Controllable synthesis and luminescent properties of three-dimensional nanostructured CaWO4:Tb3+ microspheres

CaWO4:Tb3+ microspheres assembled by submicrospindles were synthesized via a mild sonochemical route with the aid of surfactant Polyglycol 600. The formation mechanism for the 3D-structured CaWO4:Tb3+ microspheres was studied. [Display omitted] ► Nanostructured CaWO4:Tb3+ microspheres were self-asse...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 360; no. 2; pp. 586 - 592
Main Authors Tian, Yue, Chen, Baojiu, Yu, Hongquan, Hua, Ruinian, Li, Xiangping, Sun, Jiashi, Cheng, Lihong, Zhong, Haiyang, Zhang, Jinsu, Zheng, Yanfeng, Yu, Tingting, Huang, Libo
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 15.08.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract CaWO4:Tb3+ microspheres assembled by submicrospindles were synthesized via a mild sonochemical route with the aid of surfactant Polyglycol 600. The formation mechanism for the 3D-structured CaWO4:Tb3+ microspheres was studied. [Display omitted] ► Nanostructured CaWO4:Tb3+ microspheres were self-assembled via a sonochemical route with the aid of PEG-600. ► Formation mechanism of the microspheres was proposed based on the ultrasonic irradiation time experiments. ► Energy transfer processes between Tb3+ ions were studied through analysis on the fluorescence decays. Three-dimensional (3D) nanostructured CaWO4:Tb3+microspheres assembled by submicrospindles were synthesized via a mild sonochemical route from an aqueous solution of CaCl2, TbCl3 and Na2WO4 with the aid of surfactant Polyglycol 600 (PEG-600). The crystal structure and morphology of the as-prepared products were characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). Rietveld refinement was carried out on the XRD data. The results showed that the CaWO4:Tb3+nanoparticles can be formed without ultrasonic irradiation or addition of PEG-600. With continuously increasing irradiation time the submicrospindles and microspheres could be self-assembled. The central diameter and length of the submicrospindles are around 190 and 500nm, respectively. The 3D CaWO4:Tb3+nanostructured microspheres with diameter of 2–4μm were assembled by the submicrospindles. A possible formation mechanism for the 3D-structured CaWO4:Tb3+microspheres was proposed. The Photoluminescent (PL) properties of Tb3+ions in the nanostructured CaWO4 microspheres were studied. The energy transfer processes in CaWO4:Tb3+microspheres were analyzed. The electric dipole–dipole energy transfers related to 5D3 level were studied by inspecting the fluorescence decay of 5D3 level. The energy transfer critical distance was estimated.
AbstractList Three-dimensional (3D) nanostructured CaWO(4):Tb(3+)microspheres assembled by submicrospindles were synthesized via a mild sonochemical route from an aqueous solution of CaCl(2), TbCl(3) and Na(2)WO(4) with the aid of surfactant Polyglycol 600 (PEG-600). The crystal structure and morphology of the as-prepared products were characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). Rietveld refinement was carried out on the XRD data. The results showed that the CaWO(4):Tb(3+)nanoparticles can be formed without ultrasonic irradiation or addition of PEG-600. With continuously increasing irradiation time the submicrospindles and microspheres could be self-assembled. The central diameter and length of the submicrospindles are around 190 and 500 nm, respectively. The 3D CaWO(4):Tb(3+)nanostructured microspheres with diameter of 2-4 μm were assembled by the submicrospindles. A possible formation mechanism for the 3D-structured CaWO(4):Tb(3+)microspheres was proposed. The Photoluminescent (PL) properties of Tb(3+) ions in the nanostructured CaWO(4) microspheres were studied. The energy transfer processes in CaWO(4):Tb(3+)microspheres were analyzed. The electric dipole-dipole energy transfers related to (5)D(3) level were studied by inspecting the fluorescence decay of (5)D(3) level. The energy transfer critical distance was estimated.
Three-dimensional (3D) nanostructured CaWO₄:Tb³⁺microspheres assembled by submicrospindles were synthesized via a mild sonochemical route from an aqueous solution of CaCl₂, TbCl₃ and Na₂WO₄ with the aid of surfactant Polyglycol 600 (PEG-600). The crystal structure and morphology of the as-prepared products were characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). Rietveld refinement was carried out on the XRD data. The results showed that the CaWO₄:Tb³⁺nanoparticles can be formed without ultrasonic irradiation or addition of PEG-600. With continuously increasing irradiation time the submicrospindles and microspheres could be self-assembled. The central diameter and length of the submicrospindles are around 190 and 500nm, respectively. The 3D CaWO₄:Tb³⁺nanostructured microspheres with diameter of 2–4μm were assembled by the submicrospindles. A possible formation mechanism for the 3D-structured CaWO₄:Tb³⁺microspheres was proposed. The Photoluminescent (PL) properties of Tb³⁺ions in the nanostructured CaWO₄ microspheres were studied. The energy transfer processes in CaWO₄:Tb³⁺microspheres were analyzed. The electric dipole–dipole energy transfers related to ⁵D₃ level were studied by inspecting the fluorescence decay of ⁵D₃ level. The energy transfer critical distance was estimated.
Three-dimensional (3D) nanostructured CaWO(4):Tb(3+)microspheres assembled by submicrospindles were synthesized via a mild sonochemical route from an aqueous solution of CaCl(2), TbCl(3) and Na(2)WO(4) with the aid of surfactant Polyglycol 600 (PEG-600). The crystal structure and morphology of the as-prepared products were characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). Rietveld refinement was carried out on the XRD data. The results showed that the CaWO(4):Tb(3+)nanoparticles can be formed without ultrasonic irradiation or addition of PEG-600. With continuously increasing irradiation time the submicrospindles and microspheres could be self-assembled. The central diameter and length of the submicrospindles are around 190 and 500 nm, respectively. The 3D CaWO(4):Tb(3+)nanostructured microspheres with diameter of 2-4 μm were assembled by the submicrospindles. A possible formation mechanism for the 3D-structured CaWO(4):Tb(3+)microspheres was proposed. The Photoluminescent (PL) properties of Tb(3+) ions in the nanostructured CaWO(4) microspheres were studied. The energy transfer processes in CaWO(4):Tb(3+)microspheres were analyzed. The electric dipole-dipole energy transfers related to (5)D(3) level were studied by inspecting the fluorescence decay of (5)D(3) level. The energy transfer critical distance was estimated.Three-dimensional (3D) nanostructured CaWO(4):Tb(3+)microspheres assembled by submicrospindles were synthesized via a mild sonochemical route from an aqueous solution of CaCl(2), TbCl(3) and Na(2)WO(4) with the aid of surfactant Polyglycol 600 (PEG-600). The crystal structure and morphology of the as-prepared products were characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). Rietveld refinement was carried out on the XRD data. The results showed that the CaWO(4):Tb(3+)nanoparticles can be formed without ultrasonic irradiation or addition of PEG-600. With continuously increasing irradiation time the submicrospindles and microspheres could be self-assembled. The central diameter and length of the submicrospindles are around 190 and 500 nm, respectively. The 3D CaWO(4):Tb(3+)nanostructured microspheres with diameter of 2-4 μm were assembled by the submicrospindles. A possible formation mechanism for the 3D-structured CaWO(4):Tb(3+)microspheres was proposed. The Photoluminescent (PL) properties of Tb(3+) ions in the nanostructured CaWO(4) microspheres were studied. The energy transfer processes in CaWO(4):Tb(3+)microspheres were analyzed. The electric dipole-dipole energy transfers related to (5)D(3) level were studied by inspecting the fluorescence decay of (5)D(3) level. The energy transfer critical distance was estimated.
CaWO4:Tb3+ microspheres assembled by submicrospindles were synthesized via a mild sonochemical route with the aid of surfactant Polyglycol 600. The formation mechanism for the 3D-structured CaWO4:Tb3+ microspheres was studied. [Display omitted] ► Nanostructured CaWO4:Tb3+ microspheres were self-assembled via a sonochemical route with the aid of PEG-600. ► Formation mechanism of the microspheres was proposed based on the ultrasonic irradiation time experiments. ► Energy transfer processes between Tb3+ ions were studied through analysis on the fluorescence decays. Three-dimensional (3D) nanostructured CaWO4:Tb3+microspheres assembled by submicrospindles were synthesized via a mild sonochemical route from an aqueous solution of CaCl2, TbCl3 and Na2WO4 with the aid of surfactant Polyglycol 600 (PEG-600). The crystal structure and morphology of the as-prepared products were characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). Rietveld refinement was carried out on the XRD data. The results showed that the CaWO4:Tb3+nanoparticles can be formed without ultrasonic irradiation or addition of PEG-600. With continuously increasing irradiation time the submicrospindles and microspheres could be self-assembled. The central diameter and length of the submicrospindles are around 190 and 500nm, respectively. The 3D CaWO4:Tb3+nanostructured microspheres with diameter of 2–4μm were assembled by the submicrospindles. A possible formation mechanism for the 3D-structured CaWO4:Tb3+microspheres was proposed. The Photoluminescent (PL) properties of Tb3+ions in the nanostructured CaWO4 microspheres were studied. The energy transfer processes in CaWO4:Tb3+microspheres were analyzed. The electric dipole–dipole energy transfers related to 5D3 level were studied by inspecting the fluorescence decay of 5D3 level. The energy transfer critical distance was estimated.
Author Cheng, Lihong
Yu, Tingting
Yu, Hongquan
Zhang, Jinsu
Chen, Baojiu
Sun, Jiashi
Li, Xiangping
Zhong, Haiyang
Zheng, Yanfeng
Huang, Libo
Tian, Yue
Hua, Ruinian
Author_xml – sequence: 1
  givenname: Yue
  surname: Tian
  fullname: Tian, Yue
  organization: Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026, PR China
– sequence: 2
  givenname: Baojiu
  surname: Chen
  fullname: Chen, Baojiu
  email: chenmbj@sohu.com
  organization: Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026, PR China
– sequence: 3
  givenname: Hongquan
  surname: Yu
  fullname: Yu, Hongquan
  organization: College of Environmental and Chemical Engineering, Dalian Jiaotong University, Liaoning 116028, PR China
– sequence: 4
  givenname: Ruinian
  surname: Hua
  fullname: Hua, Ruinian
  email: rnhua@dlnu.edu.cn
  organization: College of Life Science, Dalian Nationalities University, Dalian, Liaoning 116600, PR China
– sequence: 5
  givenname: Xiangping
  surname: Li
  fullname: Li, Xiangping
  organization: Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026, PR China
– sequence: 6
  givenname: Jiashi
  surname: Sun
  fullname: Sun, Jiashi
  organization: Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026, PR China
– sequence: 7
  givenname: Lihong
  surname: Cheng
  fullname: Cheng, Lihong
  organization: Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026, PR China
– sequence: 8
  givenname: Haiyang
  surname: Zhong
  fullname: Zhong, Haiyang
  organization: Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026, PR China
– sequence: 9
  givenname: Jinsu
  surname: Zhang
  fullname: Zhang, Jinsu
  organization: Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026, PR China
– sequence: 10
  givenname: Yanfeng
  surname: Zheng
  fullname: Zheng, Yanfeng
  organization: Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026, PR China
– sequence: 11
  givenname: Tingting
  surname: Yu
  fullname: Yu, Tingting
  organization: Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026, PR China
– sequence: 12
  givenname: Libo
  surname: Huang
  fullname: Huang, Libo
  organization: Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026, PR China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24335659$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21621217$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi1URLeFP8ABckEgoQSP7SQbxKVa8SVV6oFWHC3HGbNeJfbWdpD67-toF5A4rH3wwc-M_c5zQc6cd0jIS6AVUGg-7KqdtrFiFKCioqKdeEJWQLu6bIHyM7KilEHZtV17Ti5i3NEM1nX3jJwzaBgwaFdk2niXgh9H1Y9YxAeXthhtLJQbinGerMOo0aViH_weQ7IYC2-KtA2I5WAndNF6p8bCKedjCrNOc8Ch2KifN-Ljbc_fF5PVwcf9FgPG5-SpUWPEF8fzktx9-Xy7-VZe33z9vrm6LjVvWSo18IELaLgxFJuhbo2i2DOqmp4LJWrRwxo6yMm0AOgRjDa05SDWjDFQlF-St4e--dv3M8YkJ5tz5JQO_RzlumXAoaubTL47STKaV0tF12X01RGd-wkHuQ92UuFB_hlmBt4cARW1Gk1QLvv5xwnO66ZeGrEDtwwmBjR_EaByMSt3cjErF7OSCpnN5qL1f0XaJpXsok_Z8XTp60OpUV6qXyFf3_3IQJOjNeu8M_HpQGCW8ttikFFbdBoHG1AnOXh76oFHH4vHkg
CODEN JCISA5
CitedBy_id crossref_primary_10_1007_s10853_011_5923_8
crossref_primary_10_1016_j_ceramint_2014_06_127
crossref_primary_10_1021_acsami_3c02941
crossref_primary_10_1039_C1CE05977G
crossref_primary_10_1039_C4CE02279C
crossref_primary_10_1016_j_jcis_2017_04_062
crossref_primary_10_1007_s11051_013_1757_4
crossref_primary_10_1007_s10854_014_2119_4
crossref_primary_10_1016_j_jtice_2013_05_007
crossref_primary_10_1016_j_molstruc_2017_07_076
crossref_primary_10_1007_s10854_014_1941_z
crossref_primary_10_3740_MRSK_2013_23_9_537
crossref_primary_10_1016_j_materresbull_2014_01_027
crossref_primary_10_1016_j_matchemphys_2016_08_008
crossref_primary_10_1016_j_ceramint_2019_08_022
crossref_primary_10_1039_C4NR02485K
crossref_primary_10_1007_s10854_017_7644_5
crossref_primary_10_1039_C7CE00802C
crossref_primary_10_1016_j_jfluchem_2012_09_003
crossref_primary_10_1039_c2ce26101d
crossref_primary_10_3740_MRSK_2012_22_5_215
crossref_primary_10_1016_j_jlumin_2022_118759
crossref_primary_10_1016_j_matchemphys_2018_08_065
crossref_primary_10_1142_S1793292014500088
crossref_primary_10_1016_j_jre_2021_01_005
crossref_primary_10_1142_S0217984916502468
crossref_primary_10_1016_j_matlet_2013_07_037
crossref_primary_10_1016_j_jpcs_2012_10_010
crossref_primary_10_1007_s10854_015_4066_0
crossref_primary_10_1007_s10895_020_02507_0
crossref_primary_10_1016_j_spmi_2014_11_039
crossref_primary_10_1016_j_jallcom_2011_07_095
crossref_primary_10_1016_j_jallcom_2015_05_007
crossref_primary_10_1016_j_jssc_2012_06_004
crossref_primary_10_1016_j_materresbull_2013_02_009
crossref_primary_10_1016_j_spmi_2015_11_037
crossref_primary_10_1016_j_apt_2013_03_012
crossref_primary_10_7567_1347_4065_ab4f3d
crossref_primary_10_1007_s10971_014_3550_y
crossref_primary_10_1039_c2ra20266b
crossref_primary_10_1016_j_physb_2012_03_066
crossref_primary_10_1111_ijac_12686
crossref_primary_10_1007_s10853_015_9377_2
crossref_primary_10_1007_s42864_019_00030_9
crossref_primary_10_7498_aps_62_197804
crossref_primary_10_1016_j_jiec_2021_11_026
crossref_primary_10_1016_j_jallcom_2017_11_005
crossref_primary_10_1039_C5RA04708K
crossref_primary_10_1016_j_jlumin_2018_06_065
crossref_primary_10_1016_j_jcis_2012_10_031
crossref_primary_10_1007_s11426_012_4732_5
crossref_primary_10_1039_c3nr00368j
crossref_primary_10_1016_j_apsusc_2014_06_013
crossref_primary_10_1016_j_colsurfa_2011_12_021
crossref_primary_10_1039_D1NJ04556C
crossref_primary_10_1002_ejic_201700650
Cites_doi 10.1021/cg8003189
10.1021/cg8004823
10.1002/adma.200390033
10.1016/0025-5408(84)90033-3
10.1126/science.253.5026.1397
10.1021/cm031043s
10.1021/ja9800333
10.1126/science.247.4949.1439
10.1016/j.matlet.2005.11.051
10.1021/jp057562v
10.1002/adma.200306676
10.1039/b302499g
10.1063/1.1697063
10.1002/adma.200304834
10.1016/j.jallcom.2010.09.040
10.1021/cm0203464
10.1103/PhysRevB.39.10633
10.1016/j.optmat.2007.10.021
10.1021/ic00345a034
10.1016/S0022-2313(02)00384-8
10.1021/la0518647
10.1039/c0nr00257g
10.1039/b818810f
10.1021/ja072910n
10.1166/jnn.2008.18169
10.1016/j.jlumin.2005.01.017
10.1063/1.1935766
10.1016/j.ultsonch.2004.01.037
10.1103/PhysRevLett.62.210
10.1246/bcsj.75.2289
10.1088/0957-4484/17/3/020
10.1021/nl035102c
10.1103/PhysRevB.45.10356
10.1021/nn901057y
10.1007/s00340-008-3035-1
10.1021/ja001628c
10.1103/PhysRevB.6.615
10.1103/PhysRevB.69.205110
10.1016/j.jcis.2005.03.005
10.1038/353414a0
ContentType Journal Article
Copyright 2011 Elsevier Inc.
2015 INIST-CNRS
Copyright © 2011 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2011 Elsevier Inc.
– notice: 2015 INIST-CNRS
– notice: Copyright © 2011 Elsevier Inc. All rights reserved.
DBID FBQ
AAYXX
CITATION
IQODW
NPM
7S9
L.6
7X8
DOI 10.1016/j.jcis.2011.04.094
DatabaseName AGRIS
CrossRef
Pascal-Francis
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList PubMed
AGRICOLA
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 592
ExternalDocumentID 21621217
24335659
10_1016_j_jcis_2011_04_094
US201600068686
S002197971100542X
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXDB
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~02
~G-
.GJ
29K
6TJ
AAQXK
ABPIF
ABPTK
ADFGL
AFFNX
AI.
ASPBG
AVWKF
AZFZN
BBWZM
CAG
COF
D-I
EJD
FBQ
FEDTE
FGOYB
G-2
G8K
HLY
HVGLF
H~9
NDZJH
NEJ
R2-
SCB
SCE
SEW
VH1
WUQ
XFK
ZGI
ZXP
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
NPM
7S9
L.6
7X8
ID FETCH-LOGICAL-c372t-c13d34163ff0e6d57fa0eb20a6b34a454b18191979c411be1fcf0731482221a03
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Fri Jul 11 04:13:25 EDT 2025
Fri Jul 11 05:44:01 EDT 2025
Mon Jul 21 05:49:10 EDT 2025
Mon Jul 21 09:16:25 EDT 2025
Tue Jul 01 01:18:02 EDT 2025
Thu Apr 24 23:02:22 EDT 2025
Wed Dec 27 19:16:29 EST 2023
Fri Feb 23 02:28:09 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Nanostructure
Energy transfer
Assembly
Controllable synthesis
Luminescence
Self assembly
Scanning electron microscopy
Microsphere
Sonochemistry
Fluorescence
Surfactant
X ray diffraction
Synthesis
Electric energy
Aqueous solution
Electric dipole
Crystal morphology
Structure
Formation mechanism
Diameter
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Copyright © 2011 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-c13d34163ff0e6d57fa0eb20a6b34a454b18191979c411be1fcf0731482221a03
Notes http://dx.doi.org/10.1016/j.jcis.2011.04.094
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21621217
PQID 2000070499
PQPubID 24069
PageCount 7
ParticipantIDs proquest_miscellaneous_872131956
proquest_miscellaneous_2000070499
pubmed_primary_21621217
pascalfrancis_primary_24335659
crossref_primary_10_1016_j_jcis_2011_04_094
crossref_citationtrail_10_1016_j_jcis_2011_04_094
fao_agris_US201600068686
elsevier_sciencedirect_doi_10_1016_j_jcis_2011_04_094
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-08-15
PublicationDateYYYYMMDD 2011-08-15
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-08-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: United States
PublicationTitle Journal of colloid and interface science
PublicationTitleAlternate J Colloid Interface Sci
PublicationYear 2011
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Cavalli, Boutinaud, Cucchietti, Bettinelli (b0180) 2009; 31
Furrer, Gudel, Blank, Heidemann (b0190) 1989; 62
Park, Kim, Lee, Khim, Char, Hyeon (b0020) 2000; 122
Kaltenpoth, Himmelhaus, Slansky, Caruso, Grunze (b0030) 2003; 15
Suslick, Choe, Cichowlas, Grinstaff (b0055) 1991; 353
Li, Lin, Liu, Lin (b0120) 2008; 8
Luo, Zhang, Zeng, Zeng, Wang (b0150) 2005; 288
Zorenko, Pashkovsky, Voloshinovskii, Kuklinski, Grinberg (b0125) 2006; 116
Jia, Liu, Li, Yu, Fang, Lin (b0155) 2006; 17
Liu, Wang, Wang (b0165) 1989; 39
Jia, Yang, Song, You, Zhang (b0035) 2009; 9
Sendor, Hilder, Juestel, Junk, Kynast (b0205) 2003; 27
Wang, Medina, Zhou, Zhang (b0100) 1992; 45
Kodaira, Brito, Malta, Serra (b0105) 2003; 101
Pang, Lin, Wang, Yu, Zhou, Han (b0115) 2003; 15
Nikl, Solovieva, Dusek, Yoshikawa, Kagamitani, Fukuda (b0200) 2003; 4
Yu, Sun, Hua, Cheng, Zhong, Li, Yu, Chen (b0160) 2011; 509
Geng, Lu, Zhu, Chen (b0080) 2006; 110
J. M. Sun, W. Skorupa, T. Dekorsy, M. Helm, L. Rebohle, T. Gebel, J. Appl. Phys. 97 (2005) 123513-1–7.
K.S. Suslick, Science, 247 (1990) 1439–1445.
Flint, Suslick (b0050) 1991; 253
Lammers, Blasse (b0185) 1984; 19
Hou, Li, Yang, Lian, Yang, Chai, Cheng, Lin (b0130) 2009; 19
J.P. van der Ziel, L. Kopf, L.G. Van Uitert, Phys. Rev. B 6 (1972) 615–623.
Inokuti, Hirayama (b0215) 1965; 43
Zhang, Wong (b0025) 2010; 4
Lai, Chen, Xu, Xie, Wang, Di (b0135) 2006; 60
Zhu, Xu, Wang, Zhu, Chen (b0060) 2003; 15
Yu, Yu, Li, Zhang, Yang, Lin (b0070) 2009; 9
Gedanken (b0090) 2004; 11
Guedel, Furrer, Blank (b0195) 1990; 29
Yada, Taniguchi, Torikai, Watari, Furuta, Katsuki (b0040) 2004; 16
Shi, Wan, Liu, Tu, Zhao (b0005) 2007; 129
A.C. Larson, R.B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748, 2004.
Jiang, Zhao, Yan, Ma, Li (b0145) 2010; 2
Okitsu, Yue, Tanabe, Matsumoto, Yobiko, Yoo (b0095) 2002; 75
Mikhailik, Kraus, Wahl, Itoh, Koike, Bailiff (b0110) 2004; 69
Wang, Wang, Summers, Wang (b0010) 2004; 4
Zhang, Wang, Zhang, Zhang, Su (b0210) 2008; 91
Mdleleni, Hyeon, Suslick (b0085) 1998; 120
Pol, Gedanken (b0065) 2002; 14
Lazoryak, Baryshnikova, Stefanovich, Yu Malakho, Morozov, Belik, Leonidov, Leonidova, Tendeloo (b0015) 2003; 15
Wang, Gu, Lu (b0075) 2006; 22
Gedanken (10.1016/j.jcis.2011.04.094_b0090) 2004; 11
Shi (10.1016/j.jcis.2011.04.094_b0005) 2007; 129
Lammers (10.1016/j.jcis.2011.04.094_b0185) 1984; 19
Jia (10.1016/j.jcis.2011.04.094_b0155) 2006; 17
10.1016/j.jcis.2011.04.094_b0140
Jiang (10.1016/j.jcis.2011.04.094_b0145) 2010; 2
10.1016/j.jcis.2011.04.094_b0045
Wang (10.1016/j.jcis.2011.04.094_b0010) 2004; 4
Luo (10.1016/j.jcis.2011.04.094_b0150) 2005; 288
Yu (10.1016/j.jcis.2011.04.094_b0160) 2011; 509
Pang (10.1016/j.jcis.2011.04.094_b0115) 2003; 15
Guedel (10.1016/j.jcis.2011.04.094_b0195) 1990; 29
Zorenko (10.1016/j.jcis.2011.04.094_b0125) 2006; 116
Lazoryak (10.1016/j.jcis.2011.04.094_b0015) 2003; 15
Zhu (10.1016/j.jcis.2011.04.094_b0060) 2003; 15
Okitsu (10.1016/j.jcis.2011.04.094_b0095) 2002; 75
Zhang (10.1016/j.jcis.2011.04.094_b0025) 2010; 4
Pol (10.1016/j.jcis.2011.04.094_b0065) 2002; 14
Furrer (10.1016/j.jcis.2011.04.094_b0190) 1989; 62
Cavalli (10.1016/j.jcis.2011.04.094_b0180) 2009; 31
Nikl (10.1016/j.jcis.2011.04.094_b0200) 2003; 4
Wang (10.1016/j.jcis.2011.04.094_b0075) 2006; 22
Yada (10.1016/j.jcis.2011.04.094_b0040) 2004; 16
Mdleleni (10.1016/j.jcis.2011.04.094_b0085) 1998; 120
Kodaira (10.1016/j.jcis.2011.04.094_b0105) 2003; 101
Flint (10.1016/j.jcis.2011.04.094_b0050) 1991; 253
10.1016/j.jcis.2011.04.094_b0170
Yu (10.1016/j.jcis.2011.04.094_b0070) 2009; 9
Suslick (10.1016/j.jcis.2011.04.094_b0055) 1991; 353
Wang (10.1016/j.jcis.2011.04.094_b0100) 1992; 45
10.1016/j.jcis.2011.04.094_b0175
Park (10.1016/j.jcis.2011.04.094_b0020) 2000; 122
Mikhailik (10.1016/j.jcis.2011.04.094_b0110) 2004; 69
Liu (10.1016/j.jcis.2011.04.094_b0165) 1989; 39
Jia (10.1016/j.jcis.2011.04.094_b0035) 2009; 9
Kaltenpoth (10.1016/j.jcis.2011.04.094_b0030) 2003; 15
Inokuti (10.1016/j.jcis.2011.04.094_b0215) 1965; 43
Li (10.1016/j.jcis.2011.04.094_b0120) 2008; 8
Sendor (10.1016/j.jcis.2011.04.094_b0205) 2003; 27
Lai (10.1016/j.jcis.2011.04.094_b0135) 2006; 60
Zhang (10.1016/j.jcis.2011.04.094_b0210) 2008; 91
Hou (10.1016/j.jcis.2011.04.094_b0130) 2009; 19
Geng (10.1016/j.jcis.2011.04.094_b0080) 2006; 110
References_xml – reference: J.P. van der Ziel, L. Kopf, L.G. Van Uitert, Phys. Rev. B 6 (1972) 615–623.
– reference: A.C. Larson, R.B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748, 2004.
– volume: 11
  start-page: 47
  year: 2004
  end-page: 55
  ident: b0090
  publication-title: Ultrason. Sonochem.
– volume: 15
  start-page: 5157
  year: 2003
  end-page: 5169
  ident: b0115
  publication-title: J. Phys.: Condens. Matter
– volume: 62
  start-page: 210
  year: 1989
  end-page: 213
  ident: b0190
  publication-title: Phys. Rev. Lett.
– volume: 14
  start-page: 3920
  year: 2002
  end-page: 3924
  ident: b0065
  publication-title: Chem. Mater.
– volume: 22
  start-page: 398
  year: 2006
  end-page: 401
  ident: b0075
  publication-title: Langmuir
– volume: 39
  start-page: 10633
  year: 1989
  end-page: 10639
  ident: b0165
  publication-title: Phys. Rev. B
– volume: 15
  start-page: 1113
  year: 2003
  end-page: 1118
  ident: b0030
  publication-title: Adv. Mater.
– volume: 69
  start-page: 205110
  year: 2004
  end-page: 205118
  ident: b0110
  publication-title: Phys. Rev. B
– volume: 15
  start-page: 156
  year: 2003
  end-page: 159
  ident: b0060
  publication-title: Adv. Mater.
– volume: 60
  start-page: 1341
  year: 2006
  end-page: 1343
  ident: b0135
  publication-title: Mater. Lett.
– reference: J. M. Sun, W. Skorupa, T. Dekorsy, M. Helm, L. Rebohle, T. Gebel, J. Appl. Phys. 97 (2005) 123513-1–7.
– volume: 9
  start-page: 301
  year: 2009
  end-page: 307
  ident: b0035
  publication-title: Cryst. Growth Des.
– volume: 288
  start-page: 444
  year: 2005
  end-page: 448
  ident: b0150
  publication-title: J. Colloid Interface Sci.
– volume: 120
  start-page: 6189
  year: 1998
  end-page: 6190
  ident: b0085
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 2737
  year: 2009
  end-page: 2746
  ident: b0130
  publication-title: J. Mater. Chem.
– volume: 15
  start-page: 3003
  year: 2003
  end-page: 3010
  ident: b0015
  publication-title: Chem. Mater.
– volume: 29
  start-page: 4081
  year: 1990
  end-page: 4084
  ident: b0195
  publication-title: Inorg. Chem.
– volume: 91
  start-page: 529
  year: 2008
  end-page: 537
  ident: b0210
  publication-title: Appl. Phys. B: Laser Opt.
– volume: 4
  start-page: 423
  year: 2004
  end-page: 426
  ident: b0010
  publication-title: Nano Lett.
– volume: 129
  start-page: 9522
  year: 2007
  end-page: 9531
  ident: b0005
  publication-title: J. Am. Chem. Soc.
– volume: 75
  start-page: 2289
  year: 2002
  end-page: 2296
  ident: b0095
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 116
  start-page: 43
  year: 2006
  end-page: 51
  ident: b0125
  publication-title: J. Lumin.
– volume: 16
  start-page: 1448
  year: 2004
  end-page: 1453
  ident: b0040
  publication-title: Adv. Mater.
– volume: 31
  start-page: 470
  year: 2009
  end-page: 473
  ident: b0180
  publication-title: Opt. Mater.
– volume: 45
  start-page: 10356
  year: 1992
  end-page: 10362
  ident: b0100
  publication-title: Phys. Rev. B
– volume: 353
  start-page: 414
  year: 1991
  end-page: 416
  ident: b0055
  publication-title: Nature
– volume: 17
  start-page: 734
  year: 2006
  end-page: 742
  ident: b0155
  publication-title: Nanotechnology
– volume: 509
  start-page: 391
  year: 2011
  end-page: 395
  ident: b0160
  publication-title: J. Alloys Compd.
– volume: 27
  start-page: 1070
  year: 2003
  end-page: 1077
  ident: b0205
  publication-title: New J. Chem.
– volume: 43
  start-page: 1978
  year: 1965
  end-page: 1989
  ident: b0215
  publication-title: J. Chem. Phys.
– volume: 110
  start-page: 13777
  year: 2006
  end-page: 13785
  ident: b0080
  publication-title: J. Phys. Chem. B
– volume: 4
  start-page: 99
  year: 2010
  end-page: 112
  ident: b0025
  publication-title: ACS Nano
– volume: 122
  start-page: 8581
  year: 2000
  end-page: 8582
  ident: b0020
  publication-title: Am. Chem. Soc.
– reference: K.S. Suslick, Science, 247 (1990) 1439–1445.
– volume: 9
  start-page: 783
  year: 2009
  end-page: 791
  ident: b0070
  publication-title: Cryst. Growth Des.
– volume: 8
  start-page: 1183
  year: 2008
  end-page: 1190
  ident: b0120
  publication-title: J. Nanosci. Nanotechnol.
– volume: 2
  start-page: 2195
  year: 2010
  end-page: 2198
  ident: b0145
  publication-title: Nanoscale
– volume: 19
  start-page: 759
  year: 1984
  end-page: 768
  ident: b0185
  publication-title: Mater. Res. Bull.
– volume: 4
  start-page: 112
  year: 2003
  end-page: 114
  ident: b0200
  publication-title: J. Ceram. Proc. Res.
– volume: 253
  start-page: 1397
  year: 1991
  end-page: 1399
  ident: b0050
  publication-title: Science
– volume: 101
  start-page: 11
  year: 2003
  end-page: 21
  ident: b0105
  publication-title: J. Lumin.
– volume: 9
  start-page: 783
  year: 2009
  ident: 10.1016/j.jcis.2011.04.094_b0070
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg8003189
– volume: 9
  start-page: 301
  year: 2009
  ident: 10.1016/j.jcis.2011.04.094_b0035
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg8004823
– volume: 15
  start-page: 156
  year: 2003
  ident: 10.1016/j.jcis.2011.04.094_b0060
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200390033
– volume: 19
  start-page: 759
  year: 1984
  ident: 10.1016/j.jcis.2011.04.094_b0185
  publication-title: Mater. Res. Bull.
  doi: 10.1016/0025-5408(84)90033-3
– volume: 253
  start-page: 1397
  year: 1991
  ident: 10.1016/j.jcis.2011.04.094_b0050
  publication-title: Science
  doi: 10.1126/science.253.5026.1397
– volume: 15
  start-page: 3003
  year: 2003
  ident: 10.1016/j.jcis.2011.04.094_b0015
  publication-title: Chem. Mater.
  doi: 10.1021/cm031043s
– volume: 120
  start-page: 6189
  year: 1998
  ident: 10.1016/j.jcis.2011.04.094_b0085
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9800333
– ident: 10.1016/j.jcis.2011.04.094_b0045
  doi: 10.1126/science.247.4949.1439
– volume: 60
  start-page: 1341
  year: 2006
  ident: 10.1016/j.jcis.2011.04.094_b0135
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2005.11.051
– volume: 4
  start-page: 112
  year: 2003
  ident: 10.1016/j.jcis.2011.04.094_b0200
  publication-title: J. Ceram. Proc. Res.
– volume: 110
  start-page: 13777
  year: 2006
  ident: 10.1016/j.jcis.2011.04.094_b0080
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp057562v
– volume: 16
  start-page: 1448
  year: 2004
  ident: 10.1016/j.jcis.2011.04.094_b0040
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200306676
– volume: 27
  start-page: 1070
  year: 2003
  ident: 10.1016/j.jcis.2011.04.094_b0205
  publication-title: New J. Chem.
  doi: 10.1039/b302499g
– volume: 43
  start-page: 1978
  year: 1965
  ident: 10.1016/j.jcis.2011.04.094_b0215
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1697063
– volume: 15
  start-page: 1113
  year: 2003
  ident: 10.1016/j.jcis.2011.04.094_b0030
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200304834
– volume: 509
  start-page: 391
  year: 2011
  ident: 10.1016/j.jcis.2011.04.094_b0160
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2010.09.040
– volume: 14
  start-page: 3920
  year: 2002
  ident: 10.1016/j.jcis.2011.04.094_b0065
  publication-title: Chem. Mater.
  doi: 10.1021/cm0203464
– volume: 39
  start-page: 10633
  year: 1989
  ident: 10.1016/j.jcis.2011.04.094_b0165
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.39.10633
– volume: 31
  start-page: 470
  year: 2009
  ident: 10.1016/j.jcis.2011.04.094_b0180
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2007.10.021
– volume: 29
  start-page: 4081
  year: 1990
  ident: 10.1016/j.jcis.2011.04.094_b0195
  publication-title: Inorg. Chem.
  doi: 10.1021/ic00345a034
– volume: 101
  start-page: 11
  year: 2003
  ident: 10.1016/j.jcis.2011.04.094_b0105
  publication-title: J. Lumin.
  doi: 10.1016/S0022-2313(02)00384-8
– volume: 22
  start-page: 398
  year: 2006
  ident: 10.1016/j.jcis.2011.04.094_b0075
  publication-title: Langmuir
  doi: 10.1021/la0518647
– volume: 2
  start-page: 2195
  year: 2010
  ident: 10.1016/j.jcis.2011.04.094_b0145
  publication-title: Nanoscale
  doi: 10.1039/c0nr00257g
– volume: 19
  start-page: 2737
  year: 2009
  ident: 10.1016/j.jcis.2011.04.094_b0130
  publication-title: J. Mater. Chem.
  doi: 10.1039/b818810f
– volume: 129
  start-page: 9522
  year: 2007
  ident: 10.1016/j.jcis.2011.04.094_b0005
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja072910n
– volume: 8
  start-page: 1183
  year: 2008
  ident: 10.1016/j.jcis.2011.04.094_b0120
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2008.18169
– volume: 116
  start-page: 43
  year: 2006
  ident: 10.1016/j.jcis.2011.04.094_b0125
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2005.01.017
– volume: 15
  start-page: 5157
  year: 2003
  ident: 10.1016/j.jcis.2011.04.094_b0115
  publication-title: J. Phys.: Condens. Matter
– ident: 10.1016/j.jcis.2011.04.094_b0140
– ident: 10.1016/j.jcis.2011.04.094_b0170
  doi: 10.1063/1.1935766
– volume: 11
  start-page: 47
  year: 2004
  ident: 10.1016/j.jcis.2011.04.094_b0090
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2004.01.037
– volume: 62
  start-page: 210
  year: 1989
  ident: 10.1016/j.jcis.2011.04.094_b0190
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.62.210
– volume: 75
  start-page: 2289
  year: 2002
  ident: 10.1016/j.jcis.2011.04.094_b0095
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.75.2289
– volume: 17
  start-page: 734
  year: 2006
  ident: 10.1016/j.jcis.2011.04.094_b0155
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/17/3/020
– volume: 4
  start-page: 423
  year: 2004
  ident: 10.1016/j.jcis.2011.04.094_b0010
  publication-title: Nano Lett.
  doi: 10.1021/nl035102c
– volume: 45
  start-page: 10356
  year: 1992
  ident: 10.1016/j.jcis.2011.04.094_b0100
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.45.10356
– volume: 4
  start-page: 99
  year: 2010
  ident: 10.1016/j.jcis.2011.04.094_b0025
  publication-title: ACS Nano
  doi: 10.1021/nn901057y
– volume: 91
  start-page: 529
  year: 2008
  ident: 10.1016/j.jcis.2011.04.094_b0210
  publication-title: Appl. Phys. B: Laser Opt.
  doi: 10.1007/s00340-008-3035-1
– volume: 122
  start-page: 8581
  year: 2000
  ident: 10.1016/j.jcis.2011.04.094_b0020
  publication-title: Am. Chem. Soc.
  doi: 10.1021/ja001628c
– ident: 10.1016/j.jcis.2011.04.094_b0175
  doi: 10.1103/PhysRevB.6.615
– volume: 69
  start-page: 205110
  year: 2004
  ident: 10.1016/j.jcis.2011.04.094_b0110
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.69.205110
– volume: 288
  start-page: 444
  year: 2005
  ident: 10.1016/j.jcis.2011.04.094_b0150
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2005.03.005
– volume: 353
  start-page: 414
  year: 1991
  ident: 10.1016/j.jcis.2011.04.094_b0055
  publication-title: Nature
  doi: 10.1038/353414a0
SSID ssj0011559
Score 2.2898471
Snippet CaWO4:Tb3+ microspheres assembled by submicrospindles were synthesized via a mild sonochemical route with the aid of surfactant Polyglycol 600. The formation...
Three-dimensional (3D) nanostructured CaWO₄:Tb³⁺microspheres assembled by submicrospindles were synthesized via a mild sonochemical route from an aqueous...
Three-dimensional (3D) nanostructured CaWO(4):Tb(3+)microspheres assembled by submicrospindles were synthesized via a mild sonochemical route from an aqueous...
SourceID proquest
pubmed
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 586
SubjectTerms aqueous solutions
Assembly
calcium chloride
Chemistry
Controllable synthesis
crystal structure
Energy transfer
Exact sciences and technology
fluorescence
General and physical chemistry
irradiation
Luminescence
Nanostructure
photoluminescence
Physical chemistry of induced reactions (with radiations, particles and ultrasonics)
scanning electron microscopy
surfactants
Ultrasonic chemistry
ultrasonics
X-ray diffraction
Title Controllable synthesis and luminescent properties of three-dimensional nanostructured CaWO4:Tb3+ microspheres
URI https://dx.doi.org/10.1016/j.jcis.2011.04.094
https://www.ncbi.nlm.nih.gov/pubmed/21621217
https://www.proquest.com/docview/2000070499
https://www.proquest.com/docview/872131956
Volume 360
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VcgAOFZSPptCVkbhVoXHsJLu9VVGrBUQ50BV7s-zYrrZqk1WzPXDht3cmThZ62B64Ro6SeCbjN_abNwCftOeVTbyP88LnMUbJcWxyg1lrMrEYEF3lu82c7-f5dCa_zrP5FpRDLQzRKvvYH2J6F637K0f9bB4tFwuq8cW_rZgUJHqWyXROFeyyIC___GdN8-B07BZoHjym0X3hTOB4XVWLtpfxJLlTuWlxeuJ1Q6xJ3eLE-dDxYjMk7Zams5ew02NKdhJe-xVsuXoXnpVDK7ddePGP6uBruCkDPf2aqqZY-7tGDNguWqZryzBUEQ-eKJtsSfv0tyS4yhrPVmh0F1tqBhCEPFit6ybIz97dOstK_euHPL4w4pDdEMuvJcEC176B2dnpRTmN-64LcSWKdBVXXFhBMM37xOU2K7xOMP1OdG6E1DKThlOSh3NZSc6N477yGCdITzRNuU7EW9ium9rtATNW6KywiBG5ldpI41IixeWYk6VapzwCPky3qnpJcuqMca0G7tmVIhMpMpFKpEITRXC4vmcZBDkeHZ0NVlQP3ErhivHofXtocqUvMdKq2c-UdPi6appxHsHogR-s3yKVQiA8nkTwcXAMhXamAxhdu-aOHkCQjJLMCNiGMWNMyQUVcUbwLjjV3wfwHIEGL_b_86Pew_NhR5xnH2AbPcQdIKRamVH3z4zg6cmXb9Pze8MhHig
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB215VA4VFA-mgLFSNyq0Dh2kl1uKKJaoC0HdsXeLDu20VZtsmq2By78dmbiZKGH7YFr5CiJZzx-47x5A_BOe17ZxPs4L3weY5QcxSY3mLUmY4sB0VW-O8w5v8gnM_llns23oBxqYYhW2cf-ENO7aN1fOeln82S5WFCNL662YlyQ6Fkm0_k2PJC4fKmNwfvfa54Hp_9ugefBYxreV84EktdltWh7HU_SO5WbdqdtrxuiTeoWZ86HlhebMWm3N50-hr0eVLKP4b2fwJar92G3HHq57cOjf2QHn8J1GfjpV1Q2xdpfNYLAdtEyXVuGsYqI8MTZZEs6qL8hxVXWeLZCq7vYUjeAoOTBal03QX_29sZZVuof3-SHqRHH7Jpofi0pFrj2GcxOP03LSdy3XYgrUaSruOLCCsJp3icut1nhdYL5d6JzI6SWmTScsjycy0pybhz3lcdAQYKiacp1Ip7DTt3U7gCYsUJnhUWQyK3URhqXEisux6Qs1TrlEfBhulXVa5JTa4wrNZDPLhWZSJGJVCIVmiiC4_U9y6DIce_obLCiuuNXCreMe-87QJMr_RNDrZp9T0mIryunGeURHN3xg_VbpFIIxMfjCN4OjqHQzvQHRteuuaUHECajLDMCtmHMCHNyQVWcEbwITvX3ATxHpMGLw__8qDewO5men6mzzxdfX8LD4XicZ69gB73FvUZ8tTJH3fr5AxlLH7Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controllable+synthesis+and+luminescent+properties+of+three-dimensional+nanostructured+CaWO4%3ATb3%2B+microspheres&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Tian%2C+Yue&rft.au=Chen%2C+Baojiu&rft.au=Yu%2C+Hongquan&rft.au=Hua%2C+Ruinian&rft.date=2011-08-15&rft.issn=1095-7103&rft.eissn=1095-7103&rft.volume=360&rft.issue=2&rft.spage=586&rft_id=info:doi/10.1016%2Fj.jcis.2011.04.094&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon