Adverse Drug Event Detection from Electronic Health Records Using Hierarchical Recurrent Neural Networks with Dual-Level Embedding

Introduction Adverse drug event (ADE) detection is a vital step towards effective pharmacovigilance and prevention of future incidents caused by potentially harmful ADEs. The electronic health records (EHRs) of patients in hospitals contain valuable information regarding ADEs and hence are an import...

Full description

Saved in:
Bibliographic Details
Published inDrug safety Vol. 42; no. 1; pp. 113 - 122
Main Authors Wunnava, Susmitha, Qin, Xiao, Kakar, Tabassum, Sen, Cansu, Rundensteiner, Elke A., Kong, Xiangnan
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.01.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0114-5916
1179-1942
DOI10.1007/s40264-018-0765-9

Cover

Loading…
Abstract Introduction Adverse drug event (ADE) detection is a vital step towards effective pharmacovigilance and prevention of future incidents caused by potentially harmful ADEs. The electronic health records (EHRs) of patients in hospitals contain valuable information regarding ADEs and hence are an important source for detecting ADE signals. However, EHR texts tend to be noisy. Yet applying off-the-shelf tools for EHR text preprocessing jeopardizes the subsequent ADE detection performance, which depends on a well tokenized text input. Objective In this paper, we report our experience with the NLP Challenges for Detecting Medication and Adverse Drug Events from Electronic Health Records (MADE1.0), which aims to promote deep innovations on this subject. In particular, we have developed rule-based sentence and word tokenization techniques to deal with the noise in the EHR text. Methods We propose a detection methodology by adapting a three-layered, deep learning architecture of (1) recurrent neural network [bi-directional long short-term memory (Bi-LSTM)] for character-level word representation to encode the morphological features of the medical terminology, (2) Bi-LSTM for capturing the contextual information of each word within a sentence, and (3) conditional random fields for the final label prediction by also considering the surrounding words. We experiment with different word embedding methods commonly used in word-level classification tasks and demonstrate the impact of an integrated usage of both domain-specific and general-purpose pre-trained word embedding for detecting ADEs from EHRs. Results Our system was ranked first for the named entity recognition task in the MADE1.0 challenge, with a micro-averaged F1-score of 0.8290 (official score). Conclusion Our results indicate that the integration of two widely used sequence labeling techniques that complement each other along with dual-level embedding (character level and word level) to represent words in the input layer results in a deep learning architecture that achieves excellent information extraction accuracy for EHR notes.
AbstractList Introduction Adverse drug event (ADE) detection is a vital step towards effective pharmacovigilance and prevention of future incidents caused by potentially harmful ADEs. The electronic health records (EHRs) of patients in hospitals contain valuable information regarding ADEs and hence are an important source for detecting ADE signals. However, EHR texts tend to be noisy. Yet applying off-the-shelf tools for EHR text preprocessing jeopardizes the subsequent ADE detection performance, which depends on a well tokenized text input. Objective In this paper, we report our experience with the NLP Challenges for Detecting Medication and Adverse Drug Events from Electronic Health Records (MADE1.0), which aims to promote deep innovations on this subject. In particular, we have developed rule-based sentence and word tokenization techniques to deal with the noise in the EHR text. Methods We propose a detection methodology by adapting a three-layered, deep learning architecture of (1) recurrent neural network [bi-directional long short-term memory (Bi-LSTM)] for character-level word representation to encode the morphological features of the medical terminology, (2) Bi-LSTM for capturing the contextual information of each word within a sentence, and (3) conditional random fields for the final label prediction by also considering the surrounding words. We experiment with different word embedding methods commonly used in word-level classification tasks and demonstrate the impact of an integrated usage of both domain-specific and general-purpose pre-trained word embedding for detecting ADEs from EHRs. Results Our system was ranked first for the named entity recognition task in the MADE1.0 challenge, with a micro-averaged F1-score of 0.8290 (official score). Conclusion Our results indicate that the integration of two widely used sequence labeling techniques that complement each other along with dual-level embedding (character level and word level) to represent words in the input layer results in a deep learning architecture that achieves excellent information extraction accuracy for EHR notes.
Adverse drug event (ADE) detection is a vital step towards effective pharmacovigilance and prevention of future incidents caused by potentially harmful ADEs. The electronic health records (EHRs) of patients in hospitals contain valuable information regarding ADEs and hence are an important source for detecting ADE signals. However, EHR texts tend to be noisy. Yet applying off-the-shelf tools for EHR text preprocessing jeopardizes the subsequent ADE detection performance, which depends on a well tokenized text input. In this paper, we report our experience with the NLP Challenges for Detecting Medication and Adverse Drug Events from Electronic Health Records (MADE1.0), which aims to promote deep innovations on this subject. In particular, we have developed rule-based sentence and word tokenization techniques to deal with the noise in the EHR text. We propose a detection methodology by adapting a three-layered, deep learning architecture of (1) recurrent neural network [bi-directional long short-term memory (Bi-LSTM)] for character-level word representation to encode the morphological features of the medical terminology, (2) Bi-LSTM for capturing the contextual information of each word within a sentence, and (3) conditional random fields for the final label prediction by also considering the surrounding words. We experiment with different word embedding methods commonly used in word-level classification tasks and demonstrate the impact of an integrated usage of both domain-specific and general-purpose pre-trained word embedding for detecting ADEs from EHRs. Our system was ranked first for the named entity recognition task in the MADE1.0 challenge, with a micro-averaged F1-score of 0.8290 (official score). Our results indicate that the integration of two widely used sequence labeling techniques that complement each other along with dual-level embedding (character level and word level) to represent words in the input layer results in a deep learning architecture that achieves excellent information extraction accuracy for EHR notes.
Introduction Adverse drug event (ADE) detection is a vital step towards effective pharmacovigilance and prevention of future incidents caused by potentially harmful ADEs. The electronic health records (EHRs) of patients in hospitals contain valuable information regarding ADEs and hence are an important source for detecting ADE signals. However, EHR texts tend to be noisy. Yet applying off-the-shelf tools for EHR text preprocessing jeopardizes the subsequent ADE detection performance, which depends on a well tokenized text input. Objective In this paper, we report our experience with the NLP Challenges for Detecting Medication and Adverse Drug Events from Electronic Health Records (MADE1.0), which aims to promote deep innovations on this subject. In particular, we have developed rule-based sentence and word tokenization techniques to deal with the noise in the EHR text. Methods We propose a detection methodology by adapting a three-layered, deep learning architecture of (1) recurrent neural network [bi-directional long short-term memory (Bi-LSTM)] for character-level word representation to encode the morphological features of the medical terminology, (2) Bi-LSTM for capturing the contextual information of each word within a sentence, and (3) conditional random fields for the final label prediction by also considering the surrounding words. We experiment with different word embedding methods commonly used in word-level classification tasks and demonstrate the impact of an integrated usage of both domain-specific and general-purpose pre-trained word embedding for detecting ADEs from EHRs. Results Our system was ranked first for the named entity recognition task in the MADE1.0 challenge, with a micro-averaged F1-score of 0.8290 (official score). Conclusion Our results indicate that the integration of two widely used sequence labeling techniques that complement each other along with dual-level embedding (character level and word level) to represent words in the input layer results in a deep learning architecture that achieves excellent information extraction accuracy for EHR notes.
Author Qin, Xiao
Sen, Cansu
Kong, Xiangnan
Wunnava, Susmitha
Kakar, Tabassum
Rundensteiner, Elke A.
Author_xml – sequence: 1
  givenname: Susmitha
  orcidid: 0000-0001-8502-6047
  surname: Wunnava
  fullname: Wunnava, Susmitha
  email: swunnava@wpi.edu
  organization: Worcester Polytechnic Institute
– sequence: 2
  givenname: Xiao
  orcidid: 0000-0003-3603-3341
  surname: Qin
  fullname: Qin, Xiao
  organization: Worcester Polytechnic Institute
– sequence: 3
  givenname: Tabassum
  orcidid: 0000-0003-3576-0360
  surname: Kakar
  fullname: Kakar, Tabassum
  organization: Worcester Polytechnic Institute
– sequence: 4
  givenname: Cansu
  orcidid: 0000-0003-3355-2736
  surname: Sen
  fullname: Sen, Cansu
  organization: Worcester Polytechnic Institute
– sequence: 5
  givenname: Elke A.
  orcidid: 0000-0001-5375-9254
  surname: Rundensteiner
  fullname: Rundensteiner, Elke A.
  organization: Worcester Polytechnic Institute
– sequence: 6
  givenname: Xiangnan
  orcidid: 0000-0002-7403-5869
  surname: Kong
  fullname: Kong, Xiangnan
  organization: Worcester Polytechnic Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30649736$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFv1DAQhS1URLeFH8AFWeLsMnbsOD5W3aWLtCoSoufIcWa3LtmkjJOtuPLLcdgCEhKcrPG8781o3hk76YceGXst4UIC2HdJgyq1AFkJsKUR7hlbSGmdkE6rE7YAKbUwTpan7CylewCoVFm9YKcFlNrZolyw75ftASkhX9K046sD9iNf4ohhjEPPtzTs-arLFQ19DHyNvhvv-CcMA7WJ36bY7_g6InkKdzH4bm5NRLPLDU6UP25wfBzoS-KPMZPLyXdigwfs-GrfYNtmg5fs-dZ3CV89vefs9v3q89VabD5ef7i63IhQWDWK4DxIXxljwGi02gBKY7ZGF2UTLKjGIbQNusZK0KEJCE5aU_lKYmtaB8U5e3v0faDh64RprO-Hifo8slYy95VRP1VvnlRTs8e2fqC49_St_nWyLJBHQaAhJcLtb4mEeo6lPsZS51jqOZbaZcb-xYQ4-vnEI_nY_ZdURzLlKf0O6c_S_4Z-AOdioSs
CitedBy_id crossref_primary_10_1007_s40264_018_0766_8
crossref_primary_10_3390_app122211709
crossref_primary_10_1007_s40290_022_00434_y
crossref_primary_10_1097_MD_0000000000029387
crossref_primary_10_1124_pharmrev_122_000715
crossref_primary_10_1186_s13326_020_00221_1
crossref_primary_10_1109_ACCESS_2023_3309157
crossref_primary_10_1007_s40290_019_00307_x
crossref_primary_10_1007_s40264_022_01170_7
crossref_primary_10_1007_s40264_022_01172_5
crossref_primary_10_1186_s12911_022_01924_4
crossref_primary_10_2139_ssrn_4089512
crossref_primary_10_2196_18417
crossref_primary_10_1016_j_ijmedinf_2024_105438
crossref_primary_10_1371_journal_pone_0236789
crossref_primary_10_3390_ph16020253
crossref_primary_10_1055_s_0040_1702001
crossref_primary_10_1093_bib_bbad228
crossref_primary_10_1186_s40345_021_00228_2
crossref_primary_10_3390_s20174662
crossref_primary_10_1016_j_ijleo_2021_167080
crossref_primary_10_1007_s10916_024_02070_2
crossref_primary_10_1016_j_jbi_2024_104603
crossref_primary_10_2196_60164
crossref_primary_10_1093_jamia_ocz200
crossref_primary_10_1002_ams2_740
crossref_primary_10_1016_j_ijmedinf_2023_105246
crossref_primary_10_1093_jamia_ocz144
crossref_primary_10_1371_journal_pone_0279842
crossref_primary_10_1016_j_mlwa_2022_100367
crossref_primary_10_1007_s12553_021_00607_w
crossref_primary_10_1109_RBME_2022_3210270
crossref_primary_10_1186_s12911_019_0951_4
crossref_primary_10_2196_27017
crossref_primary_10_21032_jhis_2022_47_S3_S41
Cites_doi 10.3115/1219044.1219075
10.1136/jamia.2009.001560
10.1136/jamia.2010.003962
10.3115/v1/D14-1162
10.3115/v1/P14-5010
10.1093/database/bat064
10.1155/2017/9451342
10.18653/v1/N16-1056
10.1049/cp:19991218
10.18653/v1/D16-1082
10.1007/978-94-017-2390-9_10
10.1186/1472-6947-14-91
10.5220/0006600201760188
10.1109/78.650093
10.18653/v1/P16-1101
10.1162/neco.1997.9.8.1735
10.1197/jamia.M3378
10.1109/72.279181
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2019
Copyright Springer Nature B.V. Jan 2019
Copyright_xml – notice: Springer Nature Switzerland AG 2019
– notice: Copyright Springer Nature B.V. Jan 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
4T-
7RV
7T2
7TK
7U7
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
C1K
CCPQU
FYUFA
GHDGH
K9.
KB0
M0S
M1P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
DOI 10.1007/s40264-018-0765-9
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Docstoc
Nursing & Allied Health Database
Health and Safety Science Abstracts (Full archive)
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
Environmental Sciences and Pollution Management
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
Health & Safety Science Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Docstoc
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList ProQuest One Academic Middle East (New)
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
Pharmacy, Therapeutics, & Pharmacology
EISSN 1179-1942
EndPage 122
ExternalDocumentID 30649736
10_1007_s40264_018_0765_9
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Oak Ridge Associated Universities (ORAU)
  grantid: ORISE Fellowship; ORISE Fellowship
– fundername: Seeds of STEM and Institute of Education Sciences, U.S. Department of Education
  grantid: R305A150571
GroupedDBID ---
-EM
0R~
199
29G
2JY
36B
4.4
406
5GY
5RE
6PF
7RV
7X7
88E
8FI
8FJ
8R4
8R5
95.
AACDK
AADNT
AAIKX
AAJKR
AANZL
AASML
AATNV
AAWTL
AAYQN
ABAKF
ABDZT
ABFTV
ABIPD
ABJNI
ABJOX
ABKCH
ABKMS
ABKTR
ABLLE
ABOCM
ABPLI
ABTKH
ABTMW
ABUWG
ABXPI
ACAOD
ACCOQ
ACCUX
ACDTI
ACGFO
ACGFS
ACMJI
ACMLO
ACOKC
ACPIV
ACPRK
ACZOJ
ADBBV
ADFRT
ADFZG
ADJJI
ADURQ
ADYOE
ADZKW
AEFQL
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFBBN
AFKRA
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGQEE
AGQMX
AGRTI
AHIZS
AHMBA
AIAKS
AIGIU
AILAN
AIZAD
AJRNO
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
ASPBG
AVWKF
AWSVR
AXYYD
BENPR
BGNMA
BKEYQ
BPHCQ
BVXVI
CCPQU
CS3
DCUDU
DNIVK
DPUIP
DU5
EBLON
EBS
EJD
EMOBN
EX3
F5P
FERAY
FIGPU
FLLZZ
FNLPD
FSGXE
FYUFA
HMCUK
IAO
IMOTQ
INH
IWAJR
J-C
J5H
JZLTJ
L7B
LGEZI
LLZTM
LOTEE
M1P
M4Y
NADUK
NAPCQ
NQJWS
NU0
NXXTH
O9-
OAC
OPC
OVD
P2P
PQQKQ
PROAC
PSQYO
Q2X
ROL
RSV
SJYHP
SNPRN
SNX
SOHCF
SOJ
SPKJE
SRMVM
SSLCW
TSG
U9L
UAX
UG4
UKHRP
UTJUX
VDBLX
VFIZW
W48
WAF
WOW
YFH
YQY
~JE
53G
6I2
AAAUJ
AAIAL
AAKAS
AARHV
AAYOK
AAYTO
AAYXX
AAYZH
ABBRH
ABDBE
ABFSG
ABMNI
ABWHX
ACMFV
ACREN
ACSTC
ADQRH
ADRFC
ADZCM
AEBTG
AEYRQ
AEZWR
AFDZB
AFHIU
AFOHR
AHSBF
AHWEU
AIXLP
ATHPR
AYFIA
AZFZN
A~4
BYPQX
CAG
CITATION
COF
IHR
INR
ITC
PHGZM
PHGZT
RZALA
SISQX
TEORI
Z0Y
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
3V.
4T-
7T2
7TK
7U7
7XB
8FK
ABRTQ
C1K
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
ID FETCH-LOGICAL-c372t-c9a01a8555054e7450e155f5436bc702b9e0dbe9b7104cbce091758a81ed5d903
IEDL.DBID 7X7
ISSN 0114-5916
IngestDate Fri Jul 25 23:03:26 EDT 2025
Thu Jan 02 22:59:19 EST 2025
Tue Jul 01 00:37:53 EDT 2025
Thu Apr 24 23:11:47 EDT 2025
Fri Feb 21 02:28:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-c9a01a8555054e7450e155f5436bc702b9e0dbe9b7104cbce091758a81ed5d903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8502-6047
0000-0003-3355-2736
0000-0003-3603-3341
0000-0001-5375-9254
0000-0003-3576-0360
0000-0002-7403-5869
PMID 30649736
PQID 2190325290
PQPubID 32187
PageCount 10
ParticipantIDs proquest_journals_2190325290
pubmed_primary_30649736
crossref_primary_10_1007_s40264_018_0765_9
crossref_citationtrail_10_1007_s40264_018_0765_9
springer_journals_10_1007_s40264_018_0765_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New Zealand
– name: Auckland
PublicationSubtitle The Official Journal of the International Society of Pharmacovigilance [ISoP]
PublicationTitle Drug safety
PublicationTitleAbbrev Drug Saf
PublicationTitleAlternate Drug Saf
PublicationYear 2019
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References DonaldsonMSCorriganJMKohnLTTo err is human: building a safer health system2000Washington DCNational Academies Press
Wunnava S, Qin X, Kakar T, Rundensteiner EA, Kong X. Bidirectional LSTM-CRF for adverse drug event tagging in electronic health records. In Liu F, Jagannatha A, Yu H, editors. In: Proceedings of the 1st international workshop on medication and adverse drug event detection, volume 90 of Proceedings of machine learning research; 2018 May 4. pp 48–56.
AbadiMBarhamPChenJChenZDavisADeanJTensorFlow: a system for large-scale machine learningOSDI201616265283
DelegerLGrouinCZweigenbaumPExtracting medical information from narrative patient records: the case of medication-related informationJ Am Med Inform Assoc201017555555810.1136/jamia.2010.003962208198632995678
Wunnava S, Qin X, Kakar T, Kong X, Rundensteiner EA, Sahoo SK, et al. One size does not fit all: an ensemble approach towards information extraction from adverse drug event narratives. In: Proceedings of HEALTHINF; 2018. pp 176–188.
CollobertRWestonJBottouLKarlenMKavukcuogluKKuksaPNatural language processing (almost) from scratchJ Mach Learn Res20111224932537
Bird S, Loper E. NLTK: the natural language toolkit. In: Proceedings of the ACL 2004 on Interactive poster and demonstration sessions; 2004. p 31.
Comeau DC, Islamaj Dogan R, Ciccarese P, Cohen KB, Krallinger M, Leitner F, et al. BioC: a minimalist approach to interoperability for biomedical text processing. Database. 2013; 2013.
Pyysalo S, Ginter F, Moen H, Salakoski T, Ananiadou S. Distributional semantics resources for biomedical text processing. In Proceedings of the 5th international symposium on languages in biology and medicine. Tokyo, Japan; 2013. pp 39–43
HochreiterSSchmidhuberJLong short-term memoryNeural Comput199791735178010.1162/neco.1997.9.8.17351:STN:280:DyaK1c%2FhvVahsQ%3D%3D9377276
Jagannatha AN, Yu H. Structured prediction models for RNN based sequence labeling in clinical text. In: Proceedings of the conference on empirical methods in natural language processing. In: Conference on empirical methods in natural language Processing; 2016.
Bird S, Klein E, Loper E. Natural language processing with python: O’Reilly; 2009.
XuHStennerSPDoanSJohnsonKBWaitmanLRDennyJCMedEx: a medication information extraction system for clinical narrativesJ Am Med Inform Assoc201017192410.1197/jamia.M33781:CAS:528:DC%2BC3cXlsVentrs%3D200647972995636
Gers FA, Schmidhuber J, Cummins F. Learning to forget: continual prediction with LSTM. IET. 1999.
Dubois S, Romano N. Learning effective embeddings from medical notes.
Pascanu R, Mikolov T, Bengio Y. On the difficulty of training recurrent neural networks. In: International conference on machine learning; 2013. pp 1310–1318.
Choi Y, Chiu CYI, Sontag D. Learning low-dimensional representations of medical concepts. In: AMIA summits on translational science proceedings. 2016.
Lafferty J, McCallum A, Pereira FCN. Conditional random fields: probabilistic models for segmenting and labeling sequence data. 2001.
Manning C, Surdeanu M, Bauer J, Finkel J, Bethard S, McClosky D. The Stanford CoreNLP natural language processing toolkit. In: Proceedings of 52nd annual meeting of the association for computational linguistics: system demonstrations; 2014. pp 55–60.
SrivastavaNHintonGKrizhevskyASutskeverISalakhutdinovRDropout: a simple way to prevent neural networks from overfittingJ Mach Learn Res20141519291958
RameshBPBelknapSMLiZFridNWestDPYuHAutomatically recognizing medication and adverse event information from food and drug administration’s adverse event reporting system narrativesJMIR201482
Jagannatha AN, Yu H. Bidirectional RNN for medical event detection in electronic health records. In: Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting; 2016. p 473.
Pennington J, Socher R, Manning C. Glove: Global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP); 2014. pp 1532–1543.
SchusterMPaliwalKKBidirectional recurrent neural networksIEEE Trans Signal Process1997452673268110.1109/78.650093
Tutubalina E, Nikolenko S. Combination of deep recurrent neural networks and conditional random fields for extracting adverse drug reactions from user reviews. J Healthcare Eng; 2017;2017: Article ID 945134, 9.
Santos CD, Zadrozny B. Learning character-level representations for part-of-speech tagging. In: Proceedings of the 31st international conference on machine learning (ICML-14); 2014. pp 1818-1826.
SampathkumarHXwChenLuoBMining adverse drug reactions from online healthcare forums using hidden Markov modelBMC Med Inf Decis Mak2014149110.1186/1472-6947-14-91
Aronson AR. Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. In: Proceedings of the AMIA Symposium; 2001.
Ma X, Hovy EH. End-to-end Sequence Labeling via bi-directional LSTM-CNNs-CRF. In Proceedings of the 54th annual meeting of the association for computational linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers; 2016.
BengioPFrasconiPLearning long-term dependencies with gradient descent is difficultIEEE Trans Neural Netw1994515716610.1109/72.2791811:STN:280:DC%2BD1c7gvFansQ%3D%3D18267787
SavovaGKMasanzJJOgrenPVZhengJSohnSKipper-SchulerKCMayo clinical text analysis and knowledge extraction system (cTAKES): architecture, component evaluation and applicationsJ Am Med Inform Assoc20101750751310.1136/jamia.2009.001560208198532995668
Lipton ZC. A Critical review of recurrent neural networks for sequence learning. CoRR. 2015; abs/1506.00019.
Huang Z, Xu W, Yu K. Bidirectional LSTM-CRF models for sequence tagging. arXiv preprint arXiv:1508.01991. 2015.
Ramshaw LA, Marcus MP. Text chunking using transformation-based learning. In Natural language processing using very large corpora. Springer; 1999. Pp 157–176.
Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980. 2014.
765_CR15
M Abadi (765_CR34) 2016; 16
765_CR16
765_CR17
765_CR18
765_CR11
765_CR33
765_CR12
765_CR13
765_CR35
765_CR14
(765_CR1) 2000
765_CR31
765_CR10
765_CR9
H Sampathkumar (765_CR5) 2014; 14
L Deleger (765_CR3) 2010; 17
H Xu (765_CR4) 2010; 17
BP Ramesh (765_CR6) 2014; 8
765_CR26
P Bengio (765_CR27) 1994; 5
765_CR28
765_CR29
765_CR22
S Hochreiter (765_CR8) 1997; 9
GK Savova (765_CR20) 2010; 17
765_CR23
765_CR24
M Schuster (765_CR30) 1997; 45
765_CR2
765_CR21
765_CR7
N Srivastava (765_CR32) 2014; 15
R Collobert (765_CR25) 2011; 12
765_CR19
References_xml – reference: SchusterMPaliwalKKBidirectional recurrent neural networksIEEE Trans Signal Process1997452673268110.1109/78.650093
– reference: Huang Z, Xu W, Yu K. Bidirectional LSTM-CRF models for sequence tagging. arXiv preprint arXiv:1508.01991. 2015.
– reference: Lafferty J, McCallum A, Pereira FCN. Conditional random fields: probabilistic models for segmenting and labeling sequence data. 2001.
– reference: Wunnava S, Qin X, Kakar T, Rundensteiner EA, Kong X. Bidirectional LSTM-CRF for adverse drug event tagging in electronic health records. In Liu F, Jagannatha A, Yu H, editors. In: Proceedings of the 1st international workshop on medication and adverse drug event detection, volume 90 of Proceedings of machine learning research; 2018 May 4. pp 48–56.
– reference: SampathkumarHXwChenLuoBMining adverse drug reactions from online healthcare forums using hidden Markov modelBMC Med Inf Decis Mak2014149110.1186/1472-6947-14-91
– reference: Pascanu R, Mikolov T, Bengio Y. On the difficulty of training recurrent neural networks. In: International conference on machine learning; 2013. pp 1310–1318.
