Nephrol doi: 10.1681/ASN.2004070549 contributor: fullname: M Froissart – volume: 3 start-page: 1 year: 2013 ident: 5753_CR6 publication-title: Kidney Int Suppl doi: 10.1038/kisup.2012.73 contributor: fullname: National Kidney Foundation – volume: 69 start-page: 619 year: 2009 ident: 5753_CR14 publication-title: Scand J Clin Lab Invest doi: 10.1080/00365510902946992 contributor: fullname: U Nyman – ident: 5753_CR21 doi: 10.7326/0003-4819-130-6-199903160-00002 – ident: 5753_CR24 doi: 10.1080/00365510701326891 – volume: 63 start-page: 713 year: 2014 ident: 5753_CR7 publication-title: Am J Kidney Dis doi: 10.1053/j.ajkd.2014.01.416 contributor: fullname: LA Inker – ident: 5753_CR13 doi: 10.1093/ndt/gfg349 – volume: 33 start-page: 1243 year: 2012 ident: 5753_CR20 publication-title: Nucl Med Commun doi: 10.1097/MNM.0b013e3283591908 contributor: fullname: L Jødal – ident: 5753_CR12 – ident: 5753_CR16 – volume: 141 start-page: 929 year: 2004 ident: 5753_CR25 publication-title: Ann Intern Med doi: 10.7326/0003-4819-141-12-200412210-00009 contributor: fullname: AD Rule – volume: 69 start-page: 305 year: 2009 ident: 5753_CR19 publication-title: Scand J Clin Lab Invest doi: 10.1080/00365510802566882 contributor: fullname: L Jødal – ident: 5753_CR4 doi: 10.1542/peds.58.2.259 – ident: 5753_CR23 doi: 10.7326/0003-4819-150-9-200905050-00006 – ident: 5753_CR1 |
SSID | ssj0009147 |
Score | 2.3355885 |
Snippet | Objectives
Information on renal function required before specified radiological examinations with contrast agents is usually obtained through prediction... Information on renal function required before specified radiological examinations with contrast agents is usually obtained through prediction equations using... ObjectivesInformation on renal function required before specified radiological examinations with contrast agents is usually obtained through prediction... OBJECTIVESInformation on renal function required before specified radiological examinations with contrast agents is usually obtained through prediction... |
SourceID | proquest crossref pubmed springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 3192 |
SubjectTerms | Accuracy Adult Aged Aged, 80 and over Anthropometry Chromium Chromium radioisotopes Continuity (mathematics) Contrast agents Contrast Media Contrast Media - administration & dosage Creatinine Creatinine - blood Diagnostic Radiology Diagnostic systems Estimates Ethylenediaminetetraacetic acids Female Glomerular filtration rate Glomerular Filtration Rate - physiology Humans Imaging Injections, Intravenous Internal Medicine Interventional Radiology Kidney - diagnostic imaging Kidney - metabolism Kidney - physiopathology Kidney diseases Kidneys Laboratory methods Male Medicine Medicine & Public Health Middle Aged Neuroradiology Radiography - methods Radioisotopes Radiology Renal function Renal Insufficiency, Chronic - blood Renal Insufficiency, Chronic - diagnosis Renal Insufficiency, Chronic - physiopathology Reproducibility of Results Ultrasound Young Adult |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB48QHzxPtaLCD4pWdqkV3xbxANFnxT0qeQq6GJX3O7L_non6SGy-uBz06TJJJ1vMjPfAJwgRmAmSQwtbCFpJDSjMlB48BzdVGGDNBUuOfn-Ibl5im6f4-c5YN3VRTnstx5J_6Puct1c1TEXQ5VRRBicTudhsck7XRxcv9xdflPthr6sGJrqGU2FiFpf5m-d_NRGMxBzxj3qtc7Vap0JOPZkhS7YZNifVKqvp7NUjv-Y0BqsNCCUDOpdsw5zttyApfvGzb4Jw0HH10lGBfm0rrXTgE6KRFkEupb4IHc5rohPPiGv5ZuP6irPiTf4iWmq94yJ05SG4JuvpdR64sgpiCP3eHc4dwueri4fL25oU5WBap6yimqFiCvShWFWMsFUwRPJWcGMMCqIZJaFGhVjFttChTrWKpQylExZkSglmQz4NiyUo9LuAmHCCjQwOY-4jZRIFWdCCYMmYWQDw5IenLbSyT9q8o28o1n2y5fj8uVu-fJpDw5a-eXNORznzF1woUmYYV_H3WM8Qc4tIks7mmAb720SIk57sFPLvRuNBzgXEfMenLVC_O78z0_Z-1frfVhGFCbq-LMDWKg-J_YQkU6ljpqt_QVMf_Xt priority: 102 providerName: Springer Nature |
Title | Assessment of renal function before contrast media injection: right decisions based on inaccurate estimates |
URI | https://link.springer.com/article/10.1007/s00330-018-5753-z https://www.ncbi.nlm.nih.gov/pubmed/30413953 https://www.proquest.com/docview/2222871686 https://search.proquest.com/docview/2132229957 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED9BK6G9oI2PLQwqI_HEZJHY-TIvqEwtCARCaJXKU-SvSGxaCrR94a_n7DqtENpe8pA4iXNn537nO_8O4AgxAjN5bmhta0lToRmVscKJ5-imahsXhXCbk29u88tRejXOxmHBbRrSKtt_ov9Rm4l2a-QnzC1VILgv87OnZ-qqRrnoaiihsQ5dhp5C3IHu-eD27n5Fu5v4EmPotpe0ECJt45qxpxFFXx5d6ZIiZOH09b1l-gA3P4RKvQUafobNAB1Jf6HrL7Bmmy3YuAnB8W3401-ybJJJTV6sa-3slpM9URbhqSU-NV1OZ8RvGSGPzW-fi9WcEu-mExNq7kyJs2-G4J2PjdR67igliKPk-OvQ6Q6MhoNfPy9pqKVANS_YjGqFOCnVtWFWMsFUzXPJWc2MMCpOZVkmGs1ZmdlaJTrTKpEykUxZkSslmYz5LnSaSWO_AWHCCnQLOU-5TZUoFGdCCYOOXGpjw_IIjls5Vk8LyoxqSY7shV6h0Csn9Oo1gv1W0lWYPdNqpesIDpeXcdy7YIZs7GSObXyMSIisiODrQkPLt_EYv0VkPIIfrcpWD_9nV_b-35Xv8AnBklikie1DZ_YytwcISGaqB-vFuMBjObzoQbd_8XA96IWRiGdHrP8G9XPicQ |
link.rule.ids | 315,783,787,12068,12777,21400,27936,27937,31731,31732,33385,33386,33756,33757,41093,41535,42162,42604,43322,43612,43817,52123,52246,74079,74369,74636 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED9BkTZeJmBsZAPmSXsCWSR2vrwXhBCoDMoTSH2L_BWpoKWMti_963fnJq0Qguc4jnNn-37nO_8O4BdiBOHy3PHa15qnygquY4MLj-imah8XhaLLyYPbvH-f_hlmw_bAbdKmVXZ7Ytio3djSGfmJoKMKBPdlfvr0j1PVKIqutiU01mGDeLiogkExLFaku0koMIZOe8kLpdIuqhkHElH05NGRLjkCFsnnL-3SK7D5KlAa7M_lFnxqgSM7W2h6G9Z8swMfBm1o_DM8ni05Ntm4Zs-eWpPVIskz4xGcehYS0_VkysKFETZqHkImVvObBSedubbizoSRdXMM3xw12toZEUowIuT4S9h0F-4vL-7O-7ytpMCtLMSUW4MoKbW1E14LJUwtcy1FLZxyJk51WSYWjVmZ-dokNrMm0TrRwniVG6OFjuUX6DXjxu8BE8ordAqlTKVPjSqMFMooh25c6mMn8giOOjlWTwvCjGpJjRyEXqHQKxJ6NY9gv5N01a6dSbXSdAQ_l49x1lMoQzd-PMM2IUKkVFZE8HWhoeXXZIz_ojIZwXGnslXnbw7l2_tD-QEf-3eDm-rm6vb6O2wibFKLhLF96E2fZ_4AocnUHIb59x8D29-y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB4VKq24VKXPtEBdqaciaxM7L_dSISClD1Y9FGlvkZ_SFpFQdvfCr-_Y6-wKITjHcZwZ2_ONZ_wNwCfECMyUpaHOOklzoRmVqcKF5-mmnE2rSvjLyeeT8uwi_zEtpjH_aR7TKoc9MWzUptf-jHzM_FEFgvu6HLuYFvH7pPl6_Y_6ClI-0hrLaWzBU7SKpZ_hdfNtQ8CbhWJj6MDXtBIiHyKcaSAURa8eneqaInjh9PaujboHPO8FTYMtap7DswgiydFK67vwxHYvYHQew-Qv4fJozbdJekdurG_tLZjXAlEWgaolIUldzhckXB4hs-5vyMrqvpDgsBMTq-_Mibd0huCbs05qvfTkEsSTc1x5nPoKLprTP8dnNFZVoJpXbEG1QsSUa2eYlUww5XgpOXPMCKPSXNZ1ptGw1YV1KtOFVpmUmWTKilIpyWTKX8N213f2LRAmrEAHkfOc21yJSnEmlDDo0uU2NaxM4PMgx_Z6RZ7RrmmSg9BbFHrrhd7eJrA3SLqN62jebrSewMf1Y1wBPqwhO9svsU2IFglRVAm8WWlo_TWe4r-IgidwOKhs0_mDQ3n3-FA-wAinXvvr--Tne9hBBCVWuWN7sL24Wdp9RCkLdRCm33-eF-Pw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+renal+function+before+contrast+media+injection%3A+right+decisions+based+on+inaccurate+estimates&rft.jtitle=European+radiology&rft.au=Pt%C3%A1%C4%8Dn%C3%ADk%2C+V%C3%A1clav&rft.au=Zogala%2C+David&rft.au=Skibov%C3%A1%2C+Daniela&rft.au=Jiskrov%C3%A1%2C+Hana&rft.date=2019-06-01&rft.issn=0938-7994&rft.eissn=1432-1084&rft.volume=29&rft.issue=6&rft.spage=3192&rft.epage=3199&rft_id=info:doi/10.1007%2Fs00330-018-5753-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00330_018_5753_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-7994&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-7994&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-7994&client=summon |