Adverse Drug Event Detection from Electronic Health Records Using Hierarchical Recurrent Neural Networks with Dual-Level Embedding
Introduction Adverse drug event (ADE) detection is a vital step towards effective pharmacovigilance and prevention of future incidents caused by potentially harmful ADEs. The electronic health records (EHRs) of patients in hospitals contain valuable information regarding ADEs and hence are an import...
Saved in:
Published in | Drug safety Vol. 42; no. 1; pp. 113 - 122 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.01.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0114-5916 1179-1942 |
DOI | 10.1007/s40264-018-0765-9 |
Cover
Loading…
Abstract | Introduction
Adverse drug event (ADE) detection is a vital step towards effective pharmacovigilance and prevention of future incidents caused by potentially harmful ADEs. The electronic health records (EHRs) of patients in hospitals contain valuable information regarding ADEs and hence are an important source for detecting ADE signals. However, EHR texts tend to be noisy. Yet applying off-the-shelf tools for EHR text preprocessing jeopardizes the subsequent ADE detection performance, which depends on a well tokenized text input.
Objective
In this paper, we report our experience with the NLP Challenges for Detecting Medication and Adverse Drug Events from Electronic Health Records (MADE1.0), which aims to promote deep innovations on this subject. In particular, we have developed rule-based sentence and word tokenization techniques to deal with the noise in the EHR text.
Methods
We propose a detection methodology by adapting a three-layered, deep learning architecture of (1) recurrent neural network [bi-directional long short-term memory (Bi-LSTM)] for character-level word representation to encode the morphological features of the medical terminology, (2) Bi-LSTM for capturing the contextual information of each word within a sentence, and (3) conditional random fields for the final label prediction by also considering the surrounding words. We experiment with different word embedding methods commonly used in word-level classification tasks and demonstrate the impact of an integrated usage of both domain-specific and general-purpose pre-trained word embedding for detecting ADEs from EHRs.
Results
Our system was ranked first for the named entity recognition task in the MADE1.0 challenge, with a micro-averaged F1-score of 0.8290 (official score).
Conclusion
Our results indicate that the integration of two widely used sequence labeling techniques that complement each other along with dual-level embedding (character level and word level) to represent words in the input layer results in a deep learning architecture that achieves excellent information extraction accuracy for EHR notes. |
---|---|
AbstractList | Introduction Adverse drug event (ADE) detection is a vital step towards effective pharmacovigilance and prevention of future incidents caused by potentially harmful ADEs. The electronic health records (EHRs) of patients in hospitals contain valuable information regarding ADEs and hence are an important source for detecting ADE signals. However, EHR texts tend to be noisy. Yet applying off-the-shelf tools for EHR text preprocessing jeopardizes the subsequent ADE detection performance, which depends on a well tokenized text input. Objective In this paper, we report our experience with the NLP Challenges for Detecting Medication and Adverse Drug Events from Electronic Health Records (MADE1.0), which aims to promote deep innovations on this subject. In particular, we have developed rule-based sentence and word tokenization techniques to deal with the noise in the EHR text. Methods We propose a detection methodology by adapting a three-layered, deep learning architecture of (1) recurrent neural network [bi-directional long short-term memory (Bi-LSTM)] for character-level word representation to encode the morphological features of the medical terminology, (2) Bi-LSTM for capturing the contextual information of each word within a sentence, and (3) conditional random fields for the final label prediction by also considering the surrounding words. We experiment with different word embedding methods commonly used in word-level classification tasks and demonstrate the impact of an integrated usage of both domain-specific and general-purpose pre-trained word embedding for detecting ADEs from EHRs. Results Our system was ranked first for the named entity recognition task in the MADE1.0 challenge, with a micro-averaged F1-score of 0.8290 (official score). Conclusion Our results indicate that the integration of two widely used sequence labeling techniques that complement each other along with dual-level embedding (character level and word level) to represent words in the input layer results in a deep learning architecture that achieves excellent information extraction accuracy for EHR notes. Adverse drug event (ADE) detection is a vital step towards effective pharmacovigilance and prevention of future incidents caused by potentially harmful ADEs. The electronic health records (EHRs) of patients in hospitals contain valuable information regarding ADEs and hence are an important source for detecting ADE signals. However, EHR texts tend to be noisy. Yet applying off-the-shelf tools for EHR text preprocessing jeopardizes the subsequent ADE detection performance, which depends on a well tokenized text input. In this paper, we report our experience with the NLP Challenges for Detecting Medication and Adverse Drug Events from Electronic Health Records (MADE1.0), which aims to promote deep innovations on this subject. In particular, we have developed rule-based sentence and word tokenization techniques to deal with the noise in the EHR text. We propose a detection methodology by adapting a three-layered, deep learning architecture of (1) recurrent neural network [bi-directional long short-term memory (Bi-LSTM)] for character-level word representation to encode the morphological features of the medical terminology, (2) Bi-LSTM for capturing the contextual information of each word within a sentence, and (3) conditional random fields for the final label prediction by also considering the surrounding words. We experiment with different word embedding methods commonly used in word-level classification tasks and demonstrate the impact of an integrated usage of both domain-specific and general-purpose pre-trained word embedding for detecting ADEs from EHRs. Our system was ranked first for the named entity recognition task in the MADE1.0 challenge, with a micro-averaged F1-score of 0.8290 (official score). Our results indicate that the integration of two widely used sequence labeling techniques that complement each other along with dual-level embedding (character level and word level) to represent words in the input layer results in a deep learning architecture that achieves excellent information extraction accuracy for EHR notes. Introduction Adverse drug event (ADE) detection is a vital step towards effective pharmacovigilance and prevention of future incidents caused by potentially harmful ADEs. The electronic health records (EHRs) of patients in hospitals contain valuable information regarding ADEs and hence are an important source for detecting ADE signals. However, EHR texts tend to be noisy. Yet applying off-the-shelf tools for EHR text preprocessing jeopardizes the subsequent ADE detection performance, which depends on a well tokenized text input. Objective In this paper, we report our experience with the NLP Challenges for Detecting Medication and Adverse Drug Events from Electronic Health Records (MADE1.0), which aims to promote deep innovations on this subject. In particular, we have developed rule-based sentence and word tokenization techniques to deal with the noise in the EHR text. Methods We propose a detection methodology by adapting a three-layered, deep learning architecture of (1) recurrent neural network [bi-directional long short-term memory (Bi-LSTM)] for character-level word representation to encode the morphological features of the medical terminology, (2) Bi-LSTM for capturing the contextual information of each word within a sentence, and (3) conditional random fields for the final label prediction by also considering the surrounding words. We experiment with different word embedding methods commonly used in word-level classification tasks and demonstrate the impact of an integrated usage of both domain-specific and general-purpose pre-trained word embedding for detecting ADEs from EHRs. Results Our system was ranked first for the named entity recognition task in the MADE1.0 challenge, with a micro-averaged F1-score of 0.8290 (official score). Conclusion Our results indicate that the integration of two widely used sequence labeling techniques that complement each other along with dual-level embedding (character level and word level) to represent words in the input layer results in a deep learning architecture that achieves excellent information extraction accuracy for EHR notes. |
Author | Qin, Xiao Sen, Cansu Kong, Xiangnan Wunnava, Susmitha Kakar, Tabassum Rundensteiner, Elke A. |
Author_xml | – sequence: 1 givenname: Susmitha orcidid: 0000-0001-8502-6047 surname: Wunnava fullname: Wunnava, Susmitha email: swunnava@wpi.edu organization: Worcester Polytechnic Institute – sequence: 2 givenname: Xiao orcidid: 0000-0003-3603-3341 surname: Qin fullname: Qin, Xiao organization: Worcester Polytechnic Institute – sequence: 3 givenname: Tabassum orcidid: 0000-0003-3576-0360 surname: Kakar fullname: Kakar, Tabassum organization: Worcester Polytechnic Institute – sequence: 4 givenname: Cansu orcidid: 0000-0003-3355-2736 surname: Sen fullname: Sen, Cansu organization: Worcester Polytechnic Institute – sequence: 5 givenname: Elke A. orcidid: 0000-0001-5375-9254 surname: Rundensteiner fullname: Rundensteiner, Elke A. organization: Worcester Polytechnic Institute – sequence: 6 givenname: Xiangnan orcidid: 0000-0002-7403-5869 surname: Kong fullname: Kong, Xiangnan organization: Worcester Polytechnic Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30649736$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFv1DAQhS1URLeFH8AFWeLsMnbsOD5W3aWLtCoSoufIcWa3LtmkjJOtuPLLcdgCEhKcrPG8781o3hk76YceGXst4UIC2HdJgyq1AFkJsKUR7hlbSGmdkE6rE7YAKbUwTpan7CylewCoVFm9YKcFlNrZolyw75ftASkhX9K046sD9iNf4ohhjEPPtzTs-arLFQ19DHyNvhvv-CcMA7WJ36bY7_g6InkKdzH4bm5NRLPLDU6UP25wfBzoS-KPMZPLyXdigwfs-GrfYNtmg5fs-dZ3CV89vefs9v3q89VabD5ef7i63IhQWDWK4DxIXxljwGi02gBKY7ZGF2UTLKjGIbQNusZK0KEJCE5aU_lKYmtaB8U5e3v0faDh64RprO-Hifo8slYy95VRP1VvnlRTs8e2fqC49_St_nWyLJBHQaAhJcLtb4mEeo6lPsZS51jqOZbaZcb-xYQ4-vnEI_nY_ZdURzLlKf0O6c_S_4Z-AOdioSs |
CitedBy_id | crossref_primary_10_1007_s40264_018_0766_8 crossref_primary_10_3390_app122211709 crossref_primary_10_1007_s40290_022_00434_y crossref_primary_10_1097_MD_0000000000029387 crossref_primary_10_1124_pharmrev_122_000715 crossref_primary_10_1186_s13326_020_00221_1 crossref_primary_10_1109_ACCESS_2023_3309157 crossref_primary_10_1007_s40290_019_00307_x crossref_primary_10_1007_s40264_022_01170_7 crossref_primary_10_1007_s40264_022_01172_5 crossref_primary_10_1186_s12911_022_01924_4 crossref_primary_10_2139_ssrn_4089512 crossref_primary_10_2196_18417 crossref_primary_10_1016_j_ijmedinf_2024_105438 crossref_primary_10_1371_journal_pone_0236789 crossref_primary_10_3390_ph16020253 crossref_primary_10_1055_s_0040_1702001 crossref_primary_10_1093_bib_bbad228 crossref_primary_10_1186_s40345_021_00228_2 crossref_primary_10_3390_s20174662 crossref_primary_10_1016_j_ijleo_2021_167080 crossref_primary_10_1007_s10916_024_02070_2 crossref_primary_10_1016_j_jbi_2024_104603 crossref_primary_10_2196_60164 crossref_primary_10_1093_jamia_ocz200 crossref_primary_10_1002_ams2_740 crossref_primary_10_1016_j_ijmedinf_2023_105246 crossref_primary_10_1093_jamia_ocz144 crossref_primary_10_1371_journal_pone_0279842 crossref_primary_10_1016_j_mlwa_2022_100367 crossref_primary_10_1007_s12553_021_00607_w crossref_primary_10_1109_RBME_2022_3210270 crossref_primary_10_1186_s12911_019_0951_4 crossref_primary_10_2196_27017 crossref_primary_10_21032_jhis_2022_47_S3_S41 |
Cites_doi | 10.3115/1219044.1219075 10.1136/jamia.2009.001560 10.1136/jamia.2010.003962 10.3115/v1/D14-1162 10.3115/v1/P14-5010 10.1093/database/bat064 10.1155/2017/9451342 10.18653/v1/N16-1056 10.1049/cp:19991218 10.18653/v1/D16-1082 10.1007/978-94-017-2390-9_10 10.1186/1472-6947-14-91 10.5220/0006600201760188 10.1109/78.650093 10.18653/v1/P16-1101 10.1162/neco.1997.9.8.1735 10.1197/jamia.M3378 10.1109/72.279181 |
ContentType | Journal Article |
Copyright | Springer Nature Switzerland AG 2019 Copyright Springer Nature B.V. Jan 2019 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2019 – notice: Copyright Springer Nature B.V. Jan 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 4T- 7RV 7T2 7TK 7U7 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA BENPR C1K CCPQU FYUFA GHDGH K9. KB0 M0S M1P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI |
DOI | 10.1007/s40264-018-0765-9 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Docstoc Nursing & Allied Health Database Health and Safety Science Abstracts (Full archive) Neurosciences Abstracts Toxicology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Environmental Sciences and Pollution Management ProQuest One Community College Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection PML(ProQuest Medical Library) Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Environmental Sciences and Pollution Management ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection Health & Safety Science Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Docstoc ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | ProQuest One Academic Middle East (New) MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Public Health Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1179-1942 |
EndPage | 122 |
ExternalDocumentID | 30649736 10_1007_s40264_018_0765_9 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Oak Ridge Associated Universities (ORAU) grantid: ORISE Fellowship; ORISE Fellowship – fundername: Seeds of STEM and Institute of Education Sciences, U.S. Department of Education grantid: R305A150571 |
GroupedDBID | --- -EM 0R~ 199 29G 2JY 36B 4.4 406 5GY 5RE 6PF 7RV 7X7 88E 8FI 8FJ 8R4 8R5 95. AACDK AADNT AAIKX AAJKR AANZL AASML AATNV AAWTL AAYQN ABAKF ABDZT ABFTV ABIPD ABJNI ABJOX ABKCH ABKMS ABKTR ABLLE ABOCM ABPLI ABTKH ABTMW ABUWG ABXPI ACAOD ACCOQ ACCUX ACDTI ACGFO ACGFS ACMJI ACMLO ACOKC ACPIV ACPRK ACZOJ ADBBV ADFRT ADFZG ADJJI ADURQ ADYOE ADZKW AEFQL AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AEVLU AEXYK AFBBN AFKRA AFRAH AFWTZ AFZKB AGAYW AGDGC AGQEE AGQMX AGRTI AHIZS AHMBA AIAKS AIGIU AILAN AIZAD AJRNO ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF ASPBG AVWKF AWSVR AXYYD BENPR BGNMA BKEYQ BPHCQ BVXVI CCPQU CS3 DCUDU DNIVK DPUIP DU5 EBLON EBS EJD EMOBN EX3 F5P FERAY FIGPU FLLZZ FNLPD FSGXE FYUFA HMCUK IAO IMOTQ INH IWAJR J-C J5H JZLTJ L7B LGEZI LLZTM LOTEE M1P M4Y NADUK NAPCQ NQJWS NU0 NXXTH O9- OAC OPC OVD P2P PQQKQ PROAC PSQYO Q2X ROL RSV SJYHP SNPRN SNX SOHCF SOJ SPKJE SRMVM SSLCW TSG U9L UAX UG4 UKHRP UTJUX VDBLX VFIZW W48 WAF WOW YFH YQY ~JE 53G 6I2 AAAUJ AAIAL AAKAS AARHV AAYOK AAYTO AAYXX AAYZH ABBRH ABDBE ABFSG ABMNI ABWHX ACMFV ACREN ACSTC ADQRH ADRFC ADZCM AEBTG AEYRQ AEZWR AFDZB AFHIU AFOHR AHSBF AHWEU AIXLP ATHPR AYFIA AZFZN A~4 BYPQX CAG CITATION COF IHR INR ITC PHGZM PHGZT RZALA SISQX TEORI Z0Y ZGI ZXP CGR CUY CVF ECM EIF NPM 3V. 4T- 7T2 7TK 7U7 7XB 8FK ABRTQ C1K K9. PJZUB PKEHL PPXIY PQEST PQUKI |
ID | FETCH-LOGICAL-c372t-c9a01a8555054e7450e155f5436bc702b9e0dbe9b7104cbce091758a81ed5d903 |
IEDL.DBID | 7X7 |
ISSN | 0114-5916 |
IngestDate | Fri Jul 25 23:03:26 EDT 2025 Thu Jan 02 22:59:19 EST 2025 Tue Jul 01 00:37:53 EDT 2025 Thu Apr 24 23:11:47 EDT 2025 Fri Feb 21 02:28:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-c9a01a8555054e7450e155f5436bc702b9e0dbe9b7104cbce091758a81ed5d903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8502-6047 0000-0003-3355-2736 0000-0003-3603-3341 0000-0001-5375-9254 0000-0003-3576-0360 0000-0002-7403-5869 |
PMID | 30649736 |
PQID | 2190325290 |
PQPubID | 32187 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2190325290 pubmed_primary_30649736 crossref_primary_10_1007_s40264_018_0765_9 crossref_citationtrail_10_1007_s40264_018_0765_9 springer_journals_10_1007_s40264_018_0765_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: New Zealand – name: Auckland |
PublicationSubtitle | The Official Journal of the International Society of Pharmacovigilance [ISoP] |
PublicationTitle | Drug safety |
PublicationTitleAbbrev | Drug Saf |
PublicationTitleAlternate | Drug Saf |
PublicationYear | 2019 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | DonaldsonMSCorriganJMKohnLTTo err is human: building a safer health system2000Washington DCNational Academies Press Wunnava S, Qin X, Kakar T, Rundensteiner EA, Kong X. Bidirectional LSTM-CRF for adverse drug event tagging in electronic health records. In Liu F, Jagannatha A, Yu H, editors. In: Proceedings of the 1st international workshop on medication and adverse drug event detection, volume 90 of Proceedings of machine learning research; 2018 May 4. pp 48–56. AbadiMBarhamPChenJChenZDavisADeanJTensorFlow: a system for large-scale machine learningOSDI201616265283 DelegerLGrouinCZweigenbaumPExtracting medical information from narrative patient records: the case of medication-related informationJ Am Med Inform Assoc201017555555810.1136/jamia.2010.003962208198632995678 Wunnava S, Qin X, Kakar T, Kong X, Rundensteiner EA, Sahoo SK, et al. One size does not fit all: an ensemble approach towards information extraction from adverse drug event narratives. In: Proceedings of HEALTHINF; 2018. pp 176–188. CollobertRWestonJBottouLKarlenMKavukcuogluKKuksaPNatural language processing (almost) from scratchJ Mach Learn Res20111224932537 Bird S, Loper E. NLTK: the natural language toolkit. In: Proceedings of the ACL 2004 on Interactive poster and demonstration sessions; 2004. p 31. Comeau DC, Islamaj Dogan R, Ciccarese P, Cohen KB, Krallinger M, Leitner F, et al. BioC: a minimalist approach to interoperability for biomedical text processing. Database. 2013; 2013. Pyysalo S, Ginter F, Moen H, Salakoski T, Ananiadou S. Distributional semantics resources for biomedical text processing. In Proceedings of the 5th international symposium on languages in biology and medicine. Tokyo, Japan; 2013. pp 39–43 HochreiterSSchmidhuberJLong short-term memoryNeural Comput199791735178010.1162/neco.1997.9.8.17351:STN:280:DyaK1c%2FhvVahsQ%3D%3D9377276 Jagannatha AN, Yu H. Structured prediction models for RNN based sequence labeling in clinical text. In: Proceedings of the conference on empirical methods in natural language processing. In: Conference on empirical methods in natural language Processing; 2016. Bird S, Klein E, Loper E. Natural language processing with python: O’Reilly; 2009. XuHStennerSPDoanSJohnsonKBWaitmanLRDennyJCMedEx: a medication information extraction system for clinical narrativesJ Am Med Inform Assoc201017192410.1197/jamia.M33781:CAS:528:DC%2BC3cXlsVentrs%3D200647972995636 Gers FA, Schmidhuber J, Cummins F. Learning to forget: continual prediction with LSTM. IET. 1999. Dubois S, Romano N. Learning effective embeddings from medical notes. Pascanu R, Mikolov T, Bengio Y. On the difficulty of training recurrent neural networks. In: International conference on machine learning; 2013. pp 1310–1318. Choi Y, Chiu CYI, Sontag D. Learning low-dimensional representations of medical concepts. In: AMIA summits on translational science proceedings. 2016. Lafferty J, McCallum A, Pereira FCN. Conditional random fields: probabilistic models for segmenting and labeling sequence data. 2001. Manning C, Surdeanu M, Bauer J, Finkel J, Bethard S, McClosky D. The Stanford CoreNLP natural language processing toolkit. In: Proceedings of 52nd annual meeting of the association for computational linguistics: system demonstrations; 2014. pp 55–60. SrivastavaNHintonGKrizhevskyASutskeverISalakhutdinovRDropout: a simple way to prevent neural networks from overfittingJ Mach Learn Res20141519291958 RameshBPBelknapSMLiZFridNWestDPYuHAutomatically recognizing medication and adverse event information from food and drug administration’s adverse event reporting system narrativesJMIR201482 Jagannatha AN, Yu H. Bidirectional RNN for medical event detection in electronic health records. In: Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting; 2016. p 473. Pennington J, Socher R, Manning C. Glove: Global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP); 2014. pp 1532–1543. SchusterMPaliwalKKBidirectional recurrent neural networksIEEE Trans Signal Process1997452673268110.1109/78.650093 Tutubalina E, Nikolenko S. Combination of deep recurrent neural networks and conditional random fields for extracting adverse drug reactions from user reviews. J Healthcare Eng; 2017;2017: Article ID 945134, 9. Santos CD, Zadrozny B. Learning character-level representations for part-of-speech tagging. In: Proceedings of the 31st international conference on machine learning (ICML-14); 2014. pp 1818-1826. SampathkumarHXwChenLuoBMining adverse drug reactions from online healthcare forums using hidden Markov modelBMC Med Inf Decis Mak2014149110.1186/1472-6947-14-91 Aronson AR. Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. In: Proceedings of the AMIA Symposium; 2001. Ma X, Hovy EH. End-to-end Sequence Labeling via bi-directional LSTM-CNNs-CRF. In Proceedings of the 54th annual meeting of the association for computational linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers; 2016. BengioPFrasconiPLearning long-term dependencies with gradient descent is difficultIEEE Trans Neural Netw1994515716610.1109/72.2791811:STN:280:DC%2BD1c7gvFansQ%3D%3D18267787 SavovaGKMasanzJJOgrenPVZhengJSohnSKipper-SchulerKCMayo clinical text analysis and knowledge extraction system (cTAKES): architecture, component evaluation and applicationsJ Am Med Inform Assoc20101750751310.1136/jamia.2009.001560208198532995668 Lipton ZC. A Critical review of recurrent neural networks for sequence learning. CoRR. 2015; abs/1506.00019. Huang Z, Xu W, Yu K. Bidirectional LSTM-CRF models for sequence tagging. arXiv preprint arXiv:1508.01991. 2015. Ramshaw LA, Marcus MP. Text chunking using transformation-based learning. In Natural language processing using very large corpora. Springer; 1999. Pp 157–176. Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980. 2014. 765_CR15 M Abadi (765_CR34) 2016; 16 765_CR16 765_CR17 765_CR18 765_CR11 765_CR33 765_CR12 765_CR13 765_CR35 765_CR14 (765_CR1) 2000 765_CR31 765_CR10 765_CR9 H Sampathkumar (765_CR5) 2014; 14 L Deleger (765_CR3) 2010; 17 H Xu (765_CR4) 2010; 17 BP Ramesh (765_CR6) 2014; 8 765_CR26 P Bengio (765_CR27) 1994; 5 765_CR28 765_CR29 765_CR22 S Hochreiter (765_CR8) 1997; 9 GK Savova (765_CR20) 2010; 17 765_CR23 765_CR24 M Schuster (765_CR30) 1997; 45 765_CR2 765_CR21 765_CR7 N Srivastava (765_CR32) 2014; 15 R Collobert (765_CR25) 2011; 12 765_CR19 |
References_xml | – reference: SchusterMPaliwalKKBidirectional recurrent neural networksIEEE Trans Signal Process1997452673268110.1109/78.650093 – reference: Huang Z, Xu W, Yu K. Bidirectional LSTM-CRF models for sequence tagging. arXiv preprint arXiv:1508.01991. 2015. – reference: Lafferty J, McCallum A, Pereira FCN. Conditional random fields: probabilistic models for segmenting and labeling sequence data. 2001. – reference: Wunnava S, Qin X, Kakar T, Rundensteiner EA, Kong X. Bidirectional LSTM-CRF for adverse drug event tagging in electronic health records. In Liu F, Jagannatha A, Yu H, editors. In: Proceedings of the 1st international workshop on medication and adverse drug event detection, volume 90 of Proceedings of machine learning research; 2018 May 4. pp 48–56. – reference: SampathkumarHXwChenLuoBMining adverse drug reactions from online healthcare forums using hidden Markov modelBMC Med Inf Decis Mak2014149110.1186/1472-6947-14-91 – reference: Pascanu R, Mikolov T, Bengio Y. On the difficulty of training recurrent neural networks. In: International conference on machine learning; 2013. pp 1310–1318. – reference: Aronson AR. Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. In: Proceedings of the AMIA Symposium; 2001. – reference: Jagannatha AN, Yu H. Bidirectional RNN for medical event detection in electronic health records. In: Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting; 2016. p 473. – reference: Ma X, Hovy EH. End-to-end Sequence Labeling via bi-directional LSTM-CNNs-CRF. In Proceedings of the 54th annual meeting of the association for computational linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers; 2016. – reference: Dubois S, Romano N. Learning effective embeddings from medical notes. – reference: XuHStennerSPDoanSJohnsonKBWaitmanLRDennyJCMedEx: a medication information extraction system for clinical narrativesJ Am Med Inform Assoc201017192410.1197/jamia.M33781:CAS:528:DC%2BC3cXlsVentrs%3D200647972995636 – reference: Ramshaw LA, Marcus MP. Text chunking using transformation-based learning. In Natural language processing using very large corpora. Springer; 1999. Pp 157–176. – reference: Pennington J, Socher R, Manning C. Glove: Global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP); 2014. pp 1532–1543. – reference: BengioPFrasconiPLearning long-term dependencies with gradient descent is difficultIEEE Trans Neural Netw1994515716610.1109/72.2791811:STN:280:DC%2BD1c7gvFansQ%3D%3D18267787 – reference: Bird S, Loper E. NLTK: the natural language toolkit. In: Proceedings of the ACL 2004 on Interactive poster and demonstration sessions; 2004. p 31. – reference: Santos CD, Zadrozny B. Learning character-level representations for part-of-speech tagging. In: Proceedings of the 31st international conference on machine learning (ICML-14); 2014. pp 1818-1826. – reference: SrivastavaNHintonGKrizhevskyASutskeverISalakhutdinovRDropout: a simple way to prevent neural networks from overfittingJ Mach Learn Res20141519291958 – reference: Tutubalina E, Nikolenko S. Combination of deep recurrent neural networks and conditional random fields for extracting adverse drug reactions from user reviews. J Healthcare Eng; 2017;2017: Article ID 945134, 9. – reference: HochreiterSSchmidhuberJLong short-term memoryNeural Comput199791735178010.1162/neco.1997.9.8.17351:STN:280:DyaK1c%2FhvVahsQ%3D%3D9377276 – reference: Gers FA, Schmidhuber J, Cummins F. Learning to forget: continual prediction with LSTM. IET. 1999. – reference: Bird S, Klein E, Loper E. Natural language processing with python: O’Reilly; 2009. – reference: DelegerLGrouinCZweigenbaumPExtracting medical information from narrative patient records: the case of medication-related informationJ Am Med Inform Assoc201017555555810.1136/jamia.2010.003962208198632995678 – reference: Manning C, Surdeanu M, Bauer J, Finkel J, Bethard S, McClosky D. The Stanford CoreNLP natural language processing toolkit. In: Proceedings of 52nd annual meeting of the association for computational linguistics: system demonstrations; 2014. pp 55–60. – reference: Pyysalo S, Ginter F, Moen H, Salakoski T, Ananiadou S. Distributional semantics resources for biomedical text processing. In Proceedings of the 5th international symposium on languages in biology and medicine. Tokyo, Japan; 2013. pp 39–43 – reference: DonaldsonMSCorriganJMKohnLTTo err is human: building a safer health system2000Washington DCNational Academies Press – reference: Lipton ZC. A Critical review of recurrent neural networks for sequence learning. CoRR. 2015; abs/1506.00019. – reference: Jagannatha AN, Yu H. Structured prediction models for RNN based sequence labeling in clinical text. In: Proceedings of the conference on empirical methods in natural language processing. In: Conference on empirical methods in natural language Processing; 2016. – reference: Choi Y, Chiu CYI, Sontag D. Learning low-dimensional representations of medical concepts. In: AMIA summits on translational science proceedings. 2016. – reference: Comeau DC, Islamaj Dogan R, Ciccarese P, Cohen KB, Krallinger M, Leitner F, et al. BioC: a minimalist approach to interoperability for biomedical text processing. Database. 2013; 2013. – reference: Wunnava S, Qin X, Kakar T, Kong X, Rundensteiner EA, Sahoo SK, et al. One size does not fit all: an ensemble approach towards information extraction from adverse drug event narratives. In: Proceedings of HEALTHINF; 2018. pp 176–188. – reference: RameshBPBelknapSMLiZFridNWestDPYuHAutomatically recognizing medication and adverse event information from food and drug administration’s adverse event reporting system narrativesJMIR201482 – reference: AbadiMBarhamPChenJChenZDavisADeanJTensorFlow: a system for large-scale machine learningOSDI201616265283 – reference: CollobertRWestonJBottouLKarlenMKavukcuogluKKuksaPNatural language processing (almost) from scratchJ Mach Learn Res20111224932537 – reference: SavovaGKMasanzJJOgrenPVZhengJSohnSKipper-SchulerKCMayo clinical text analysis and knowledge extraction system (cTAKES): architecture, component evaluation and applicationsJ Am Med Inform Assoc20101750751310.1136/jamia.2009.001560208198532995668 – reference: Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980. 2014. – ident: 765_CR18 doi: 10.3115/1219044.1219075 – volume: 17 start-page: 507 year: 2010 ident: 765_CR20 publication-title: J Am Med Inform Assoc doi: 10.1136/jamia.2009.001560 – ident: 765_CR35 – volume: 17 start-page: 555 issue: 5 year: 2010 ident: 765_CR3 publication-title: J Am Med Inform Assoc doi: 10.1136/jamia.2010.003962 – ident: 765_CR12 – ident: 765_CR14 – ident: 765_CR16 – ident: 765_CR33 – ident: 765_CR15 doi: 10.3115/v1/D14-1162 – ident: 765_CR19 doi: 10.3115/v1/P14-5010 – ident: 765_CR23 – ident: 765_CR17 doi: 10.1093/database/bat064 – volume: 12 start-page: 2493 year: 2011 ident: 765_CR25 publication-title: J Mach Learn Res – ident: 765_CR28 – ident: 765_CR11 doi: 10.1155/2017/9451342 – ident: 765_CR21 doi: 10.18653/v1/N16-1056 – ident: 765_CR29 doi: 10.1049/cp:19991218 – volume-title: To err is human: building a safer health system year: 2000 ident: 765_CR1 – ident: 765_CR9 – ident: 765_CR10 doi: 10.18653/v1/D16-1082 – ident: 765_CR24 doi: 10.1007/978-94-017-2390-9_10 – ident: 765_CR7 – volume: 15 start-page: 1929 year: 2014 ident: 765_CR32 publication-title: J Mach Learn Res – ident: 765_CR13 – volume: 16 start-page: 265 year: 2016 ident: 765_CR34 publication-title: OSDI – volume: 14 start-page: 91 year: 2014 ident: 765_CR5 publication-title: BMC Med Inf Decis Mak doi: 10.1186/1472-6947-14-91 – ident: 765_CR2 doi: 10.5220/0006600201760188 – volume: 8 start-page: 2 year: 2014 ident: 765_CR6 publication-title: JMIR – volume: 45 start-page: 2673 year: 1997 ident: 765_CR30 publication-title: IEEE Trans Signal Process doi: 10.1109/78.650093 – ident: 765_CR22 – ident: 765_CR31 doi: 10.18653/v1/P16-1101 – volume: 9 start-page: 1735 year: 1997 ident: 765_CR8 publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – volume: 17 start-page: 19 year: 2010 ident: 765_CR4 publication-title: J Am Med Inform Assoc doi: 10.1197/jamia.M3378 – ident: 765_CR26 – volume: 5 start-page: 157 year: 1994 ident: 765_CR27 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.279181 |
SSID | ssj0008268 |
Score | 2.42785 |
Snippet | Introduction
Adverse drug event (ADE) detection is a vital step towards effective pharmacovigilance and prevention of future incidents caused by potentially... Adverse drug event (ADE) detection is a vital step towards effective pharmacovigilance and prevention of future incidents caused by potentially harmful ADEs.... Introduction Adverse drug event (ADE) detection is a vital step towards effective pharmacovigilance and prevention of future incidents caused by potentially... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 113 |
SubjectTerms | Artificial intelligence Cardiovascular disease Deep Learning - standards Deep Learning - trends Drug Safety and Pharmacovigilance Drug-Related Side Effects and Adverse Reactions - diagnosis Drug-Related Side Effects and Adverse Reactions - epidemiology Electronic health records Electronic Health Records - standards Electronic Health Records - trends Electronic medical records Embedded systems Embedding Humans Information retrieval Innovations International conferences Language Linguistics Long short-term memory Machine learning Machine Learning - standards Machine Learning - trends Medicine Medicine & Public Health Natural language processing Neural networks Neural Networks, Computer NLP Challenge for Detecting Medication and Adverse Drug Events from Electronic Health Records (MADE 1.0) Original Research Article Pharmacology Pharmacology/Toxicology Pharmacovigilance Recurrent neural networks Semantics Terminology |
Title | Adverse Drug Event Detection from Electronic Health Records Using Hierarchical Recurrent Neural Networks with Dual-Level Embedding |
URI | https://link.springer.com/article/10.1007/s40264-018-0765-9 https://www.ncbi.nlm.nih.gov/pubmed/30649736 https://www.proquest.com/docview/2190325290 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgvSAhBOVrS6nmgHqAWjiJE8cn1GWzWiEarVAr7S2KHS9CWral2T302l_OjJ1khSp6iuTE8WH88d545g1jH9JoadVSCE5iXlw6Y7lpkPPkgsSmdOyUrxl5XmazS_ltkS46h1vbhVX2e6LfqJsrSz7yz7iyRBKnsRZfrv9wqhpFt6tdCY3HbJ-ky4h8qcVAuPB086lwhPl5ijiov9Wk1DnkTRnFX-QcmXzK9b_n0j2wee-i1J8_0-fsWQcc4SxY-gV75NYH7GQelKdvT-Fil0jVnsIJzHea1LcH7Glwz0HIOnrJ7nwh5tbB5Gb7EwoKeoSJ2_i4rDVQzgkUQ4GcrhcEqtqCDzOA2S_KXfalVFb0Kgg9Aal9YEMZwstbIEcvTLb1in-n-CQofhvX0IH5il1Oi4uvM96VY-A2UfGGW12LqM5T4jTSKZkKh2BkmcokM1aJ2GgnGuO0QdAirbEOoQiykTqPXJM2aL3XbG99tXZvGWgVIQxKlG60lEmCm39WRzavhbVNZKQeMdEbo7KdVjmVzFhVg8qyt1-F9qvIfhV2-Th0uQ5CHQ99fNRbuOrWbFvtZtiIvQlWH_5EPE2rJBuxT_002HX87zCHDw_zjj1B-KWDQ-eI7W1utu49QpyNOfbz-Jjtn03H4xKf46Kc_8DWcn7-F5ET-cs |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcgAJISivQAEfoAeoVe_D6_UBIURSpTSNekil3Ja110FIIS3dRChXfhC_kRl7dyNU0Vuvuzv2SjP2N2PPfAPwRkYzq2ZCcCLz4qkzlpsKY55cENmUjp3yPSNPxtnwLP0yldMt-NPWwlBaZbsn-o26Ord0Rn6AK0sksYy1-Hjxk1PXKLpdbVtoBLM4dutfGLLVH476qN-3cXw4mHwe8qarALeJipfc6lJEZS7JNU-dSqVwiKkzmSaZsUrERjtRGacNYm9qjXWIqOhUl3nkKlnhT-C4t-A2Aq-gFEI17QI8RFNfekcxBpfod7W3qFSqh3FaRvkeORcqk1z_i4NXnNsrF7Me7w4fwP3GUWWfgmU9hC232IG908B0vd5nk03hVr3P9tjphgN7vQP3wnEgC1VOj-C3b_xcO9a_XH1jA0qyZH239HlgC0Y1LmzQNeRppFgIjWvm0xrY8DvVSvvWLXN6FYilGLGL4INxSGevGR0ss_6qnPMR5UOxwQ_jKgLox3B2I4p6AtuL84V7BkyrCN2uROlKp2mSINhkZWTzUlhbRSbVPRCtMgrbcKNTi4550bE6e_0VqL-C9FegyLtO5CIQg1z38W6r4aLZI-piY9E9eBq03o1EcaFWSdaD960ZbAT_O83z66d5DXeGk5NRMToaH7-Au-j66XCYtAvby8uVe4nu1dK88jbN4OtNL6K_Z9wxhQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGkBASQmPAKGxwD7AHmDXnp-MHhCbSqmOj6sMm9S3EjouQSjeWVqiv_Fn8dbuzk1RoYm97TXJ2pDv7u7PvvmPsbRJMjZwKwYnMi8dWG64rjHkyQWRTKrTS9Yz8OkqH5_GXSTLZYH_bWhhKq2z3RLdRVxeGzsgPcWWJKExCJQ6nTVrEOB98uvzFqYMU3bS27TS8iZzY1W8M3-qPxznq-l0YDvpnn4e86TDATSTDBTeqFEGZJeSmx1bGibCIr9MkjlJtpAi1sqLSVmnE4dhoYxFd0cEus8BWSYU_hOPeY_dlhLCJa0lOumAPkdWV4VG8wRP0wdobVSrbw5gtpdyPjAuZJlz9i4k3HN0bl7QO-wZb7HHjtMKRt7InbMPOt9n-2LNerw7gbF3EVR_APozXfNirbfbIHw2Cr3h6yv64JtC1hfxq-R36lHAJuV24nLA5UL0L9LvmPI0U-DC5BpfiAMMfVDft2rjM6JUnmQJiGsEHI5_aXgMdMkO-LGf8lHKjoP9T24rA-hk7vxNFPWeb84u5fcFAyQBdsEiqSsVxFCHwpGVgslIYUwU6Vj0mWmUUpuFJp3Yds6JjeHb6K1B_BemvQJH3ncilJwm57ePdVsNFs1_Uxdq6e2zHa70biWJEJaO0xz60ZrAW_O80L2-f5g17gMunOD0enbxiD9ELVP5caZdtLq6Wdg89rYV-7Uwa2Le7XkPXzxE1uw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adverse+Drug+Event+Detection+from+Electronic+Health+Records+Using+Hierarchical+Recurrent+Neural+Networks+with+Dual-Level+Embedding&rft.jtitle=Drug+safety&rft.au=Wunnava%2C+Susmitha&rft.au=Qin%2C+Xiao&rft.au=Kakar%2C+Tabassum&rft.au=Sen%2C+Cansu&rft.date=2019-01-01&rft.pub=Springer+International+Publishing&rft.issn=0114-5916&rft.eissn=1179-1942&rft.volume=42&rft.issue=1&rft.spage=113&rft.epage=122&rft_id=info:doi/10.1007%2Fs40264-018-0765-9&rft.externalDocID=10_1007_s40264_018_0765_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0114-5916&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0114-5916&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0114-5916&client=summon |