Fingerprint-inspired electronic skin based on triboelectric nanogenerator for fine texture recognition

In humans, fine textures' tactile perception is mediated by fingertip skin, which is essential for environmental information obtaining and precision manipulation of objects. The keys to replicating the dynamic tactile perception ability in artificial devices are how to accurately map surface te...

Full description

Saved in:
Bibliographic Details
Published inNano energy Vol. 85; p. 106001
Main Authors Zhao, Xuan, Zhang, Zheng, Xu, Liangxu, Gao, Fangfang, Zhao, Bin, Ouyang, Tian, Kang, Zhuo, Liao, Qingliang, Zhang, Yue
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In humans, fine textures' tactile perception is mediated by fingertip skin, which is essential for environmental information obtaining and precision manipulation of objects. The keys to replicating the dynamic tactile perception ability in artificial devices are how to accurately map surface textures to electrical signals and reveal physical information. Electronic skins based on triboelectric nanogenerator (TENG) have obtained many impressive applications and have great potential in fine texture recognition. Here, we built a fingerprint-inspired electronic skin (FE-skin) based on TENG that can respond to fine textures by the biomimetic design of human fingerprints' morphology. The FE-skin can detect the change of the contact area caused by the dynamic interaction between the fingerprint structure and the tested object surface, and the minimum size of the texture that can be discerned is as low as 6.5 µm. Besides, different textures can be effectively identified by processing the collected electrical signals via artificial neural networks. In the recognition demonstration of disordered and ordered texture, the accuracy rates of over 93.33% and 92.5% were obtained, respectively. This technology demonstrates TENG's potential superiority in the field of bionic tactile perception and has broad application prospects in humanoid robots, intelligent prostheses, and precise human-machine interaction. [Display omitted] •Fingerprint-inspired electronic skin based on single-electrode TENG for fine texture recognition.•Artificial neural networks for classifying the collected signals.•Successful demonstration of the recognition of surface roughness and Braille.
AbstractList In humans, fine textures' tactile perception is mediated by fingertip skin, which is essential for environmental information obtaining and precision manipulation of objects. The keys to replicating the dynamic tactile perception ability in artificial devices are how to accurately map surface textures to electrical signals and reveal physical information. Electronic skins based on triboelectric nanogenerator (TENG) have obtained many impressive applications and have great potential in fine texture recognition. Here, we built a fingerprint-inspired electronic skin (FE-skin) based on TENG that can respond to fine textures by the biomimetic design of human fingerprints' morphology. The FE-skin can detect the change of the contact area caused by the dynamic interaction between the fingerprint structure and the tested object surface, and the minimum size of the texture that can be discerned is as low as 6.5 µm. Besides, different textures can be effectively identified by processing the collected electrical signals via artificial neural networks. In the recognition demonstration of disordered and ordered texture, the accuracy rates of over 93.33% and 92.5% were obtained, respectively. This technology demonstrates TENG's potential superiority in the field of bionic tactile perception and has broad application prospects in humanoid robots, intelligent prostheses, and precise human-machine interaction. [Display omitted] •Fingerprint-inspired electronic skin based on single-electrode TENG for fine texture recognition.•Artificial neural networks for classifying the collected signals.•Successful demonstration of the recognition of surface roughness and Braille.
ArticleNumber 106001
Author Ouyang, Tian
Zhang, Zheng
Zhang, Yue
Liao, Qingliang
Zhao, Xuan
Zhao, Bin
Kang, Zhuo
Gao, Fangfang
Xu, Liangxu
Author_xml – sequence: 1
  givenname: Xuan
  surname: Zhao
  fullname: Zhao, Xuan
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, People’s Republic of China
– sequence: 2
  givenname: Zheng
  surname: Zhang
  fullname: Zhang, Zheng
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, People’s Republic of China
– sequence: 3
  givenname: Liangxu
  surname: Xu
  fullname: Xu, Liangxu
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, People’s Republic of China
– sequence: 4
  givenname: Fangfang
  surname: Gao
  fullname: Gao, Fangfang
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, People’s Republic of China
– sequence: 5
  givenname: Bin
  surname: Zhao
  fullname: Zhao, Bin
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, People’s Republic of China
– sequence: 6
  givenname: Tian
  surname: Ouyang
  fullname: Ouyang, Tian
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, People’s Republic of China
– sequence: 7
  givenname: Zhuo
  surname: Kang
  fullname: Kang, Zhuo
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, People’s Republic of China
– sequence: 8
  givenname: Qingliang
  surname: Liao
  fullname: Liao, Qingliang
  email: liao@ustb.edu.cn
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, People’s Republic of China
– sequence: 9
  givenname: Yue
  surname: Zhang
  fullname: Zhang, Yue
  email: yuezhang@ustb.edu.cn
  organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, People’s Republic of China
BookMark eNqFkM9KAzEQxnOoYK19Aw_7AluT7H8PghRrhYIXPYfs7KSk1klJoujbm2U9edCBYWCGb2a-3wWbkSNk7ErwleCivj6sSJNDWkkuRWrVnIsZm0spRC7bqjpnyxAOPEVdiUbIOTMbS3v0J28p5pbCyXocMjwiRO_IQhZeLWW9DqnrKIve9m6aptl4bI-EXkfnMzOmJcwifsZ3j5lHcHuy0Tq6ZGdGHwMuf-qCvWzun9fbfPf08Li-2-VQNDLmoEsOXS3QQGs01pXUbaeh1VyWVcMH3oJskg_ounIA3lemb4qi1xIN6kpjsWDltBe8C8GjUcnZm_ZfSnA1IlIHNSFSIyI1IUqym18ysFGPj0ev7fE_8e0kxmTsw6JXASwS4JBYQlSDs38v-AYZpYwM
CitedBy_id crossref_primary_10_1016_j_compscitech_2023_110077
crossref_primary_10_3390_nanoenergyadv4010003
crossref_primary_10_1021_acsami_1c19718
crossref_primary_10_1002_aelm_202200782
crossref_primary_10_1080_09205063_2024_2334974
crossref_primary_10_1039_D2EE01590K
crossref_primary_10_1007_s10853_023_08737_4
crossref_primary_10_1016_j_cej_2024_150573
crossref_primary_10_1016_j_jallcom_2022_165096
crossref_primary_10_3390_act13030084
crossref_primary_10_1002_adfm_202106887
crossref_primary_10_3390_s23063201
crossref_primary_10_1002_EXP_20210112
crossref_primary_10_1016_j_sna_2024_115275
crossref_primary_10_1016_j_isci_2021_103075
crossref_primary_10_1016_j_nanoen_2025_110825
crossref_primary_10_1016_j_nanoen_2024_109327
crossref_primary_10_1088_2631_7990_ad65cc
crossref_primary_10_1002_admt_202202106
crossref_primary_10_1557_s43579_024_00577_w
crossref_primary_10_1007_s40820_022_00981_8
crossref_primary_10_1021_acsaelm_1c01274
crossref_primary_10_1007_s40820_024_01423_3
crossref_primary_10_1021_acsaelm_3c01854
crossref_primary_10_1038_s41598_023_31934_9
crossref_primary_10_3390_nano12081385
crossref_primary_10_1002_admt_202301592
crossref_primary_10_1002_smll_202405520
crossref_primary_10_1021_acsaelm_4c02124
crossref_primary_10_1002_admi_202201270
crossref_primary_10_2139_ssrn_4001272
crossref_primary_10_1016_j_nanoen_2023_108729
crossref_primary_10_3390_nanoenergyadv1010005
crossref_primary_10_1126_sciadv_ads2291
crossref_primary_10_1016_j_snr_2025_100312
crossref_primary_10_1021_acsami_4c14677
crossref_primary_10_1021_acsaelm_4c00942
crossref_primary_10_1016_j_nanoen_2022_107137
crossref_primary_10_46670_JSST_2022_31_3_139
crossref_primary_10_1002_open_202400394
crossref_primary_10_1039_D2MH00534D
crossref_primary_10_1016_j_apmt_2025_102638
crossref_primary_10_1002_advs_202304598
crossref_primary_10_1007_s12613_023_2659_9
crossref_primary_10_1002_idm2_12233
crossref_primary_10_1016_j_cej_2025_161293
crossref_primary_10_1016_j_xcrp_2024_101888
crossref_primary_10_1080_10667857_2022_2038769
crossref_primary_10_1002_adma_202409440
crossref_primary_10_1038_s41528_022_00197_1
crossref_primary_10_3390_biomimetics10030147
crossref_primary_10_1007_s12613_023_2626_5
crossref_primary_10_1093_nsr_nwad298
crossref_primary_10_1016_j_nanoen_2021_106798
