Controllable synthesis and luminescent properties of three-dimensional nanostructured CaWO4:Tb3+ microspheres
CaWO4:Tb3+ microspheres assembled by submicrospindles were synthesized via a mild sonochemical route with the aid of surfactant Polyglycol 600. The formation mechanism for the 3D-structured CaWO4:Tb3+ microspheres was studied. [Display omitted] ► Nanostructured CaWO4:Tb3+ microspheres were self-asse...
Saved in:
Published in | Journal of colloid and interface science Vol. 360; no. 2; pp. 586 - 592 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Inc
15.08.2011
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | CaWO4:Tb3+ microspheres assembled by submicrospindles were synthesized via a mild sonochemical route with the aid of surfactant Polyglycol 600. The formation mechanism for the 3D-structured CaWO4:Tb3+ microspheres was studied. [Display omitted]
► Nanostructured CaWO4:Tb3+ microspheres were self-assembled via a sonochemical route with the aid of PEG-600. ► Formation mechanism of the microspheres was proposed based on the ultrasonic irradiation time experiments. ► Energy transfer processes between Tb3+ ions were studied through analysis on the fluorescence decays.
Three-dimensional (3D) nanostructured CaWO4:Tb3+microspheres assembled by submicrospindles were synthesized via a mild sonochemical route from an aqueous solution of CaCl2, TbCl3 and Na2WO4 with the aid of surfactant Polyglycol 600 (PEG-600). The crystal structure and morphology of the as-prepared products were characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). Rietveld refinement was carried out on the XRD data. The results showed that the CaWO4:Tb3+nanoparticles can be formed without ultrasonic irradiation or addition of PEG-600. With continuously increasing irradiation time the submicrospindles and microspheres could be self-assembled. The central diameter and length of the submicrospindles are around 190 and 500nm, respectively. The 3D CaWO4:Tb3+nanostructured microspheres with diameter of 2–4μm were assembled by the submicrospindles. A possible formation mechanism for the 3D-structured CaWO4:Tb3+microspheres was proposed. The Photoluminescent (PL) properties of Tb3+ions in the nanostructured CaWO4 microspheres were studied. The energy transfer processes in CaWO4:Tb3+microspheres were analyzed. The electric dipole–dipole energy transfers related to 5D3 level were studied by inspecting the fluorescence decay of 5D3 level. The energy transfer critical distance was estimated. |
---|---|
AbstractList | Three-dimensional (3D) nanostructured CaWO(4):Tb(3+)microspheres assembled by submicrospindles were synthesized via a mild sonochemical route from an aqueous solution of CaCl(2), TbCl(3) and Na(2)WO(4) with the aid of surfactant Polyglycol 600 (PEG-600). The crystal structure and morphology of the as-prepared products were characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). Rietveld refinement was carried out on the XRD data. The results showed that the CaWO(4):Tb(3+)nanoparticles can be formed without ultrasonic irradiation or addition of PEG-600. With continuously increasing irradiation time the submicrospindles and microspheres could be self-assembled. The central diameter and length of the submicrospindles are around 190 and 500 nm, respectively. The 3D CaWO(4):Tb(3+)nanostructured microspheres with diameter of 2-4 μm were assembled by the submicrospindles. A possible formation mechanism for the 3D-structured CaWO(4):Tb(3+)microspheres was proposed. The Photoluminescent (PL) properties of Tb(3+) ions in the nanostructured CaWO(4) microspheres were studied. The energy transfer processes in CaWO(4):Tb(3+)microspheres were analyzed. The electric dipole-dipole energy transfers related to (5)D(3) level were studied by inspecting the fluorescence decay of (5)D(3) level. The energy transfer critical distance was estimated. Three-dimensional (3D) nanostructured CaWO₄:Tb³⁺microspheres assembled by submicrospindles were synthesized via a mild sonochemical route from an aqueous solution of CaCl₂, TbCl₃ and Na₂WO₄ with the aid of surfactant Polyglycol 600 (PEG-600). The crystal structure and morphology of the as-prepared products were characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). Rietveld refinement was carried out on the XRD data. The results showed that the CaWO₄:Tb³⁺nanoparticles can be formed without ultrasonic irradiation or addition of PEG-600. With continuously increasing irradiation time the submicrospindles and microspheres could be self-assembled. The central diameter and length of the submicrospindles are around 190 and 500nm, respectively. The 3D CaWO₄:Tb³⁺nanostructured microspheres with diameter of 2–4μm were assembled by the submicrospindles. A possible formation mechanism for the 3D-structured CaWO₄:Tb³⁺microspheres was proposed. The Photoluminescent (PL) properties of Tb³⁺ions in the nanostructured CaWO₄ microspheres were studied. The energy transfer processes in CaWO₄:Tb³⁺microspheres were analyzed. The electric dipole–dipole energy transfers related to ⁵D₃ level were studied by inspecting the fluorescence decay of ⁵D₃ level. The energy transfer critical distance was estimated. Three-dimensional (3D) nanostructured CaWO(4):Tb(3+)microspheres assembled by submicrospindles were synthesized via a mild sonochemical route from an aqueous solution of CaCl(2), TbCl(3) and Na(2)WO(4) with the aid of surfactant Polyglycol 600 (PEG-600). The crystal structure and morphology of the as-prepared products were characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). Rietveld refinement was carried out on the XRD data. The results showed that the CaWO(4):Tb(3+)nanoparticles can be formed without ultrasonic irradiation or addition of PEG-600. With continuously increasing irradiation time the submicrospindles and microspheres could be self-assembled. The central diameter and length of the submicrospindles are around 190 and 500 nm, respectively. The 3D CaWO(4):Tb(3+)nanostructured microspheres with diameter of 2-4 μm were assembled by the submicrospindles. A possible formation mechanism for the 3D-structured CaWO(4):Tb(3+)microspheres was proposed. The Photoluminescent (PL) properties of Tb(3+) ions in the nanostructured CaWO(4) microspheres were studied. The energy transfer processes in CaWO(4):Tb(3+)microspheres were analyzed. The electric dipole-dipole energy transfers related to (5)D(3) level were studied by inspecting the fluorescence decay of (5)D(3) level. The energy transfer critical distance was estimated.Three-dimensional (3D) nanostructured CaWO(4):Tb(3+)microspheres assembled by submicrospindles were synthesized via a mild sonochemical route from an aqueous solution of CaCl(2), TbCl(3) and Na(2)WO(4) with the aid of surfactant Polyglycol 600 (PEG-600). The crystal structure and morphology of the as-prepared products were characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). Rietveld refinement was carried out on the XRD data. The results showed that the CaWO(4):Tb(3+)nanoparticles can be formed without ultrasonic irradiation or addition of PEG-600. With continuously increasing irradiation time the submicrospindles and microspheres could be self-assembled. The central diameter and length of the submicrospindles are around 190 and 500 nm, respectively. The 3D CaWO(4):Tb(3+)nanostructured microspheres with diameter of 2-4 μm were assembled by the submicrospindles. A possible formation mechanism for the 3D-structured CaWO(4):Tb(3+)microspheres was proposed. The Photoluminescent (PL) properties of Tb(3+) ions in the nanostructured CaWO(4) microspheres were studied. The energy transfer processes in CaWO(4):Tb(3+)microspheres were analyzed. The electric dipole-dipole energy transfers related to (5)D(3) level were studied by inspecting the fluorescence decay of (5)D(3) level. The energy transfer critical distance was estimated. CaWO4:Tb3+ microspheres assembled by submicrospindles were synthesized via a mild sonochemical route with the aid of surfactant Polyglycol 600. The formation mechanism for the 3D-structured CaWO4:Tb3+ microspheres was studied. [Display omitted] ► Nanostructured CaWO4:Tb3+ microspheres were self-assembled via a sonochemical route with the aid of PEG-600. ► Formation mechanism of the microspheres was proposed based on the ultrasonic irradiation time experiments. ► Energy transfer processes between Tb3+ ions were studied through analysis on the fluorescence decays. Three-dimensional (3D) nanostructured CaWO4:Tb3+microspheres assembled by submicrospindles were synthesized via a mild sonochemical route from an aqueous solution of CaCl2, TbCl3 and Na2WO4 with the aid of surfactant Polyglycol 600 (PEG-600). The crystal structure and morphology of the as-prepared products were characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). Rietveld refinement was carried out on the XRD data. The results showed that the CaWO4:Tb3+nanoparticles can be formed without ultrasonic irradiation or addition of PEG-600. With continuously increasing irradiation time the submicrospindles and microspheres could be self-assembled. The central diameter and length of the submicrospindles are around 190 and 500nm, respectively. The 3D CaWO4:Tb3+nanostructured microspheres with diameter of 2–4μm were assembled by the submicrospindles. A possible formation mechanism for the 3D-structured CaWO4:Tb3+microspheres was proposed. The Photoluminescent (PL) properties of Tb3+ions in the nanostructured CaWO4 microspheres were studied. The energy transfer processes in CaWO4:Tb3+microspheres were analyzed. The electric dipole–dipole energy transfers related to 5D3 level were studied by inspecting the fluorescence decay of 5D3 level. The energy transfer critical distance was estimated. |
Author | Cheng, Lihong Yu, Tingting Yu, Hongquan Zhang, Jinsu Chen, Baojiu Sun, Jiashi Li, Xiangping Zhong, Haiyang Zheng, Yanfeng Huang, Libo Tian, Yue Hua, Ruinian |
Author_xml | – sequence: 1 givenname: Yue surname: Tian fullname: Tian, Yue organization: Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026, PR China – sequence: 2 givenname: Baojiu surname: Chen fullname: Chen, Baojiu email: chenmbj@sohu.com organization: Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026, PR China – sequence: 3 givenname: Hongquan surname: Yu fullname: Yu, Hongquan organization: College of Environmental and Chemical Engineering, Dalian Jiaotong University, Liaoning 116028, PR China – sequence: 4 givenname: Ruinian surname: Hua fullname: Hua, Ruinian email: rnhua@dlnu.edu.cn organization: College of Life Science, Dalian Nationalities University, Dalian, Liaoning 116600, PR China – sequence: 5 givenname: Xiangping surname: Li fullname: Li, Xiangping organization: Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026, PR China – sequence: 6 givenname: Jiashi surname: Sun fullname: Sun, Jiashi organization: Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026, PR China – sequence: 7 givenname: Lihong surname: Cheng fullname: Cheng, Lihong organization: Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026, PR China – sequence: 8 givenname: Haiyang surname: Zhong fullname: Zhong, Haiyang organization: Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026, PR China – sequence: 9 givenname: Jinsu surname: Zhang fullname: Zhang, Jinsu organization: Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026, PR China – sequence: 10 givenname: Yanfeng surname: Zheng fullname: Zheng, Yanfeng organization: Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026, PR China – sequence: 11 givenname: Tingting surname: Yu fullname: Yu, Tingting organization: Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026, PR China – sequence: 12 givenname: Libo surname: Huang fullname: Huang, Libo organization: Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026, PR China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24335659$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21621217$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1v1DAQhi1URLeFP8ABckEgoQSP7SQbxKVa8SVV6oFWHC3HGbNeJfbWdpD67-toF5A4rH3wwc-M_c5zQc6cd0jIS6AVUGg-7KqdtrFiFKCioqKdeEJWQLu6bIHyM7KilEHZtV17Ti5i3NEM1nX3jJwzaBgwaFdk2niXgh9H1Y9YxAeXthhtLJQbinGerMOo0aViH_weQ7IYC2-KtA2I5WAndNF6p8bCKedjCrNOc8Ch2KifN-Ljbc_fF5PVwcf9FgPG5-SpUWPEF8fzktx9-Xy7-VZe33z9vrm6LjVvWSo18IELaLgxFJuhbo2i2DOqmp4LJWrRwxo6yMm0AOgRjDa05SDWjDFQlF-St4e--dv3M8YkJ5tz5JQO_RzlumXAoaubTL47STKaV0tF12X01RGd-wkHuQ92UuFB_hlmBt4cARW1Gk1QLvv5xwnO66ZeGrEDtwwmBjR_EaByMSt3cjErF7OSCpnN5qL1f0XaJpXsok_Z8XTp60OpUV6qXyFf3_3IQJOjNeu8M_HpQGCW8ttikFFbdBoHG1AnOXh76oFHH4vHkg |
CODEN | JCISA5 |
CitedBy_id | crossref_primary_10_1007_s10853_011_5923_8 crossref_primary_10_1016_j_ceramint_2014_06_127 crossref_primary_10_1021_acsami_3c02941 crossref_primary_10_1039_C1CE05977G crossref_primary_10_1039_C4CE02279C crossref_primary_10_1016_j_jcis_2017_04_062 crossref_primary_10_1007_s11051_013_1757_4 crossref_primary_10_1007_s10854_014_2119_4 crossref_primary_10_1016_j_jtice_2013_05_007 crossref_primary_10_1016_j_molstruc_2017_07_076 crossref_primary_10_1007_s10854_014_1941_z crossref_primary_10_3740_MRSK_2013_23_9_537 crossref_primary_10_1016_j_materresbull_2014_01_027 crossref_primary_10_1016_j_matchemphys_2016_08_008 crossref_primary_10_1016_j_ceramint_2019_08_022 crossref_primary_10_1039_C4NR02485K crossref_primary_10_1007_s10854_017_7644_5 crossref_primary_10_1039_C7CE00802C crossref_primary_10_1016_j_jfluchem_2012_09_003 crossref_primary_10_1039_c2ce26101d crossref_primary_10_3740_MRSK_2012_22_5_215 crossref_primary_10_1016_j_jlumin_2022_118759 crossref_primary_10_1016_j_matchemphys_2018_08_065 crossref_primary_10_1142_S1793292014500088 crossref_primary_10_1016_j_jre_2021_01_005 crossref_primary_10_1142_S0217984916502468 crossref_primary_10_1016_j_matlet_2013_07_037 crossref_primary_10_1016_j_jpcs_2012_10_010 crossref_primary_10_1007_s10854_015_4066_0 crossref_primary_10_1007_s10895_020_02507_0 crossref_primary_10_1016_j_spmi_2014_11_039 crossref_primary_10_1016_j_jallcom_2011_07_095 crossref_primary_10_1016_j_jallcom_2015_05_007 crossref_primary_10_1016_j_jssc_2012_06_004 crossref_primary_10_1016_j_materresbull_2013_02_009 crossref_primary_10_1016_j_spmi_2015_11_037 crossref_primary_10_1016_j_apt_2013_03_012 crossref_primary_10_7567_1347_4065_ab4f3d crossref_primary_10_1007_s10971_014_3550_y crossref_primary_10_1039_c2ra20266b crossref_primary_10_1016_j_physb_2012_03_066 crossref_primary_10_1111_ijac_12686 crossref_primary_10_1007_s10853_015_9377_2 crossref_primary_10_1007_s42864_019_00030_9 crossref_primary_10_7498_aps_62_197804 crossref_primary_10_1016_j_jiec_2021_11_026 crossref_primary_10_1016_j_jallcom_2017_11_005 crossref_primary_10_1039_C5RA04708K crossref_primary_10_1016_j_jlumin_2018_06_065 crossref_primary_10_1016_j_jcis_2012_10_031 crossref_primary_10_1007_s11426_012_4732_5 crossref_primary_10_1039_c3nr00368j crossref_primary_10_1016_j_apsusc_2014_06_013 crossref_primary_10_1016_j_colsurfa_2011_12_021 crossref_primary_10_1039_D1NJ04556C crossref_primary_10_1002_ejic_201700650 |
Cites_doi | 10.1021/cg8003189 10.1021/cg8004823 10.1002/adma.200390033 10.1016/0025-5408(84)90033-3 10.1126/science.253.5026.1397 10.1021/cm031043s 10.1021/ja9800333 10.1126/science.247.4949.1439 10.1016/j.matlet.2005.11.051 10.1021/jp057562v 10.1002/adma.200306676 10.1039/b302499g 10.1063/1.1697063 10.1002/adma.200304834 10.1016/j.jallcom.2010.09.040 10.1021/cm0203464 10.1103/PhysRevB.39.10633 10.1016/j.optmat.2007.10.021 10.1021/ic00345a034 10.1016/S0022-2313(02)00384-8 10.1021/la0518647 10.1039/c0nr00257g 10.1039/b818810f 10.1021/ja072910n 10.1166/jnn.2008.18169 10.1016/j.jlumin.2005.01.017 10.1063/1.1935766 10.1016/j.ultsonch.2004.01.037 10.1103/PhysRevLett.62.210 10.1246/bcsj.75.2289 10.1088/0957-4484/17/3/020 10.1021/nl035102c 10.1103/PhysRevB.45.10356 10.1021/nn901057y 10.1007/s00340-008-3035-1 10.1021/ja001628c 10.1103/PhysRevB.6.615 10.1103/PhysRevB.69.205110 10.1016/j.jcis.2005.03.005 10.1038/353414a0 |
ContentType | Journal Article |
Copyright | 2011 Elsevier Inc. 2015 INIST-CNRS Copyright © 2011 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2011 Elsevier Inc. – notice: 2015 INIST-CNRS – notice: Copyright © 2011 Elsevier Inc. All rights reserved. |
DBID | FBQ AAYXX CITATION IQODW NPM 7S9 L.6 7X8 |
DOI | 10.1016/j.jcis.2011.04.094 |
DatabaseName | AGRIS CrossRef Pascal-Francis PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 592 |
ExternalDocumentID | 21621217 24335659 10_1016_j_jcis_2011_04_094 US201600068686 S002197971100542X |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXDB ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 6TJ AAQXK ABPIF ABPTK ADFGL AFFNX AI. ASPBG AVWKF AZFZN BBWZM CAG COF D-I EJD FBQ FEDTE FGOYB G-2 G8K HLY HVGLF H~9 NDZJH NEJ R2- SCB SCE SEW VH1 WUQ XFK ZGI ZXP AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW NPM 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c372t-c13d34163ff0e6d57fa0eb20a6b34a454b18191979c411be1fcf0731482221a03 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Fri Jul 11 04:13:25 EDT 2025 Fri Jul 11 05:44:01 EDT 2025 Mon Jul 21 05:49:10 EDT 2025 Mon Jul 21 09:16:25 EDT 2025 Tue Jul 01 01:18:02 EDT 2025 Thu Apr 24 23:02:22 EDT 2025 Wed Dec 27 19:16:29 EST 2023 Fri Feb 23 02:28:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Nanostructure Energy transfer Assembly Controllable synthesis Luminescence Self assembly Scanning electron microscopy Microsphere Sonochemistry Fluorescence Surfactant X ray diffraction Synthesis Electric energy Aqueous solution Electric dipole Crystal morphology Structure Formation mechanism Diameter |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Copyright © 2011 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-c13d34163ff0e6d57fa0eb20a6b34a454b18191979c411be1fcf0731482221a03 |
Notes | http://dx.doi.org/10.1016/j.jcis.2011.04.094 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21621217 |
PQID | 2000070499 |
PQPubID | 24069 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_872131956 proquest_miscellaneous_2000070499 pubmed_primary_21621217 pascalfrancis_primary_24335659 crossref_primary_10_1016_j_jcis_2011_04_094 crossref_citationtrail_10_1016_j_jcis_2011_04_094 fao_agris_US201600068686 elsevier_sciencedirect_doi_10_1016_j_jcis_2011_04_094 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-08-15 |
PublicationDateYYYYMMDD | 2011-08-15 |
PublicationDate_xml | – month: 08 year: 2011 text: 2011-08-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: United States |
PublicationTitle | Journal of colloid and interface science |
PublicationTitleAlternate | J Colloid Interface Sci |
PublicationYear | 2011 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Cavalli, Boutinaud, Cucchietti, Bettinelli (b0180) 2009; 31 Furrer, Gudel, Blank, Heidemann (b0190) 1989; 62 Park, Kim, Lee, Khim, Char, Hyeon (b0020) 2000; 122 Kaltenpoth, Himmelhaus, Slansky, Caruso, Grunze (b0030) 2003; 15 Suslick, Choe, Cichowlas, Grinstaff (b0055) 1991; 353 Li, Lin, Liu, Lin (b0120) 2008; 8 Luo, Zhang, Zeng, Zeng, Wang (b0150) 2005; 288 Zorenko, Pashkovsky, Voloshinovskii, Kuklinski, Grinberg (b0125) 2006; 116 Jia, Liu, Li, Yu, Fang, Lin (b0155) 2006; 17 Liu, Wang, Wang (b0165) 1989; 39 Jia, Yang, Song, You, Zhang (b0035) 2009; 9 Sendor, Hilder, Juestel, Junk, Kynast (b0205) 2003; 27 Wang, Medina, Zhou, Zhang (b0100) 1992; 45 Kodaira, Brito, Malta, Serra (b0105) 2003; 101 Pang, Lin, Wang, Yu, Zhou, Han (b0115) 2003; 15 Nikl, Solovieva, Dusek, Yoshikawa, Kagamitani, Fukuda (b0200) 2003; 4 Yu, Sun, Hua, Cheng, Zhong, Li, Yu, Chen (b0160) 2011; 509 Geng, Lu, Zhu, Chen (b0080) 2006; 110 J. M. Sun, W. Skorupa, T. Dekorsy, M. Helm, L. Rebohle, T. Gebel, J. Appl. Phys. 97 (2005) 123513-1–7. K.S. Suslick, Science, 247 (1990) 1439–1445. Flint, Suslick (b0050) 1991; 253 Lammers, Blasse (b0185) 1984; 19 Hou, Li, Yang, Lian, Yang, Chai, Cheng, Lin (b0130) 2009; 19 J.P. van der Ziel, L. Kopf, L.G. Van Uitert, Phys. Rev. B 6 (1972) 615–623. Inokuti, Hirayama (b0215) 1965; 43 Zhang, Wong (b0025) 2010; 4 Lai, Chen, Xu, Xie, Wang, Di (b0135) 2006; 60 Zhu, Xu, Wang, Zhu, Chen (b0060) 2003; 15 Yu, Yu, Li, Zhang, Yang, Lin (b0070) 2009; 9 Gedanken (b0090) 2004; 11 Guedel, Furrer, Blank (b0195) 1990; 29 Yada, Taniguchi, Torikai, Watari, Furuta, Katsuki (b0040) 2004; 16 Shi, Wan, Liu, Tu, Zhao (b0005) 2007; 129 A.C. Larson, R.B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748, 2004. Jiang, Zhao, Yan, Ma, Li (b0145) 2010; 2 Okitsu, Yue, Tanabe, Matsumoto, Yobiko, Yoo (b0095) 2002; 75 Mikhailik, Kraus, Wahl, Itoh, Koike, Bailiff (b0110) 2004; 69 Wang, Wang, Summers, Wang (b0010) 2004; 4 Zhang, Wang, Zhang, Zhang, Su (b0210) 2008; 91 Mdleleni, Hyeon, Suslick (b0085) 1998; 120 Pol, Gedanken (b0065) 2002; 14 Lazoryak, Baryshnikova, Stefanovich, Yu Malakho, Morozov, Belik, Leonidov, Leonidova, Tendeloo (b0015) 2003; 15 Wang, Gu, Lu (b0075) 2006; 22 Gedanken (10.1016/j.jcis.2011.04.094_b0090) 2004; 11 Shi (10.1016/j.jcis.2011.04.094_b0005) 2007; 129 Lammers (10.1016/j.jcis.2011.04.094_b0185) 1984; 19 Jia (10.1016/j.jcis.2011.04.094_b0155) 2006; 17 10.1016/j.jcis.2011.04.094_b0140 Jiang (10.1016/j.jcis.2011.04.094_b0145) 2010; 2 10.1016/j.jcis.2011.04.094_b0045 Wang (10.1016/j.jcis.2011.04.094_b0010) 2004; 4 Luo (10.1016/j.jcis.2011.04.094_b0150) 2005; 288 Yu (10.1016/j.jcis.2011.04.094_b0160) 2011; 509 Pang (10.1016/j.jcis.2011.04.094_b0115) 2003; 15 Guedel (10.1016/j.jcis.2011.04.094_b0195) 1990; 29 Zorenko (10.1016/j.jcis.2011.04.094_b0125) 2006; 116 Lazoryak (10.1016/j.jcis.2011.04.094_b0015) 2003; 15 Zhu (10.1016/j.jcis.2011.04.094_b0060) 2003; 15 Okitsu (10.1016/j.jcis.2011.04.094_b0095) 2002; 75 Zhang (10.1016/j.jcis.2011.04.094_b0025) 2010; 4 Pol (10.1016/j.jcis.2011.04.094_b0065) 2002; 14 Furrer (10.1016/j.jcis.2011.04.094_b0190) 1989; 62 Cavalli (10.1016/j.jcis.2011.04.094_b0180) 2009; 31 Nikl (10.1016/j.jcis.2011.04.094_b0200) 2003; 4 Wang (10.1016/j.jcis.2011.04.094_b0075) 2006; 22 Yada (10.1016/j.jcis.2011.04.094_b0040) 2004; 16 Mdleleni (10.1016/j.jcis.2011.04.094_b0085) 1998; 120 Kodaira (10.1016/j.jcis.2011.04.094_b0105) 2003; 101 Flint (10.1016/j.jcis.2011.04.094_b0050) 1991; 253 10.1016/j.jcis.2011.04.094_b0170 Yu (10.1016/j.jcis.2011.04.094_b0070) 2009; 9 Suslick (10.1016/j.jcis.2011.04.094_b0055) 1991; 353 Wang (10.1016/j.jcis.2011.04.094_b0100) 1992; 45 10.1016/j.jcis.2011.04.094_b0175 Park (10.1016/j.jcis.2011.04.094_b0020) 2000; 122 Mikhailik (10.1016/j.jcis.2011.04.094_b0110) 2004; 69 Liu (10.1016/j.jcis.2011.04.094_b0165) 1989; 39 Jia (10.1016/j.jcis.2011.04.094_b0035) 2009; 9 Kaltenpoth (10.1016/j.jcis.2011.04.094_b0030) 2003; 15 Inokuti (10.1016/j.jcis.2011.04.094_b0215) 1965; 43 Li (10.1016/j.jcis.2011.04.094_b0120) 2008; 8 Sendor (10.1016/j.jcis.2011.04.094_b0205) 2003; 27 Lai (10.1016/j.jcis.2011.04.094_b0135) 2006; 60 Zhang (10.1016/j.jcis.2011.04.094_b0210) 2008; 91 Hou (10.1016/j.jcis.2011.04.094_b0130) 2009; 19 Geng (10.1016/j.jcis.2011.04.094_b0080) 2006; 110 |
References_xml | – reference: J.P. van der Ziel, L. Kopf, L.G. Van Uitert, Phys. Rev. B 6 (1972) 615–623. – reference: A.C. Larson, R.B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748, 2004. – volume: 11 start-page: 47 year: 2004 end-page: 55 ident: b0090 publication-title: Ultrason. Sonochem. – volume: 15 start-page: 5157 year: 2003 end-page: 5169 ident: b0115 publication-title: J. Phys.: Condens. Matter – volume: 62 start-page: 210 year: 1989 end-page: 213 ident: b0190 publication-title: Phys. Rev. Lett. – volume: 14 start-page: 3920 year: 2002 end-page: 3924 ident: b0065 publication-title: Chem. Mater. – volume: 22 start-page: 398 year: 2006 end-page: 401 ident: b0075 publication-title: Langmuir – volume: 39 start-page: 10633 year: 1989 end-page: 10639 ident: b0165 publication-title: Phys. Rev. B – volume: 15 start-page: 1113 year: 2003 end-page: 1118 ident: b0030 publication-title: Adv. Mater. – volume: 69 start-page: 205110 year: 2004 end-page: 205118 ident: b0110 publication-title: Phys. Rev. B – volume: 15 start-page: 156 year: 2003 end-page: 159 ident: b0060 publication-title: Adv. Mater. – volume: 60 start-page: 1341 year: 2006 end-page: 1343 ident: b0135 publication-title: Mater. Lett. – reference: J. M. Sun, W. Skorupa, T. Dekorsy, M. Helm, L. Rebohle, T. Gebel, J. Appl. Phys. 97 (2005) 123513-1–7. – volume: 9 start-page: 301 year: 2009 end-page: 307 ident: b0035 publication-title: Cryst. Growth Des. – volume: 288 start-page: 444 year: 2005 end-page: 448 ident: b0150 publication-title: J. Colloid Interface Sci. – volume: 120 start-page: 6189 year: 1998 end-page: 6190 ident: b0085 publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 2737 year: 2009 end-page: 2746 ident: b0130 publication-title: J. Mater. Chem. – volume: 15 start-page: 3003 year: 2003 end-page: 3010 ident: b0015 publication-title: Chem. Mater. – volume: 29 start-page: 4081 year: 1990 end-page: 4084 ident: b0195 publication-title: Inorg. Chem. – volume: 91 start-page: 529 year: 2008 end-page: 537 ident: b0210 publication-title: Appl. Phys. B: Laser Opt. – volume: 4 start-page: 423 year: 2004 end-page: 426 ident: b0010 publication-title: Nano Lett. – volume: 129 start-page: 9522 year: 2007 end-page: 9531 ident: b0005 publication-title: J. Am. Chem. Soc. – volume: 75 start-page: 2289 year: 2002 end-page: 2296 ident: b0095 publication-title: Bull. Chem. Soc. Jpn. – volume: 116 start-page: 43 year: 2006 end-page: 51 ident: b0125 publication-title: J. Lumin. – volume: 16 start-page: 1448 year: 2004 end-page: 1453 ident: b0040 publication-title: Adv. Mater. – volume: 31 start-page: 470 year: 2009 end-page: 473 ident: b0180 publication-title: Opt. Mater. – volume: 45 start-page: 10356 year: 1992 end-page: 10362 ident: b0100 publication-title: Phys. Rev. B – volume: 353 start-page: 414 year: 1991 end-page: 416 ident: b0055 publication-title: Nature – volume: 17 start-page: 734 year: 2006 end-page: 742 ident: b0155 publication-title: Nanotechnology – volume: 509 start-page: 391 year: 2011 end-page: 395 ident: b0160 publication-title: J. Alloys Compd. – volume: 27 start-page: 1070 year: 2003 end-page: 1077 ident: b0205 publication-title: New J. Chem. – volume: 43 start-page: 1978 year: 1965 end-page: 1989 ident: b0215 publication-title: J. Chem. Phys. – volume: 110 start-page: 13777 year: 2006 end-page: 13785 ident: b0080 publication-title: J. Phys. Chem. B – volume: 4 start-page: 99 year: 2010 end-page: 112 ident: b0025 publication-title: ACS Nano – volume: 122 start-page: 8581 year: 2000 end-page: 8582 ident: b0020 publication-title: Am. Chem. Soc. – reference: K.S. Suslick, Science, 247 (1990) 1439–1445. – volume: 9 start-page: 783 year: 2009 end-page: 791 ident: b0070 publication-title: Cryst. Growth Des. – volume: 8 start-page: 1183 year: 2008 end-page: 1190 ident: b0120 publication-title: J. Nanosci. Nanotechnol. – volume: 2 start-page: 2195 year: 2010 end-page: 2198 ident: b0145 publication-title: Nanoscale – volume: 19 start-page: 759 year: 1984 end-page: 768 ident: b0185 publication-title: Mater. Res. Bull. – volume: 4 start-page: 112 year: 2003 end-page: 114 ident: b0200 publication-title: J. Ceram. Proc. Res. – volume: 253 start-page: 1397 year: 1991 end-page: 1399 ident: b0050 publication-title: Science – volume: 101 start-page: 11 year: 2003 end-page: 21 ident: b0105 publication-title: J. Lumin. – volume: 9 start-page: 783 year: 2009 ident: 10.1016/j.jcis.2011.04.094_b0070 publication-title: Cryst. Growth Des. doi: 10.1021/cg8003189 – volume: 9 start-page: 301 year: 2009 ident: 10.1016/j.jcis.2011.04.094_b0035 publication-title: Cryst. Growth Des. doi: 10.1021/cg8004823 – volume: 15 start-page: 156 year: 2003 ident: 10.1016/j.jcis.2011.04.094_b0060 publication-title: Adv. Mater. doi: 10.1002/adma.200390033 – volume: 19 start-page: 759 year: 1984 ident: 10.1016/j.jcis.2011.04.094_b0185 publication-title: Mater. Res. Bull. doi: 10.1016/0025-5408(84)90033-3 – volume: 253 start-page: 1397 year: 1991 ident: 10.1016/j.jcis.2011.04.094_b0050 publication-title: Science doi: 10.1126/science.253.5026.1397 – volume: 15 start-page: 3003 year: 2003 ident: 10.1016/j.jcis.2011.04.094_b0015 publication-title: Chem. Mater. doi: 10.1021/cm031043s – volume: 120 start-page: 6189 year: 1998 ident: 10.1016/j.jcis.2011.04.094_b0085 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9800333 – ident: 10.1016/j.jcis.2011.04.094_b0045 doi: 10.1126/science.247.4949.1439 – volume: 60 start-page: 1341 year: 2006 ident: 10.1016/j.jcis.2011.04.094_b0135 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2005.11.051 – volume: 4 start-page: 112 year: 2003 ident: 10.1016/j.jcis.2011.04.094_b0200 publication-title: J. Ceram. Proc. Res. – volume: 110 start-page: 13777 year: 2006 ident: 10.1016/j.jcis.2011.04.094_b0080 publication-title: J. Phys. Chem. B doi: 10.1021/jp057562v – volume: 16 start-page: 1448 year: 2004 ident: 10.1016/j.jcis.2011.04.094_b0040 publication-title: Adv. Mater. doi: 10.1002/adma.200306676 – volume: 27 start-page: 1070 year: 2003 ident: 10.1016/j.jcis.2011.04.094_b0205 publication-title: New J. Chem. doi: 10.1039/b302499g – volume: 43 start-page: 1978 year: 1965 ident: 10.1016/j.jcis.2011.04.094_b0215 publication-title: J. Chem. Phys. doi: 10.1063/1.1697063 – volume: 15 start-page: 1113 year: 2003 ident: 10.1016/j.jcis.2011.04.094_b0030 publication-title: Adv. Mater. doi: 10.1002/adma.200304834 – volume: 509 start-page: 391 year: 2011 ident: 10.1016/j.jcis.2011.04.094_b0160 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2010.09.040 – volume: 14 start-page: 3920 year: 2002 ident: 10.1016/j.jcis.2011.04.094_b0065 publication-title: Chem. Mater. doi: 10.1021/cm0203464 – volume: 39 start-page: 10633 year: 1989 ident: 10.1016/j.jcis.2011.04.094_b0165 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.39.10633 – volume: 31 start-page: 470 year: 2009 ident: 10.1016/j.jcis.2011.04.094_b0180 publication-title: Opt. Mater. doi: 10.1016/j.optmat.2007.10.021 – volume: 29 start-page: 4081 year: 1990 ident: 10.1016/j.jcis.2011.04.094_b0195 publication-title: Inorg. Chem. doi: 10.1021/ic00345a034 – volume: 101 start-page: 11 year: 2003 ident: 10.1016/j.jcis.2011.04.094_b0105 publication-title: J. Lumin. doi: 10.1016/S0022-2313(02)00384-8 – volume: 22 start-page: 398 year: 2006 ident: 10.1016/j.jcis.2011.04.094_b0075 publication-title: Langmuir doi: 10.1021/la0518647 – volume: 2 start-page: 2195 year: 2010 ident: 10.1016/j.jcis.2011.04.094_b0145 publication-title: Nanoscale doi: 10.1039/c0nr00257g – volume: 19 start-page: 2737 year: 2009 ident: 10.1016/j.jcis.2011.04.094_b0130 publication-title: J. Mater. Chem. doi: 10.1039/b818810f – volume: 129 start-page: 9522 year: 2007 ident: 10.1016/j.jcis.2011.04.094_b0005 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja072910n – volume: 8 start-page: 1183 year: 2008 ident: 10.1016/j.jcis.2011.04.094_b0120 publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2008.18169 – volume: 116 start-page: 43 year: 2006 ident: 10.1016/j.jcis.2011.04.094_b0125 publication-title: J. Lumin. doi: 10.1016/j.jlumin.2005.01.017 – volume: 15 start-page: 5157 year: 2003 ident: 10.1016/j.jcis.2011.04.094_b0115 publication-title: J. Phys.: Condens. Matter – ident: 10.1016/j.jcis.2011.04.094_b0140 – ident: 10.1016/j.jcis.2011.04.094_b0170 doi: 10.1063/1.1935766 – volume: 11 start-page: 47 year: 2004 ident: 10.1016/j.jcis.2011.04.094_b0090 publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2004.01.037 – volume: 62 start-page: 210 year: 1989 ident: 10.1016/j.jcis.2011.04.094_b0190 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.62.210 – volume: 75 start-page: 2289 year: 2002 ident: 10.1016/j.jcis.2011.04.094_b0095 publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.75.2289 – volume: 17 start-page: 734 year: 2006 ident: 10.1016/j.jcis.2011.04.094_b0155 publication-title: Nanotechnology doi: 10.1088/0957-4484/17/3/020 – volume: 4 start-page: 423 year: 2004 ident: 10.1016/j.jcis.2011.04.094_b0010 publication-title: Nano Lett. doi: 10.1021/nl035102c – volume: 45 start-page: 10356 year: 1992 ident: 10.1016/j.jcis.2011.04.094_b0100 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.45.10356 – volume: 4 start-page: 99 year: 2010 ident: 10.1016/j.jcis.2011.04.094_b0025 publication-title: ACS Nano doi: 10.1021/nn901057y – volume: 91 start-page: 529 year: 2008 ident: 10.1016/j.jcis.2011.04.094_b0210 publication-title: Appl. Phys. B: Laser Opt. doi: 10.1007/s00340-008-3035-1 – volume: 122 start-page: 8581 year: 2000 ident: 10.1016/j.jcis.2011.04.094_b0020 publication-title: Am. Chem. Soc. doi: 10.1021/ja001628c – ident: 10.1016/j.jcis.2011.04.094_b0175 doi: 10.1103/PhysRevB.6.615 – volume: 69 start-page: 205110 year: 2004 ident: 10.1016/j.jcis.2011.04.094_b0110 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.69.205110 – volume: 288 start-page: 444 year: 2005 ident: 10.1016/j.jcis.2011.04.094_b0150 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2005.03.005 – volume: 353 start-page: 414 year: 1991 ident: 10.1016/j.jcis.2011.04.094_b0055 publication-title: Nature doi: 10.1038/353414a0 |
SSID | ssj0011559 |
Score | 2.2898471 |
Snippet | CaWO4:Tb3+ microspheres assembled by submicrospindles were synthesized via a mild sonochemical route with the aid of surfactant Polyglycol 600. The formation... Three-dimensional (3D) nanostructured CaWO₄:Tb³⁺microspheres assembled by submicrospindles were synthesized via a mild sonochemical route from an aqueous... Three-dimensional (3D) nanostructured CaWO(4):Tb(3+)microspheres assembled by submicrospindles were synthesized via a mild sonochemical route from an aqueous... |
SourceID | proquest pubmed pascalfrancis crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 586 |
SubjectTerms | aqueous solutions Assembly calcium chloride Chemistry Controllable synthesis crystal structure Energy transfer Exact sciences and technology fluorescence General and physical chemistry irradiation Luminescence Nanostructure photoluminescence Physical chemistry of induced reactions (with radiations, particles and ultrasonics) scanning electron microscopy surfactants Ultrasonic chemistry ultrasonics X-ray diffraction |
Title | Controllable synthesis and luminescent properties of three-dimensional nanostructured CaWO4:Tb3+ microspheres |
URI | https://dx.doi.org/10.1016/j.jcis.2011.04.094 https://www.ncbi.nlm.nih.gov/pubmed/21621217 https://www.proquest.com/docview/2000070499 https://www.proquest.com/docview/872131956 |
Volume | 360 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VcgAOFZSPptCVkbhVoXHsJLu9VVGrBUQ50BV7s-zYrrZqk1WzPXDht3cmThZ62B64Ro6SeCbjN_abNwCftOeVTbyP88LnMUbJcWxyg1lrMrEYEF3lu82c7-f5dCa_zrP5FpRDLQzRKvvYH2J6F637K0f9bB4tFwuq8cW_rZgUJHqWyXROFeyyIC___GdN8-B07BZoHjym0X3hTOB4XVWLtpfxJLlTuWlxeuJ1Q6xJ3eLE-dDxYjMk7Zams5ew02NKdhJe-xVsuXoXnpVDK7ddePGP6uBruCkDPf2aqqZY-7tGDNguWqZryzBUEQ-eKJtsSfv0tyS4yhrPVmh0F1tqBhCEPFit6ybIz97dOstK_euHPL4w4pDdEMuvJcEC176B2dnpRTmN-64LcSWKdBVXXFhBMM37xOU2K7xOMP1OdG6E1DKThlOSh3NZSc6N477yGCdITzRNuU7EW9ium9rtATNW6KywiBG5ldpI41IixeWYk6VapzwCPky3qnpJcuqMca0G7tmVIhMpMpFKpEITRXC4vmcZBDkeHZ0NVlQP3ErhivHofXtocqUvMdKq2c-UdPi6appxHsHogR-s3yKVQiA8nkTwcXAMhXamAxhdu-aOHkCQjJLMCNiGMWNMyQUVcUbwLjjV3wfwHIEGL_b_86Pew_NhR5xnH2AbPcQdIKRamVH3z4zg6cmXb9Pze8MhHig |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB215VA4VFA-mgLFSNyq0Dh2kl1uKKJaoC0HdsXeLDu20VZtsmq2By78dmbiZKGH7YFr5CiJZzx-47x5A_BOe17ZxPs4L3weY5QcxSY3mLUmY4sB0VW-O8w5v8gnM_llns23oBxqYYhW2cf-ENO7aN1fOeln82S5WFCNL662YlyQ6Fkm0_k2PJC4fKmNwfvfa54Hp_9ugefBYxreV84EktdltWh7HU_SO5WbdqdtrxuiTeoWZ86HlhebMWm3N50-hr0eVLKP4b2fwJar92G3HHq57cOjf2QHn8J1GfjpV1Q2xdpfNYLAdtEyXVuGsYqI8MTZZEs6qL8hxVXWeLZCq7vYUjeAoOTBal03QX_29sZZVuof3-SHqRHH7Jpofi0pFrj2GcxOP03LSdy3XYgrUaSruOLCCsJp3icut1nhdYL5d6JzI6SWmTScsjycy0pybhz3lcdAQYKiacp1Ip7DTt3U7gCYsUJnhUWQyK3URhqXEisux6Qs1TrlEfBhulXVa5JTa4wrNZDPLhWZSJGJVCIVmiiC4_U9y6DIce_obLCiuuNXCreMe-87QJMr_RNDrZp9T0mIryunGeURHN3xg_VbpFIIxMfjCN4OjqHQzvQHRteuuaUHECajLDMCtmHMCHNyQVWcEbwITvX3ATxHpMGLw__8qDewO5men6mzzxdfX8LD4XicZ69gB73FvUZ8tTJH3fr5AxlLH7Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controllable+synthesis+and+luminescent+properties+of+three-dimensional+nanostructured+CaWO4%3ATb3%2B+microspheres&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Tian%2C+Yue&rft.au=Chen%2C+Baojiu&rft.au=Yu%2C+Hongquan&rft.au=Hua%2C+Ruinian&rft.date=2011-08-15&rft.issn=1095-7103&rft.eissn=1095-7103&rft.volume=360&rft.issue=2&rft.spage=586&rft_id=info:doi/10.1016%2Fj.jcis.2011.04.094&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |