Estimating spatial variation in disease risk from locations coarsened by incomplete geocoding

Inference for spatial variation in relative risk of disease is an important problem in spatial epidemiologic studies. A standard component of data assimilation in these studies is the assignment of a geocode, i.e. point-level spatial coordinates, to the address of each subject in the study populatio...

Full description

Saved in:
Bibliographic Details
Published inStatistical methodology Vol. 9; no. 1; pp. 239 - 250
Main Authors Zimmerman, Dale L., Fang, Xiangming
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2012
Subjects
Online AccessGet full text
ISSN1572-3127
1878-0954
DOI10.1016/j.stamet.2011.01.008

Cover

Abstract Inference for spatial variation in relative risk of disease is an important problem in spatial epidemiologic studies. A standard component of data assimilation in these studies is the assignment of a geocode, i.e. point-level spatial coordinates, to the address of each subject in the study population. Unfortunately, when geocoding is performed by the standard procedure of street-segment matching to a georeferenced road file and subsequent interpolation, it is rarely completely successful. Typically, 10-30% of the addresses in the study population fail to geocode, which can adversely affect relative risk estimation, especially if one of the disease groups (e.g. cases) has a different geocoding success rate than another (e.g. controls). The possibility exists, however, for ameliorating this effect by incorporating geographic information coarser than a point (e.g. a Zip code) that is measured for the observations that fail to geocode. This article develops coarsened-data methods for relative risk estimation from incompletely geocoded data. Nonparametric (kernel smoothing) estimation procedures are featured; parametric (likelihood-based) procedures are described as well, but their applicability is much more limited. We demonstrate, via simulation and a real example of childhood asthma cases in an Iowa county that substantial improvements in the quality of relative risk estimates are possible using the proposed nonparametric coarsened-data methods.
AbstractList Inference for spatial variation in relative risk of disease is an important problem in spatial epidemiologic studies. A standard component of data assimilation in these studies is the assignment of a geocode, i.e. point-level spatial coordinates, to the address of each subject in the study population. Unfortunately, when geocoding is performed by the standard procedure of street-segment matching to a georeferenced road file and subsequent interpolation, it is rarely completely successful. Typically, 10-30% of the addresses in the study population fail to geocode, which can adversely affect relative risk estimation, especially if one of the disease groups (e.g. cases) has a different geocoding success rate than another (e.g. controls). The possibility exists, however, for ameliorating this effect by incorporating geographic information coarser than a point (e.g. a Zip code) that is measured for the observations that fail to geocode. This article develops coarsened-data methods for relative risk estimation from incompletely geocoded data. Nonparametric (kernel smoothing) estimation procedures are featured; parametric (likelihood-based) procedures are described as well, but their applicability is much more limited. We demonstrate, via simulation and a real example of childhood asthma cases in an Iowa county that substantial improvements in the quality of relative risk estimates are possible using the proposed nonparametric coarsened-data methods.
Author Zimmerman, Dale L.
Fang, Xiangming
Author_xml – sequence: 1
  givenname: Dale L.
  surname: Zimmerman
  fullname: Zimmerman, Dale L.
  email: dale-zimmerman@uiowa.edu
  organization: Department of Statistics and Actuarial Science, University of Iowa, Iowa City, IA 52242, USA
– sequence: 2
  givenname: Xiangming
  surname: Fang
  fullname: Fang, Xiangming
  organization: Department of Biostatistics, East Carolina University, Greenville, NC 27858-4353, USA
BookMark eNqFUMtqwzAQFCWFJmn_oAf9gF3Jsi25h0IJ6QMCvbTHImR5FZTaVpBEIH9fJe6ph5Zd2Fl2Z2BmgWajGwGhW0pySmh9t8tDVAPEvCCU5iQ1ERdoTgUXGWmqcpZwxYuM0YJfoUUIO0JKxms2R5_rEO2goh23OOzTVD0-KG8TciO2I-5sABUAexu-sPFuwL3T52vA2ikfYIQOt8f0q92w7yEC3oLTrkuS1-jSqD7Azc9coo-n9fvqJdu8Pb-uHjeZZryImW7LQqcStGKVqlndtK0whgtKKs4Zo1okKzXtoDJN2gwYpkzTmKKhAGXBlqicdLV3IXgwcu-TK3-UlMhTRHInp4jkKSJJUhORaPe_aNrGs7fole3_Iz9MZEjGDha8DNrCqKGzHnSUnbN_C3wDbxOI8w
CitedBy_id crossref_primary_10_1016_j_annepidem_2021_10_002
crossref_primary_10_1016_j_sste_2012_02_008
crossref_primary_10_1111_biom_13152
crossref_primary_10_1016_j_ccm_2018_10_012
crossref_primary_10_11361_journalcpij_55_435
crossref_primary_10_1155_2014_567049
Cites_doi 10.2307/3318678
10.1002/sim.3288
10.1214/10-BA504
10.1186/1476-072X-4-29
10.1016/j.healthplace.2005.08.006
10.1097/01.ede.0000165364.54925.f3
10.1016/j.envres.2006.01.004
10.2307/2532251
10.1016/S1353-8292(99)00004-0
10.1186/1476-072X-2-10
10.1097/01.EDE.0000073121.63254.c5
10.1038/sj.jea.7500173
10.1111/j.1467-9469.2007.00583.x
10.1111/j.1541-0420.2007.00870.x
10.2307/2983529
10.1002/sim.4780142106
10.1016/j.healthplace.2009.06.001
10.1002/sim.4780090616
10.2307/2347366
10.1198/016214504000001042
ContentType Journal Article
Copyright 2011 Elsevier B.V.
Copyright_xml – notice: 2011 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.stamet.2011.01.008
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1878-0954
EndPage 250
ExternalDocumentID 10_1016_j_stamet_2011_01_008
S1572312711000116
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
ABAOU
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HAMUX
HVGLF
HZ~
IHE
J1W
J9A
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SSB
SSD
SSW
SSZ
T5K
UNMZH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
SSH
ID FETCH-LOGICAL-c372t-cb42c2c281535a6369bb8ff7810577331c887861de5f931cfef3af99f291ee423
IEDL.DBID AIKHN
ISSN 1572-3127
IngestDate Thu Apr 24 22:57:54 EDT 2025
Tue Jul 01 03:08:50 EDT 2025
Fri Feb 23 02:17:26 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Coarsened data
Spatial epidemiology
Geocoding
Relative risk
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-cb42c2c281535a6369bb8ff7810577331c887861de5f931cfef3af99f291ee423
PageCount 12
ParticipantIDs crossref_primary_10_1016_j_stamet_2011_01_008
crossref_citationtrail_10_1016_j_stamet_2011_01_008
elsevier_sciencedirect_doi_10_1016_j_stamet_2011_01_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012
2012-1-00
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – year: 2012
  text: 2012
PublicationDecade 2010
PublicationTitle Statistical methodology
PublicationYear 2012
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kelsall, Diggle (br000065) 1995; 1
Kelsall, Diggle (br000075) 1998; 47
Gregorio, Cromley, Mrozinski, Walsh (br000055) 1999; 5
Wey, Griesse, Kightlinger, Wimberly (br000115) 2009; 15
Scott (br000095) 1992
Chakraborty, Gelfand (br000025) 2010; 5
Cayo, Talbot (br000020) 2003; 2
Kelsall, Diggle (br000070) 1995; 14
Waller, Gotway (br000105) 2004
Cucala (br000030) 2008; 35
Zimmerman, Fang, Mazumdar (br000125) 2008; 27
Ward, Nuckols, Giglierano, Bonner, Wolter, Airola, Mix, Colt, Hartge (br000110) 2005; 16
ArcGIS9, Geocoding Rule Base Developers Guide, Redlands, California: Earth Sciences Research Institute, 2003.
Bithell (br000010) 1990; 9
Gilboa, Mendola, Olshan, Harness, Loomis, Langlois, Savitz, Herring (br000050) 2006; 101
D.L. Zimmerman, P. Sun, X. Fang, Likelihood-based estimation of spatial intensity and variation in disease risk from locations subject to geocoding errors, 2011 (submitted for publication).
Oliver, Matthews, Siadaty, Hauck, Pickle (br000090) 2005; 4
Stoyan, Kendall, Mecke (br000100) 1987
Diggle, Rowlingson (br000045) 1994; 157
Heitjan (br000060) 1993; 49
Diggle (br000040) 1985; 34
Zimmerman (br000120) 2008; 64
Dearwent, Jacobs, Halbert (br000035) 2001; 11
Bonner, Han, Nie, Rogerson, Vena, Freudenheim (br000015) 2003; 14
Kravets, Hadden (br000080) 2007; 13
Lang (br000085) 2005; 100
Cayo (10.1016/j.stamet.2011.01.008_br000020) 2003; 2
Bonner (10.1016/j.stamet.2011.01.008_br000015) 2003; 14
Zimmerman (10.1016/j.stamet.2011.01.008_br000120) 2008; 64
Ward (10.1016/j.stamet.2011.01.008_br000110) 2005; 16
Diggle (10.1016/j.stamet.2011.01.008_br000040) 1985; 34
Kelsall (10.1016/j.stamet.2011.01.008_br000065) 1995; 1
Bithell (10.1016/j.stamet.2011.01.008_br000010) 1990; 9
Wey (10.1016/j.stamet.2011.01.008_br000115) 2009; 15
Chakraborty (10.1016/j.stamet.2011.01.008_br000025) 2010; 5
10.1016/j.stamet.2011.01.008_br000130
Gilboa (10.1016/j.stamet.2011.01.008_br000050) 2006; 101
Waller (10.1016/j.stamet.2011.01.008_br000105) 2004
Heitjan (10.1016/j.stamet.2011.01.008_br000060) 1993; 49
Kelsall (10.1016/j.stamet.2011.01.008_br000070) 1995; 14
Cucala (10.1016/j.stamet.2011.01.008_br000030) 2008; 35
Scott (10.1016/j.stamet.2011.01.008_br000095) 1992
Kelsall (10.1016/j.stamet.2011.01.008_br000075) 1998; 47
Stoyan (10.1016/j.stamet.2011.01.008_br000100) 1987
Oliver (10.1016/j.stamet.2011.01.008_br000090) 2005; 4
Diggle (10.1016/j.stamet.2011.01.008_br000045) 1994; 157
Dearwent (10.1016/j.stamet.2011.01.008_br000035) 2001; 11
10.1016/j.stamet.2011.01.008_br000005
Lang (10.1016/j.stamet.2011.01.008_br000085) 2005; 100
Kravets (10.1016/j.stamet.2011.01.008_br000080) 2007; 13
Zimmerman (10.1016/j.stamet.2011.01.008_br000125) 2008; 27
Gregorio (10.1016/j.stamet.2011.01.008_br000055) 1999; 5
References_xml – volume: 2
  start-page: 10
  year: 2003
  ident: br000020
  article-title: Positional error in automated geocoding of residential addresses
  publication-title: International Journal of Health Geographics
– year: 1992
  ident: br000095
  article-title: Multivariate Density Estimation
– volume: 16
  start-page: 542
  year: 2005
  end-page: 547
  ident: br000110
  article-title: Positional accuracy of two methods of geocoding
  publication-title: Epidemiology
– volume: 35
  start-page: 322
  year: 2008
  end-page: 334
  ident: br000030
  article-title: Intensity estimation for spatial point processes observed with noise
  publication-title: Scandinavian Journal of Statistics
– volume: 13
  start-page: 293
  year: 2007
  end-page: 298
  ident: br000080
  article-title: The accuracy of address coding and the effects of coding errors
  publication-title: Health and Place
– volume: 15
  start-page: 1108
  year: 2009
  end-page: 1114
  ident: br000115
  article-title: Geographic variability in geocoding success for West Nile virus cases in South Dakota
  publication-title: Health and Place
– volume: 14
  start-page: 2335
  year: 1995
  end-page: 2342
  ident: br000070
  article-title: Non-parametric estimation of spatial variation in relative risk
  publication-title: Statistics in Medicine
– volume: 9
  start-page: 691
  year: 1990
  end-page: 701
  ident: br000010
  article-title: An application of density estimation to geographical epidemiology
  publication-title: Statistics in Medicine
– volume: 64
  start-page: 262
  year: 2008
  end-page: 270
  ident: br000120
  article-title: Estimating the intensity of a spatial point process from locations coarsened by incomplete geocoding
  publication-title: Biometrics
– volume: 11
  start-page: 329
  year: 2001
  end-page: 334
  ident: br000035
  article-title: Locational uncertainty in georeferencing public health datasets
  publication-title: Journal of Exposure Analysis and Environmental Epidemiology
– volume: 100
  start-page: 121
  year: 2005
  end-page: 134
  ident: br000085
  article-title: Homogeneous linear predictor models for contingency tables
  publication-title: Journal of the American Statistical Association
– volume: 14
  start-page: 408
  year: 2003
  end-page: 412
  ident: br000015
  article-title: Positional accuracy of geocoded addresses in epidemiologic research
  publication-title: Epidemiology
– year: 2004
  ident: br000105
  article-title: Applied Spatial Statistics for Public Health Data
– volume: 49
  start-page: 1099
  year: 1993
  end-page: 1109
  ident: br000060
  article-title: Ignorability and coarse data: some biomedical examples
  publication-title: Biometrics
– volume: 5
  start-page: 173
  year: 1999
  end-page: 177
  ident: br000055
  article-title: Subject loss in spatial analysis of breast cancer
  publication-title: Health and Place
– volume: 34
  start-page: 138
  year: 1985
  end-page: 147
  ident: br000040
  article-title: A kernel method for smoothing point process data
  publication-title: Applied Statistics
– volume: 47
  start-page: 559
  year: 1998
  end-page: 573
  ident: br000075
  article-title: Spatial variation in risk of disease: a nonparametric binary regression approach
  publication-title: Applied Statistics
– year: 1987
  ident: br000100
  article-title: Stochastic Geometry and its Applications
– volume: 157
  start-page: 433
  year: 1994
  end-page: 440
  ident: br000045
  article-title: A conditional approach to point process modelling of elevated risk
  publication-title: Journal of the Royal Statistical Society, Series A
– volume: 27
  start-page: 4254
  year: 2008
  end-page: 4266
  ident: br000125
  article-title: Spatial clustering of the failure to geocode and its implications for the detection of disease clustering
  publication-title: Statistics in Medicine
– volume: 4
  start-page: 29
  year: 2005
  ident: br000090
  article-title: Geographic bias related to geocoding in epidemiologic studies
  publication-title: International Journal of Health Geographics
– reference: D.L. Zimmerman, P. Sun, X. Fang, Likelihood-based estimation of spatial intensity and variation in disease risk from locations subject to geocoding errors, 2011 (submitted for publication).
– reference: ArcGIS9, Geocoding Rule Base Developers Guide, Redlands, California: Earth Sciences Research Institute, 2003.
– volume: 5
  start-page: 97
  year: 2010
  end-page: 122
  ident: br000025
  article-title: Analyzing spatial point patterns subject to measurement error
  publication-title: Bayesian Analysis
– volume: 101
  start-page: 256
  year: 2006
  end-page: 262
  ident: br000050
  article-title: Comparison of residential geocoding methods in population-based study of air quality and birth defects
  publication-title: Environmental Research
– volume: 1
  start-page: 3
  year: 1995
  end-page: 16
  ident: br000065
  article-title: Kernel estimation of relative risk
  publication-title: Bernoulli
– volume: 1
  start-page: 3
  year: 1995
  ident: 10.1016/j.stamet.2011.01.008_br000065
  article-title: Kernel estimation of relative risk
  publication-title: Bernoulli
  doi: 10.2307/3318678
– volume: 27
  start-page: 4254
  year: 2008
  ident: 10.1016/j.stamet.2011.01.008_br000125
  article-title: Spatial clustering of the failure to geocode and its implications for the detection of disease clustering
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.3288
– volume: 5
  start-page: 97
  year: 2010
  ident: 10.1016/j.stamet.2011.01.008_br000025
  article-title: Analyzing spatial point patterns subject to measurement error
  publication-title: Bayesian Analysis
  doi: 10.1214/10-BA504
– volume: 4
  start-page: 29
  year: 2005
  ident: 10.1016/j.stamet.2011.01.008_br000090
  article-title: Geographic bias related to geocoding in epidemiologic studies
  publication-title: International Journal of Health Geographics
  doi: 10.1186/1476-072X-4-29
– volume: 13
  start-page: 293
  year: 2007
  ident: 10.1016/j.stamet.2011.01.008_br000080
  article-title: The accuracy of address coding and the effects of coding errors
  publication-title: Health and Place
  doi: 10.1016/j.healthplace.2005.08.006
– year: 1987
  ident: 10.1016/j.stamet.2011.01.008_br000100
– volume: 16
  start-page: 542
  year: 2005
  ident: 10.1016/j.stamet.2011.01.008_br000110
  article-title: Positional accuracy of two methods of geocoding
  publication-title: Epidemiology
  doi: 10.1097/01.ede.0000165364.54925.f3
– volume: 101
  start-page: 256
  year: 2006
  ident: 10.1016/j.stamet.2011.01.008_br000050
  article-title: Comparison of residential geocoding methods in population-based study of air quality and birth defects
  publication-title: Environmental Research
  doi: 10.1016/j.envres.2006.01.004
– volume: 49
  start-page: 1099
  year: 1993
  ident: 10.1016/j.stamet.2011.01.008_br000060
  article-title: Ignorability and coarse data: some biomedical examples
  publication-title: Biometrics
  doi: 10.2307/2532251
– volume: 5
  start-page: 173
  year: 1999
  ident: 10.1016/j.stamet.2011.01.008_br000055
  article-title: Subject loss in spatial analysis of breast cancer
  publication-title: Health and Place
  doi: 10.1016/S1353-8292(99)00004-0
– volume: 2
  start-page: 10
  year: 2003
  ident: 10.1016/j.stamet.2011.01.008_br000020
  article-title: Positional error in automated geocoding of residential addresses
  publication-title: International Journal of Health Geographics
  doi: 10.1186/1476-072X-2-10
– volume: 14
  start-page: 408
  year: 2003
  ident: 10.1016/j.stamet.2011.01.008_br000015
  article-title: Positional accuracy of geocoded addresses in epidemiologic research
  publication-title: Epidemiology
  doi: 10.1097/01.EDE.0000073121.63254.c5
– ident: 10.1016/j.stamet.2011.01.008_br000130
– volume: 47
  start-page: 559
  year: 1998
  ident: 10.1016/j.stamet.2011.01.008_br000075
  article-title: Spatial variation in risk of disease: a nonparametric binary regression approach
  publication-title: Applied Statistics
– year: 2004
  ident: 10.1016/j.stamet.2011.01.008_br000105
– volume: 11
  start-page: 329
  year: 2001
  ident: 10.1016/j.stamet.2011.01.008_br000035
  article-title: Locational uncertainty in georeferencing public health datasets
  publication-title: Journal of Exposure Analysis and Environmental Epidemiology
  doi: 10.1038/sj.jea.7500173
– volume: 35
  start-page: 322
  year: 2008
  ident: 10.1016/j.stamet.2011.01.008_br000030
  article-title: Intensity estimation for spatial point processes observed with noise
  publication-title: Scandinavian Journal of Statistics
  doi: 10.1111/j.1467-9469.2007.00583.x
– ident: 10.1016/j.stamet.2011.01.008_br000005
– volume: 64
  start-page: 262
  year: 2008
  ident: 10.1016/j.stamet.2011.01.008_br000120
  article-title: Estimating the intensity of a spatial point process from locations coarsened by incomplete geocoding
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2007.00870.x
– volume: 157
  start-page: 433
  year: 1994
  ident: 10.1016/j.stamet.2011.01.008_br000045
  article-title: A conditional approach to point process modelling of elevated risk
  publication-title: Journal of the Royal Statistical Society, Series A
  doi: 10.2307/2983529
– year: 1992
  ident: 10.1016/j.stamet.2011.01.008_br000095
– volume: 14
  start-page: 2335
  year: 1995
  ident: 10.1016/j.stamet.2011.01.008_br000070
  article-title: Non-parametric estimation of spatial variation in relative risk
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.4780142106
– volume: 15
  start-page: 1108
  year: 2009
  ident: 10.1016/j.stamet.2011.01.008_br000115
  article-title: Geographic variability in geocoding success for West Nile virus cases in South Dakota
  publication-title: Health and Place
  doi: 10.1016/j.healthplace.2009.06.001
– volume: 9
  start-page: 691
  year: 1990
  ident: 10.1016/j.stamet.2011.01.008_br000010
  article-title: An application of density estimation to geographical epidemiology
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.4780090616
– volume: 34
  start-page: 138
  year: 1985
  ident: 10.1016/j.stamet.2011.01.008_br000040
  article-title: A kernel method for smoothing point process data
  publication-title: Applied Statistics
  doi: 10.2307/2347366
– volume: 100
  start-page: 121
  year: 2005
  ident: 10.1016/j.stamet.2011.01.008_br000085
  article-title: Homogeneous linear predictor models for contingency tables
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214504000001042
SSID ssj0043763
Score 1.8798884
Snippet Inference for spatial variation in relative risk of disease is an important problem in spatial epidemiologic studies. A standard component of data assimilation...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 239
SubjectTerms Coarsened data
Geocoding
Relative risk
Spatial epidemiology
Title Estimating spatial variation in disease risk from locations coarsened by incomplete geocoding
URI https://dx.doi.org/10.1016/j.stamet.2011.01.008
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB76uPQiPrE-yh68xua12eRYSku10INa7EVCdrMpFU2LRsGLv92ZZCMKoiAJJBt2IUx2v_k2O_sNwJm2U2HzNLBCpZTlZ1xZUgauRSrVqfB04KkyQHYWTOb-5YIvGjCs98JQWKXB_grTS7Q2T_rGmv3NatW_drhAcuIKEj2j5YQmtF0vCngL2oOL6WRWA7JPY6iUTRWkz-eKegddGeaFHOxRF0bL0yG105891BevM96GLUMX2aB6ox1o6HwXOsQQK4HlPbgb4Q3RznzJnik8Gqu_4gS4tDhb5cwswTAKIme0m4SR_yq7G1NrnNci2qVMvjHSaSCt4EKzpV6rNXm1fZiPRzfDiWVyJljKE25hKem7Co8QkYwngRdEUoZZJkLK50v5GRWiShg4qeZZhKVMZ16SRVHmRo7WyK0OoJWvc30ITHKZJlpwlTqJnyhb4syNCIYqR7HyuuDVdoqVERSnvBYPcR05dh9X1o3JurGNpx12wfpstakENf6oL-pPEH_rGDFi_q8tj_7d8hg6WHKrPy0n0CqeXvQpco9C9qB5_u70TA-j6_TqdvoBM8TcQg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zHtxF_MT5mYPXuLZpmvYoY2Pq3MUNdpHSpOmYaDe0Cl78230vbYeCKEh76EcC5TV575fkl98j5Nw4qXREGrBQa838TGimVOAxVKlOJTcB15YgOwoGE_96KqYN0q33wiCtsvL9pU-33rp60qms2VnO5507V0gAJ55E0TNcTlgj677gEnl9Fx8rnoePPciKpkpU5_NkvX_OkrwAgT2ZolLydFHr9Of49CXm9LfIZgUW6WX5PdukYfId0kJ8WMor75L7Hlwg6Mxn9AXJ0VD8DYa_1t50ntNqAYYihZziXhKK0cs2NqoXMKoFX5dS9U5RpQGVggtDZ2ahFxjT9sik3xt3B6zKmMA0l17BtPI9DUcIfkwkAQ8ipcIskyFm88XsjBp8Shi4qRFZBHeZyXiSRVHmRa4xgKz2STNf5OaAUCVUmhgpdOomfqIdBeM2hBfa9mHN24TXdop1JSeOWS0e45o39hCX1o3RurEDpxO2CVvVWpZyGn-Ul_UviL81ixg8_q81D_9d84xsDMa3w3h4Nbo5Ii1445VzLsekWTy_mhNAIYU6ta3sEzJg22o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+spatial+variation+in+disease+risk+from+locations+coarsened+by+incomplete+geocoding&rft.jtitle=Statistical+methodology&rft.au=Zimmerman%2C+Dale+L.&rft.au=Fang%2C+Xiangming&rft.date=2012&rft.pub=Elsevier+B.V&rft.issn=1572-3127&rft.eissn=1878-0954&rft.volume=9&rft.issue=1&rft.spage=239&rft.epage=250&rft_id=info:doi/10.1016%2Fj.stamet.2011.01.008&rft.externalDocID=S1572312711000116
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1572-3127&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1572-3127&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1572-3127&client=summon