– reference: Aronson AR. Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. In: Proceedings of the AMIA Symposium; 2001.
– reference: Jagannatha AN, Yu H. Bidirectional RNN for medical event detection in electronic health records. In: Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting; 2016. p 473.
– reference: Ma X, Hovy EH. End-to-end Sequence Labeling via bi-directional LSTM-CNNs-CRF. In Proceedings of the 54th annual meeting of the association for computational linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers; 2016.
– reference: Dubois S, Romano N. Learning effective embeddings from medical notes.
– reference: XuHStennerSPDoanSJohnsonKBWaitmanLRDennyJCMedEx: a medication information extraction system for clinical narrativesJ Am Med Inform Assoc201017192410.1197/jamia.M33781:CAS:528:DC%2BC3cXlsVentrs%3D200647972995636
– reference: Ramshaw LA, Marcus MP. Text chunking using transformation-based learning. In Natural language processing using very large corpora. Springer; 1999. Pp 157–176.
– reference: Pennington J, Socher R, Manning C. Glove: Global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP); 2014. pp 1532–1543.
– reference: BengioPFrasconiPLearning long-term dependencies with gradient descent is difficultIEEE Trans Neural Netw1994515716610.1109/72.2791811:STN:280:DC%2BD1c7gvFansQ%3D%3D18267787
– reference: Bird S, Loper E. NLTK: the natural language toolkit. In: Proceedings of the ACL 2004 on Interactive poster and demonstration sessions; 2004. p 31.
– reference: Santos CD, Zadrozny B. Learning character-level representations for part-of-speech tagging. In: Proceedings of the 31st international conference on machine learning (ICML-14); 2014. pp 1818-1826.
– reference: SrivastavaNHintonGKrizhevskyASutskeverISalakhutdinovRDropout: a simple way to prevent neural networks from overfittingJ Mach Learn Res20141519291958
– reference: Tutubalina E, Nikolenko S. Combination of deep recurrent neural networks and conditional random fields for extracting adverse drug reactions from user reviews. J Healthcare Eng; 2017;2017: Article ID 945134, 9.
– reference: HochreiterSSchmidhuberJLong short-term memoryNeural Comput199791735178010.1162/neco.1997.9.8.17351:STN:280:DyaK1c%2FhvVahsQ%3D%3D9377276
– reference: Gers FA, Schmidhuber J, Cummins F. Learning to forget: continual prediction with LSTM. IET. 1999.
– reference: Bird S, Klein E, Loper E. Natural language processing with python: O’Reilly; 2009.
– reference: DelegerLGrouinCZweigenbaumPExtracting medical information from narrative patient records: the case of medication-related informationJ Am Med Inform Assoc201017555555810.1136/jamia.2010.003962208198632995678
– reference: Manning C, Surdeanu M, Bauer J, Finkel J, Bethard S, McClosky D. The Stanford CoreNLP natural language processing toolkit. In: Proceedings of 52nd annual meeting of the association for computational linguistics: system demonstrations; 2014. pp 55–60.
– reference: Pyysalo S, Ginter F, Moen H, Salakoski T, Ananiadou S. Distributional semantics resources for biomedical text processing. In Proceedings of the 5th international symposium on languages in biology and medicine. Tokyo, Japan; 2013. pp 39–43
– reference: DonaldsonMSCorriganJMKohnLTTo err is human: building a safer health system2000Washington DCNational Academies Press
– reference: Lipton ZC. A Critical review of recurrent neural networks for sequence learning. CoRR. 2015; abs/1506.00019.
– reference: Jagannatha AN, Yu H. Structured prediction models for RNN based sequence labeling in clinical text. In: Proceedings of the conference on empirical methods in natural language processing. In: Conference on empirical methods in natural language Processing; 2016.
– reference: Choi Y, Chiu CYI, Sontag D. Learning low-dimensional representations of medical concepts. In: AMIA summits on translational science proceedings. 2016.
– reference: Comeau DC, Islamaj Dogan R, Ciccarese P, Cohen KB, Krallinger M, Leitner F, et al. BioC: a minimalist approach to interoperability for biomedical text processing. Database. 2013; 2013.
– reference: Wunnava S, Qin X, Kakar T, Kong X, Rundensteiner EA, Sahoo SK, et al. One size does not fit all: an ensemble approach towards information extraction from adverse drug event narratives. In: Proceedings of HEALTHINF; 2018. pp 176–188.
– reference: RameshBPBelknapSMLiZFridNWestDPYuHAutomatically recognizing medication and adverse event information from food and drug administration’s adverse event reporting system narrativesJMIR201482
– reference: AbadiMBarhamPChenJChenZDavisADeanJTensorFlow: a system for large-scale machine learningOSDI201616265283
– reference: CollobertRWestonJBottouLKarlenMKavukcuogluKKuksaPNatural language processing (almost) from scratchJ Mach Learn Res20111224932537
– reference: SavovaGKMasanzJJOgrenPVZhengJSohnSKipper-SchulerKCMayo clinical text analysis and knowledge extraction system (cTAKES): architecture, component evaluation and applicationsJ Am Med Inform Assoc20101750751310.1136/jamia.2009.001560208198532995668
– reference: Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980. 2014.
– ident: 765_CR18
  doi: 10.3115/1219044.1219075
– volume: 17
  start-page: 507
  year: 2010
  ident: 765_CR20
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/jamia.2009.001560
– ident: 765_CR35
– volume: 17
  start-page: 555
  issue: 5
  year: 2010
  ident: 765_CR3
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/jamia.2010.003962
– ident: 765_CR12
– ident: 765_CR14
– ident: 765_CR16
– ident: 765_CR33
– ident: 765_CR15
  doi: 10.3115/v1/D14-1162
– ident: 765_CR19
  doi: 10.3115/v1/P14-5010
– ident: 765_CR23
– ident: 765_CR17
  doi: 10.1093/database/bat064
– volume: 12
  start-page: 2493
  year: 2011
  ident: 765_CR25
  publication-title: J Mach Learn Res
– ident: 765_CR28
– ident: 765_CR11
  doi: 10.1155/2017/9451342
– ident: 765_CR21
  doi: 10.18653/v1/N16-1056
– ident: 765_CR29
  doi: 10.1049/cp:19991218
– volume-title: To err is human: building a safer health system
  year: 2000
  ident: 765_CR1
– ident: 765_CR9
– ident: 765_CR10
  doi: 10.18653/v1/D16-1082
– ident: 765_CR24
  doi: 10.1007/978-94-017-2390-9_10
– ident: 765_CR7
– volume: 15
  start-page: 1929
  year: 2014
  ident: 765_CR32
  publication-title: J Mach Learn Res
– ident: 765_CR13
– volume: 16
  start-page: 265
  year: 2016
  ident: 765_CR34
  publication-title: OSDI
– volume: 14
  start-page: 91
  year: 2014
  ident: 765_CR5
  publication-title: BMC Med Inf Decis Mak
  doi: 10.1186/1472-6947-14-91
– ident: 765_CR2
  doi: 10.5220/0006600201760188
– volume: 8
  start-page: 2
  year: 2014
  ident: 765_CR6
  publication-title: JMIR
– volume: 45
  start-page: 2673
  year: 1997
  ident: 765_CR30
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/78.650093
– ident: 765_CR22
– ident: 765_CR31
  doi: 10.18653/v1/P16-1101
– volume: 9
  start-page: 1735
  year: 1997
  ident: 765_CR8
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– volume: 17
  start-page: 19
  year: 2010
  ident: 765_CR4
  publication-title: J Am Med Inform Assoc
  doi: 10.1197/jamia.M3378
– ident: 765_CR26
– volume: 5
  start-page: 157
  year: 1994
  ident: 765_CR27
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.279181
SSID ssj0008268
Score 2.42785
Snippet Introduction Adverse drug event (ADE) detection is a vital step towards effective pharmacovigilance and prevention of future incidents caused by potentially...
Adverse drug event (ADE) detection is a vital step towards effective pharmacovigilance and prevention of future incidents caused by potentially harmful ADEs....
Introduction Adverse drug event (ADE) detection is a vital step towards effective pharmacovigilance and prevention of future incidents caused by potentially...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 113
SubjectTerms Artificial intelligence
Cardiovascular disease
Deep Learning - standards
Deep Learning - trends
Drug Safety and Pharmacovigilance
Drug-Related Side Effects and Adverse Reactions - diagnosis
Drug-Related Side Effects and Adverse Reactions - epidemiology
Electronic health records
Electronic Health Records - standards
Electronic Health Records - trends
Electronic medical records
Embedded systems
Embedding
Humans
Information retrieval
Innovations
International conferences
Language
Linguistics
Long short-term memory
Machine learning
Machine Learning - standards
Machine Learning - trends
Medicine
Medicine & Public Health
Natural language processing
Neural networks
Neural Networks, Computer
NLP Challenge for Detecting Medication and Adverse Drug Events from Electronic Health Records (MADE 1.0)
Original Research Article
Pharmacology
Pharmacology/Toxicology
Pharmacovigilance
Recurrent neural networks
Semantics
Terminology
Title Adverse Drug Event Detection from Electronic Health Records Using Hierarchical Recurrent Neural Networks with Dual-Level Embedding
URI https://link.springer.com/article/10.1007/s40264-018-0765-9
https://www.ncbi.nlm.nih.gov/pubmed/30649736
https://www.proquest.com/docview/2190325290
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgvSAhBOVrS6nmgHqAWjiJE8cn1GWzWiEarVAr7S2KHS9CWral2T302l_OjJ1khSp6iuTE8WH88d545g1jH9JoadVSCE5iXlw6Y7lpkPPkgsSmdOyUrxl5XmazS_ltkS46h1vbhVX2e6LfqJsrSz7yz7iyRBKnsRZfrv9wqhpFt6tdCY3HbJ-ky4h8qcVAuPB086lwhPl5ijiov9Wk1DnkTRnFX-QcmXzK9b_n0j2wee-i1J8_0-fsWQcc4SxY-gV75NYH7GQelKdvT-Fil0jVnsIJzHea1LcH7Glwz0HIOnrJ7nwh5tbB5Gb7EwoKeoSJ2_i4rDVQzgkUQ4GcrhcEqtqCDzOA2S_KXfalVFb0Kgg9Aal9YEMZwstbIEcvTLb1in-n-CQofhvX0IH5il1Oi4uvM96VY-A2UfGGW12LqM5T4jTSKZkKh2BkmcokM1aJ2GgnGuO0QdAirbEOoQiykTqPXJM2aL3XbG99tXZvGWgVIQxKlG60lEmCm39WRzavhbVNZKQeMdEbo7KdVjmVzFhVg8qyt1-F9qvIfhV2-Th0uQ5CHQ99fNRbuOrWbFvtZtiIvQlWH_5EPE2rJBuxT_002HX87zCHDw_zjj1B-KWDQ-eI7W1utu49QpyNOfbz-Jjtn03H4xKf46Kc_8DWcn7-F5ET-cs
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcgAJISivQAEfoAeoVe_D6_UBIURSpTSNekil3Ja110FIIS3dRChXfhC_kRl7dyNU0Vuvuzv2SjP2N2PPfAPwRkYzq2ZCcCLz4qkzlpsKY55cENmUjp3yPSNPxtnwLP0yldMt-NPWwlBaZbsn-o26Ord0Rn6AK0sksYy1-Hjxk1PXKLpdbVtoBLM4dutfGLLVH476qN-3cXw4mHwe8qarALeJipfc6lJEZS7JNU-dSqVwiKkzmSaZsUrERjtRGacNYm9qjXWIqOhUl3nkKlnhT-C4t-A2Aq-gFEI17QI8RFNfekcxBpfod7W3qFSqh3FaRvkeORcqk1z_i4NXnNsrF7Me7w4fwP3GUWWfgmU9hC232IG908B0vd5nk03hVr3P9tjphgN7vQP3wnEgC1VOj-C3b_xcO9a_XH1jA0qyZH239HlgC0Y1LmzQNeRppFgIjWvm0xrY8DvVSvvWLXN6FYilGLGL4INxSGevGR0ss_6qnPMR5UOxwQ_jKgLox3B2I4p6AtuL84V7BkyrCN2uROlKp2mSINhkZWTzUlhbRSbVPRCtMgrbcKNTi4550bE6e_0VqL-C9FegyLtO5CIQg1z38W6r4aLZI-piY9E9eBq03o1EcaFWSdaD960ZbAT_O83z66d5DXeGk5NRMToaH7-Au-j66XCYtAvby8uVe4nu1dK88jbN4OtNL6K_Z9wxhQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGkBASQmPAKGxwD7AHmDXnp-MHhCbSqmOj6sMm9S3EjouQSjeWVqiv_Fn8dbuzk1RoYm97TXJ2pDv7u7PvvmPsbRJMjZwKwYnMi8dWG64rjHkyQWRTKrTS9Yz8OkqH5_GXSTLZYH_bWhhKq2z3RLdRVxeGzsgPcWWJKExCJQ6nTVrEOB98uvzFqYMU3bS27TS8iZzY1W8M3-qPxznq-l0YDvpnn4e86TDATSTDBTeqFEGZJeSmx1bGibCIr9MkjlJtpAi1sqLSVmnE4dhoYxFd0cEus8BWSYU_hOPeY_dlhLCJa0lOumAPkdWV4VG8wRP0wdobVSrbw5gtpdyPjAuZJlz9i4k3HN0bl7QO-wZb7HHjtMKRt7InbMPOt9n-2LNerw7gbF3EVR_APozXfNirbfbIHw2Cr3h6yv64JtC1hfxq-R36lHAJuV24nLA5UL0L9LvmPI0U-DC5BpfiAMMfVDft2rjM6JUnmQJiGsEHI5_aXgMdMkO-LGf8lHKjoP9T24rA-hk7vxNFPWeb84u5fcFAyQBdsEiqSsVxFCHwpGVgslIYUwU6Vj0mWmUUpuFJp3Yds6JjeHb6K1B_BemvQJH3ncilJwm57ePdVsNFs1_Uxdq6e2zHa70biWJEJaO0xz60ZrAW_O80L2-f5g17gMunOD0enbxiD9ELVP5caZdtLq6Wdg89rYV-7Uwa2Le7XkPXzxE1uw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adverse+Drug+Event+Detection+from+Electronic+Health+Records+Using+Hierarchical+Recurrent+Neural+Networks+with+Dual-Level+Embedding&rft.jtitle=Drug+safety&rft.au=Wunnava%2C+Susmitha&rft.au=Qin%2C+Xiao&rft.au=Kakar%2C+Tabassum&rft.au=Sen%2C+Cansu&rft.date=2019-01-01&rft.pub=Springer+International+Publishing&rft.issn=0114-5916&rft.eissn=1179-1942&rft.volume=42&rft.issue=1&rft.spage=113&rft.epage=122&rft_id=info:doi/10.1007%2Fs40264-018-0765-9&rft.externalDocID=10_1007_s40264_018_0765_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0114-5916&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0114-5916&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0114-5916&client=summon