A hybrid model coupled with singular spectrum analysis for daily rainfall prediction

A hybrid model integrating artificial neural networks and support vector regression was developed for daily rainfall prediction. In the modeling process, singular spectrum analysis was first adopted to decompose the raw rainfall data. Fuzzy C-means clustering was then used to split the training set...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydroinformatics Vol. 12; no. 4; pp. 458 - 473
Main Authors Chau, K. W., Wu, C. L.
Format Journal Article
LanguageEnglish
Published London IWA Publishing 01.10.2010
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A hybrid model integrating artificial neural networks and support vector regression was developed for daily rainfall prediction. In the modeling process, singular spectrum analysis was first adopted to decompose the raw rainfall data. Fuzzy C-means clustering was then used to split the training set into three crisp subsets which may be associated with low-, medium- and high-intensity rainfall. Two local artificial neural network models were involved in training and predicting low- and medium-intensity subsets whereas a local support vector regression model was applied to the high-intensity subset. A conventional artificial neural network model was selected as the benchmark. The artificial neural network with the singular spectrum analysis was developed for the purpose of examining the singular spectrum analysis technique. The models were applied to two daily rainfall series from China at 1-day-, 2-day- and 3-day-ahead forecasting horizons. Results showed that the hybrid support vector regression model performed the best. The singular spectrum analysis model also exhibited considerable accuracy in rainfall forecasting. Also, two methods to filter reconstructed components of singular spectrum analysis, supervised and unsupervised approaches, were compared. The unsupervised method appeared more effective where nonlinear dependence between model inputs and output can be considered.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1464-7141
1465-1734
DOI:10.2166/hydro.2010.032