crossref_primary_10_1016_j_nanoen_2021_106117
crossref_primary_10_3390_ma14216366
crossref_primary_10_1002_admt_202201352
crossref_primary_10_1038_s41467_023_42722_4
crossref_primary_10_1088_1748_3190_ad61a8
crossref_primary_10_3390_s21248422
crossref_primary_10_2139_ssrn_4000254
crossref_primary_10_1007_s12274_023_6248_z
crossref_primary_10_1016_j_sna_2024_115098
crossref_primary_10_1016_j_nanoen_2022_107324
crossref_primary_10_1016_j_nanoen_2024_109702
crossref_primary_10_1016_j_jsamd_2025_100869
crossref_primary_10_1002_adfm_202412649
crossref_primary_10_3390_mi13101586
crossref_primary_10_1002_advs_202400234
crossref_primary_10_1016_j_nanoen_2024_110486
crossref_primary_10_1016_j_nanoen_2022_108043
crossref_primary_10_1063_5_0253801
crossref_primary_10_1002_adfm_202208120
crossref_primary_10_1016_j_carbon_2024_119234
crossref_primary_10_3390_coatings13081407
crossref_primary_10_3390_en17030638
crossref_primary_10_1021_acsami_2c22378
crossref_primary_10_1021_acssensors_4c02742
crossref_primary_10_1109_JSEN_2023_3291720
crossref_primary_10_1002_ente_202300984
crossref_primary_10_1016_j_compositesa_2022_107264
crossref_primary_10_1021_acs_chemrev_4c00049
crossref_primary_10_1021_acsaelm_4c01850
crossref_primary_10_1002_adfm_202112155
crossref_primary_10_1002_aisy_202100280
crossref_primary_10_1021_acsbiomaterials_1c01106
crossref_primary_10_1007_s12613_022_2426_3
crossref_primary_10_1002_pssa_202400298
crossref_primary_10_2139_ssrn_4066281
crossref_primary_10_1126_sciadv_adp0348
crossref_primary_10_1002_admt_202200834
crossref_primary_10_1016_j_nanoen_2024_109899
crossref_primary_10_1016_j_nanoen_2021_106686
crossref_primary_10_1088_1361_6439_ad6778
crossref_primary_10_2139_ssrn_3967987
crossref_primary_10_1016_j_mtener_2024_101732
Cites_doi 10.1016/j.sna.2017.01.020
10.1016/j.nanoen.2020.105614
10.1021/acsnano.7b00396
10.1002/adfm.201302453
10.1152/jn.1981.46.6.1177
10.1126/science.1234855
10.1126/sciadv.1700694
10.1016/j.isci.2020.101813
10.1016/j.nanoen.2012.01.004
10.1002/smll.201703902
10.1016/j.patrec.2018.02.010
10.1002/adfm.201803684
10.1038/nmat2834
10.1016/j.nanoen.2020.105439
10.1021/acs.nanolett.9b00922
10.1038/s41586-019-1234-z
10.1126/scirobotics.aav1488
10.1152/jn.1990.63.6.1323
10.1126/scirobotics.aau6914
10.1002/adfm.201903580
10.1016/j.nanoen.2020.105680
10.1038/nnano.2011.184
10.1039/C7NR03748A
10.1021/nn403838y
10.1016/j.nanoen.2018.03.072
10.1038/s41569-020-0426-4
10.1021/nn403021m
10.1038/s41467-020-17842-w
10.1021/acsnano.0c04158
10.1016/j.eml.2020.101100
10.1002/adfm.202004673
10.1126/science.1166467
10.1002/adma.201302453
10.1126/sciadv.aba4294
10.1002/inf2.12008
10.1126/scirobotics.aat2516
10.1038/nmat4671
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nanoen.2021.106001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_nanoen_2021_106001
S2211285521002597
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
JARJE
KOM
M41
MAGPM
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SPC
SPCBC
SSM
SSR
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c372t-ca40c961efc8fae652a89ac8a024570d08c27855c994dc0b5fb733ba2efea5ae3
IEDL.DBID .~1
ISSN 2211-2855
IngestDate Thu Apr 24 23:00:17 EDT 2025
Tue Jul 01 00:56:45 EDT 2025
Fri Feb 23 02:45:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Triboelectric nanogenerator
Electronic skin
Artificial neural network
Fingerprint-inspired
Texture recognition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-ca40c961efc8fae652a89ac8a024570d08c27855c994dc0b5fb733ba2efea5ae3
ParticipantIDs crossref_primary_10_1016_j_nanoen_2021_106001
crossref_citationtrail_10_1016_j_nanoen_2021_106001
elsevier_sciencedirect_doi_10_1016_j_nanoen_2021_106001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationTitle Nano energy
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Xie, Chen, Zhao, Liu, Sun, Zhao, Wen (bib25) 2021; 79
Boutry, Negre, Jorda, Vardoulis, Chortos, Khatib, Bao (bib5) 2018; 3
Jones, Lederman (bib2) 2006
Pu, Guo, Chen, Wang, Xi, Hu, Wang (bib13) 2017; 3
Scheibert, Leurent, Prevost, Debregeas (bib1) 2009; 323
Zhang, Wen, Liu, Zhang, Xie, Sun (bib24) 2020; 23
Chortos, Liu, Bao (bib6) 2016; 15
Liu, Zhang, Lin, Qu, Li, Wang (bib27) 2017; 256
Cao, Li, Gu, Luo, Wang, Zhang (bib32) 2018; 14
Johnson, Phillip (bib3) 1981; 46
Fan, Tian, Wang (bib11) 2012; 1
Gao, Cheng, Wang (bib12) 2021; 42
Wu, Wen, Wang (bib10) 2013; 340
Yang, Zhou, Zhang, Liu, Lee, Wang (bib18) 2013; 25
Zheng, Tang, Wang, Li (bib19) 2021; 18
Zhao, Zhang, Liao, Xun, Gao, Xu, Kang, Zhang (bib7) 2020; 6
Yang, Zhang, Chen, Jing, Zhou, Wen, Wang (bib17) 2013; 7
Srinivasan, Whitehouse, LaMotte (bib26) 1990; 63
Guo, Pu, Chen, Meng, Yeh, Liu, Tang, Chen, Liu, Qi, Wu, Hu, Wang, Wang (bib4) 2018; 3
Li, Zou, Xing, Zhang, Cao, Wang, Wang (bib29) 2017; 11
Sundaram, Kellnhofer, Li, Zhu, Torralba, Matusik (bib36) 2019; 569
Xu, Zhang, Gao, Zhao, Xun, Kang, Liao, Zhang (bib16) 2021; 81
Mannsfeld, Tee, Stoltenberg, Chen, Barman, Muir, Sokolov, Reese, Bao (bib8) 2010; 9
Lipomi, Vosgueritchian, Tee, Hellstrom, Lee, Fox, Bao (bib9) 2011; 6
Chun, Son, Kim, Lim, Pang, Choi (bib33) 2019; 19
Wen, Yang, Sun, Li, Liu, Chen, Shi, Xie, Jiang, Bao, Zhuo, Sun (bib20) 2018; 28
Yang, Zhang, Lin, Zhou, Jing, Su, Yang, Chen, Hu, Wang (bib30) 2013; 7
Chen, Xie, Liu, Zhao, Wen, Wen (bib23) 2020; 30
Xun, Zhang, Zhao, Zhao, Gao, Kang, Liao, Zhang (bib15) 2020; 14
Zhao, Kang, Liao, Zhang, Ma, Zhang, Zhang (bib14) 2018; 48
Chen, Wen, Zhang, Wang, Zhang (bib31) 2021; 82
Chun, Choi, Suh, Bae, Hyun, Park (bib28) 2017; 9
Ma, Gao, Gao, Wu, Wang, Wang, Tang, Fan, Wu, Wan, Wu, Thuruthel, Shih, Laschi, Tolley (bib37) 2019; 4
Chitosan biopolymer-derived self-powered triboelectric sensor with optimized performance through molecular surface engineering and data-driven learning, InfoMat 1 (2019) 116–125.
Kang, Zhao, Huang, Ho, Megra, Suk, Sun, Wang, Cho (bib34) 2019; 29
Chen, Wen, Shi, Jian, Li, Yeow, Sun (bib22) 2020; 11
Zhang, Yang, Su, Chen, Adams, Lee, Hu, Wang (bib21) 2014; 24
Wang, Chen, Hao, Peng, Hu (bib35) 2018; 119
Chen (10.1016/j.nanoen.2021.106001_bib23) 2020; 30
Zhao (10.1016/j.nanoen.2021.106001_bib7) 2020; 6
Wang (10.1016/j.nanoen.2021.106001_bib35) 2018; 119
Zheng (10.1016/j.nanoen.2021.106001_bib19) 2021; 18
Cao (10.1016/j.nanoen.2021.106001_bib32) 2018; 14
Kang (10.1016/j.nanoen.2021.106001_bib34) 2019; 29
Johnson (10.1016/j.nanoen.2021.106001_bib3) 1981; 46
Chen (10.1016/j.nanoen.2021.106001_bib31) 2021; 82
Zhang (10.1016/j.nanoen.2021.106001_bib21) 2014; 24
Guo (10.1016/j.nanoen.2021.106001_bib4) 2018; 3
Liu (10.1016/j.nanoen.2021.106001_bib27) 2017; 256
Wu (10.1016/j.nanoen.2021.106001_bib10) 2013; 340
Yang (10.1016/j.nanoen.2021.106001_bib30) 2013; 7
Pu (10.1016/j.nanoen.2021.106001_bib13) 2017; 3
Boutry (10.1016/j.nanoen.2021.106001_bib5) 2018; 3
Jones (10.1016/j.nanoen.2021.106001_bib2) 2006
Scheibert (10.1016/j.nanoen.2021.106001_bib1) 2009; 323
Chen (10.1016/j.nanoen.2021.106001_bib22) 2020; 11
Ma (10.1016/j.nanoen.2021.106001_bib37) 2019; 4
Zhang (10.1016/j.nanoen.2021.106001_bib24) 2020; 23
Chortos (10.1016/j.nanoen.2021.106001_bib6) 2016; 15
Mannsfeld (10.1016/j.nanoen.2021.106001_bib8) 2010; 9
Fan (10.1016/j.nanoen.2021.106001_bib11) 2012; 1
Wen (10.1016/j.nanoen.2021.106001_bib20) 2018; 28
Xie (10.1016/j.nanoen.2021.106001_bib25) 2021; 79
Xun (10.1016/j.nanoen.2021.106001_bib15) 2020; 14
Gao (10.1016/j.nanoen.2021.106001_bib12) 2021; 42
Sundaram (10.1016/j.nanoen.2021.106001_bib36) 2019; 569
Chun (10.1016/j.nanoen.2021.106001_bib33) 2019; 19
Srinivasan (10.1016/j.nanoen.2021.106001_bib26) 1990; 63
Li (10.1016/j.nanoen.2021.106001_bib29) 2017; 11
Yang (10.1016/j.nanoen.2021.106001_bib18) 2013; 25
Lipomi (10.1016/j.nanoen.2021.106001_bib9) 2011; 6
Yang (10.1016/j.nanoen.2021.106001_bib17) 2013; 7
Zhao (10.1016/j.nanoen.2021.106001_bib14) 2018; 48
10.1016/j.nanoen.2021.106001_bib38
Xu (10.1016/j.nanoen.2021.106001_bib16) 2021; 81
Chun (10.1016/j.nanoen.2021.106001_bib28) 2017; 9
References_xml – volume: 7
  start-page: 9213
  year: 2013
  end-page: 9222
  ident: bib30
  article-title: Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system
  publication-title: ACS Nano
– volume: 4
  start-page: eaav1488
  year: 2019
  ident: bib37
  article-title: Soft robot perception using embedded soft sensors and recurrent neural networks
  publication-title: Sci. Robot.
– volume: 79
  year: 2021
  ident: bib25
  article-title: Intermediate layer for enhanced triboelectric nanogenerator
  publication-title: Nano Energy
– volume: 1
  start-page: 328
  year: 2012
  end-page: 334
  ident: bib11
  article-title: Flexible triboelectric generator
  publication-title: Nano Energy
– volume: 7
  start-page: 7342
  year: 2013
  end-page: 7351
  ident: bib17
  article-title: Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system
  publication-title: ACS Nano
– volume: 18
  start-page: 7
  year: 2021
  end-page: 21
  ident: bib19
  article-title: Self-powered cardiovascular electronic devices and systems
  publication-title: Nat. Rev. Cardiol.
– volume: 15
  start-page: 937
  year: 2016
  end-page: 950
  ident: bib6
  article-title: Pursuing prosthetic electronic skin
  publication-title: Nat. Mater.
– volume: 42
  year: 2021
  ident: bib12
  article-title: Triboelectric mechanical sensors—Progress and prospects
  publication-title: Extrem. Mech. Lett.
– volume: 11
  start-page: 4143
  year: 2020
  ident: bib22
  article-title: Micro triboelectric ultrasonic device for acoustic energy transfer and signal communication
  publication-title: Nat. Commun.
– volume: 82
  year: 2021
  ident: bib31
  article-title: Artificial tactile peripheral nervous system supported by self-powered transducers
  publication-title: Nano Energy
– volume: 24
  start-page: 1401
  year: 2014
  end-page: 1407
  ident: bib21
  article-title: Triboelectric nanogenerator for harvesting vibration energy in full space and as self‐powered acceleration sensor
  publication-title: Adv. Funct. Mater.
– volume: 81
  year: 2021
  ident: bib16
  article-title: Self-powered ultrasensitive pulse sensors for noninvasive multi-indicators cardiovascular monitoring
  publication-title: Nano Energy
– volume: 9
  start-page: 10248
  year: 2017
  end-page: 10255
  ident: bib28
  article-title: A tactile sensor using single layer graphene for surface texture recognition
  publication-title: Nanoscale
– volume: 340
  start-page: 952
  year: 2013
  end-page: 957
  ident: bib10
  article-title: Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging
  publication-title: Science
– volume: 14
  start-page: 9066
  year: 2020
  end-page: 9072
  ident: bib15
  article-title: Highly robust and self-powered electronic skin based on tough conductive self-healing elastomer
  publication-title: ACS Nano
– volume: 323
  start-page: 1503
  year: 2009
  end-page: 1506
  ident: bib1
  article-title: The role of fingerprints in the coding of tactile information probed with a biomimetic sensor
  publication-title: Science
– volume: 3
  start-page: eaat2516
  year: 2018
  ident: bib4
  article-title: A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids
  publication-title: Sci. Robot.
– volume: 569
  start-page: 698
  year: 2019
  end-page: 702
  ident: bib36
  article-title: Learning the signatures of the human grasp using a scalable tactile glove
  publication-title: Nature
– volume: 23
  year: 2020
  ident: bib24
  article-title: Hybridized nanogenerators for multifunctional self-powered sensing: principles, prototypes, and perspectives
  publication-title: iScience
– volume: 28
  year: 2018
  ident: bib20
  article-title: A wrinkled PEDOT: PSS film based stretchable and transparent triboelectric nanogenerator for wearable energy harvesters and active motion sensors
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2020
  ident: bib23
  article-title: Advances in healthcare electronics enabled by triboelectric nanogenerators
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 859
  year: 2010
  end-page: 864
  ident: bib8
  article-title: Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers
  publication-title: Nat. Mater.
– volume: 3
  year: 2017
  ident: bib13
  article-title: Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator
  publication-title: Sci. Adv.
– reference: Chitosan biopolymer-derived self-powered triboelectric sensor with optimized performance through molecular surface engineering and data-driven learning, InfoMat 1 (2019) 116–125.
– year: 2006
  ident: bib2
  article-title: Human Hand Function
– volume: 25
  start-page: 6594
  year: 2013
  end-page: 6601
  ident: bib18
  article-title: A single-electrode based triboelectric nanogenerator as self‐powered tracking system
  publication-title: Adv. Mater.
– volume: 48
  start-page: 312
  year: 2018
  end-page: 319
  ident: bib14
  article-title: Ultralight, self-powered and self-adaptive motion sensor based on triboelectric nanogenerator for perceptual layer application in Internet of things
  publication-title: Nano Energy
– volume: 63
  start-page: 1323
  year: 1990
  end-page: 1332
  ident: bib26
  article-title: Tactile detection of slip: surface microgeometry and peripheral neural codes
  publication-title: J. Neurophysiol.
– volume: 46
  start-page: 1177
  year: 1981
  end-page: 1192
  ident: bib3
  article-title: Tactile spatial resolution. I. Two-point discrimination, gap detection, grating resolution, and letter recognition
  publication-title: J. Neurophysiol.
– volume: 6
  start-page: eaba4294
  year: 2020
  ident: bib7
  article-title: Self-powered user-interactive electronic skin for programmable touch operation platform
  publication-title: Sci. Adv.
– volume: 14
  year: 2018
  ident: bib32
  article-title: Fingerprint-inspired flexible tactile sensor for accurately discerning surface texture
  publication-title: Small
– volume: 256
  start-page: 89
  year: 2017
  end-page: 94
  ident: bib27
  article-title: Texture and sliding motion sensation with a triboelectric-nanogenerator transducer
  publication-title: Sens. Actuators A Phys.
– volume: 3
  start-page: eaau6914
  year: 2018
  ident: bib5
  article-title: A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics
  publication-title: Sci. Robot.
– volume: 119
  start-page: 3
  year: 2018
  end-page: 11
  ident: bib35
  article-title: Deep learning for sensor-based activity recognition: a survey
  publication-title: Pattern Recogn. Lett.
– volume: 11
  start-page: 3950
  year: 2017
  end-page: 3956
  ident: bib29
  article-title: From dual-mode triboelectric nanogenerator to smart tactile sensor: a multiplexing design
  publication-title: ACS Nano
– volume: 19
  start-page: 3305
  year: 2019
  end-page: 3312
  ident: bib33
  article-title: Self-powered pressure-and vibration-sensitive tactile sensors for learning technique-based neural finger skin
  publication-title: Nano Lett.
– volume: 29
  year: 2019
  ident: bib34
  article-title: Fingerprint‐inspired conducting hierarchical wrinkles for energy‐harvesting e‐skin
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 788
  year: 2011
  end-page: 792
  ident: bib9
  article-title: Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes
  publication-title: Nat. Nanotechnol.
– volume: 256
  start-page: 89
  year: 2017
  ident: 10.1016/j.nanoen.2021.106001_bib27
  article-title: Texture and sliding motion sensation with a triboelectric-nanogenerator transducer
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2017.01.020
– volume: 81
  year: 2021
  ident: 10.1016/j.nanoen.2021.106001_bib16
  article-title: Self-powered ultrasensitive pulse sensors for noninvasive multi-indicators cardiovascular monitoring
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105614
– volume: 11
  start-page: 3950
  year: 2017
  ident: 10.1016/j.nanoen.2021.106001_bib29
  article-title: From dual-mode triboelectric nanogenerator to smart tactile sensor: a multiplexing design
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b00396
– volume: 24
  start-page: 1401
  year: 2014
  ident: 10.1016/j.nanoen.2021.106001_bib21
  article-title: Triboelectric nanogenerator for harvesting vibration energy in full space and as self‐powered acceleration sensor
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201302453
– volume: 46
  start-page: 1177
  year: 1981
  ident: 10.1016/j.nanoen.2021.106001_bib3
  article-title: Tactile spatial resolution. I. Two-point discrimination, gap detection, grating resolution, and letter recognition
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1981.46.6.1177
– volume: 340
  start-page: 952
  year: 2013
  ident: 10.1016/j.nanoen.2021.106001_bib10
  article-title: Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging
  publication-title: Science
  doi: 10.1126/science.1234855
– volume: 3
  year: 2017
  ident: 10.1016/j.nanoen.2021.106001_bib13
  article-title: Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700694
– volume: 23
  year: 2020
  ident: 10.1016/j.nanoen.2021.106001_bib24
  article-title: Hybridized nanogenerators for multifunctional self-powered sensing: principles, prototypes, and perspectives
  publication-title: iScience
  doi: 10.1016/j.isci.2020.101813
– volume: 1
  start-page: 328
  year: 2012
  ident: 10.1016/j.nanoen.2021.106001_bib11
  article-title: Flexible triboelectric generator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.01.004
– volume: 14
  year: 2018
  ident: 10.1016/j.nanoen.2021.106001_bib32
  article-title: Fingerprint-inspired flexible tactile sensor for accurately discerning surface texture
  publication-title: Small
  doi: 10.1002/smll.201703902
– volume: 119
  start-page: 3
  year: 2018
  ident: 10.1016/j.nanoen.2021.106001_bib35
  article-title: Deep learning for sensor-based activity recognition: a survey
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2018.02.010
– volume: 28
  year: 2018
  ident: 10.1016/j.nanoen.2021.106001_bib20
  article-title: A wrinkled PEDOT: PSS film based stretchable and transparent triboelectric nanogenerator for wearable energy harvesters and active motion sensors
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201803684
– volume: 9
  start-page: 859
  year: 2010
  ident: 10.1016/j.nanoen.2021.106001_bib8
  article-title: Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2834
– volume: 79
  year: 2021
  ident: 10.1016/j.nanoen.2021.106001_bib25
  article-title: Intermediate layer for enhanced triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105439
– volume: 19
  start-page: 3305
  year: 2019
  ident: 10.1016/j.nanoen.2021.106001_bib33
  article-title: Self-powered pressure-and vibration-sensitive tactile sensors for learning technique-based neural finger skin
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b00922
– volume: 569
  start-page: 698
  year: 2019
  ident: 10.1016/j.nanoen.2021.106001_bib36
  article-title: Learning the signatures of the human grasp using a scalable tactile glove
  publication-title: Nature
  doi: 10.1038/s41586-019-1234-z
– volume: 4
  start-page: eaav1488
  year: 2019
  ident: 10.1016/j.nanoen.2021.106001_bib37
  article-title: Soft robot perception using embedded soft sensors and recurrent neural networks
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.aav1488
– volume: 63
  start-page: 1323
  year: 1990
  ident: 10.1016/j.nanoen.2021.106001_bib26
  article-title: Tactile detection of slip: surface microgeometry and peripheral neural codes
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1990.63.6.1323
– volume: 3
  start-page: eaau6914
  year: 2018
  ident: 10.1016/j.nanoen.2021.106001_bib5
  article-title: A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.aau6914
– volume: 29
  year: 2019
  ident: 10.1016/j.nanoen.2021.106001_bib34
  article-title: Fingerprint‐inspired conducting hierarchical wrinkles for energy‐harvesting e‐skin
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201903580
– volume: 82
  year: 2021
  ident: 10.1016/j.nanoen.2021.106001_bib31
  article-title: Artificial tactile peripheral nervous system supported by self-powered transducers
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105680
– volume: 6
  start-page: 788
  year: 2011
  ident: 10.1016/j.nanoen.2021.106001_bib9
  article-title: Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.184
– volume: 9
  start-page: 10248
  year: 2017
  ident: 10.1016/j.nanoen.2021.106001_bib28
  article-title: A tactile sensor using single layer graphene for surface texture recognition
  publication-title: Nanoscale
  doi: 10.1039/C7NR03748A
– volume: 7
  start-page: 9213
  year: 2013
  ident: 10.1016/j.nanoen.2021.106001_bib30
  article-title: Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system
  publication-title: ACS Nano
  doi: 10.1021/nn403838y
– volume: 48
  start-page: 312
  year: 2018
  ident: 10.1016/j.nanoen.2021.106001_bib14
  article-title: Ultralight, self-powered and self-adaptive motion sensor based on triboelectric nanogenerator for perceptual layer application in Internet of things
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.03.072
– volume: 18
  start-page: 7
  year: 2021
  ident: 10.1016/j.nanoen.2021.106001_bib19
  article-title: Self-powered cardiovascular electronic devices and systems
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/s41569-020-0426-4
– year: 2006
  ident: 10.1016/j.nanoen.2021.106001_bib2
– volume: 7
  start-page: 7342
  year: 2013
  ident: 10.1016/j.nanoen.2021.106001_bib17
  article-title: Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system
  publication-title: ACS Nano
  doi: 10.1021/nn403021m
– volume: 11
  start-page: 4143
  year: 2020
  ident: 10.1016/j.nanoen.2021.106001_bib22
  article-title: Micro triboelectric ultrasonic device for acoustic energy transfer and signal communication
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17842-w
– volume: 14
  start-page: 9066
  year: 2020
  ident: 10.1016/j.nanoen.2021.106001_bib15
  article-title: Highly robust and self-powered electronic skin based on tough conductive self-healing elastomer
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c04158
– volume: 42
  year: 2021
  ident: 10.1016/j.nanoen.2021.106001_bib12
  article-title: Triboelectric mechanical sensors—Progress and prospects
  publication-title: Extrem. Mech. Lett.
  doi: 10.1016/j.eml.2020.101100
– volume: 30
  year: 2020
  ident: 10.1016/j.nanoen.2021.106001_bib23
  article-title: Advances in healthcare electronics enabled by triboelectric nanogenerators
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202004673
– volume: 323
  start-page: 1503
  year: 2009
  ident: 10.1016/j.nanoen.2021.106001_bib1
  article-title: The role of fingerprints in the coding of tactile information probed with a biomimetic sensor
  publication-title: Science
  doi: 10.1126/science.1166467
– volume: 25
  start-page: 6594
  year: 2013
  ident: 10.1016/j.nanoen.2021.106001_bib18
  article-title: A single-electrode based triboelectric nanogenerator as self‐powered tracking system
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302453
– volume: 6
  start-page: eaba4294
  year: 2020
  ident: 10.1016/j.nanoen.2021.106001_bib7
  article-title: Self-powered user-interactive electronic skin for programmable touch operation platform
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aba4294
– ident: 10.1016/j.nanoen.2021.106001_bib38
  doi: 10.1002/inf2.12008
– volume: 3
  start-page: eaat2516
  year: 2018
  ident: 10.1016/j.nanoen.2021.106001_bib4
  article-title: A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.aat2516
– volume: 15
  start-page: 937
  year: 2016
  ident: 10.1016/j.nanoen.2021.106001_bib6
  article-title: Pursuing prosthetic electronic skin
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4671
SSID ssj0000651712
Score 2.579372
Snippet In humans, fine textures' tactile perception is mediated by fingertip skin, which is essential for environmental information obtaining and precision...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106001
SubjectTerms Artificial neural network
Electronic skin
Fingerprint-inspired
Texture recognition
Triboelectric nanogenerator
Title Fingerprint-inspired electronic skin based on triboelectric nanogenerator for fine texture recognition
URI https://dx.doi.org/10.1016/j.nanoen.2021.106001
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPEV5VB5YTR3nYWesKqoCogtU6hY5joMKyKlKuvLbucujFAmBxJAhti-yLtZ9Z9_nO0KuFE_BUZWaATprFmiZMZWlIQMsVVJxK3nFzXmYRONpcDcLZx0ybO_CIK2ysf21Ta-sddPSb7TZX8zn_UcBexehQsAfBO4Yb5QHgcRVfv3hrc9ZAGI9WQU9cTxDgfYGXUXzctoVFhOhCg-aEP5_RqgN1Bntk73GXaSDekYHpGPdIdndSCJ4RPJRdTKHB3QlmzuMnNuMfpW3oe-vc0cRrTJaOIoVroq6F_pwXs9V5mnYe9McH_gyRTrIamnpml5UuGMyHd08DcesqZ7AjC9FyYwOuIkjz-ZG5dpGodAq1kZpDLZKnnFlhARtmDgOMsPTME-l76da2NzqUFv_hGy5wtlTQn0vt-CYaA772SDVKXjlOYehfhREQgvdJX6rscQ0qcWxwsVb0nLIXpJazwnqOan13CVsLbWoU2v8MV62PyP5tkQSsP6_Sp79W_Kc7OBbzc-9IFvlcmUvwQsp0161zHpke3B7P558AqEE3bY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60HtSD-MS3OXgNTbOPZI8illbbXlTobclms1KVrGj9_87soyqIgoe9ZDJLmIR8M8mXGYBzLTJ0VJXhiM6Gh0blXOdZxBFLtdLCKVFxc8aTeHAfXk-j6RJctm9hiFbZ7P31nl7t1k1Lt7Fm92U2695KjF2kjhB_CLgTtQwrlJ0q6sDKxfBmMFkctSDK9lR170kqnHTaR3QV08sbXzrKhSp72EQewM8g9QV4-puw0XiM7KIe1BYsOb8N61_yCO5A0a8O5-iMbs5nni7PXc4-K9ywt6eZZwRYOSs9oyJXZS1FGY3roUo-jeE3K-jDPzNihLy_OrZgGJV-F-77V3eXA94UUOA2UHLOrQmFTeKeK6wujIsjaXRirDZ036pELrSVCq1hkyTMrciiIlNBkBnpCmci44I96PjSu31gQa9w6JsYgSFtmJkMHfNCYNcgDmNppDmAoLVYapvs4lTk4jltaWSPaW3nlOyc1nY-AL7Qeqmza_zRX7WTkX5bJSkCwK-ah__WPIPVwd14lI6Gk5sjWCNJTdc9hs789d2doFMyz06bRfcBPvfgZw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fingerprint-inspired+electronic+skin+based+on+triboelectric+nanogenerator+for+fine+texture+recognition&rft.jtitle=Nano+energy&rft.au=Zhao%2C+Xuan&rft.au=Zhang%2C+Zheng&rft.au=Xu%2C+Liangxu&rft.au=Gao%2C+Fangfang&rft.date=2021-07-01&rft.pub=Elsevier+Ltd&rft.issn=2211-2855&rft.volume=85&rft_id=info:doi/10.1016%2Fj.nanoen.2021.106001&rft.externalDocID=S2211285521002597
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon