Estimating spatial variation in disease risk from locations coarsened by incomplete geocoding
Inference for spatial variation in relative risk of disease is an important problem in spatial epidemiologic studies. A standard component of data assimilation in these studies is the assignment of a geocode, i.e. point-level spatial coordinates, to the address of each subject in the study populatio...
Saved in:
Published in | Statistical methodology Vol. 9; no. 1; pp. 239 - 250 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
2012
|
Subjects | |
Online Access | Get full text |
ISSN | 1572-3127 1878-0954 |
DOI | 10.1016/j.stamet.2011.01.008 |
Cover
Abstract | Inference for spatial variation in relative risk of disease is an important problem in spatial epidemiologic studies. A standard component of data assimilation in these studies is the assignment of a geocode, i.e. point-level spatial coordinates, to the address of each subject in the study population. Unfortunately, when geocoding is performed by the standard procedure of street-segment matching to a georeferenced road file and subsequent interpolation, it is rarely completely successful. Typically, 10-30% of the addresses in the study population fail to geocode, which can adversely affect relative risk estimation, especially if one of the disease groups (e.g. cases) has a different geocoding success rate than another (e.g. controls). The possibility exists, however, for ameliorating this effect by incorporating geographic information coarser than a point (e.g. a Zip code) that is measured for the observations that fail to geocode. This article develops coarsened-data methods for relative risk estimation from incompletely geocoded data. Nonparametric (kernel smoothing) estimation procedures are featured; parametric (likelihood-based) procedures are described as well, but their applicability is much more limited. We demonstrate, via simulation and a real example of childhood asthma cases in an Iowa county that substantial improvements in the quality of relative risk estimates are possible using the proposed nonparametric coarsened-data methods. |
---|---|
AbstractList | Inference for spatial variation in relative risk of disease is an important problem in spatial epidemiologic studies. A standard component of data assimilation in these studies is the assignment of a geocode, i.e. point-level spatial coordinates, to the address of each subject in the study population. Unfortunately, when geocoding is performed by the standard procedure of street-segment matching to a georeferenced road file and subsequent interpolation, it is rarely completely successful. Typically, 10-30% of the addresses in the study population fail to geocode, which can adversely affect relative risk estimation, especially if one of the disease groups (e.g. cases) has a different geocoding success rate than another (e.g. controls). The possibility exists, however, for ameliorating this effect by incorporating geographic information coarser than a point (e.g. a Zip code) that is measured for the observations that fail to geocode. This article develops coarsened-data methods for relative risk estimation from incompletely geocoded data. Nonparametric (kernel smoothing) estimation procedures are featured; parametric (likelihood-based) procedures are described as well, but their applicability is much more limited. We demonstrate, via simulation and a real example of childhood asthma cases in an Iowa county that substantial improvements in the quality of relative risk estimates are possible using the proposed nonparametric coarsened-data methods. |
Author | Zimmerman, Dale L. Fang, Xiangming |
Author_xml | – sequence: 1 givenname: Dale L. surname: Zimmerman fullname: Zimmerman, Dale L. email: dale-zimmerman@uiowa.edu organization: Department of Statistics and Actuarial Science, University of Iowa, Iowa City, IA 52242, USA – sequence: 2 givenname: Xiangming surname: Fang fullname: Fang, Xiangming organization: Department of Biostatistics, East Carolina University, Greenville, NC 27858-4353, USA |
BookMark | eNqFUMtqwzAQFCWFJmn_oAf9gF3Jsi25h0IJ6QMCvbTHImR5FZTaVpBEIH9fJe6ph5Zd2Fl2Z2BmgWajGwGhW0pySmh9t8tDVAPEvCCU5iQ1ERdoTgUXGWmqcpZwxYuM0YJfoUUIO0JKxms2R5_rEO2goh23OOzTVD0-KG8TciO2I-5sABUAexu-sPFuwL3T52vA2ikfYIQOt8f0q92w7yEC3oLTrkuS1-jSqD7Azc9coo-n9fvqJdu8Pb-uHjeZZryImW7LQqcStGKVqlndtK0whgtKKs4Zo1okKzXtoDJN2gwYpkzTmKKhAGXBlqicdLV3IXgwcu-TK3-UlMhTRHInp4jkKSJJUhORaPe_aNrGs7fole3_Iz9MZEjGDha8DNrCqKGzHnSUnbN_C3wDbxOI8w |
CitedBy_id | crossref_primary_10_1016_j_annepidem_2021_10_002 crossref_primary_10_1016_j_sste_2012_02_008 crossref_primary_10_1111_biom_13152 crossref_primary_10_1016_j_ccm_2018_10_012 crossref_primary_10_11361_journalcpij_55_435 crossref_primary_10_1155_2014_567049 |
Cites_doi | 10.2307/3318678 10.1002/sim.3288 10.1214/10-BA504 10.1186/1476-072X-4-29 10.1016/j.healthplace.2005.08.006 10.1097/01.ede.0000165364.54925.f3 10.1016/j.envres.2006.01.004 10.2307/2532251 10.1016/S1353-8292(99)00004-0 10.1186/1476-072X-2-10 10.1097/01.EDE.0000073121.63254.c5 10.1038/sj.jea.7500173 10.1111/j.1467-9469.2007.00583.x 10.1111/j.1541-0420.2007.00870.x 10.2307/2983529 10.1002/sim.4780142106 10.1016/j.healthplace.2009.06.001 10.1002/sim.4780090616 10.2307/2347366 10.1198/016214504000001042 |
ContentType | Journal Article |
Copyright | 2011 Elsevier B.V. |
Copyright_xml | – notice: 2011 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.stamet.2011.01.008 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics |
EISSN | 1878-0954 |
EndPage | 250 |
ExternalDocumentID | 10_1016_j_stamet_2011_01_008 S1572312711000116 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ AAAKF AAAKG AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO ABAOU ABFNM ABFRF ABJNI ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADGUI ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HAMUX HVGLF HZ~ IHE J1W J9A KOM M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SEW SPC SSB SSD SSW SSZ T5K UNMZH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU CITATION SSH |
ID | FETCH-LOGICAL-c372t-cb42c2c281535a6369bb8ff7810577331c887861de5f931cfef3af99f291ee423 |
IEDL.DBID | AIKHN |
ISSN | 1572-3127 |
IngestDate | Thu Apr 24 22:57:54 EDT 2025 Tue Jul 01 03:08:50 EDT 2025 Fri Feb 23 02:17:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Coarsened data Spatial epidemiology Geocoding Relative risk |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-cb42c2c281535a6369bb8ff7810577331c887861de5f931cfef3af99f291ee423 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1016_j_stamet_2011_01_008 crossref_citationtrail_10_1016_j_stamet_2011_01_008 elsevier_sciencedirect_doi_10_1016_j_stamet_2011_01_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012 2012-1-00 |
PublicationDateYYYYMMDD | 2012-01-01 |
PublicationDate_xml | – year: 2012 text: 2012 |
PublicationDecade | 2010 |
PublicationTitle | Statistical methodology |
PublicationYear | 2012 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kelsall, Diggle (br000065) 1995; 1 Kelsall, Diggle (br000075) 1998; 47 Gregorio, Cromley, Mrozinski, Walsh (br000055) 1999; 5 Wey, Griesse, Kightlinger, Wimberly (br000115) 2009; 15 Scott (br000095) 1992 Chakraborty, Gelfand (br000025) 2010; 5 Cayo, Talbot (br000020) 2003; 2 Kelsall, Diggle (br000070) 1995; 14 Waller, Gotway (br000105) 2004 Cucala (br000030) 2008; 35 Zimmerman, Fang, Mazumdar (br000125) 2008; 27 Ward, Nuckols, Giglierano, Bonner, Wolter, Airola, Mix, Colt, Hartge (br000110) 2005; 16 ArcGIS9, Geocoding Rule Base Developers Guide, Redlands, California: Earth Sciences Research Institute, 2003. Bithell (br000010) 1990; 9 Gilboa, Mendola, Olshan, Harness, Loomis, Langlois, Savitz, Herring (br000050) 2006; 101 D.L. Zimmerman, P. Sun, X. Fang, Likelihood-based estimation of spatial intensity and variation in disease risk from locations subject to geocoding errors, 2011 (submitted for publication). Oliver, Matthews, Siadaty, Hauck, Pickle (br000090) 2005; 4 Stoyan, Kendall, Mecke (br000100) 1987 Diggle, Rowlingson (br000045) 1994; 157 Heitjan (br000060) 1993; 49 Diggle (br000040) 1985; 34 Zimmerman (br000120) 2008; 64 Dearwent, Jacobs, Halbert (br000035) 2001; 11 Bonner, Han, Nie, Rogerson, Vena, Freudenheim (br000015) 2003; 14 Kravets, Hadden (br000080) 2007; 13 Lang (br000085) 2005; 100 Cayo (10.1016/j.stamet.2011.01.008_br000020) 2003; 2 Bonner (10.1016/j.stamet.2011.01.008_br000015) 2003; 14 Zimmerman (10.1016/j.stamet.2011.01.008_br000120) 2008; 64 Ward (10.1016/j.stamet.2011.01.008_br000110) 2005; 16 Diggle (10.1016/j.stamet.2011.01.008_br000040) 1985; 34 Kelsall (10.1016/j.stamet.2011.01.008_br000065) 1995; 1 Bithell (10.1016/j.stamet.2011.01.008_br000010) 1990; 9 Wey (10.1016/j.stamet.2011.01.008_br000115) 2009; 15 Chakraborty (10.1016/j.stamet.2011.01.008_br000025) 2010; 5 10.1016/j.stamet.2011.01.008_br000130 Gilboa (10.1016/j.stamet.2011.01.008_br000050) 2006; 101 Waller (10.1016/j.stamet.2011.01.008_br000105) 2004 Heitjan (10.1016/j.stamet.2011.01.008_br000060) 1993; 49 Kelsall (10.1016/j.stamet.2011.01.008_br000070) 1995; 14 Cucala (10.1016/j.stamet.2011.01.008_br000030) 2008; 35 Scott (10.1016/j.stamet.2011.01.008_br000095) 1992 Kelsall (10.1016/j.stamet.2011.01.008_br000075) 1998; 47 Stoyan (10.1016/j.stamet.2011.01.008_br000100) 1987 Oliver (10.1016/j.stamet.2011.01.008_br000090) 2005; 4 Diggle (10.1016/j.stamet.2011.01.008_br000045) 1994; 157 Dearwent (10.1016/j.stamet.2011.01.008_br000035) 2001; 11 10.1016/j.stamet.2011.01.008_br000005 Lang (10.1016/j.stamet.2011.01.008_br000085) 2005; 100 Kravets (10.1016/j.stamet.2011.01.008_br000080) 2007; 13 Zimmerman (10.1016/j.stamet.2011.01.008_br000125) 2008; 27 Gregorio (10.1016/j.stamet.2011.01.008_br000055) 1999; 5 |
References_xml | – volume: 2 start-page: 10 year: 2003 ident: br000020 article-title: Positional error in automated geocoding of residential addresses publication-title: International Journal of Health Geographics – year: 1992 ident: br000095 article-title: Multivariate Density Estimation – volume: 16 start-page: 542 year: 2005 end-page: 547 ident: br000110 article-title: Positional accuracy of two methods of geocoding publication-title: Epidemiology – volume: 35 start-page: 322 year: 2008 end-page: 334 ident: br000030 article-title: Intensity estimation for spatial point processes observed with noise publication-title: Scandinavian Journal of Statistics – volume: 13 start-page: 293 year: 2007 end-page: 298 ident: br000080 article-title: The accuracy of address coding and the effects of coding errors publication-title: Health and Place – volume: 15 start-page: 1108 year: 2009 end-page: 1114 ident: br000115 article-title: Geographic variability in geocoding success for West Nile virus cases in South Dakota publication-title: Health and Place – volume: 14 start-page: 2335 year: 1995 end-page: 2342 ident: br000070 article-title: Non-parametric estimation of spatial variation in relative risk publication-title: Statistics in Medicine – volume: 9 start-page: 691 year: 1990 end-page: 701 ident: br000010 article-title: An application of density estimation to geographical epidemiology publication-title: Statistics in Medicine – volume: 64 start-page: 262 year: 2008 end-page: 270 ident: br000120 article-title: Estimating the intensity of a spatial point process from locations coarsened by incomplete geocoding publication-title: Biometrics – volume: 11 start-page: 329 year: 2001 end-page: 334 ident: br000035 article-title: Locational uncertainty in georeferencing public health datasets publication-title: Journal of Exposure Analysis and Environmental Epidemiology – volume: 100 start-page: 121 year: 2005 end-page: 134 ident: br000085 article-title: Homogeneous linear predictor models for contingency tables publication-title: Journal of the American Statistical Association – volume: 14 start-page: 408 year: 2003 end-page: 412 ident: br000015 article-title: Positional accuracy of geocoded addresses in epidemiologic research publication-title: Epidemiology – year: 2004 ident: br000105 article-title: Applied Spatial Statistics for Public Health Data – volume: 49 start-page: 1099 year: 1993 end-page: 1109 ident: br000060 article-title: Ignorability and coarse data: some biomedical examples publication-title: Biometrics – volume: 5 start-page: 173 year: 1999 end-page: 177 ident: br000055 article-title: Subject loss in spatial analysis of breast cancer publication-title: Health and Place – volume: 34 start-page: 138 year: 1985 end-page: 147 ident: br000040 article-title: A kernel method for smoothing point process data publication-title: Applied Statistics – volume: 47 start-page: 559 year: 1998 end-page: 573 ident: br000075 article-title: Spatial variation in risk of disease: a nonparametric binary regression approach publication-title: Applied Statistics – year: 1987 ident: br000100 article-title: Stochastic Geometry and its Applications – volume: 157 start-page: 433 year: 1994 end-page: 440 ident: br000045 article-title: A conditional approach to point process modelling of elevated risk publication-title: Journal of the Royal Statistical Society, Series A – volume: 27 start-page: 4254 year: 2008 end-page: 4266 ident: br000125 article-title: Spatial clustering of the failure to geocode and its implications for the detection of disease clustering publication-title: Statistics in Medicine – volume: 4 start-page: 29 year: 2005 ident: br000090 article-title: Geographic bias related to geocoding in epidemiologic studies publication-title: International Journal of Health Geographics – reference: D.L. Zimmerman, P. Sun, X. Fang, Likelihood-based estimation of spatial intensity and variation in disease risk from locations subject to geocoding errors, 2011 (submitted for publication). – reference: ArcGIS9, Geocoding Rule Base Developers Guide, Redlands, California: Earth Sciences Research Institute, 2003. – volume: 5 start-page: 97 year: 2010 end-page: 122 ident: br000025 article-title: Analyzing spatial point patterns subject to measurement error publication-title: Bayesian Analysis – volume: 101 start-page: 256 year: 2006 end-page: 262 ident: br000050 article-title: Comparison of residential geocoding methods in population-based study of air quality and birth defects publication-title: Environmental Research – volume: 1 start-page: 3 year: 1995 end-page: 16 ident: br000065 article-title: Kernel estimation of relative risk publication-title: Bernoulli – volume: 1 start-page: 3 year: 1995 ident: 10.1016/j.stamet.2011.01.008_br000065 article-title: Kernel estimation of relative risk publication-title: Bernoulli doi: 10.2307/3318678 – volume: 27 start-page: 4254 year: 2008 ident: 10.1016/j.stamet.2011.01.008_br000125 article-title: Spatial clustering of the failure to geocode and its implications for the detection of disease clustering publication-title: Statistics in Medicine doi: 10.1002/sim.3288 – volume: 5 start-page: 97 year: 2010 ident: 10.1016/j.stamet.2011.01.008_br000025 article-title: Analyzing spatial point patterns subject to measurement error publication-title: Bayesian Analysis doi: 10.1214/10-BA504 – volume: 4 start-page: 29 year: 2005 ident: 10.1016/j.stamet.2011.01.008_br000090 article-title: Geographic bias related to geocoding in epidemiologic studies publication-title: International Journal of Health Geographics doi: 10.1186/1476-072X-4-29 – volume: 13 start-page: 293 year: 2007 ident: 10.1016/j.stamet.2011.01.008_br000080 article-title: The accuracy of address coding and the effects of coding errors publication-title: Health and Place doi: 10.1016/j.healthplace.2005.08.006 – year: 1987 ident: 10.1016/j.stamet.2011.01.008_br000100 – volume: 16 start-page: 542 year: 2005 ident: 10.1016/j.stamet.2011.01.008_br000110 article-title: Positional accuracy of two methods of geocoding publication-title: Epidemiology doi: 10.1097/01.ede.0000165364.54925.f3 – volume: 101 start-page: 256 year: 2006 ident: 10.1016/j.stamet.2011.01.008_br000050 article-title: Comparison of residential geocoding methods in population-based study of air quality and birth defects publication-title: Environmental Research doi: 10.1016/j.envres.2006.01.004 – volume: 49 start-page: 1099 year: 1993 ident: 10.1016/j.stamet.2011.01.008_br000060 article-title: Ignorability and coarse data: some biomedical examples publication-title: Biometrics doi: 10.2307/2532251 – volume: 5 start-page: 173 year: 1999 ident: 10.1016/j.stamet.2011.01.008_br000055 article-title: Subject loss in spatial analysis of breast cancer publication-title: Health and Place doi: 10.1016/S1353-8292(99)00004-0 – volume: 2 start-page: 10 year: 2003 ident: 10.1016/j.stamet.2011.01.008_br000020 article-title: Positional error in automated geocoding of residential addresses publication-title: International Journal of Health Geographics doi: 10.1186/1476-072X-2-10 – volume: 14 start-page: 408 year: 2003 ident: 10.1016/j.stamet.2011.01.008_br000015 article-title: Positional accuracy of geocoded addresses in epidemiologic research publication-title: Epidemiology doi: 10.1097/01.EDE.0000073121.63254.c5 – ident: 10.1016/j.stamet.2011.01.008_br000130 – volume: 47 start-page: 559 year: 1998 ident: 10.1016/j.stamet.2011.01.008_br000075 article-title: Spatial variation in risk of disease: a nonparametric binary regression approach publication-title: Applied Statistics – year: 2004 ident: 10.1016/j.stamet.2011.01.008_br000105 – volume: 11 start-page: 329 year: 2001 ident: 10.1016/j.stamet.2011.01.008_br000035 article-title: Locational uncertainty in georeferencing public health datasets publication-title: Journal of Exposure Analysis and Environmental Epidemiology doi: 10.1038/sj.jea.7500173 – volume: 35 start-page: 322 year: 2008 ident: 10.1016/j.stamet.2011.01.008_br000030 article-title: Intensity estimation for spatial point processes observed with noise publication-title: Scandinavian Journal of Statistics doi: 10.1111/j.1467-9469.2007.00583.x – ident: 10.1016/j.stamet.2011.01.008_br000005 – volume: 64 start-page: 262 year: 2008 ident: 10.1016/j.stamet.2011.01.008_br000120 article-title: Estimating the intensity of a spatial point process from locations coarsened by incomplete geocoding publication-title: Biometrics doi: 10.1111/j.1541-0420.2007.00870.x – volume: 157 start-page: 433 year: 1994 ident: 10.1016/j.stamet.2011.01.008_br000045 article-title: A conditional approach to point process modelling of elevated risk publication-title: Journal of the Royal Statistical Society, Series A doi: 10.2307/2983529 – year: 1992 ident: 10.1016/j.stamet.2011.01.008_br000095 – volume: 14 start-page: 2335 year: 1995 ident: 10.1016/j.stamet.2011.01.008_br000070 article-title: Non-parametric estimation of spatial variation in relative risk publication-title: Statistics in Medicine doi: 10.1002/sim.4780142106 – volume: 15 start-page: 1108 year: 2009 ident: 10.1016/j.stamet.2011.01.008_br000115 article-title: Geographic variability in geocoding success for West Nile virus cases in South Dakota publication-title: Health and Place doi: 10.1016/j.healthplace.2009.06.001 – volume: 9 start-page: 691 year: 1990 ident: 10.1016/j.stamet.2011.01.008_br000010 article-title: An application of density estimation to geographical epidemiology publication-title: Statistics in Medicine doi: 10.1002/sim.4780090616 – volume: 34 start-page: 138 year: 1985 ident: 10.1016/j.stamet.2011.01.008_br000040 article-title: A kernel method for smoothing point process data publication-title: Applied Statistics doi: 10.2307/2347366 – volume: 100 start-page: 121 year: 2005 ident: 10.1016/j.stamet.2011.01.008_br000085 article-title: Homogeneous linear predictor models for contingency tables publication-title: Journal of the American Statistical Association doi: 10.1198/016214504000001042 |
SSID | ssj0043763 |
Score | 1.8798884 |
Snippet | Inference for spatial variation in relative risk of disease is an important problem in spatial epidemiologic studies. A standard component of data assimilation... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 239 |
SubjectTerms | Coarsened data Geocoding Relative risk Spatial epidemiology |
Title | Estimating spatial variation in disease risk from locations coarsened by incomplete geocoding |
URI | https://dx.doi.org/10.1016/j.stamet.2011.01.008 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB76uPQiPrE-yh68xua12eRYSku10INa7EVCdrMpFU2LRsGLv92ZZCMKoiAJJBt2IUx2v_k2O_sNwJm2U2HzNLBCpZTlZ1xZUgauRSrVqfB04KkyQHYWTOb-5YIvGjCs98JQWKXB_grTS7Q2T_rGmv3NatW_drhAcuIKEj2j5YQmtF0vCngL2oOL6WRWA7JPY6iUTRWkz-eKegddGeaFHOxRF0bL0yG105891BevM96GLUMX2aB6ox1o6HwXOsQQK4HlPbgb4Q3RznzJnik8Gqu_4gS4tDhb5cwswTAKIme0m4SR_yq7G1NrnNci2qVMvjHSaSCt4EKzpV6rNXm1fZiPRzfDiWVyJljKE25hKem7Co8QkYwngRdEUoZZJkLK50v5GRWiShg4qeZZhKVMZ16SRVHmRo7WyK0OoJWvc30ITHKZJlpwlTqJnyhb4syNCIYqR7HyuuDVdoqVERSnvBYPcR05dh9X1o3JurGNpx12wfpstakENf6oL-pPEH_rGDFi_q8tj_7d8hg6WHKrPy0n0CqeXvQpco9C9qB5_u70TA-j6_TqdvoBM8TcQg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zHtxF_MT5mYPXuLZpmvYoY2Pq3MUNdpHSpOmYaDe0Cl78230vbYeCKEh76EcC5TV575fkl98j5Nw4qXREGrBQa838TGimVOAxVKlOJTcB15YgOwoGE_96KqYN0q33wiCtsvL9pU-33rp60qms2VnO5507V0gAJ55E0TNcTlgj677gEnl9Fx8rnoePPciKpkpU5_NkvX_OkrwAgT2ZolLydFHr9Of49CXm9LfIZgUW6WX5PdukYfId0kJ8WMor75L7Hlwg6Mxn9AXJ0VD8DYa_1t50ntNqAYYihZziXhKK0cs2NqoXMKoFX5dS9U5RpQGVggtDZ2ahFxjT9sik3xt3B6zKmMA0l17BtPI9DUcIfkwkAQ8ipcIskyFm88XsjBp8Shi4qRFZBHeZyXiSRVHmRa4xgKz2STNf5OaAUCVUmhgpdOomfqIdBeM2hBfa9mHN24TXdop1JSeOWS0e45o39hCX1o3RurEDpxO2CVvVWpZyGn-Ul_UviL81ixg8_q81D_9d84xsDMa3w3h4Nbo5Ii1445VzLsekWTy_mhNAIYU6ta3sEzJg22o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+spatial+variation+in+disease+risk+from+locations+coarsened+by+incomplete+geocoding&rft.jtitle=Statistical+methodology&rft.au=Zimmerman%2C+Dale+L.&rft.au=Fang%2C+Xiangming&rft.date=2012&rft.pub=Elsevier+B.V&rft.issn=1572-3127&rft.eissn=1878-0954&rft.volume=9&rft.issue=1&rft.spage=239&rft.epage=250&rft_id=info:doi/10.1016%2Fj.stamet.2011.01.008&rft.externalDocID=S1572312711000116 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1572-3127&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1572-3127&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1572-3127&client=summon |