SpatioTemporal focus for skeleton-based action recognition
•The multi-scale representations of the skeleton improve the performance of recognition.•Learning different temporal dynamics according to different action instances.•The model based on GCN and attention captures the topology information of skeleton.•A complementary representation of video against R...
Saved in:
Published in | Pattern recognition Vol. 136; p. 109231 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The multi-scale representations of the skeleton improve the performance of recognition.•Learning different temporal dynamics according to different action instances.•The model based on GCN and attention captures the topology information of skeleton.•A complementary representation of video against RGB modality.
Graph convolutional networks (GCNs) are widely adopted in skeleton-based action recognition due to their powerful ability to model data topology. We argue that the performance of recent proposed skeleton-based action recognition methods is limited by the following factors. First, the predefined graph structures are shared throughout the network, lacking the flexibility and capacity to model the multi-grain semantic information. Second, the relations among the global joints are not fully exploited by the graph local convolution, which may lose the implicit joint relevance. For instance, actions such as running and waving are performed by the co-movement of body parts and joints, e.g., legs and arms, however, they are located far away in physical connection. Inspired by the recent attention mechanism, we propose a multi-grain contextual focus module, termed MCF, to capture the action associated relation information from the body joints and parts. As a result, more explainable representations for different skeleton action sequences can be obtained by MCF. In this study, we follow the common practice that the dense sample strategy of the input skeleton sequences is adopted and this brings much redundancy since number of instances has nothing to do with actions. To reduce the redundancy, a temporal discrimination focus module, termed TDF, is developed to capture the local sensitive points of the temporal dynamics. MCF and TDF are integrated into the standard GCN network to form a unified architecture, named STF-Net. It is noted that STF-Net provides the capability to capture robust movement patterns from these skeleton topology structures, based on multi-grain context aggregation and temporal dependency. Extensive experimental results show that our STF-Net significantly achieves state-of-the-art results on three challenging benchmarks NTU-RGB+D 60, NTU-RGB+D 120, and Kinetics-Skeleton. |
---|---|
AbstractList | •The multi-scale representations of the skeleton improve the performance of recognition.•Learning different temporal dynamics according to different action instances.•The model based on GCN and attention captures the topology information of skeleton.•A complementary representation of video against RGB modality.
Graph convolutional networks (GCNs) are widely adopted in skeleton-based action recognition due to their powerful ability to model data topology. We argue that the performance of recent proposed skeleton-based action recognition methods is limited by the following factors. First, the predefined graph structures are shared throughout the network, lacking the flexibility and capacity to model the multi-grain semantic information. Second, the relations among the global joints are not fully exploited by the graph local convolution, which may lose the implicit joint relevance. For instance, actions such as running and waving are performed by the co-movement of body parts and joints, e.g., legs and arms, however, they are located far away in physical connection. Inspired by the recent attention mechanism, we propose a multi-grain contextual focus module, termed MCF, to capture the action associated relation information from the body joints and parts. As a result, more explainable representations for different skeleton action sequences can be obtained by MCF. In this study, we follow the common practice that the dense sample strategy of the input skeleton sequences is adopted and this brings much redundancy since number of instances has nothing to do with actions. To reduce the redundancy, a temporal discrimination focus module, termed TDF, is developed to capture the local sensitive points of the temporal dynamics. MCF and TDF are integrated into the standard GCN network to form a unified architecture, named STF-Net. It is noted that STF-Net provides the capability to capture robust movement patterns from these skeleton topology structures, based on multi-grain context aggregation and temporal dependency. Extensive experimental results show that our STF-Net significantly achieves state-of-the-art results on three challenging benchmarks NTU-RGB+D 60, NTU-RGB+D 120, and Kinetics-Skeleton. |
ArticleNumber | 109231 |
Author | Wu, Liyu Zhang, Can Zou, Yuexian |
Author_xml | – sequence: 1 givenname: Liyu orcidid: 0000-0002-9040-6623 surname: Wu fullname: Wu, Liyu email: wuliyu@pku.edu.cn organization: ADSPLAB, School of ECE, Peking University, Shenzhen, China – sequence: 2 givenname: Can surname: Zhang fullname: Zhang, Can email: cannyzhang@tencent.com organization: Tencent Media Lab, Shenzhen, China – sequence: 3 givenname: Yuexian surname: Zou fullname: Zou, Yuexian email: zouyx@pku.edu.cn organization: ADSPLAB, School of ECE, Peking University, Shenzhen, China |
BookMark | eNqFkM1KAzEQgINUsK2-gYd9ga3JZLs_PQhStAoFD9ZzyCYTybpNSrIKvr1Z1pMHvSTDJN_8fAsyc94hIdeMrhhl5U23OslB-bcVUICUaoCzMzJndcXzNStgRuaUcpZzoPyCLGLsKGVVepiTzUtCrT_g8eSD7DPj1UdMZ8jiO_Y4eJe3MqLOpErfXBYw9XF2jC_JuZF9xKufe0leH-4P28d8_7x72t7tc8UrGPLWcCMZ0FYDVYVErgvd1I1kY4i8lKVpmrqEqlZ1uTZS1g0oaE0JnLe6onxJNlNdFXyMAY1QdhiHdkOQtheMitGC6MRkQYwWxGQhwcUv-BTsUYav_7DbCcO02KfFIKKy6BRqmwwMQnv7d4FvDpR7ug |
CitedBy_id | crossref_primary_10_1007_s11042_024_18864_y crossref_primary_10_1016_j_imavis_2024_104919 crossref_primary_10_1016_j_patcog_2023_110199 crossref_primary_10_3390_s23125414 crossref_primary_10_1016_j_knosys_2024_112319 crossref_primary_10_3390_s25061769 crossref_primary_10_1007_s13735_023_00301_9 crossref_primary_10_1016_j_cviu_2024_103992 crossref_primary_10_1007_s10489_024_05544_5 crossref_primary_10_1016_j_knosys_2023_111074 crossref_primary_10_1007_s11760_024_03259_1 crossref_primary_10_1016_j_sigpro_2024_109592 crossref_primary_10_1007_s11227_024_06531_w crossref_primary_10_1587_transinf_2023EDP7223 crossref_primary_10_1109_ACCESS_2024_3452553 crossref_primary_10_1016_j_patcog_2023_109528 crossref_primary_10_1049_cvi2_12296 crossref_primary_10_1109_TGRS_2024_3416112 crossref_primary_10_3390_s24082519 crossref_primary_10_1016_j_eswa_2024_124013 crossref_primary_10_1016_j_patcog_2023_110188 crossref_primary_10_1016_j_patcog_2023_110087 crossref_primary_10_1016_j_patcog_2023_109455 crossref_primary_10_3390_app14188185 crossref_primary_10_1016_j_patcog_2024_110427 crossref_primary_10_1016_j_patcog_2023_110209 crossref_primary_10_1016_j_imavis_2024_104991 crossref_primary_10_3390_s23249738 crossref_primary_10_1007_s40747_025_01811_1 crossref_primary_10_1016_j_aej_2025_01_118 crossref_primary_10_3390_s24061908 crossref_primary_10_1016_j_patcog_2024_111151 crossref_primary_10_3390_s24082567 |
Cites_doi | 10.1016/j.patcog.2021.108044 10.1016/j.patcog.2021.107921 10.1016/j.patcog.2022.108520 10.1016/j.patcog.2021.108360 10.1109/TPAMI.2019.2916873 10.1109/TIP.2020.3028207 10.1109/TPAMI.2018.2868668 10.1109/TPAMI.2019.2896631 10.1016/j.patcog.2020.107511 10.1016/j.cviu.2021.103348 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.patcog.2022.109231 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-5142 |
ExternalDocumentID | 10_1016_j_patcog_2022_109231 S0031320322007105 |
GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c372t-bf3fa120bd20c4ae3d4d989a1ae3de36a6f9986278c865faa892c2bf6233bd703 |
IEDL.DBID | .~1 |
ISSN | 0031-3203 |
IngestDate | Tue Jul 01 02:36:40 EDT 2025 Thu Apr 24 23:01:16 EDT 2025 Fri Feb 23 02:39:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Action recognition Graph convolutional network Skeleton topology |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-bf3fa120bd20c4ae3d4d989a1ae3de36a6f9986278c865faa892c2bf6233bd703 |
ORCID | 0000-0002-9040-6623 |
ParticipantIDs | crossref_citationtrail_10_1016_j_patcog_2022_109231 crossref_primary_10_1016_j_patcog_2022_109231 elsevier_sciencedirect_doi_10_1016_j_patcog_2022_109231 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2023 2023-04-00 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: April 2023 |
PublicationDecade | 2020 |
PublicationTitle | Pattern recognition |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wang, Girshick, Gupta, He (bib0014) 2018 Liu, You, He, Bi, Wang (bib0003) 2022; 125 Alsarhan, Ali, Lu (bib0040) 2022; 216 Plizzari, Cannici, Matteucci (bib0022) 2021 Cao, Simon, Wei, Sheikh (bib0004) 2017 Shahroudy, Liu, Ng, Wang (bib0021) 2016 Liu, Zhang, Chen, Wang, Ouyang (bib0026) 2020 Peng, Hong, Chen, Zhao (bib0035) 2020; Vol. 34 Guo, He, Zhang, Zhao, Fang, Tan (bib0002) 2021; 118 Wang, Chen, Jiang, Song, Han, Huang (bib0013) 2021 Shi, Zhang, Cheng, Lu (bib0010) 2019 Wang, Xiong, Wang, Qiao, Lin, Tang, Van Gool (bib0017) 2018; 41 Xie, Girshick, Dollár, Tu, He (bib0027) 2017 Liu, Shahroudy, Perez, Wang, Duan, Kot (bib0029) 2019; 42 Carreira, Zisserman (bib0019) 2017 Peng, Hong, Zhao (bib0011) 2021; 115 Zhang, Zou, Chen, Gan (bib0020) 2019 Caetano, Jessica, Brémond, Dos Santos, Schwartz (bib0007) 2019 Yang, Wang, Dantcheva, Garattoni, Francesca, Bremond (bib0031) 2021 Si, Jing, Wang, Wang, Tan (bib0033) 2020; 107 Sadanand, Corso (bib0016) 2012 Yan, Xiong, Lin (bib0005) 2018 Shi, Zhang, Cheng, Lu (bib0028) 2020; 29 Lin, Gan, Han (bib0018) 2019 Shi, Zhang, Cheng, Lu (bib0008) 2019 Miao, Hou, Gao, Xu, Li (bib0039) 2021 Defferrard, Bresson, Vandergheynst (bib0023) 2016; 29 Perez, Liu, Kot (bib0012) 2022; 122 Yang, Dai, Wang, Mallick, Minciullo, Francesca, Bremond (bib0030) 2021 Zhang, Lan, Zeng, Xing, Xue, Zheng (bib0037) 2020 Yang, Zou (bib0001) 2020 Li, Chen, Chen, Zhang, Wang, Tian (bib0009) 2019 Song, Zhang, Shan, Wang (bib0038) 2020 Hu, Shen, Sun (bib0015) 2018 Zhang, Xu, Tao (bib0025) 2020 Huang, Huang, Ouyang, Wang (bib0034) 2020; Vol. 34 Zhang, Lan, Xing, Zeng, Xue, Zheng (bib0032) 2019; 41 Niepert, Ahmed, Kutzkov (bib0024) 2016 Liu, Shahroudy, Xu, Wang (bib0006) 2016 Cheng, Zhang, He, Chen, Cheng, Lu (bib0036) 2020 Yang (10.1016/j.patcog.2022.109231_bib0001) 2020 Perez (10.1016/j.patcog.2022.109231_bib0012) 2022; 122 Sadanand (10.1016/j.patcog.2022.109231_bib0016) 2012 Zhang (10.1016/j.patcog.2022.109231_bib0037) 2020 Shi (10.1016/j.patcog.2022.109231_bib0008) 2019 Defferrard (10.1016/j.patcog.2022.109231_bib0023) 2016; 29 Yang (10.1016/j.patcog.2022.109231_bib0031) 2021 Carreira (10.1016/j.patcog.2022.109231_bib0019) 2017 Liu (10.1016/j.patcog.2022.109231_bib0006) 2016 Peng (10.1016/j.patcog.2022.109231_bib0011) 2021; 115 Shahroudy (10.1016/j.patcog.2022.109231_bib0021) 2016 Wang (10.1016/j.patcog.2022.109231_bib0013) 2021 Zhang (10.1016/j.patcog.2022.109231_bib0025) 2020 Li (10.1016/j.patcog.2022.109231_bib0009) 2019 Niepert (10.1016/j.patcog.2022.109231_bib0024) 2016 Xie (10.1016/j.patcog.2022.109231_bib0027) 2017 Si (10.1016/j.patcog.2022.109231_bib0033) 2020; 107 Wang (10.1016/j.patcog.2022.109231_bib0017) 2018; 41 Liu (10.1016/j.patcog.2022.109231_bib0003) 2022; 125 Shi (10.1016/j.patcog.2022.109231_bib0010) 2019 Miao (10.1016/j.patcog.2022.109231_bib0039) 2021 Wang (10.1016/j.patcog.2022.109231_bib0014) 2018 Alsarhan (10.1016/j.patcog.2022.109231_bib0040) 2022; 216 Yan (10.1016/j.patcog.2022.109231_bib0005) 2018 Plizzari (10.1016/j.patcog.2022.109231_bib0022) 2021 Liu (10.1016/j.patcog.2022.109231_bib0029) 2019; 42 Guo (10.1016/j.patcog.2022.109231_bib0002) 2021; 118 Liu (10.1016/j.patcog.2022.109231_bib0026) 2020 Song (10.1016/j.patcog.2022.109231_bib0038) 2020 Cao (10.1016/j.patcog.2022.109231_bib0004) 2017 Huang (10.1016/j.patcog.2022.109231_bib0034) 2020; Vol. 34 Yang (10.1016/j.patcog.2022.109231_bib0030) 2021 Shi (10.1016/j.patcog.2022.109231_bib0028) 2020; 29 Peng (10.1016/j.patcog.2022.109231_bib0035) 2020; Vol. 34 Hu (10.1016/j.patcog.2022.109231_bib0015) 2018 Lin (10.1016/j.patcog.2022.109231_bib0018) 2019 Cheng (10.1016/j.patcog.2022.109231_bib0036) 2020 Zhang (10.1016/j.patcog.2022.109231_bib0020) 2019 Caetano (10.1016/j.patcog.2022.109231_bib0007) 2019 Zhang (10.1016/j.patcog.2022.109231_bib0032) 2019; 41 |
References_xml | – year: 2021 ident: bib0039 article-title: A central difference graph convolutional operator for skeleton-based action recognition publication-title: IEEE Trans. Circuits Syst. Video Technol. – start-page: 16249 year: 2021 end-page: 16258 ident: bib0013 article-title: Adaptive focus for efficient video recognition publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) – start-page: 1112 year: 2020 end-page: 1121 ident: bib0037 article-title: Semantics-guided neural networks for efficient skeleton-based human action recognition publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 1492 year: 2017 end-page: 1500 ident: bib0027 article-title: Aggregated residual transformations for deep neural networks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 14333 year: 2020 end-page: 14342 ident: bib0025 article-title: Context aware graph convolution for skeleton-based action recognition publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 29 year: 2016 ident: bib0023 article-title: Convolutional neural networks on graphs with fast localized spectral filtering publication-title: Adv. Neural Inform. Process. Syst. – year: 2018 ident: bib0014 article-title: Non-local neural networks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 694 year: 2021 end-page: 701 ident: bib0022 article-title: Spatial temporal transformer network for skeleton-based action recognition publication-title: International Conference on Pattern Recognition – start-page: 816 year: 2016 end-page: 833 ident: bib0006 article-title: Spatio-temporal LSTM with trust gates for 3D human action recognition publication-title: Computer Vision – ECCV 2016 – volume: 118 start-page: 108044 year: 2021 ident: bib0002 article-title: Normalized edge convolutional networks for skeleton-based hand gesture recognition publication-title: Pattern Recognit. – volume: 41 start-page: 1963 year: 2019 end-page: 1978 ident: bib0032 article-title: View adaptive neural networks for high performance skeleton-based human action recognition publication-title: IEEE Trans. Pattern Anal. Mach.Intell. – year: 2021 ident: bib0031 article-title: UNIK: a unified framework for real-world skeleton-based action recognition publication-title: British Machine Vision Conference (BMVC) – volume: Vol. 34 start-page: 2669 year: 2020 end-page: 2676 ident: bib0035 article-title: Learning graph convolutional network for skeleton-based human action recognition by neural searching publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – start-page: 1625 year: 2020 end-page: 1633 ident: bib0038 article-title: Stronger, faster and more explainable: a graph convolutional baseline for skeleton-based action recognition publication-title: Proceedings of the 28th ACM International Conference on Multimedia – volume: 216 start-page: 103348 year: 2022 ident: bib0040 article-title: Enhanced discriminative graph convolutional network with adaptive temporal modelling for skeleton-based action recognition publication-title: Comput. Vis. Image Understanding – volume: 125 start-page: 108520 year: 2022 ident: bib0003 article-title: Symmetry-driven hyper feature GCN for skeleton-based gait recognition publication-title: Pattern Recognit. – start-page: 1010 year: 2016 end-page: 1019 ident: bib0021 article-title: NTU RGB+D: a large scale dataset for 3D human activity analysis publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 1 year: 2019 end-page: 8 ident: bib0007 article-title: SkeleMotion: a new representation of skeleton joint sequences based on motion information for 3D action recognition publication-title: 2019 16th IEEE international Conference on Advanced Video and Signal Based Surveillance (AVSS) – volume: 41 start-page: 2740 year: 2018 end-page: 2755 ident: bib0017 article-title: Temporal segment networks for action recognition in videos publication-title: IEEE Trans. Pattern Anal. Mach.Intell. – start-page: 2363 year: 2021 end-page: 2372 ident: bib0030 article-title: Selective spatio-temporal aggregation based pose refinement system: towards understanding human activities in real-world videos publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision – start-page: 1111 year: 2020 end-page: 1117 ident: bib0001 article-title: A graph-based interactive reasoning for human-object interaction detection publication-title: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20 – start-page: 7912 year: 2019 end-page: 7921 ident: bib0010 article-title: Skeleton-based action recognition with directed graph neural networks publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – year: 2018 ident: bib0005 article-title: Spatial temporal graph convolutional networks for skeleton-based action recognition publication-title: Thirty-second AAAI Conference on Artificial Intelligence – start-page: 7132 year: 2018 end-page: 7141 ident: bib0015 article-title: Squeeze-and-excitation networks publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 7083 year: 2019 end-page: 7093 ident: bib0018 article-title: TSM: temporal shift module for efficient video understanding publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – volume: Vol. 34 start-page: 11045 year: 2020 end-page: 11052 ident: bib0034 article-title: Part-level graph convolutional network for skeleton-based action recognition publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – start-page: 7291 year: 2017 end-page: 7299 ident: bib0004 article-title: Realtime multi-person 2D pose estimation using part affinity fields publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 12026 year: 2019 end-page: 12035 ident: bib0008 article-title: Two-stream adaptive graph convolutional networks for skeleton-based action recognition publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 183 year: 2020 end-page: 192 ident: bib0036 article-title: Skeleton-based action recognition with shift graph convolutional network publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 115 start-page: 107921 year: 2021 ident: bib0011 article-title: Tripool: Graph triplet pooling for 3D skeleton-based action recognition publication-title: Pattern Recognit. – volume: 29 start-page: 9532 year: 2020 end-page: 9545 ident: bib0028 article-title: Skeleton-based action recognition with multi-stream adaptive graph convolutional networks publication-title: IEEE Trans. Image Process. – volume: 122 start-page: 108360 year: 2022 ident: bib0012 article-title: Skeleton-based relational reasoning for group activity analysis publication-title: Pattern Recognit. – year: 2019 ident: bib0009 article-title: Actional-structural graph convolutional networks for skeleton-based action recognition publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 500 year: 2019 end-page: 509 ident: bib0020 article-title: PAN: persistent appearance network with an efficient motion cue for fast action recognition publication-title: Proceedings of the 27th ACM International Conference on Multimedia – start-page: 6299 year: 2017 end-page: 6308 ident: bib0019 article-title: Quo vadis, action recognition? A new model and the kinetics dataset publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2020 ident: bib0026 article-title: Disentangling and unifying graph convolutions for skeleton-based action recognition publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 42 start-page: 2684 year: 2019 end-page: 2701 ident: bib0029 article-title: NTU RGB+D 120: a large-scale benchmark for 3d human activity understanding publication-title: IEEE Trans. Pattern Anal. Mach.Intell. – start-page: 2014 year: 2016 end-page: 2023 ident: bib0024 article-title: Learning convolutional neural networks for graphs publication-title: International Conference on Machine Learning – start-page: 1234 year: 2012 end-page: 1241 ident: bib0016 article-title: Action bank: a high-level representation of activity in video publication-title: 2012 IEEE Conference on Computer Vision and Pattern Recognition – volume: 107 start-page: 107511 year: 2020 ident: bib0033 article-title: Skeleton-based action recognition with hierarchical spatial reasoning and temporal stack learning network publication-title: Pattern Recognit. – year: 2018 ident: 10.1016/j.patcog.2022.109231_bib0005 article-title: Spatial temporal graph convolutional networks for skeleton-based action recognition – start-page: 12026 year: 2019 ident: 10.1016/j.patcog.2022.109231_bib0008 article-title: Two-stream adaptive graph convolutional networks for skeleton-based action recognition – volume: 118 start-page: 108044 year: 2021 ident: 10.1016/j.patcog.2022.109231_bib0002 article-title: Normalized edge convolutional networks for skeleton-based hand gesture recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.108044 – volume: 115 start-page: 107921 year: 2021 ident: 10.1016/j.patcog.2022.109231_bib0011 article-title: Tripool: Graph triplet pooling for 3D skeleton-based action recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.107921 – start-page: 7132 year: 2018 ident: 10.1016/j.patcog.2022.109231_bib0015 article-title: Squeeze-and-excitation networks – start-page: 1010 year: 2016 ident: 10.1016/j.patcog.2022.109231_bib0021 article-title: NTU RGB+D: a large scale dataset for 3D human activity analysis – start-page: 16249 year: 2021 ident: 10.1016/j.patcog.2022.109231_bib0013 article-title: Adaptive focus for efficient video recognition – volume: 29 year: 2016 ident: 10.1016/j.patcog.2022.109231_bib0023 article-title: Convolutional neural networks on graphs with fast localized spectral filtering publication-title: Adv. Neural Inform. Process. Syst. – volume: 125 start-page: 108520 year: 2022 ident: 10.1016/j.patcog.2022.109231_bib0003 article-title: Symmetry-driven hyper feature GCN for skeleton-based gait recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2022.108520 – start-page: 6299 year: 2017 ident: 10.1016/j.patcog.2022.109231_bib0019 article-title: Quo vadis, action recognition? A new model and the kinetics dataset – year: 2021 ident: 10.1016/j.patcog.2022.109231_bib0039 article-title: A central difference graph convolutional operator for skeleton-based action recognition publication-title: IEEE Trans. Circuits Syst. Video Technol. – volume: 122 start-page: 108360 year: 2022 ident: 10.1016/j.patcog.2022.109231_bib0012 article-title: Skeleton-based relational reasoning for group activity analysis publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.108360 – volume: 42 start-page: 2684 issue: 10 year: 2019 ident: 10.1016/j.patcog.2022.109231_bib0029 article-title: NTU RGB+D 120: a large-scale benchmark for 3d human activity understanding publication-title: IEEE Trans. Pattern Anal. Mach.Intell. doi: 10.1109/TPAMI.2019.2916873 – start-page: 7083 year: 2019 ident: 10.1016/j.patcog.2022.109231_bib0018 article-title: TSM: temporal shift module for efficient video understanding – start-page: 1625 year: 2020 ident: 10.1016/j.patcog.2022.109231_bib0038 article-title: Stronger, faster and more explainable: a graph convolutional baseline for skeleton-based action recognition – start-page: 1492 year: 2017 ident: 10.1016/j.patcog.2022.109231_bib0027 article-title: Aggregated residual transformations for deep neural networks – year: 2021 ident: 10.1016/j.patcog.2022.109231_bib0031 article-title: UNIK: a unified framework for real-world skeleton-based action recognition – year: 2018 ident: 10.1016/j.patcog.2022.109231_bib0014 article-title: Non-local neural networks – start-page: 1 year: 2019 ident: 10.1016/j.patcog.2022.109231_bib0007 article-title: SkeleMotion: a new representation of skeleton joint sequences based on motion information for 3D action recognition – start-page: 1234 year: 2012 ident: 10.1016/j.patcog.2022.109231_bib0016 article-title: Action bank: a high-level representation of activity in video – volume: 29 start-page: 9532 year: 2020 ident: 10.1016/j.patcog.2022.109231_bib0028 article-title: Skeleton-based action recognition with multi-stream adaptive graph convolutional networks publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.3028207 – volume: Vol. 34 start-page: 11045 year: 2020 ident: 10.1016/j.patcog.2022.109231_bib0034 article-title: Part-level graph convolutional network for skeleton-based action recognition – volume: Vol. 34 start-page: 2669 year: 2020 ident: 10.1016/j.patcog.2022.109231_bib0035 article-title: Learning graph convolutional network for skeleton-based human action recognition by neural searching – volume: 41 start-page: 2740 issue: 11 year: 2018 ident: 10.1016/j.patcog.2022.109231_bib0017 article-title: Temporal segment networks for action recognition in videos publication-title: IEEE Trans. Pattern Anal. Mach.Intell. doi: 10.1109/TPAMI.2018.2868668 – start-page: 183 year: 2020 ident: 10.1016/j.patcog.2022.109231_bib0036 article-title: Skeleton-based action recognition with shift graph convolutional network – start-page: 1111 year: 2020 ident: 10.1016/j.patcog.2022.109231_bib0001 article-title: A graph-based interactive reasoning for human-object interaction detection – year: 2019 ident: 10.1016/j.patcog.2022.109231_bib0009 article-title: Actional-structural graph convolutional networks for skeleton-based action recognition – start-page: 2014 year: 2016 ident: 10.1016/j.patcog.2022.109231_bib0024 article-title: Learning convolutional neural networks for graphs – volume: 41 start-page: 1963 issue: 8 year: 2019 ident: 10.1016/j.patcog.2022.109231_bib0032 article-title: View adaptive neural networks for high performance skeleton-based human action recognition publication-title: IEEE Trans. Pattern Anal. Mach.Intell. doi: 10.1109/TPAMI.2019.2896631 – start-page: 694 year: 2021 ident: 10.1016/j.patcog.2022.109231_bib0022 article-title: Spatial temporal transformer network for skeleton-based action recognition – start-page: 7291 year: 2017 ident: 10.1016/j.patcog.2022.109231_bib0004 article-title: Realtime multi-person 2D pose estimation using part affinity fields – start-page: 7912 year: 2019 ident: 10.1016/j.patcog.2022.109231_bib0010 article-title: Skeleton-based action recognition with directed graph neural networks – start-page: 500 year: 2019 ident: 10.1016/j.patcog.2022.109231_bib0020 article-title: PAN: persistent appearance network with an efficient motion cue for fast action recognition – start-page: 2363 year: 2021 ident: 10.1016/j.patcog.2022.109231_bib0030 article-title: Selective spatio-temporal aggregation based pose refinement system: towards understanding human activities in real-world videos – start-page: 1112 year: 2020 ident: 10.1016/j.patcog.2022.109231_bib0037 article-title: Semantics-guided neural networks for efficient skeleton-based human action recognition – start-page: 14333 year: 2020 ident: 10.1016/j.patcog.2022.109231_bib0025 article-title: Context aware graph convolution for skeleton-based action recognition – volume: 107 start-page: 107511 year: 2020 ident: 10.1016/j.patcog.2022.109231_bib0033 article-title: Skeleton-based action recognition with hierarchical spatial reasoning and temporal stack learning network publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107511 – volume: 216 start-page: 103348 year: 2022 ident: 10.1016/j.patcog.2022.109231_bib0040 article-title: Enhanced discriminative graph convolutional network with adaptive temporal modelling for skeleton-based action recognition publication-title: Comput. Vis. Image Understanding doi: 10.1016/j.cviu.2021.103348 – start-page: 816 year: 2016 ident: 10.1016/j.patcog.2022.109231_bib0006 article-title: Spatio-temporal LSTM with trust gates for 3D human action recognition – year: 2020 ident: 10.1016/j.patcog.2022.109231_bib0026 article-title: Disentangling and unifying graph convolutions for skeleton-based action recognition |
SSID | ssj0017142 |
Score | 2.5907304 |
Snippet | •The multi-scale representations of the skeleton improve the performance of recognition.•Learning different temporal dynamics according to different action... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 109231 |
SubjectTerms | Action recognition Graph convolutional network Skeleton topology |
Title | SpatioTemporal focus for skeleton-based action recognition |
URI | https://dx.doi.org/10.1016/j.patcog.2022.109231 |
Volume | 136 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KvXjxLdZHycHr2mR3k028lWKpir3YQm9hk92VqiSlj6u_3Z1sUhREwUsIYQfCZHYe2W_mA7iOGAu1TYOJ4YoTLqgiMQs0MaH0jQgl86v_HU_jaDTlD7Nw1oJB0wuDsMra9zufXnnr-kmv1mZvMZ9jjy-OHfStRVZxEhvNORdo5TcfW5gH8nu7ieEsILi6aZ-rMF4L6-7KF1slUopzlSgLfg5PX0LO8AD26lzR67vXOYSWLo5gv-Fh8OpteQy3zxUseuKmTL17psw3K3tdeqs3G1WQJBiDlfJcE4O3BQ2VxQlMh3eTwYjUnAgkZ4KuSWaYkQH1M0X9nEvNFFdJnMgAbzWLZGRsARVREedxFBop44TmNDM2y2GZstv7FNpFWegz8DIWS22rpcTYMJ5JYyslobTWWALicWEHWKOKNK8HhiNvxXvaIMNeU6fAFBWYOgV2gGylFm5gxh_rRaPl9NuHT61P_1Xy_N-SF7CLrPEOgHMJ7fVyo69sbrHOupXxdGGnf_84Gn8C-ULNhQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JasMwEB3S5NBeupemqw-9itiS195CaHCa5dIEchOyJZW2wQ5Z_r-SJYcWSgu9GGM8YJ7lWaw3bwAeQkICodJgJH3uIz_CHMXEE0gGzJVRwIhb_e8YT8J05j_Pg3kDenUvjKZVWt9vfHrlre2VjkWzs3x70z2-WnbQVSuyipPBHrS0OlXQhFZ3MEwnu82EyPONaDjxkDaoO-gqmtdSebzyVRWKGGtpJUy8nyPUl6jTP4ZDmy46XfNEJ9AQxSkc1aMYHPtlnsHjS8WMnhqhqYUjy3y7VseVs_5QgUXPCdbxijumj8HZ8YbK4hxm_adpL0V2LALKSYQ3KJNEMg-7Gcdu7jNBuM-TOGGePhUkZKFUNVSIoziPw0AyFic4x5lUiQ7JuPrCL6BZlIW4BCcjMROqYEqkiuQZk6pYirgQQleBesewDaSGguZWM1yPrljQmhz2Tg2AVANIDYBtQDurpdHM-OP-qEaZfnv3VLn1Xy2v_m15D_vpdDyio8FkeA0Heoi84ePcQHOz2opblWpssju7lD4BFfnQNg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SpatioTemporal+focus+for+skeleton-based+action+recognition&rft.jtitle=Pattern+recognition&rft.au=Wu%2C+Liyu&rft.au=Zhang%2C+Can&rft.au=Zou%2C+Yuexian&rft.date=2023-04-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=136&rft_id=info:doi/10.1016%2Fj.patcog.2022.109231&rft.externalDocID=S0031320322007105 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |