Fingerprint-inspired electronic skin based on triboelectric nanogenerator for fine texture recognition
In humans, fine textures' tactile perception is mediated by fingertip skin, which is essential for environmental information obtaining and precision manipulation of objects. The keys to replicating the dynamic tactile perception ability in artificial devices are how to accurately map surface te...
Saved in:
Published in | Nano energy Vol. 85; p. 106001 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In humans, fine textures' tactile perception is mediated by fingertip skin, which is essential for environmental information obtaining and precision manipulation of objects. The keys to replicating the dynamic tactile perception ability in artificial devices are how to accurately map surface textures to electrical signals and reveal physical information. Electronic skins based on triboelectric nanogenerator (TENG) have obtained many impressive applications and have great potential in fine texture recognition. Here, we built a fingerprint-inspired electronic skin (FE-skin) based on TENG that can respond to fine textures by the biomimetic design of human fingerprints' morphology. The FE-skin can detect the change of the contact area caused by the dynamic interaction between the fingerprint structure and the tested object surface, and the minimum size of the texture that can be discerned is as low as 6.5 µm. Besides, different textures can be effectively identified by processing the collected electrical signals via artificial neural networks. In the recognition demonstration of disordered and ordered texture, the accuracy rates of over 93.33% and 92.5% were obtained, respectively. This technology demonstrates TENG's potential superiority in the field of bionic tactile perception and has broad application prospects in humanoid robots, intelligent prostheses, and precise human-machine interaction.
[Display omitted]
•Fingerprint-inspired electronic skin based on single-electrode TENG for fine texture recognition.•Artificial neural networks for classifying the collected signals.•Successful demonstration of the recognition of surface roughness and Braille. |
---|---|
AbstractList | In humans, fine textures' tactile perception is mediated by fingertip skin, which is essential for environmental information obtaining and precision manipulation of objects. The keys to replicating the dynamic tactile perception ability in artificial devices are how to accurately map surface textures to electrical signals and reveal physical information. Electronic skins based on triboelectric nanogenerator (TENG) have obtained many impressive applications and have great potential in fine texture recognition. Here, we built a fingerprint-inspired electronic skin (FE-skin) based on TENG that can respond to fine textures by the biomimetic design of human fingerprints' morphology. The FE-skin can detect the change of the contact area caused by the dynamic interaction between the fingerprint structure and the tested object surface, and the minimum size of the texture that can be discerned is as low as 6.5 µm. Besides, different textures can be effectively identified by processing the collected electrical signals via artificial neural networks. In the recognition demonstration of disordered and ordered texture, the accuracy rates of over 93.33% and 92.5% were obtained, respectively. This technology demonstrates TENG's potential superiority in the field of bionic tactile perception and has broad application prospects in humanoid robots, intelligent prostheses, and precise human-machine interaction.
[Display omitted]
•Fingerprint-inspired electronic skin based on single-electrode TENG for fine texture recognition.•Artificial neural networks for classifying the collected signals.•Successful demonstration of the recognition of surface roughness and Braille. |
ArticleNumber | 106001 |
Author | Ouyang, Tian Zhang, Zheng Zhang, Yue Liao, Qingliang Zhao, Xuan Zhao, Bin Kang, Zhuo Gao, Fangfang Xu, Liangxu |
Author_xml | – sequence: 1 givenname: Xuan surname: Zhao fullname: Zhao, Xuan organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, People’s Republic of China – sequence: 2 givenname: Zheng surname: Zhang fullname: Zhang, Zheng organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, People’s Republic of China – sequence: 3 givenname: Liangxu surname: Xu fullname: Xu, Liangxu organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, People’s Republic of China – sequence: 4 givenname: Fangfang surname: Gao fullname: Gao, Fangfang organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, People’s Republic of China – sequence: 5 givenname: Bin surname: Zhao fullname: Zhao, Bin organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, People’s Republic of China – sequence: 6 givenname: Tian surname: Ouyang fullname: Ouyang, Tian organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, People’s Republic of China – sequence: 7 givenname: Zhuo surname: Kang fullname: Kang, Zhuo organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, People’s Republic of China – sequence: 8 givenname: Qingliang surname: Liao fullname: Liao, Qingliang email: liao@ustb.edu.cn organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, People’s Republic of China – sequence: 9 givenname: Yue surname: Zhang fullname: Zhang, Yue email: yuezhang@ustb.edu.cn organization: Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083, People’s Republic of China |
BookMark | eNqFkM9KAzEQxnOoYK19Aw_7AluT7H8PghRrhYIXPYfs7KSk1klJoujbm2U9edCBYWCGb2a-3wWbkSNk7ErwleCivj6sSJNDWkkuRWrVnIsZm0spRC7bqjpnyxAOPEVdiUbIOTMbS3v0J28p5pbCyXocMjwiRO_IQhZeLWW9DqnrKIve9m6aptl4bI-EXkfnMzOmJcwifsZ3j5lHcHuy0Tq6ZGdGHwMuf-qCvWzun9fbfPf08Li-2-VQNDLmoEsOXS3QQGs01pXUbaeh1VyWVcMH3oJskg_ounIA3lemb4qi1xIN6kpjsWDltBe8C8GjUcnZm_ZfSnA1IlIHNSFSIyI1IUqym18ysFGPj0ev7fE_8e0kxmTsw6JXASwS4JBYQlSDs38v-AYZpYwM |
CitedBy_id | crossref_primary_10_1016_j_compscitech_2023_110077 crossref_primary_10_3390_nanoenergyadv4010003 crossref_primary_10_1021_acsami_1c19718 crossref_primary_10_1002_aelm_202200782 crossref_primary_10_1080_09205063_2024_2334974 crossref_primary_10_1039_D2EE01590K crossref_primary_10_1007_s10853_023_08737_4 crossref_primary_10_1016_j_cej_2024_150573 crossref_primary_10_1016_j_jallcom_2022_165096 crossref_primary_10_3390_act13030084 crossref_primary_10_1002_adfm_202106887 crossref_primary_10_3390_s23063201 crossref_primary_10_1002_EXP_20210112 crossref_primary_10_1016_j_sna_2024_115275 crossref_primary_10_1016_j_isci_2021_103075 crossref_primary_10_1016_j_nanoen_2025_110825 crossref_primary_10_1016_j_nanoen_2024_109327 crossref_primary_10_1088_2631_7990_ad65cc crossref_primary_10_1002_admt_202202106 crossref_primary_10_1557_s43579_024_00577_w crossref_primary_10_1007_s40820_022_00981_8 crossref_primary_10_1021_acsaelm_1c01274 crossref_primary_10_1007_s40820_024_01423_3 crossref_primary_10_1021_acsaelm_3c01854 crossref_primary_10_1038_s41598_023_31934_9 crossref_primary_10_3390_nano12081385 crossref_primary_10_1002_admt_202301592 crossref_primary_10_1002_smll_202405520 crossref_primary_10_1021_acsaelm_4c02124 crossref_primary_10_1002_admi_202201270 crossref_primary_10_2139_ssrn_4001272 crossref_primary_10_1016_j_nanoen_2023_108729 crossref_primary_10_3390_nanoenergyadv1010005 crossref_primary_10_1126_sciadv_ads2291 crossref_primary_10_1016_j_snr_2025_100312 crossref_primary_10_1021_acsami_4c14677 crossref_primary_10_1021_acsaelm_4c00942 crossref_primary_10_1016_j_nanoen_2022_107137 crossref_primary_10_46670_JSST_2022_31_3_139 crossref_primary_10_1002_open_202400394 crossref_primary_10_1039_D2MH00534D crossref_primary_10_1016_j_apmt_2025_102638 crossref_primary_10_1002_advs_202304598 crossref_primary_10_1007_s12613_023_2659_9 crossref_primary_10_1002_idm2_12233 crossref_primary_10_1016_j_cej_2025_161293 crossref_primary_10_1016_j_xcrp_2024_101888 crossref_primary_10_1080_10667857_2022_2038769 crossref_primary_10_1002_adma_202409440 crossref_primary_10_1038_s41528_022_00197_1 crossref_primary_10_3390_biomimetics10030147 crossref_primary_10_1007_s12613_023_2626_5 crossref_primary_10_1093_nsr_nwad298 crossref_primary_10_1016_j_nanoen_2021_106798 crossref_primary_10_1016_j_nanoen_2021_106117 crossref_primary_10_3390_ma14216366 crossref_primary_10_1002_admt_202201352 crossref_primary_10_1038_s41467_023_42722_4 crossref_primary_10_1088_1748_3190_ad61a8 crossref_primary_10_3390_s21248422 crossref_primary_10_2139_ssrn_4000254 crossref_primary_10_1007_s12274_023_6248_z crossref_primary_10_1016_j_sna_2024_115098 crossref_primary_10_1016_j_nanoen_2022_107324 crossref_primary_10_1016_j_nanoen_2024_109702 crossref_primary_10_1016_j_jsamd_2025_100869 crossref_primary_10_1002_adfm_202412649 crossref_primary_10_3390_mi13101586 crossref_primary_10_1002_advs_202400234 crossref_primary_10_1016_j_nanoen_2024_110486 crossref_primary_10_1016_j_nanoen_2022_108043 crossref_primary_10_1063_5_0253801 crossref_primary_10_1002_adfm_202208120 crossref_primary_10_1016_j_carbon_2024_119234 crossref_primary_10_3390_coatings13081407 crossref_primary_10_3390_en17030638 crossref_primary_10_1021_acsami_2c22378 crossref_primary_10_1021_acssensors_4c02742 crossref_primary_10_1109_JSEN_2023_3291720 crossref_primary_10_1002_ente_202300984 crossref_primary_10_1016_j_compositesa_2022_107264 crossref_primary_10_1021_acs_chemrev_4c00049 crossref_primary_10_1021_acsaelm_4c01850 crossref_primary_10_1002_adfm_202112155 crossref_primary_10_1002_aisy_202100280 crossref_primary_10_1021_acsbiomaterials_1c01106 crossref_primary_10_1007_s12613_022_2426_3 crossref_primary_10_1002_pssa_202400298 crossref_primary_10_2139_ssrn_4066281 crossref_primary_10_1126_sciadv_adp0348 crossref_primary_10_1002_admt_202200834 crossref_primary_10_1016_j_nanoen_2024_109899 crossref_primary_10_1016_j_nanoen_2021_106686 crossref_primary_10_1088_1361_6439_ad6778 crossref_primary_10_2139_ssrn_3967987 crossref_primary_10_1016_j_mtener_2024_101732 |
Cites_doi | 10.1016/j.sna.2017.01.020 10.1016/j.nanoen.2020.105614 10.1021/acsnano.7b00396 10.1002/adfm.201302453 10.1152/jn.1981.46.6.1177 10.1126/science.1234855 10.1126/sciadv.1700694 10.1016/j.isci.2020.101813 10.1016/j.nanoen.2012.01.004 10.1002/smll.201703902 10.1016/j.patrec.2018.02.010 10.1002/adfm.201803684 10.1038/nmat2834 10.1016/j.nanoen.2020.105439 10.1021/acs.nanolett.9b00922 10.1038/s41586-019-1234-z 10.1126/scirobotics.aav1488 10.1152/jn.1990.63.6.1323 10.1126/scirobotics.aau6914 10.1002/adfm.201903580 10.1016/j.nanoen.2020.105680 10.1038/nnano.2011.184 10.1039/C7NR03748A 10.1021/nn403838y 10.1016/j.nanoen.2018.03.072 10.1038/s41569-020-0426-4 10.1021/nn403021m 10.1038/s41467-020-17842-w 10.1021/acsnano.0c04158 10.1016/j.eml.2020.101100 10.1002/adfm.202004673 10.1126/science.1166467 10.1002/adma.201302453 10.1126/sciadv.aba4294 10.1002/inf2.12008 10.1126/scirobotics.aat2516 10.1038/nmat4671 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nanoen.2021.106001 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_nanoen_2021_106001 S2211285521002597 |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ JARJE KOM M41 MAGPM MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSM SSR SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c372t-ca40c961efc8fae652a89ac8a024570d08c27855c994dc0b5fb733ba2efea5ae3 |
IEDL.DBID | .~1 |
ISSN | 2211-2855 |
IngestDate | Thu Apr 24 23:00:17 EDT 2025 Tue Jul 01 00:56:45 EDT 2025 Fri Feb 23 02:45:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Triboelectric nanogenerator Electronic skin Artificial neural network Fingerprint-inspired Texture recognition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-ca40c961efc8fae652a89ac8a024570d08c27855c994dc0b5fb733ba2efea5ae3 |
ParticipantIDs | crossref_primary_10_1016_j_nanoen_2021_106001 crossref_citationtrail_10_1016_j_nanoen_2021_106001 elsevier_sciencedirect_doi_10_1016_j_nanoen_2021_106001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2021 2021-07-00 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationTitle | Nano energy |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Xie, Chen, Zhao, Liu, Sun, Zhao, Wen (bib25) 2021; 79 Boutry, Negre, Jorda, Vardoulis, Chortos, Khatib, Bao (bib5) 2018; 3 Jones, Lederman (bib2) 2006 Pu, Guo, Chen, Wang, Xi, Hu, Wang (bib13) 2017; 3 Scheibert, Leurent, Prevost, Debregeas (bib1) 2009; 323 Zhang, Wen, Liu, Zhang, Xie, Sun (bib24) 2020; 23 Chortos, Liu, Bao (bib6) 2016; 15 Liu, Zhang, Lin, Qu, Li, Wang (bib27) 2017; 256 Cao, Li, Gu, Luo, Wang, Zhang (bib32) 2018; 14 Johnson, Phillip (bib3) 1981; 46 Fan, Tian, Wang (bib11) 2012; 1 Gao, Cheng, Wang (bib12) 2021; 42 Wu, Wen, Wang (bib10) 2013; 340 Yang, Zhou, Zhang, Liu, Lee, Wang (bib18) 2013; 25 Zheng, Tang, Wang, Li (bib19) 2021; 18 Zhao, Zhang, Liao, Xun, Gao, Xu, Kang, Zhang (bib7) 2020; 6 Yang, Zhang, Chen, Jing, Zhou, Wen, Wang (bib17) 2013; 7 Srinivasan, Whitehouse, LaMotte (bib26) 1990; 63 Guo, Pu, Chen, Meng, Yeh, Liu, Tang, Chen, Liu, Qi, Wu, Hu, Wang, Wang (bib4) 2018; 3 Li, Zou, Xing, Zhang, Cao, Wang, Wang (bib29) 2017; 11 Sundaram, Kellnhofer, Li, Zhu, Torralba, Matusik (bib36) 2019; 569 Xu, Zhang, Gao, Zhao, Xun, Kang, Liao, Zhang (bib16) 2021; 81 Mannsfeld, Tee, Stoltenberg, Chen, Barman, Muir, Sokolov, Reese, Bao (bib8) 2010; 9 Lipomi, Vosgueritchian, Tee, Hellstrom, Lee, Fox, Bao (bib9) 2011; 6 Chun, Son, Kim, Lim, Pang, Choi (bib33) 2019; 19 Wen, Yang, Sun, Li, Liu, Chen, Shi, Xie, Jiang, Bao, Zhuo, Sun (bib20) 2018; 28 Yang, Zhang, Lin, Zhou, Jing, Su, Yang, Chen, Hu, Wang (bib30) 2013; 7 Chen, Xie, Liu, Zhao, Wen, Wen (bib23) 2020; 30 Xun, Zhang, Zhao, Zhao, Gao, Kang, Liao, Zhang (bib15) 2020; 14 Zhao, Kang, Liao, Zhang, Ma, Zhang, Zhang (bib14) 2018; 48 Chen, Wen, Zhang, Wang, Zhang (bib31) 2021; 82 Chun, Choi, Suh, Bae, Hyun, Park (bib28) 2017; 9 Ma, Gao, Gao, Wu, Wang, Wang, Tang, Fan, Wu, Wan, Wu, Thuruthel, Shih, Laschi, Tolley (bib37) 2019; 4 Chitosan biopolymer-derived self-powered triboelectric sensor with optimized performance through molecular surface engineering and data-driven learning, InfoMat 1 (2019) 116–125. Kang, Zhao, Huang, Ho, Megra, Suk, Sun, Wang, Cho (bib34) 2019; 29 Chen, Wen, Shi, Jian, Li, Yeow, Sun (bib22) 2020; 11 Zhang, Yang, Su, Chen, Adams, Lee, Hu, Wang (bib21) 2014; 24 Wang, Chen, Hao, Peng, Hu (bib35) 2018; 119 Chen (10.1016/j.nanoen.2021.106001_bib23) 2020; 30 Zhao (10.1016/j.nanoen.2021.106001_bib7) 2020; 6 Wang (10.1016/j.nanoen.2021.106001_bib35) 2018; 119 Zheng (10.1016/j.nanoen.2021.106001_bib19) 2021; 18 Cao (10.1016/j.nanoen.2021.106001_bib32) 2018; 14 Kang (10.1016/j.nanoen.2021.106001_bib34) 2019; 29 Johnson (10.1016/j.nanoen.2021.106001_bib3) 1981; 46 Chen (10.1016/j.nanoen.2021.106001_bib31) 2021; 82 Zhang (10.1016/j.nanoen.2021.106001_bib21) 2014; 24 Guo (10.1016/j.nanoen.2021.106001_bib4) 2018; 3 Liu (10.1016/j.nanoen.2021.106001_bib27) 2017; 256 Wu (10.1016/j.nanoen.2021.106001_bib10) 2013; 340 Yang (10.1016/j.nanoen.2021.106001_bib30) 2013; 7 Pu (10.1016/j.nanoen.2021.106001_bib13) 2017; 3 Boutry (10.1016/j.nanoen.2021.106001_bib5) 2018; 3 Jones (10.1016/j.nanoen.2021.106001_bib2) 2006 Scheibert (10.1016/j.nanoen.2021.106001_bib1) 2009; 323 Chen (10.1016/j.nanoen.2021.106001_bib22) 2020; 11 Ma (10.1016/j.nanoen.2021.106001_bib37) 2019; 4 Zhang (10.1016/j.nanoen.2021.106001_bib24) 2020; 23 Chortos (10.1016/j.nanoen.2021.106001_bib6) 2016; 15 Mannsfeld (10.1016/j.nanoen.2021.106001_bib8) 2010; 9 Fan (10.1016/j.nanoen.2021.106001_bib11) 2012; 1 Wen (10.1016/j.nanoen.2021.106001_bib20) 2018; 28 Xie (10.1016/j.nanoen.2021.106001_bib25) 2021; 79 Xun (10.1016/j.nanoen.2021.106001_bib15) 2020; 14 Gao (10.1016/j.nanoen.2021.106001_bib12) 2021; 42 Sundaram (10.1016/j.nanoen.2021.106001_bib36) 2019; 569 Chun (10.1016/j.nanoen.2021.106001_bib33) 2019; 19 Srinivasan (10.1016/j.nanoen.2021.106001_bib26) 1990; 63 Li (10.1016/j.nanoen.2021.106001_bib29) 2017; 11 Yang (10.1016/j.nanoen.2021.106001_bib18) 2013; 25 Lipomi (10.1016/j.nanoen.2021.106001_bib9) 2011; 6 Yang (10.1016/j.nanoen.2021.106001_bib17) 2013; 7 Zhao (10.1016/j.nanoen.2021.106001_bib14) 2018; 48 10.1016/j.nanoen.2021.106001_bib38 Xu (10.1016/j.nanoen.2021.106001_bib16) 2021; 81 Chun (10.1016/j.nanoen.2021.106001_bib28) 2017; 9 |
References_xml | – volume: 7 start-page: 9213 year: 2013 end-page: 9222 ident: bib30 article-title: Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system publication-title: ACS Nano – volume: 4 start-page: eaav1488 year: 2019 ident: bib37 article-title: Soft robot perception using embedded soft sensors and recurrent neural networks publication-title: Sci. Robot. – volume: 79 year: 2021 ident: bib25 article-title: Intermediate layer for enhanced triboelectric nanogenerator publication-title: Nano Energy – volume: 1 start-page: 328 year: 2012 end-page: 334 ident: bib11 article-title: Flexible triboelectric generator publication-title: Nano Energy – volume: 7 start-page: 7342 year: 2013 end-page: 7351 ident: bib17 article-title: Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system publication-title: ACS Nano – volume: 18 start-page: 7 year: 2021 end-page: 21 ident: bib19 article-title: Self-powered cardiovascular electronic devices and systems publication-title: Nat. Rev. Cardiol. – volume: 15 start-page: 937 year: 2016 end-page: 950 ident: bib6 article-title: Pursuing prosthetic electronic skin publication-title: Nat. Mater. – volume: 42 year: 2021 ident: bib12 article-title: Triboelectric mechanical sensors—Progress and prospects publication-title: Extrem. Mech. Lett. – volume: 11 start-page: 4143 year: 2020 ident: bib22 article-title: Micro triboelectric ultrasonic device for acoustic energy transfer and signal communication publication-title: Nat. Commun. – volume: 82 year: 2021 ident: bib31 article-title: Artificial tactile peripheral nervous system supported by self-powered transducers publication-title: Nano Energy – volume: 24 start-page: 1401 year: 2014 end-page: 1407 ident: bib21 article-title: Triboelectric nanogenerator for harvesting vibration energy in full space and as self‐powered acceleration sensor publication-title: Adv. Funct. Mater. – volume: 81 year: 2021 ident: bib16 article-title: Self-powered ultrasensitive pulse sensors for noninvasive multi-indicators cardiovascular monitoring publication-title: Nano Energy – volume: 9 start-page: 10248 year: 2017 end-page: 10255 ident: bib28 article-title: A tactile sensor using single layer graphene for surface texture recognition publication-title: Nanoscale – volume: 340 start-page: 952 year: 2013 end-page: 957 ident: bib10 article-title: Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging publication-title: Science – volume: 14 start-page: 9066 year: 2020 end-page: 9072 ident: bib15 article-title: Highly robust and self-powered electronic skin based on tough conductive self-healing elastomer publication-title: ACS Nano – volume: 323 start-page: 1503 year: 2009 end-page: 1506 ident: bib1 article-title: The role of fingerprints in the coding of tactile information probed with a biomimetic sensor publication-title: Science – volume: 3 start-page: eaat2516 year: 2018 ident: bib4 article-title: A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids publication-title: Sci. Robot. – volume: 569 start-page: 698 year: 2019 end-page: 702 ident: bib36 article-title: Learning the signatures of the human grasp using a scalable tactile glove publication-title: Nature – volume: 23 year: 2020 ident: bib24 article-title: Hybridized nanogenerators for multifunctional self-powered sensing: principles, prototypes, and perspectives publication-title: iScience – volume: 28 year: 2018 ident: bib20 article-title: A wrinkled PEDOT: PSS film based stretchable and transparent triboelectric nanogenerator for wearable energy harvesters and active motion sensors publication-title: Adv. Funct. Mater. – volume: 30 year: 2020 ident: bib23 article-title: Advances in healthcare electronics enabled by triboelectric nanogenerators publication-title: Adv. Funct. Mater. – volume: 9 start-page: 859 year: 2010 end-page: 864 ident: bib8 article-title: Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers publication-title: Nat. Mater. – volume: 3 year: 2017 ident: bib13 article-title: Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator publication-title: Sci. Adv. – reference: Chitosan biopolymer-derived self-powered triboelectric sensor with optimized performance through molecular surface engineering and data-driven learning, InfoMat 1 (2019) 116–125. – year: 2006 ident: bib2 article-title: Human Hand Function – volume: 25 start-page: 6594 year: 2013 end-page: 6601 ident: bib18 article-title: A single-electrode based triboelectric nanogenerator as self‐powered tracking system publication-title: Adv. Mater. – volume: 48 start-page: 312 year: 2018 end-page: 319 ident: bib14 article-title: Ultralight, self-powered and self-adaptive motion sensor based on triboelectric nanogenerator for perceptual layer application in Internet of things publication-title: Nano Energy – volume: 63 start-page: 1323 year: 1990 end-page: 1332 ident: bib26 article-title: Tactile detection of slip: surface microgeometry and peripheral neural codes publication-title: J. Neurophysiol. – volume: 46 start-page: 1177 year: 1981 end-page: 1192 ident: bib3 article-title: Tactile spatial resolution. I. Two-point discrimination, gap detection, grating resolution, and letter recognition publication-title: J. Neurophysiol. – volume: 6 start-page: eaba4294 year: 2020 ident: bib7 article-title: Self-powered user-interactive electronic skin for programmable touch operation platform publication-title: Sci. Adv. – volume: 14 year: 2018 ident: bib32 article-title: Fingerprint-inspired flexible tactile sensor for accurately discerning surface texture publication-title: Small – volume: 256 start-page: 89 year: 2017 end-page: 94 ident: bib27 article-title: Texture and sliding motion sensation with a triboelectric-nanogenerator transducer publication-title: Sens. Actuators A Phys. – volume: 3 start-page: eaau6914 year: 2018 ident: bib5 article-title: A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics publication-title: Sci. Robot. – volume: 119 start-page: 3 year: 2018 end-page: 11 ident: bib35 article-title: Deep learning for sensor-based activity recognition: a survey publication-title: Pattern Recogn. Lett. – volume: 11 start-page: 3950 year: 2017 end-page: 3956 ident: bib29 article-title: From dual-mode triboelectric nanogenerator to smart tactile sensor: a multiplexing design publication-title: ACS Nano – volume: 19 start-page: 3305 year: 2019 end-page: 3312 ident: bib33 article-title: Self-powered pressure-and vibration-sensitive tactile sensors for learning technique-based neural finger skin publication-title: Nano Lett. – volume: 29 year: 2019 ident: bib34 article-title: Fingerprint‐inspired conducting hierarchical wrinkles for energy‐harvesting e‐skin publication-title: Adv. Funct. Mater. – volume: 6 start-page: 788 year: 2011 end-page: 792 ident: bib9 article-title: Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes publication-title: Nat. Nanotechnol. – volume: 256 start-page: 89 year: 2017 ident: 10.1016/j.nanoen.2021.106001_bib27 article-title: Texture and sliding motion sensation with a triboelectric-nanogenerator transducer publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2017.01.020 – volume: 81 year: 2021 ident: 10.1016/j.nanoen.2021.106001_bib16 article-title: Self-powered ultrasensitive pulse sensors for noninvasive multi-indicators cardiovascular monitoring publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105614 – volume: 11 start-page: 3950 year: 2017 ident: 10.1016/j.nanoen.2021.106001_bib29 article-title: From dual-mode triboelectric nanogenerator to smart tactile sensor: a multiplexing design publication-title: ACS Nano doi: 10.1021/acsnano.7b00396 – volume: 24 start-page: 1401 year: 2014 ident: 10.1016/j.nanoen.2021.106001_bib21 article-title: Triboelectric nanogenerator for harvesting vibration energy in full space and as self‐powered acceleration sensor publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201302453 – volume: 46 start-page: 1177 year: 1981 ident: 10.1016/j.nanoen.2021.106001_bib3 article-title: Tactile spatial resolution. I. Two-point discrimination, gap detection, grating resolution, and letter recognition publication-title: J. Neurophysiol. doi: 10.1152/jn.1981.46.6.1177 – volume: 340 start-page: 952 year: 2013 ident: 10.1016/j.nanoen.2021.106001_bib10 article-title: Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging publication-title: Science doi: 10.1126/science.1234855 – volume: 3 year: 2017 ident: 10.1016/j.nanoen.2021.106001_bib13 article-title: Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator publication-title: Sci. Adv. doi: 10.1126/sciadv.1700694 – volume: 23 year: 2020 ident: 10.1016/j.nanoen.2021.106001_bib24 article-title: Hybridized nanogenerators for multifunctional self-powered sensing: principles, prototypes, and perspectives publication-title: iScience doi: 10.1016/j.isci.2020.101813 – volume: 1 start-page: 328 year: 2012 ident: 10.1016/j.nanoen.2021.106001_bib11 article-title: Flexible triboelectric generator publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.01.004 – volume: 14 year: 2018 ident: 10.1016/j.nanoen.2021.106001_bib32 article-title: Fingerprint-inspired flexible tactile sensor for accurately discerning surface texture publication-title: Small doi: 10.1002/smll.201703902 – volume: 119 start-page: 3 year: 2018 ident: 10.1016/j.nanoen.2021.106001_bib35 article-title: Deep learning for sensor-based activity recognition: a survey publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2018.02.010 – volume: 28 year: 2018 ident: 10.1016/j.nanoen.2021.106001_bib20 article-title: A wrinkled PEDOT: PSS film based stretchable and transparent triboelectric nanogenerator for wearable energy harvesters and active motion sensors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201803684 – volume: 9 start-page: 859 year: 2010 ident: 10.1016/j.nanoen.2021.106001_bib8 article-title: Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers publication-title: Nat. Mater. doi: 10.1038/nmat2834 – volume: 79 year: 2021 ident: 10.1016/j.nanoen.2021.106001_bib25 article-title: Intermediate layer for enhanced triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105439 – volume: 19 start-page: 3305 year: 2019 ident: 10.1016/j.nanoen.2021.106001_bib33 article-title: Self-powered pressure-and vibration-sensitive tactile sensors for learning technique-based neural finger skin publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b00922 – volume: 569 start-page: 698 year: 2019 ident: 10.1016/j.nanoen.2021.106001_bib36 article-title: Learning the signatures of the human grasp using a scalable tactile glove publication-title: Nature doi: 10.1038/s41586-019-1234-z – volume: 4 start-page: eaav1488 year: 2019 ident: 10.1016/j.nanoen.2021.106001_bib37 article-title: Soft robot perception using embedded soft sensors and recurrent neural networks publication-title: Sci. Robot. doi: 10.1126/scirobotics.aav1488 – volume: 63 start-page: 1323 year: 1990 ident: 10.1016/j.nanoen.2021.106001_bib26 article-title: Tactile detection of slip: surface microgeometry and peripheral neural codes publication-title: J. Neurophysiol. doi: 10.1152/jn.1990.63.6.1323 – volume: 3 start-page: eaau6914 year: 2018 ident: 10.1016/j.nanoen.2021.106001_bib5 article-title: A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics publication-title: Sci. Robot. doi: 10.1126/scirobotics.aau6914 – volume: 29 year: 2019 ident: 10.1016/j.nanoen.2021.106001_bib34 article-title: Fingerprint‐inspired conducting hierarchical wrinkles for energy‐harvesting e‐skin publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201903580 – volume: 82 year: 2021 ident: 10.1016/j.nanoen.2021.106001_bib31 article-title: Artificial tactile peripheral nervous system supported by self-powered transducers publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105680 – volume: 6 start-page: 788 year: 2011 ident: 10.1016/j.nanoen.2021.106001_bib9 article-title: Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.184 – volume: 9 start-page: 10248 year: 2017 ident: 10.1016/j.nanoen.2021.106001_bib28 article-title: A tactile sensor using single layer graphene for surface texture recognition publication-title: Nanoscale doi: 10.1039/C7NR03748A – volume: 7 start-page: 9213 year: 2013 ident: 10.1016/j.nanoen.2021.106001_bib30 article-title: Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system publication-title: ACS Nano doi: 10.1021/nn403838y – volume: 48 start-page: 312 year: 2018 ident: 10.1016/j.nanoen.2021.106001_bib14 article-title: Ultralight, self-powered and self-adaptive motion sensor based on triboelectric nanogenerator for perceptual layer application in Internet of things publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.03.072 – volume: 18 start-page: 7 year: 2021 ident: 10.1016/j.nanoen.2021.106001_bib19 article-title: Self-powered cardiovascular electronic devices and systems publication-title: Nat. Rev. Cardiol. doi: 10.1038/s41569-020-0426-4 – year: 2006 ident: 10.1016/j.nanoen.2021.106001_bib2 – volume: 7 start-page: 7342 year: 2013 ident: 10.1016/j.nanoen.2021.106001_bib17 article-title: Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system publication-title: ACS Nano doi: 10.1021/nn403021m – volume: 11 start-page: 4143 year: 2020 ident: 10.1016/j.nanoen.2021.106001_bib22 article-title: Micro triboelectric ultrasonic device for acoustic energy transfer and signal communication publication-title: Nat. Commun. doi: 10.1038/s41467-020-17842-w – volume: 14 start-page: 9066 year: 2020 ident: 10.1016/j.nanoen.2021.106001_bib15 article-title: Highly robust and self-powered electronic skin based on tough conductive self-healing elastomer publication-title: ACS Nano doi: 10.1021/acsnano.0c04158 – volume: 42 year: 2021 ident: 10.1016/j.nanoen.2021.106001_bib12 article-title: Triboelectric mechanical sensors—Progress and prospects publication-title: Extrem. Mech. Lett. doi: 10.1016/j.eml.2020.101100 – volume: 30 year: 2020 ident: 10.1016/j.nanoen.2021.106001_bib23 article-title: Advances in healthcare electronics enabled by triboelectric nanogenerators publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202004673 – volume: 323 start-page: 1503 year: 2009 ident: 10.1016/j.nanoen.2021.106001_bib1 article-title: The role of fingerprints in the coding of tactile information probed with a biomimetic sensor publication-title: Science doi: 10.1126/science.1166467 – volume: 25 start-page: 6594 year: 2013 ident: 10.1016/j.nanoen.2021.106001_bib18 article-title: A single-electrode based triboelectric nanogenerator as self‐powered tracking system publication-title: Adv. Mater. doi: 10.1002/adma.201302453 – volume: 6 start-page: eaba4294 year: 2020 ident: 10.1016/j.nanoen.2021.106001_bib7 article-title: Self-powered user-interactive electronic skin for programmable touch operation platform publication-title: Sci. Adv. doi: 10.1126/sciadv.aba4294 – ident: 10.1016/j.nanoen.2021.106001_bib38 doi: 10.1002/inf2.12008 – volume: 3 start-page: eaat2516 year: 2018 ident: 10.1016/j.nanoen.2021.106001_bib4 article-title: A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids publication-title: Sci. Robot. doi: 10.1126/scirobotics.aat2516 – volume: 15 start-page: 937 year: 2016 ident: 10.1016/j.nanoen.2021.106001_bib6 article-title: Pursuing prosthetic electronic skin publication-title: Nat. Mater. doi: 10.1038/nmat4671 |
SSID | ssj0000651712 |
Score | 2.579372 |
Snippet | In humans, fine textures' tactile perception is mediated by fingertip skin, which is essential for environmental information obtaining and precision... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106001 |
SubjectTerms | Artificial neural network Electronic skin Fingerprint-inspired Texture recognition Triboelectric nanogenerator |
Title | Fingerprint-inspired electronic skin based on triboelectric nanogenerator for fine texture recognition |
URI | https://dx.doi.org/10.1016/j.nanoen.2021.106001 |
Volume | 85 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPEV5VB5YTR3nYWesKqoCogtU6hY5joMKyKlKuvLbucujFAmBxJAhti-yLtZ9Z9_nO0KuFE_BUZWaATprFmiZMZWlIQMsVVJxK3nFzXmYRONpcDcLZx0ybO_CIK2ysf21Ta-sddPSb7TZX8zn_UcBexehQsAfBO4Yb5QHgcRVfv3hrc9ZAGI9WQU9cTxDgfYGXUXzctoVFhOhCg-aEP5_RqgN1Bntk73GXaSDekYHpGPdIdndSCJ4RPJRdTKHB3QlmzuMnNuMfpW3oe-vc0cRrTJaOIoVroq6F_pwXs9V5mnYe9McH_gyRTrIamnpml5UuGMyHd08DcesqZ7AjC9FyYwOuIkjz-ZG5dpGodAq1kZpDLZKnnFlhARtmDgOMsPTME-l76da2NzqUFv_hGy5wtlTQn0vt-CYaA772SDVKXjlOYehfhREQgvdJX6rscQ0qcWxwsVb0nLIXpJazwnqOan13CVsLbWoU2v8MV62PyP5tkQSsP6_Sp79W_Kc7OBbzc-9IFvlcmUvwQsp0161zHpke3B7P558AqEE3bY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60HtSD-MS3OXgNTbOPZI8illbbXlTobclms1KVrGj9_87soyqIgoe9ZDJLmIR8M8mXGYBzLTJ0VJXhiM6Gh0blXOdZxBFLtdLCKVFxc8aTeHAfXk-j6RJctm9hiFbZ7P31nl7t1k1Lt7Fm92U2695KjF2kjhB_CLgTtQwrlJ0q6sDKxfBmMFkctSDK9lR170kqnHTaR3QV08sbXzrKhSp72EQewM8g9QV4-puw0XiM7KIe1BYsOb8N61_yCO5A0a8O5-iMbs5nni7PXc4-K9ywt6eZZwRYOSs9oyJXZS1FGY3roUo-jeE3K-jDPzNihLy_OrZgGJV-F-77V3eXA94UUOA2UHLOrQmFTeKeK6wujIsjaXRirDZ036pELrSVCq1hkyTMrciiIlNBkBnpCmci44I96PjSu31gQa9w6JsYgSFtmJkMHfNCYNcgDmNppDmAoLVYapvs4lTk4jltaWSPaW3nlOyc1nY-AL7Qeqmza_zRX7WTkX5bJSkCwK-ah__WPIPVwd14lI6Gk5sjWCNJTdc9hs789d2doFMyz06bRfcBPvfgZw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fingerprint-inspired+electronic+skin+based+on+triboelectric+nanogenerator+for+fine+texture+recognition&rft.jtitle=Nano+energy&rft.au=Zhao%2C+Xuan&rft.au=Zhang%2C+Zheng&rft.au=Xu%2C+Liangxu&rft.au=Gao%2C+Fangfang&rft.date=2021-07-01&rft.pub=Elsevier+Ltd&rft.issn=2211-2855&rft.volume=85&rft_id=info:doi/10.1016%2Fj.nanoen.2021.106001&rft.externalDocID=S2211285521002597 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon |