Optical flow and scene flow estimation: A survey

•To the best of our knowledge, this is the first survey paper to cover both optical flow and scene flow estimation comprehensively.•In contrast to existing surveys, this survey includes knowledge-driven, data-driven and hybrid-driven methods.•Comprehensive comparisons of existing methods on several...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 114; p. 107861
Main Authors Zhai, Mingliang, Xiang, Xuezhi, Lv, Ning, Kong, Xiangdong
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2021
Subjects
Online AccessGet full text
ISSN0031-3203
1873-5142
DOI10.1016/j.patcog.2021.107861

Cover

Loading…
Abstract •To the best of our knowledge, this is the first survey paper to cover both optical flow and scene flow estimation comprehensively.•In contrast to existing surveys, this survey includes knowledge-driven, data-driven and hybrid-driven methods.•Comprehensive comparisons of existing methods on several datasets are provided with insightful observations and sufficient analyses.•Some of the open issues and potential research directions are discussed. Motion analysis is one of the most fundamental and challenging problems in the field of computer vision, which can be widely applied in many areas, such as autonomous driving, action recognition, scene understanding, and robotics. In general, the displacement field between subsequent frames can be divided into two types: optical flow and scene flow. The optical flow represents the pixel motion of adjacent frames. In contrast, the scene flow is a 3D motion field of the dynamic scene between two frames. Traditional approaches for the estimation of optical flow and scene flow usually leverage the variational technique, which can be solved as an energy minimization process. In recent years, deep learning has emerged as a powerful technique for learning feature representations directly from data. It has led to remarkable progress in the field of optical flow and scene flow estimation. In this paper, we provide a comprehensive survey of optical flow and scene flow estimation. First, we briefly review the pioneering approaches that use variational technique and then we delve in detail into the deep learning-based approaches. Furthermore, we present insightful observations on evaluation issues, specifically benchmark datasets, evaluation metrics, and state-of-the-art performance. Finally, we give the promising directions for future research. To the best of our knowledge, we are the first to review both optical flow and scene flow estimation, and the first to cover both traditional and deep learning-based approaches.
AbstractList •To the best of our knowledge, this is the first survey paper to cover both optical flow and scene flow estimation comprehensively.•In contrast to existing surveys, this survey includes knowledge-driven, data-driven and hybrid-driven methods.•Comprehensive comparisons of existing methods on several datasets are provided with insightful observations and sufficient analyses.•Some of the open issues and potential research directions are discussed. Motion analysis is one of the most fundamental and challenging problems in the field of computer vision, which can be widely applied in many areas, such as autonomous driving, action recognition, scene understanding, and robotics. In general, the displacement field between subsequent frames can be divided into two types: optical flow and scene flow. The optical flow represents the pixel motion of adjacent frames. In contrast, the scene flow is a 3D motion field of the dynamic scene between two frames. Traditional approaches for the estimation of optical flow and scene flow usually leverage the variational technique, which can be solved as an energy minimization process. In recent years, deep learning has emerged as a powerful technique for learning feature representations directly from data. It has led to remarkable progress in the field of optical flow and scene flow estimation. In this paper, we provide a comprehensive survey of optical flow and scene flow estimation. First, we briefly review the pioneering approaches that use variational technique and then we delve in detail into the deep learning-based approaches. Furthermore, we present insightful observations on evaluation issues, specifically benchmark datasets, evaluation metrics, and state-of-the-art performance. Finally, we give the promising directions for future research. To the best of our knowledge, we are the first to review both optical flow and scene flow estimation, and the first to cover both traditional and deep learning-based approaches.
ArticleNumber 107861
Author Xiang, Xuezhi
Zhai, Mingliang
Lv, Ning
Kong, Xiangdong
Author_xml – sequence: 1
  givenname: Mingliang
  surname: Zhai
  fullname: Zhai, Mingliang
– sequence: 2
  givenname: Xuezhi
  surname: Xiang
  fullname: Xiang, Xuezhi
  email: xiangxuezhi@hrbeu.edu.cn
– sequence: 3
  givenname: Ning
  surname: Lv
  fullname: Lv, Ning
– sequence: 4
  givenname: Xiangdong
  surname: Kong
  fullname: Kong, Xiangdong
BookMark eNqFj8FKAzEQhoNUsK2-gYd9ga2ZJN3s9iCUolUo9KLnkE0mkmXdLUms9O3dup48KHMYZobvZ74ZmXR9h4TcAl0AheKuWRx0Mv3bglEGw0qWBVyQKZSS50sQbEKmlHLIOaP8isxibCgFORymhO4PyRvdZq7tPzPd2Swa7HAcMSb_rpPvu1W2zuJHOOLpmlw63Ua8-elz8vr48LJ5ynf77fNmvcsNlyzlteN1LYVkvJKu4tYKZMLapbYOOTgDlYNSLIXQUICjdYW1K7iosCgsZ0PNyWrMNaGPMaBTxqfvX1LQvlVA1dldNWp0V2d3NboPsPgFH8JgEk7_YfcjhoPY0WNQ0XjsDFof0CRle_93wBcbWXbI
CitedBy_id crossref_primary_10_3390_s24082450
crossref_primary_10_1109_TMECH_2023_3300729
crossref_primary_10_1049_cth2_12373
crossref_primary_10_1088_1361_6420_ad7495
crossref_primary_10_3390_app14146335
crossref_primary_10_1016_j_patcog_2022_109101
crossref_primary_10_1016_j_patcog_2024_110337
crossref_primary_10_1111_cgf_14774
crossref_primary_10_1016_j_cja_2023_09_012
crossref_primary_10_1109_TPAMI_2024_3410637
crossref_primary_10_1016_j_jocs_2022_101760
crossref_primary_10_1109_JSEN_2024_3386051
crossref_primary_10_3390_atmos14060953
crossref_primary_10_20965_jdr_2024_p0239
crossref_primary_10_1016_j_image_2021_116560
crossref_primary_10_1109_TGRS_2024_3369402
crossref_primary_10_1109_TGRS_2024_3514305
crossref_primary_10_1016_j_ecoinf_2022_101790
crossref_primary_10_1007_s11760_023_02776_9
crossref_primary_10_3390_math11091988
crossref_primary_10_1016_j_eswa_2024_124342
crossref_primary_10_1016_j_media_2024_103385
crossref_primary_10_1016_j_neunet_2025_107296
crossref_primary_10_3390_electronics13050812
crossref_primary_10_1016_j_oceaneng_2023_113693
crossref_primary_10_1109_TIM_2023_3343769
crossref_primary_10_5909_JBE_2024_29_6_809
crossref_primary_10_1109_ACCESS_2024_3496723
crossref_primary_10_21105_joss_04080
crossref_primary_10_1017_S1431927622011321
crossref_primary_10_1049_itr2_12370
crossref_primary_10_1109_TIP_2023_3345153
crossref_primary_10_1109_LRA_2022_3145057
crossref_primary_10_1088_1742_6596_2280_1_012038
crossref_primary_10_1016_j_cviu_2022_103418
crossref_primary_10_1109_TCSVT_2021_3135440
crossref_primary_10_3390_s23125435
crossref_primary_10_1007_s11554_023_01322_7
crossref_primary_10_1016_j_patcog_2023_109487
crossref_primary_10_1109_TCE_2024_3425610
crossref_primary_10_1109_ACCESS_2024_3382818
crossref_primary_10_1093_ehjdh_ztad077
crossref_primary_10_1088_1361_6420_ad9776
crossref_primary_10_1007_s11227_024_05957_6
crossref_primary_10_1145_3519021
crossref_primary_10_1016_j_jhydrol_2024_132446
crossref_primary_10_1111_cgf_14795
crossref_primary_10_1016_j_jrras_2024_101169
crossref_primary_10_1016_j_ecoinf_2021_101535
crossref_primary_10_3390_app13127027
crossref_primary_10_1109_TPAMI_2023_3319448
crossref_primary_10_1016_j_cviu_2024_104160
crossref_primary_10_1109_ACCESS_2023_3314188
crossref_primary_10_1016_j_optlaseng_2024_108502
crossref_primary_10_1016_j_neucom_2025_129899
crossref_primary_10_1364_AO_500442
crossref_primary_10_1016_j_neucom_2022_10_008
crossref_primary_10_4028_p_tCIe16
crossref_primary_10_1029_2024GL112000
crossref_primary_10_3389_frai_2021_768516
crossref_primary_10_3390_s24134035
crossref_primary_10_3390_s22218583
crossref_primary_10_1007_s11042_024_20246_3
crossref_primary_10_3390_app132413056
crossref_primary_10_1016_j_measurement_2024_116615
crossref_primary_10_1021_acsphotonics_3c01349
crossref_primary_10_1088_2632_2153_ad1a50
crossref_primary_10_1038_s41598_024_65003_6
crossref_primary_10_1109_JSYST_2023_3306380
crossref_primary_10_1007_s10489_023_05131_0
crossref_primary_10_1080_00295450_2024_2410610
crossref_primary_10_1016_j_neucom_2023_126768
crossref_primary_10_3390_s24051615
crossref_primary_10_1016_j_patcog_2023_109918
crossref_primary_10_1016_j_engappai_2025_110213
crossref_primary_10_3390_rs14081773
crossref_primary_10_1016_j_optlaseng_2022_107184
crossref_primary_10_1007_s11760_024_03544_z
crossref_primary_10_1109_TGRS_2024_3439621
crossref_primary_10_3390_s24113346
crossref_primary_10_1109_TNSRE_2023_3269569
crossref_primary_10_1016_j_cviu_2024_103959
Cites_doi 10.1109/34.121791
10.1109/TPAMI.2018.2859970
10.2307/426044
10.1016/0004-3702(81)90024-2
10.1109/TIP.2019.2903656
10.1007/s11263-019-01258-1
10.1109/TMM.2018.2815784
10.1007/978-3-540-24673-2_3
10.1007/s11263-010-0390-2
10.1109/TMM.2019.2929934
10.1109/ACCESS.2019.2898988
10.1007/s11263-006-8671-5
10.1007/s11263-011-0490-7
10.1007/978-3-540-34767-5_5
10.1109/TIP.2008.925381
10.1016/j.cviu.2015.02.008
10.1007/s11263-006-4331-z
10.1109/79.774934
10.1007/BF00131147
10.1109/TCSVT.2019.2943140
10.1109/TCSVT.2018.2805101
10.1109/TPAMI.2011.236
10.1109/TCSVT.2017.2720175
10.1109/TCSVT.2014.2308628
10.1007/s11263-011-0422-6
10.1007/BF01420984
10.1109/WACV45572.2020.9093302
10.1109/ACCESS.2018.2863233
10.1016/j.neucom.2019.08.040
10.1007/s11263-005-3960-y
10.1109/TPAMI.2010.143
10.1109/TPAMI.2005.63
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2021.107861
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2021_107861
S0031320321000480
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c372t-bf3bb7472397f93dd4e24dd5adfe31fc19f184544a161f0b9ebf6349e66d32323
IEDL.DBID .~1
ISSN 0031-3203
IngestDate Tue Jul 01 02:36:33 EDT 2025
Thu Apr 24 23:02:32 EDT 2025
Fri Feb 23 02:45:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Variational model
Convolutional neural networks (CNNs)
Scene flow
Motion analysis
Optical flow
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-bf3bb7472397f93dd4e24dd5adfe31fc19f184544a161f0b9ebf6349e66d32323
ParticipantIDs crossref_citationtrail_10_1016_j_patcog_2021_107861
crossref_primary_10_1016_j_patcog_2021_107861
elsevier_sciencedirect_doi_10_1016_j_patcog_2021_107861
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References X.T. Tak-Wai Hui, C.C. Loy, A lightweight optical flow cnnrevisiting data fidelity and regularization, arXiv
Menze, Heipke, Geiger (bib0007) 2015
Quiroga, Brox, Devernay, Crowley (bib0094) 2014
Hur, Roth (bib0077) 2019
Ferstl, Reinbacher, Riegler, Rther, Bischof (bib0084) 2014; 1
Dewan, Caselitz, Tipaldi, Burgard (bib0112) 2016
Horncek, Fitzgibbon, Rother (bib0095) 2014
Mitiche, Bouthemy (bib0009) 1996; 19
Ince, Konrad (bib0037) 2008; 17
Ren, Yan, Ni, Liu, Yang, Zha (bib0069) 2017
Zhang, Ge, Chen, Li, Liu, Chen (bib0050) 2020; 22
Mahjourian, Wicke, Angelova (bib0103) 2018
van de Weijer, Gevers (bib0043) 2004; 3
Chen, Koltun (bib0031) 2016
Vogel, Schindler, Roth (bib0087) 2013
Hu, Song, Li (bib0033) 2016
Zimmer, Bruhn, Weickert (bib0013) 2011; 93
Vedula, Rander, Collins, Kanade (bib0002) 2005; 27
Geiger, Lenz, Urtasun (bib0006) 2012
Chen, Cai, Lai, Xie (bib0049) 2019; 29
Zhao, Li (bib0053) 2017
Fortun, Bouthemy, Kervrann (bib0015) 2015; 134
Papenberg, Bruhn, Brox, Didas, Weickert (bib0040) 2006; 67
Menze, Heipke, Geiger (bib0034) 2015
Quiroga, Devernay, Crowley (bib0093) 2013
Yin, Shi (bib0104) 2018
Su, Jampani, Sun, Maji, Kalogerakis, Yang, Kautz (bib0121) 2018
Liu, Lyu, King, Xu (bib0078) 2019
Lv, Kim, Troccoli, Sun, Rehg, Kautz (bib0099) 2018
Zou, Luo, Huang (bib0106) 2018
Ilg, Mayer, Saikia, Keuper, Dosovitskiy, Brox (bib0051) 2017
Güney, Geiger (bib0035) 2017
Schuster, Wasenmuller, Kuschk, Bailer, Stricker (bib0089) 2018
Liu, Qi, Guibas (bib0117) 2019
Yu, Harley, Derpanis (bib0068) 2016
X.X. Zike Yan, Scene flow estimation: a survey, arXiv
Gadot, Wolf (bib0036) 2016
Hur, Roth (bib0039) 2017
Jaimez, Souiai, Gonzalez-Jimenez, Cremers (bib0097) 2015
Cao, Kar, Hne, Malik (bib0108) 2019
Bao, Yang, Jin (bib0027) 2014
Jiang, Sun, Jampani, Lv, Learned-Miller, Kautz (bib0110) 2019
Ilg, Saikia, Keuper, Brox (bib0098) 2018
(2020).
Weinzaepfel, Revaud, Harchaoui, Schmid (bib0026) 2013
Menze, Geiger (bib0088) 2015
Zhao, Sheng, Dong, Chang, Xu (bib0065) 2020
Gu, Wang, Wu, Lee, Wang (bib0115) 2019
Liu, King, Liu, Xu (bib0079) 2019
Ma, Wang, Hu, Xiong, Urtasun (bib0109) 2019
Zhu, Newsam (bib0072) 2018
Zhai, Xiang, Zhang, Lv, Saddik (bib0054) 2019; 368
Pons, Keriven, Faugeras (bib0081) 2007; 72
Wang, Yang, Yang, Zhao, Wang, Xu (bib0073) 2018
Sun, Yang, Liu, Kautz (bib0061) 2018
W. Wu, Z. Wang, Z. Li, W. Liu, L. Fuxin, PointPWC-Net: a coarse-to-fine network for supervised and self-supervised scene flow estimation on 3D point clouds, arXiv
Chao, Gu, Napolitano (bib0016) 2013
Li, Hu, Song, Rao, Wang (bib0024) 2018; 28
Z. Wang, S. Li, H. Howard-Jenkins, V.A. Prisacariu, M. Chen, FlowNet3D++: geometric losses for deep scene flow estimation, arXiv
Hu, Wang, Tan (bib0059) 2018; 20
Mohamed, Rashwan, Mertsching, Garca, Puig (bib0041) 2014; 24
(2016).
Mayer, Ilg, Husser, Fischer, Cremers, Dosovitskiy, Brox (bib0005) 2016
Xiao, Cheng, Sawhney, Rao, Isnardi (bib0046) 2006
B. Lucas, T. Kanade, An iterative technique of image registration and its application to stereo (1981). The 7th International Joint Conference on Artificial Intelligence, IJCAI. (1981) 674–679.
Lai, Tsai, Chiu (bib0111) 2019
Lai, Huang, Yang (bib0074) 2017
Wedel, Rabe, Vaudrey, Brox, Franke, Cremers (bib0083) 2008
Bao, Zhang, Chen, Gao (bib0048) 2019; 28
Basha, Moses, Kiryati (bib0086) 2010
Yang, Soatto (bib0075) 2018
Yang, Wang, Wang, Xu, Nevatia (bib0102) 2018
Zhai, Xiang, Zhang, Lv, El Saddik (bib0056) 2019; 7
Ayvaci, Raptis, Soatto (bib0038) 2011; 97
Zhu, Newsam (bib0070) 2017
Quiroga, Devernay, Crowley (bib0092) 2012
Xu, Jia, Matsushita (bib0023) 2012; 34
Tu, Van Gemeren, Veltkamp (bib0045) 2015
R. Schuster, O. Wasenmüller, C. Unger, G. Kuschk, D. Stricker, Sceneflowfields++: multi-frame matching, visibility prediction, and robust interpolation for scene flow estimation, arXiv
Xuezhi, Ali, Zhai, Xiao (bib0019) 2017
Butler, Wulff, Stanley, Black (bib0003) 2012
Tu, Xie, Zhang, Poppe, Veltkamp, Li, Yuan (bib0017) 2019; 72
Horn, Schunck (bib0020) 1981; 17
Behl, Paschalidou, Donn, Geiger (bib0114) 2019
Eigen, Puhrsch, Fergus (bib0123) 2014
Hadfield, Bowden (bib0091) 2011
J.D. Zachary Teed, Raft: recurrent all-pairs field transforms for optical flow
Stiller, Konrad (bib0010) 1999; 16
Revaud, Weinzaepfel, Harchaoui, Schmid (bib0032) 2015
Wang, Wang, Yang, Luo, Yang, Xu (bib0105) 2019
Brox, Malik (bib0025) 2011; 33
Meister, Hur, Roth (bib0071) 2018
(2019).
Jampani, Kiefel, Gehler (bib0116) 2016
Bao, Zhang, Chen, Gao (bib0047) 2018
Mileva, Bruhn, Weickert (bib0044) 2007
Hui, Tang, Loy (bib0062) 2018
Xiang, Zhai, Zhang, Qiao, El Saddik (bib0055) 2018; 6
Ushani, Wolcott, Walls, Eustice (bib0113) 2017
Weickert, Bruhn, Brox, Papenberg (bib0011) 2006; 10
Dai, Huang, Nguyen (bib0060) 2018
Lopez, Moreno-Noguer, Sanfeliu (bib0052) 2017
T. Brox, A. Bruhn, N. Papenberg, J. Weickert, High accuracy optical flow estimation based on a theory for warping, volume 3024, 2004, pp. 25–36.
Zhai, Xiang, Zhang, Lv, El Saddik (bib0064) 2020; 30
Sun, Sudderth, Pfister (bib0096) 2015
Cech, Sanchez-Riera, Horaud (bib0085) 2011
Sun, Roth, Black (bib0012) 2010
Ranjan, Black (bib0058) 2017
Dosovitskiy, Fischer, Ilg, Husser, Hazirbas, Golkov, van der Smagt, Cremers, Brox (bib0004) 2015
Chen, Jin, Lin, Cohen, Wu (bib0028) 2013
Besl, McKay (bib0122) 1992; 14
Baker, Roth, Scharstein, Black, Lewis, Szeliski (bib0080) 2007
Zhou, Brown, Snavely, Lowe (bib0100) 2017
Sun, Roth, Black (bib0029) 2010
Huguet, Devernay (bib0082) 2007
Barron, Fleet, Beauchemin (bib0008) 1994; 12
Yang, Wang, Xu, Zhao, Nevatia (bib0101) 2018
Aujol, Gilboa, Chan, Osher (bib0042) 2006; 67
Janai, Güney, Ranjan, Black, Geiger (bib0076) 2018
Baker, Scharstein, Lewis, Roth, Black, Szeliski (bib0014) 2007; 92
Arnheim, Gibson (bib0001) 1952; 11
Ahmadi, Patras (bib0067) 2016
Ranjan, Jampani, Balles, Kim, Sun, Wulff, Black (bib0107) 2019
Qi, Yi, Su, Guibas (bib0118) 2017
Cheng, Tsai, Wang, Yang (bib0057) 2017
Bailer, Taetz, Stricker (bib0030) 2019; 41
Pons (10.1016/j.patcog.2021.107861_bib0081) 2007; 72
Aujol (10.1016/j.patcog.2021.107861_bib0042) 2006; 67
Hui (10.1016/j.patcog.2021.107861_bib0062) 2018
Mitiche (10.1016/j.patcog.2021.107861_bib0009) 1996; 19
Ince (10.1016/j.patcog.2021.107861_bib0037) 2008; 17
10.1016/j.patcog.2021.107861_bib0066
10.1016/j.patcog.2021.107861_bib0063
Vogel (10.1016/j.patcog.2021.107861_bib0087) 2013
Behl (10.1016/j.patcog.2021.107861_bib0114) 2019
Dosovitskiy (10.1016/j.patcog.2021.107861_bib0004) 2015
Cheng (10.1016/j.patcog.2021.107861_bib0057) 2017
Papenberg (10.1016/j.patcog.2021.107861_bib0040) 2006; 67
Schuster (10.1016/j.patcog.2021.107861_bib0089) 2018
Tu (10.1016/j.patcog.2021.107861_bib0017) 2019; 72
Menze (10.1016/j.patcog.2021.107861_bib0088) 2015
Meister (10.1016/j.patcog.2021.107861_bib0071) 2018
Quiroga (10.1016/j.patcog.2021.107861_bib0092) 2012
Janai (10.1016/j.patcog.2021.107861_bib0076) 2018
Ren (10.1016/j.patcog.2021.107861_bib0069) 2017
Brox (10.1016/j.patcog.2021.107861_bib0025) 2011; 33
Liu (10.1016/j.patcog.2021.107861_bib0078) 2019
Chen (10.1016/j.patcog.2021.107861_bib0031) 2016
Ma (10.1016/j.patcog.2021.107861_bib0109) 2019
Butler (10.1016/j.patcog.2021.107861_bib0003) 2012
Zhai (10.1016/j.patcog.2021.107861_bib0056) 2019; 7
Chao (10.1016/j.patcog.2021.107861_bib0016) 2013
Ayvaci (10.1016/j.patcog.2021.107861_bib0038) 2011; 97
Mileva (10.1016/j.patcog.2021.107861_bib0044) 2007
Mayer (10.1016/j.patcog.2021.107861_bib0005) 2016
Lai (10.1016/j.patcog.2021.107861_bib0074) 2017
Gadot (10.1016/j.patcog.2021.107861_bib0036) 2016
Yang (10.1016/j.patcog.2021.107861_bib0075) 2018
Hu (10.1016/j.patcog.2021.107861_bib0059) 2018; 20
Huguet (10.1016/j.patcog.2021.107861_bib0082) 2007
10.1016/j.patcog.2021.107861_bib0120
Besl (10.1016/j.patcog.2021.107861_bib0122) 1992; 14
Zou (10.1016/j.patcog.2021.107861_bib0106) 2018
Li (10.1016/j.patcog.2021.107861_bib0024) 2018; 28
Eigen (10.1016/j.patcog.2021.107861_bib0123) 2014
Xu (10.1016/j.patcog.2021.107861_bib0023) 2012; 34
Basha (10.1016/j.patcog.2021.107861_bib0086) 2010
Horncek (10.1016/j.patcog.2021.107861_bib0095) 2014
Sun (10.1016/j.patcog.2021.107861_bib0096) 2015
Liu (10.1016/j.patcog.2021.107861_bib0079) 2019
Zhou (10.1016/j.patcog.2021.107861_bib0100) 2017
Bailer (10.1016/j.patcog.2021.107861_bib0030) 2019; 41
Stiller (10.1016/j.patcog.2021.107861_bib0010) 1999; 16
Dewan (10.1016/j.patcog.2021.107861_bib0112) 2016
Xiao (10.1016/j.patcog.2021.107861_bib0046) 2006
10.1016/j.patcog.2021.107861_bib0119
Revaud (10.1016/j.patcog.2021.107861_bib0032) 2015
Hadfield (10.1016/j.patcog.2021.107861_bib0091) 2011
Yu (10.1016/j.patcog.2021.107861_bib0068) 2016
Fortun (10.1016/j.patcog.2021.107861_bib0015) 2015; 134
Zhao (10.1016/j.patcog.2021.107861_bib0053) 2017
Bao (10.1016/j.patcog.2021.107861_bib0027) 2014
Baker (10.1016/j.patcog.2021.107861_bib0080) 2007
Geiger (10.1016/j.patcog.2021.107861_bib0006) 2012
Yang (10.1016/j.patcog.2021.107861_bib0102) 2018
Qi (10.1016/j.patcog.2021.107861_bib0118) 2017
Ranjan (10.1016/j.patcog.2021.107861_bib0058) 2017
10.1016/j.patcog.2021.107861_bib0021
Menze (10.1016/j.patcog.2021.107861_bib0034) 2015
Zhu (10.1016/j.patcog.2021.107861_bib0072) 2018
10.1016/j.patcog.2021.107861_bib0022
Jaimez (10.1016/j.patcog.2021.107861_bib0097) 2015
Jiang (10.1016/j.patcog.2021.107861_bib0110) 2019
Sun (10.1016/j.patcog.2021.107861_bib0029) 2010
Hur (10.1016/j.patcog.2021.107861_bib0039) 2017
Ahmadi (10.1016/j.patcog.2021.107861_bib0067) 2016
Wang (10.1016/j.patcog.2021.107861_bib0105) 2019
Menze (10.1016/j.patcog.2021.107861_bib0007) 2015
Lai (10.1016/j.patcog.2021.107861_bib0111) 2019
Sun (10.1016/j.patcog.2021.107861_bib0061) 2018
Zhao (10.1016/j.patcog.2021.107861_bib0065) 2020
Ushani (10.1016/j.patcog.2021.107861_bib0113) 2017
Xiang (10.1016/j.patcog.2021.107861_bib0055) 2018; 6
10.1016/j.patcog.2021.107861_bib0018
Chen (10.1016/j.patcog.2021.107861_bib0049) 2019; 29
Liu (10.1016/j.patcog.2021.107861_bib0117) 2019
Güney (10.1016/j.patcog.2021.107861_bib0035) 2017
Baker (10.1016/j.patcog.2021.107861_bib0014) 2007; 92
Hur (10.1016/j.patcog.2021.107861_bib0077) 2019
10.1016/j.patcog.2021.107861_bib0090
Zhai (10.1016/j.patcog.2021.107861_bib0064) 2020; 30
van de Weijer (10.1016/j.patcog.2021.107861_bib0043) 2004; 3
Weickert (10.1016/j.patcog.2021.107861_bib0011) 2006; 10
Cech (10.1016/j.patcog.2021.107861_bib0085) 2011
Cao (10.1016/j.patcog.2021.107861_bib0108) 2019
Ferstl (10.1016/j.patcog.2021.107861_bib0084) 2014; 1
Mahjourian (10.1016/j.patcog.2021.107861_bib0103) 2018
Wedel (10.1016/j.patcog.2021.107861_bib0083) 2008
Ilg (10.1016/j.patcog.2021.107861_bib0098) 2018
Bao (10.1016/j.patcog.2021.107861_bib0048) 2019; 28
Yin (10.1016/j.patcog.2021.107861_bib0104) 2018
Lopez (10.1016/j.patcog.2021.107861_bib0052) 2017
Quiroga (10.1016/j.patcog.2021.107861_bib0093) 2013
Vedula (10.1016/j.patcog.2021.107861_bib0002) 2005; 27
Su (10.1016/j.patcog.2021.107861_bib0121) 2018
Ilg (10.1016/j.patcog.2021.107861_bib0051) 2017
Zimmer (10.1016/j.patcog.2021.107861_bib0013) 2011; 93
Zhu (10.1016/j.patcog.2021.107861_bib0070) 2017
Lv (10.1016/j.patcog.2021.107861_bib0099) 2018
Jampani (10.1016/j.patcog.2021.107861_bib0116) 2016
Gu (10.1016/j.patcog.2021.107861_bib0115) 2019
Arnheim (10.1016/j.patcog.2021.107861_bib0001) 1952; 11
Ranjan (10.1016/j.patcog.2021.107861_bib0107) 2019
Mohamed (10.1016/j.patcog.2021.107861_bib0041) 2014; 24
Barron (10.1016/j.patcog.2021.107861_bib0008) 1994; 12
Dai (10.1016/j.patcog.2021.107861_bib0060) 2018
Zhai (10.1016/j.patcog.2021.107861_bib0054) 2019; 368
Wang (10.1016/j.patcog.2021.107861_bib0073) 2018
Xuezhi (10.1016/j.patcog.2021.107861_bib0019) 2017
Tu (10.1016/j.patcog.2021.107861_bib0045) 2015
Yang (10.1016/j.patcog.2021.107861_bib0101) 2018
Hu (10.1016/j.patcog.2021.107861_bib0033) 2016
Quiroga (10.1016/j.patcog.2021.107861_bib0094) 2014
Sun (10.1016/j.patcog.2021.107861_bib0012) 2010
Chen (10.1016/j.patcog.2021.107861_bib0028) 2013
Bao (10.1016/j.patcog.2021.107861_bib0047) 2018
Horn (10.1016/j.patcog.2021.107861_bib0020) 1981; 17
Weinzaepfel (10.1016/j.patcog.2021.107861_bib0026) 2013
Zhang (10.1016/j.patcog.2021.107861_bib0050) 2020; 22
References_xml – year: 2017
  ident: bib0052
  article-title: Joint coarse-and-fine reasoning for deep optical flow
  publication-title: 2017 IEEE International Conference on Image Processing (ICIP)
– year: 2017
  ident: bib0069
  article-title: Unsupervised deep learning for optical flow estimation
  publication-title: AAAI Conference on Artificial Intelligence (AAAI)
– volume: 3
  start-page: 1835
  year: 2004
  end-page: 1838
  ident: bib0043
  article-title: Robust optical flow from photometric invariants
  publication-title: 2004 International Conference on Image Processing, 2004. ICIP ’04.
– start-page: 3338
  year: 2018
  end-page: 3342
  ident: bib0060
  article-title: Pyramid structured optical flow learning with motion cues
  publication-title: 25th IEEE International Conference on Image Processing (ICIP)
– start-page: 2443
  year: 2013
  end-page: 2450
  ident: bib0028
  article-title: Large displacement optical flow from nearest neighbor fields
  publication-title: 2013 IEEE Conference on Computer Vision and Pattern Recognition
– volume: 20
  start-page: 2814
  year: 2018
  end-page: 2823
  ident: bib0059
  article-title: Recurrent spatial pyramid CNN for optical flow estimation
  publication-title: IEEE Trans. Multimed.
– start-page: 3609
  year: 2019
  end-page: 3617
  ident: bib0109
  article-title: Deep rigid instance scene flow
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 611
  year: 2012
  end-page: 625
  ident: bib0003
  article-title: A naturalistic open source movie for optical flow evaluation
  publication-title: European Conf. on Computer Vision (ECCV)
– reference: X.X. Zike Yan, Scene flow estimation: a survey, arXiv:
– start-page: 1890
  year: 2019
  end-page: 1899
  ident: bib0111
  article-title: Bridging stereo matching and optical flow via spatiotemporal correspondence
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 33
  start-page: 500
  year: 2011
  end-page: 513
  ident: bib0025
  article-title: Large displacement optical flow: descriptor matching in variational motion estimation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 211
  year: 2006
  end-page: 224
  ident: bib0046
  article-title: Bilateral filtering-based optical flow estimation with occlusion detection
  publication-title: Computer Vision – ECCV 2006
– start-page: 6612
  year: 2017
  end-page: 6619
  ident: bib0100
  article-title: Unsupervised learning of depth and EGO-motion from video
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 3343
  year: 2018
  end-page: 3347
  ident: bib0047
  article-title: KalmanFlow: efficient Kalman filtering for video optical flow
  publication-title: 2018 25th IEEE International Conference on Image Processing (ICIP)
– volume: 93
  start-page: 368
  year: 2011
  end-page: 388
  ident: bib0013
  article-title: Optic flow in harmony
  publication-title: Int. J. Comput. Vis.
– start-page: 312
  year: 2017
  end-page: 321
  ident: bib0039
  article-title: MirrorFlow: exploiting symmetries in joint optical flow and occlusion estimation
  publication-title: 2017 IEEE International Conference on Computer Vision (ICCV)
– volume: 6
  start-page: 43222
  year: 2018
  end-page: 43232
  ident: bib0055
  article-title: Deep optical flow supervised learning with prior assumptions
  publication-title: IEEE Access
– start-page: 5099
  year: 2017
  end-page: 5108
  ident: bib0118
  article-title: PointNet++: deep hierarchical feature learning on point sets in a metric space
  publication-title: Advances in Neural Information Processing Systems 30
– volume: 97
  start-page: 322
  year: 2011
  end-page: 338
  ident: bib0038
  article-title: Sparse occlusion detection with optical flow
  publication-title: Int. J. Comput. Vis.
– start-page: 6277
  year: 2020
  end-page: 6286
  ident: bib0065
  article-title: Maskflownet: asymmetric feature matching with learnable occlusion mask
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 92
  start-page: 1
  year: 2007
  end-page: 31
  ident: bib0014
  article-title: A database and evaluation methodology for optical flow
  publication-title: Int. J. Comput. Vis.
– start-page: 5747
  year: 2019
  end-page: 5756
  ident: bib0077
  article-title: Iterative residual refinement for joint optical flow and occlusion estimation
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 2720
  year: 2017
  end-page: 2729
  ident: bib0058
  article-title: Optical flow estimation using a spatial pyramid network
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 50
  year: 2012
  end-page: 57
  ident: bib0092
  article-title: Scene flow by tracking in intensity and depth data
  publication-title: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
– start-page: 790
  year: 2017
  end-page: 794
  ident: bib0070
  article-title: Densenet for dense flow
  publication-title: IEEE International Conference on Image Processing (ICIP)
– volume: 72
  start-page: 179
  year: 2007
  end-page: 193
  ident: bib0081
  article-title: Multi-view stereo reconstruction and scene flow estimation with a global image-based matching score
  publication-title: Int. J. Comput. Vis.
– start-page: 4884
  year: 2018
  end-page: 4893
  ident: bib0073
  article-title: Occlusion aware unsupervised learning of optical flow
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition
– reference: W. Wu, Z. Wang, Z. Li, W. Liu, L. Fuxin, PointPWC-Net: a coarse-to-fine network for supervised and self-supervised scene flow estimation on 3D point clouds, arXiv:
– volume: 17
  start-page: 185
  year: 1981
  end-page: 203
  ident: bib0020
  article-title: Determining optical flow
  publication-title: Artif. Intell.
– start-page: 38
  year: 2018
  end-page: 55
  ident: bib0106
  article-title: DF-Net: unsupervised joint learning of depth and flow using cross-task consistency
  publication-title: Computer Vision – ECCV 2018
– volume: 368
  start-page: 124
  year: 2019
  end-page: 132
  ident: bib0054
  article-title: Optical flow estimation using channel attention mechanism and dilated convolutional neural networks
  publication-title: Neurocomputing
– start-page: 5587
  year: 2019
  end-page: 5596
  ident: bib0108
  article-title: Learning independent object motion from unlabelled stereoscopic videos
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 686
  year: 2017
  end-page: 695
  ident: bib0057
  article-title: SegFlow: joint learning for video object segmentation and optical flow
  publication-title: IEEE International Conference on Computer Vision (ICCV)
– volume: 67
  start-page: 141
  year: 2006
  end-page: 158
  ident: bib0040
  article-title: Highly accurate optic flow computation with theoretically justified warping
  publication-title: Int. J. Comput. Vis.
– start-page: 2432
  year: 2010
  end-page: 2439
  ident: bib0012
  article-title: Secrets of optical flow estimation and their principles
  publication-title: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
– volume: 22
  start-page: 349
  year: 2020
  end-page: 364
  ident: bib0050
  article-title: Refined TV-L1 optical flow estimation using joint filtering
  publication-title: IEEE Trans. Multimed.
– start-page: 413
  year: 2015
  end-page: 427
  ident: bib0045
  article-title: Improved color patch similarity measure based weighted median filter
  publication-title: Computer Vision – ACCV 2014
– reference: (2016).
– volume: 28
  start-page: 4233
  year: 2019
  end-page: 4246
  ident: bib0048
  article-title: KalmanFlow 2.0: efficient video optical flow estimation via context-aware Kalman filtering
  publication-title: IEEE Trans. Image Process.
– start-page: 3129
  year: 2011
  end-page: 3136
  ident: bib0085
  article-title: Scene flow estimation by growing correspondence seeds
  publication-title: CVPR 2011
– start-page: 484
  year: 2018
  end-page: 501
  ident: bib0099
  article-title: Learning rigidity in dynamic scenes with a moving camera for 3D motion field estimation
  publication-title: Computer Vision – ECCV 2018
– start-page: 3850
  year: 2013
  end-page: 3854
  ident: bib0093
  article-title: Local/global scene flow estimation
  publication-title: IEEE International Conference on Image Processing
– start-page: 626
  year: 2018
  end-page: 643
  ident: bib0098
  article-title: Occlusions, motion and depth boundaries with a generic network for disparity, optical flow or scene flow estimation
  publication-title: Computer Vision – ECCV 2018
– year: 2019
  ident: bib0079
  article-title: DDflow: learning optical flow with unlabeled data distillation
  publication-title: AAAI
– volume: 1
  start-page: 285
  year: 2014
  end-page: 292
  ident: bib0084
  article-title: aTGV-SF: dense variational scene flow through projective warping and higher order regularization
  publication-title: 2nd International Conference on 3D Vision
– start-page: 207
  year: 2017
  end-page: 224
  ident: bib0035
  article-title: Deep discrete flow
  publication-title: Computer Vision – ACCV 2016
– reference: B. Lucas, T. Kanade, An iterative technique of image registration and its application to stereo (1981). The 7th International Joint Conference on Artificial Intelligence, IJCAI. (1981) 674–679.
– start-page: 3249
  year: 2019
  end-page: 3258
  ident: bib0115
  article-title: Hplflownet: hierarchical permutohedral lattice flownet for scene flow estimation on large-scale point clouds
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 2366
  year: 2014
  end-page: 2374
  ident: bib0123
  article-title: Depth map prediction from a single image using a multi-scale deep network
  publication-title: Advances in Neural Information Processing Systems 27
– volume: 27
  start-page: 475
  year: 2005
  end-page: 480
  ident: bib0002
  article-title: Three-dimensional scene flow
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 5704
  year: 2016
  end-page: 5712
  ident: bib0033
  article-title: Efficient coarse-to-fine patch match for large displacement optical flow
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 548
  year: 2015
  end-page: 556
  ident: bib0096
  article-title: Layered RGBD scene flow estimation
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 1
  year: 2007
  end-page: 7
  ident: bib0082
  article-title: A variational method for scene flow estimation from stereo sequences
  publication-title: IEEE 11th International Conference on Computer Vision
– volume: 28
  start-page: 2233
  year: 2018
  end-page: 2245
  ident: bib0024
  article-title: Coarse-to-fine patchmatch for dense correspondence
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– year: 2019
  ident: bib0110
  article-title: Sense: a shared encoder network for scene-flow estimation
  publication-title: The IEEE International Conference on Computer Vision (ICCV)
– volume: 24
  start-page: 1499
  year: 2014
  end-page: 1508
  ident: bib0041
  article-title: Illumination-robust optical flow using a local directional pattern
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– start-page: 739
  year: 2008
  end-page: 751
  ident: bib0083
  article-title: Efficient dense scene flow from sparse or dense stereo data
  publication-title: Computer Vision – ECCV 2008
– volume: 72
  start-page: 9
  year: 2019
  end-page: 24
  ident: bib0017
  article-title: A survey of variational and CNN-based optical flow techniques
  publication-title: Signal Process.
– start-page: 5424
  year: 2017
  end-page: 5429
  ident: bib0019
  article-title: Scene flow estimation methodologies and applications a review
  publication-title: 2017 29th Chinese Control And Decision Conference (CCDC)
– start-page: 225
  year: 2018
  end-page: 234
  ident: bib0102
  article-title: Lego: learning edge with geometry all at once by watching videos
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 16
  year: 2015
  end-page: 28
  ident: bib0034
  article-title: Discrete optimization for optical flow
  publication-title: Pattern Recognition
– reference: X.T. Tak-Wai Hui, C.C. Loy, A lightweight optical flow cnnrevisiting data fidelity and regularization, arXiv:
– start-page: 1765
  year: 2016
  end-page: 1770
  ident: bib0112
  article-title: Rigid scene flow for 3D LIDAR scans
  publication-title: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
– start-page: 4706
  year: 2016
  end-page: 4714
  ident: bib0031
  article-title: Full flow: optical flow estimation by global optimization over regular grids
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 12232
  year: 2019
  end-page: 12241
  ident: bib0107
  article-title: Competitive collaboration: Joint unsupervised learning of depth, camera motion, optical flow and motion segmentation
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 567
  year: 2014
  end-page: 582
  ident: bib0094
  article-title: Dense semi-rigid scene flow estimation from RGBD images
  publication-title: Computer Vision – ECCV 2014
– start-page: 282
  year: 2018
  end-page: 298
  ident: bib0075
  article-title: Conditional prior networks for optical flow
  publication-title: Computer Vision – ECCV 2018
– start-page: 5666
  year: 2017
  end-page: 5673
  ident: bib0113
  article-title: A learning approach for real-time temporal scene flow estimation from LIDAR data
  publication-title: IEEE International Conference on Robotics and Automation (ICRA)
– start-page: 713
  year: 2018
  end-page: 731
  ident: bib0076
  article-title: Unsupervised learning of multi-frame optical flow with occlusions
  publication-title: Computer Vision – ECCV 2018
– start-page: 3534
  year: 2014
  end-page: 3541
  ident: bib0027
  article-title: Fast edge-preserving patchmatch for large displacement optical flow
  publication-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition
– year: 2018
  ident: bib0101
  article-title: Unsupervised learning of geometry from videos with edge-aware depth-normal consistency
  publication-title: AAAI Conference on Artificial Intelligence
– volume: 7
  start-page: 22566
  year: 2019
  end-page: 22578
  ident: bib0056
  article-title: Learning optical flow using deep dilated residual networks
  publication-title: IEEE Access
– reference: R. Schuster, O. Wasenmüller, C. Unger, G. Kuschk, D. Stricker, Sceneflowfields++: multi-frame matching, visibility prediction, and robust interpolation for scene flow estimation, arXiv:
– start-page: 354
  year: 2017
  end-page: 364
  ident: bib0074
  article-title: Semi-supervised learning for optical flow with generative adversarial networks
  publication-title: Advances in Neural Information Processing Systems 30
– volume: 12
  start-page: 43
  year: 1994
  end-page: 77
  ident: bib0008
  article-title: Performance of optical flow techniques
  publication-title: Int. J. Comput. Vis.
– volume: 134
  start-page: 1
  year: 2015
  end-page: 21
  ident: bib0015
  article-title: Optical flow modeling and computation: a survey
  publication-title: Comput. Vis. Image Underst.
– year: 2018
  ident: bib0071
  article-title: UnFlow: unsupervised learning of optical flow with a bidirectional census loss
  publication-title: AAAI, New Orleans, Louisiana
– volume: 29
  start-page: 1350
  year: 2019
  end-page: 1364
  ident: bib0049
  article-title: A filtering-based framework for optical flow estimation
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– start-page: 1385
  year: 2013
  end-page: 1392
  ident: bib0026
  article-title: DeepFlow: large displacement optical flow with deep matching
  publication-title: 2013 IEEE International Conference on Computer Vision
– start-page: 1629
  year: 2016
  end-page: 1633
  ident: bib0067
  article-title: Unsupervised convolutional neural networks for motion estimation
  publication-title: IEEE International Conference on Image Processing (ICIP)
– reference: (2020).
– start-page: 3
  year: 2016
  end-page: 10
  ident: bib0068
  article-title: Back to basics: Unsupervised learning of optical flow via brightness constancy and motion smoothness
  publication-title: Computer Vision – ECCV 2016 Workshops
– reference: T. Brox, A. Bruhn, N. Papenberg, J. Weickert, High accuracy optical flow estimation based on a theory for warping, volume 3024, 2004, pp. 25–36.
– volume: 30
  start-page: 3663
  year: 2020
  end-page: 3674
  ident: bib0064
  article-title: Optical flow estimation using dual self-attention pyramid networks
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– start-page: 98
  year: 2015
  end-page: 104
  ident: bib0097
  article-title: A primal-dual framework for real-time dense RGB-D scene flow
  publication-title: IEEE International Conference on Robotics and Automation (ICRA)
– volume: 10
  start-page: 103
  year: 2006
  end-page: 136
  ident: bib0011
  article-title: A survey on variational optic flow methods for small displacements
  publication-title: Mathematical Models for Registration and Applications to Medical Imaging
– start-page: 4236
  year: 2016
  end-page: 4245
  ident: bib0036
  article-title: Patchbatch: a batch augmented loss for optical flow
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 8981
  year: 2018
  end-page: 8989
  ident: bib0062
  article-title: Liteflownet: a lightweight convolutional neural network for optical flow estimation
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 1647
  year: 2017
  end-page: 1655
  ident: bib0051
  article-title: Flownet 2.0: evolution of optical flow estimation with deep networks
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 1377
  year: 2013
  end-page: 1384
  ident: bib0087
  article-title: Piecewise rigid scene flow
  publication-title: IEEE International Conference on Computer Vision
– start-page: 5667
  year: 2018
  end-page: 5675
  ident: bib0103
  article-title: Unsupervised learning of depth and EGO-motion from monocular video using 3D geometric constraints
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 19
  start-page: 29
  year: 1996
  end-page: 55
  ident: bib0009
  article-title: Computation and analysis of image motion: a synopsis of current problems and methods
  publication-title: Int. J. Comput. Vis.
– volume: 16
  start-page: 70
  year: 1999
  end-page: 91
  ident: bib0010
  article-title: Estimating motion in image sequences
  publication-title: IEEE Signal Process. Mag.
– start-page: 1164
  year: 2015
  end-page: 1172
  ident: bib0032
  article-title: EpicFlow: edge-preserving interpolation of correspondences for optical flow
  publication-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 3333
  year: 2018
  end-page: 3337
  ident: bib0072
  article-title: Learning optical flow via dilated networks and occlusion reasoning
  publication-title: 25th IEEE International Conference on Image Processing (ICIP)
– start-page: 3061
  year: 2015
  end-page: 3070
  ident: bib0088
  article-title: Object scene flow for autonomous vehicles
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 2290
  year: 2011
  end-page: 2295
  ident: bib0091
  article-title: Kinecting the dots: particle based scene flow from depth sensors
  publication-title: International Conference on Computer Vision
– start-page: 152
  year: 2007
  end-page: 162
  ident: bib0044
  article-title: Illumination-robust variational optical flow with photometric invariants
  publication-title: Pattern Recognition
– start-page: 7954
  year: 2019
  end-page: 7963
  ident: bib0114
  article-title: Pointflownet: learning representations for rigid motion estimation from point clouds
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 8063
  year: 2019
  end-page: 8073
  ident: bib0105
  article-title: Unos: unified unsupervised optical-flow and stereo-depth estimation by watching videos
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 3354
  year: 2012
  end-page: 3361
  ident: bib0006
  article-title: Are we ready for autonomous driving? The KITTI vision benchmark suite
  publication-title: 2012 IEEE Conference on Computer Vision and Pattern Recognition
– volume: 17
  start-page: 1443
  year: 2008
  end-page: 1451
  ident: bib0037
  article-title: Occlusion-aware optical flow estimation
  publication-title: IEEE Trans. Image Process.
– volume: 14
  start-page: 239
  year: 1992
  end-page: 256
  ident: bib0122
  article-title: A method for registration of 3-D shapes
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 2432
  year: 2010
  end-page: 2439
  ident: bib0029
  article-title: Secrets of optical flow estimation and their principles
  publication-title: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
– start-page: 1056
  year: 2018
  end-page: 1065
  ident: bib0089
  article-title: Sceneflowfields: dense interpolation of sparse scene flow correspondences
  publication-title: IEEE Winter Conference on Applications of Computer Vision (WACV)
– start-page: 8934
  year: 2018
  end-page: 8943
  ident: bib0061
  article-title: Pwc-Net: CNNs for optical flow using pyramid, warping, and cost volume
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 1506
  year: 2010
  end-page: 1513
  ident: bib0086
  article-title: Multi-view scene flow estimation: a view centered variational approach
  publication-title: IEEE Computer Society Conference on Computer Vision and Pattern Recognition
– reference: (2019).
– reference: J.D. Zachary Teed, Raft: recurrent all-pairs field transforms for optical flow,
– start-page: 4040
  year: 2016
  end-page: 4048
  ident: bib0005
  article-title: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2015
  ident: bib0007
  article-title: Joint 3D estimation of vehicles and scene flow
  publication-title: ISPRS Workshop on Image Sequence Analysis (ISA)
– reference: Z. Wang, S. Li, H. Howard-Jenkins, V.A. Prisacariu, M. Chen, FlowNet3D++: geometric losses for deep scene flow estimation, arXiv:
– start-page: 3526
  year: 2014
  end-page: 3533
  ident: bib0095
  article-title: SphereFlow: 6 DOF scene flow from RGB-D pairs
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 710
  year: 2013
  end-page: 716
  ident: bib0016
  article-title: A survey of optical flow techniques for UAV navigation applications
  publication-title: 2013 International Conference on Unmanned Aircraft Systems (ICUAS)
– start-page: 4566
  year: 2019
  end-page: 4575
  ident: bib0078
  article-title: SelFlow: self-supervised learning of optical flow
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 34
  start-page: 1744
  year: 2012
  end-page: 1757
  ident: bib0023
  article-title: Motion detail preserving optical flow estimation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 529
  year: 2019
  end-page: 537
  ident: bib0117
  article-title: FlowNet3D: learning scene flow in 3D point clouds
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2017
  ident: bib0053
  article-title: Deep optical flow estimation via multi-scale correspondence structure learning
  publication-title: Proceedings of the 26th International Joint Conference on Artificial Intelligence
– start-page: 4452
  year: 2016
  end-page: 4461
  ident: bib0116
  article-title: Learning sparse high dimensional filters: Image filtering, dense CRFS and bilateral neural networks
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 1983
  year: 2018
  end-page: 1992
  ident: bib0104
  article-title: GeoNet: unsupervised learning of dense depth, optical flow and camera pose
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 1
  year: 2007
  end-page: 8
  ident: bib0080
  article-title: A database and evaluation methodology for optical flow
  publication-title: IEEE 11th International Conference on Computer Vision
– start-page: 2530
  year: 2018
  end-page: 2539
  ident: bib0121
  article-title: Splatnet: sparse lattice networks for point cloud processing
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 67
  start-page: 111
  year: 2006
  end-page: 136
  ident: bib0042
  article-title: Structure-texture image decomposition-modeling, algorithms, and parameter selection
  publication-title: Int. J. Comput. Vis.
– volume: 41
  start-page: 1879
  year: 2019
  end-page: 1892
  ident: bib0030
  article-title: Flow fields: dense correspondence fields for highly accurate large displacement optical flow estimation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 2758
  year: 2015
  end-page: 2766
  ident: bib0004
  article-title: FlowNet: learning optical flow with convolutional networks
  publication-title: 2015 IEEE International Conference on Computer Vision (ICCV)
– volume: 11
  start-page: 172
  year: 1952
  ident: bib0001
  article-title: The perception of the visual world
  publication-title: J. Aesthet. Art Crit.
– volume: 14
  start-page: 239
  issue: 2
  year: 1992
  ident: 10.1016/j.patcog.2021.107861_bib0122
  article-title: A method for registration of 3-D shapes
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.121791
– start-page: 5704
  year: 2016
  ident: 10.1016/j.patcog.2021.107861_bib0033
  article-title: Efficient coarse-to-fine patch match for large displacement optical flow
– start-page: 548
  year: 2015
  ident: 10.1016/j.patcog.2021.107861_bib0096
  article-title: Layered RGBD scene flow estimation
– start-page: 12232
  year: 2019
  ident: 10.1016/j.patcog.2021.107861_bib0107
  article-title: Competitive collaboration: Joint unsupervised learning of depth, camera motion, optical flow and motion segmentation
– volume: 41
  start-page: 1879
  issue: 8
  year: 2019
  ident: 10.1016/j.patcog.2021.107861_bib0030
  article-title: Flow fields: dense correspondence fields for highly accurate large displacement optical flow estimation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2859970
– year: 2018
  ident: 10.1016/j.patcog.2021.107861_bib0071
  article-title: UnFlow: unsupervised learning of optical flow with a bidirectional census loss
– volume: 72
  start-page: 9
  year: 2019
  ident: 10.1016/j.patcog.2021.107861_bib0017
  article-title: A survey of variational and CNN-based optical flow techniques
  publication-title: Signal Process.
– start-page: 225
  year: 2018
  ident: 10.1016/j.patcog.2021.107861_bib0102
  article-title: Lego: learning edge with geometry all at once by watching videos
– volume: 11
  start-page: 172
  year: 1952
  ident: 10.1016/j.patcog.2021.107861_bib0001
  article-title: The perception of the visual world
  publication-title: J. Aesthet. Art Crit.
  doi: 10.2307/426044
– start-page: 4040
  year: 2016
  ident: 10.1016/j.patcog.2021.107861_bib0005
  article-title: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation
– start-page: 3609
  year: 2019
  ident: 10.1016/j.patcog.2021.107861_bib0109
  article-title: Deep rigid instance scene flow
– start-page: 5667
  year: 2018
  ident: 10.1016/j.patcog.2021.107861_bib0103
  article-title: Unsupervised learning of depth and EGO-motion from monocular video using 3D geometric constraints
– start-page: 413
  year: 2015
  ident: 10.1016/j.patcog.2021.107861_bib0045
  article-title: Improved color patch similarity measure based weighted median filter
– start-page: 6612
  year: 2017
  ident: 10.1016/j.patcog.2021.107861_bib0100
  article-title: Unsupervised learning of depth and EGO-motion from video
– start-page: 3534
  year: 2014
  ident: 10.1016/j.patcog.2021.107861_bib0027
  article-title: Fast edge-preserving patchmatch for large displacement optical flow
– volume: 17
  start-page: 185
  issue: 1
  year: 1981
  ident: 10.1016/j.patcog.2021.107861_bib0020
  article-title: Determining optical flow
  publication-title: Artif. Intell.
  doi: 10.1016/0004-3702(81)90024-2
– start-page: 2366
  year: 2014
  ident: 10.1016/j.patcog.2021.107861_bib0123
  article-title: Depth map prediction from a single image using a multi-scale deep network
– start-page: 8981
  year: 2018
  ident: 10.1016/j.patcog.2021.107861_bib0062
  article-title: Liteflownet: a lightweight convolutional neural network for optical flow estimation
– start-page: 529
  year: 2019
  ident: 10.1016/j.patcog.2021.107861_bib0117
  article-title: FlowNet3D: learning scene flow in 3D point clouds
– year: 2017
  ident: 10.1016/j.patcog.2021.107861_bib0069
  article-title: Unsupervised deep learning for optical flow estimation
– start-page: 1056
  year: 2018
  ident: 10.1016/j.patcog.2021.107861_bib0089
  article-title: Sceneflowfields: dense interpolation of sparse scene flow correspondences
– year: 2015
  ident: 10.1016/j.patcog.2021.107861_bib0007
  article-title: Joint 3D estimation of vehicles and scene flow
– start-page: 2290
  year: 2011
  ident: 10.1016/j.patcog.2021.107861_bib0091
  article-title: Kinecting the dots: particle based scene flow from depth sensors
– volume: 28
  start-page: 4233
  issue: 9
  year: 2019
  ident: 10.1016/j.patcog.2021.107861_bib0048
  article-title: KalmanFlow 2.0: efficient video optical flow estimation via context-aware Kalman filtering
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2903656
– start-page: 2758
  year: 2015
  ident: 10.1016/j.patcog.2021.107861_bib0004
  article-title: FlowNet: learning optical flow with convolutional networks
– ident: 10.1016/j.patcog.2021.107861_bib0090
  doi: 10.1007/s11263-019-01258-1
– start-page: 5587
  year: 2019
  ident: 10.1016/j.patcog.2021.107861_bib0108
  article-title: Learning independent object motion from unlabelled stereoscopic videos
– start-page: 2443
  year: 2013
  ident: 10.1016/j.patcog.2021.107861_bib0028
  article-title: Large displacement optical flow from nearest neighbor fields
– volume: 20
  start-page: 2814
  issue: 10
  year: 2018
  ident: 10.1016/j.patcog.2021.107861_bib0059
  article-title: Recurrent spatial pyramid CNN for optical flow estimation
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2018.2815784
– start-page: 152
  year: 2007
  ident: 10.1016/j.patcog.2021.107861_bib0044
  article-title: Illumination-robust variational optical flow with photometric invariants
– start-page: 3343
  year: 2018
  ident: 10.1016/j.patcog.2021.107861_bib0047
  article-title: KalmanFlow: efficient Kalman filtering for video optical flow
– start-page: 567
  year: 2014
  ident: 10.1016/j.patcog.2021.107861_bib0094
  article-title: Dense semi-rigid scene flow estimation from RGBD images
– ident: 10.1016/j.patcog.2021.107861_bib0022
  doi: 10.1007/978-3-540-24673-2_3
– start-page: 4884
  year: 2018
  ident: 10.1016/j.patcog.2021.107861_bib0073
  article-title: Occlusion aware unsupervised learning of optical flow
– volume: 92
  start-page: 1
  year: 2007
  ident: 10.1016/j.patcog.2021.107861_bib0014
  article-title: A database and evaluation methodology for optical flow
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-010-0390-2
– start-page: 312
  year: 2017
  ident: 10.1016/j.patcog.2021.107861_bib0039
  article-title: MirrorFlow: exploiting symmetries in joint optical flow and occlusion estimation
– start-page: 6277
  year: 2020
  ident: 10.1016/j.patcog.2021.107861_bib0065
  article-title: Maskflownet: asymmetric feature matching with learnable occlusion mask
– start-page: 3129
  year: 2011
  ident: 10.1016/j.patcog.2021.107861_bib0085
  article-title: Scene flow estimation by growing correspondence seeds
– start-page: 5666
  year: 2017
  ident: 10.1016/j.patcog.2021.107861_bib0113
  article-title: A learning approach for real-time temporal scene flow estimation from LIDAR data
– start-page: 686
  year: 2017
  ident: 10.1016/j.patcog.2021.107861_bib0057
  article-title: SegFlow: joint learning for video object segmentation and optical flow
– start-page: 207
  year: 2017
  ident: 10.1016/j.patcog.2021.107861_bib0035
  article-title: Deep discrete flow
– start-page: 790
  year: 2017
  ident: 10.1016/j.patcog.2021.107861_bib0070
  article-title: Densenet for dense flow
– start-page: 1
  year: 2007
  ident: 10.1016/j.patcog.2021.107861_bib0082
  article-title: A variational method for scene flow estimation from stereo sequences
– year: 2018
  ident: 10.1016/j.patcog.2021.107861_bib0101
  article-title: Unsupervised learning of geometry from videos with edge-aware depth-normal consistency
– volume: 22
  start-page: 349
  issue: 2
  year: 2020
  ident: 10.1016/j.patcog.2021.107861_bib0050
  article-title: Refined TV-L1 optical flow estimation using joint filtering
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2019.2929934
– volume: 7
  start-page: 22566
  year: 2019
  ident: 10.1016/j.patcog.2021.107861_bib0056
  article-title: Learning optical flow using deep dilated residual networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2898988
– volume: 72
  start-page: 179
  year: 2007
  ident: 10.1016/j.patcog.2021.107861_bib0081
  article-title: Multi-view stereo reconstruction and scene flow estimation with a global image-based matching score
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-006-8671-5
– volume: 97
  start-page: 322
  year: 2011
  ident: 10.1016/j.patcog.2021.107861_bib0038
  article-title: Sparse occlusion detection with optical flow
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-011-0490-7
– start-page: 626
  year: 2018
  ident: 10.1016/j.patcog.2021.107861_bib0098
  article-title: Occlusions, motion and depth boundaries with a generic network for disparity, optical flow or scene flow estimation
– start-page: 5747
  year: 2019
  ident: 10.1016/j.patcog.2021.107861_bib0077
  article-title: Iterative residual refinement for joint optical flow and occlusion estimation
– start-page: 2432
  year: 2010
  ident: 10.1016/j.patcog.2021.107861_bib0029
  article-title: Secrets of optical flow estimation and their principles
– start-page: 710
  year: 2013
  ident: 10.1016/j.patcog.2021.107861_bib0016
  article-title: A survey of optical flow techniques for UAV navigation applications
– volume: 10
  start-page: 103
  year: 2006
  ident: 10.1016/j.patcog.2021.107861_bib0011
  article-title: A survey on variational optic flow methods for small displacements
  publication-title: Mathematical Models for Registration and Applications to Medical Imaging
  doi: 10.1007/978-3-540-34767-5_5
– start-page: 1
  year: 2007
  ident: 10.1016/j.patcog.2021.107861_bib0080
  article-title: A database and evaluation methodology for optical flow
– start-page: 2530
  year: 2018
  ident: 10.1016/j.patcog.2021.107861_bib0121
  article-title: Splatnet: sparse lattice networks for point cloud processing
– volume: 17
  start-page: 1443
  issue: 8
  year: 2008
  ident: 10.1016/j.patcog.2021.107861_bib0037
  article-title: Occlusion-aware optical flow estimation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2008.925381
– start-page: 1164
  year: 2015
  ident: 10.1016/j.patcog.2021.107861_bib0032
  article-title: EpicFlow: edge-preserving interpolation of correspondences for optical flow
– volume: 134
  start-page: 1
  year: 2015
  ident: 10.1016/j.patcog.2021.107861_bib0015
  article-title: Optical flow modeling and computation: a survey
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2015.02.008
– year: 2019
  ident: 10.1016/j.patcog.2021.107861_bib0079
  article-title: DDflow: learning optical flow with unlabeled data distillation
– start-page: 1385
  year: 2013
  ident: 10.1016/j.patcog.2021.107861_bib0026
  article-title: DeepFlow: large displacement optical flow with deep matching
– year: 2017
  ident: 10.1016/j.patcog.2021.107861_bib0053
  article-title: Deep optical flow estimation via multi-scale correspondence structure learning
– volume: 67
  start-page: 111
  year: 2006
  ident: 10.1016/j.patcog.2021.107861_bib0042
  article-title: Structure-texture image decomposition-modeling, algorithms, and parameter selection
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-006-4331-z
– start-page: 1983
  year: 2018
  ident: 10.1016/j.patcog.2021.107861_bib0104
  article-title: GeoNet: unsupervised learning of dense depth, optical flow and camera pose
– start-page: 2432
  year: 2010
  ident: 10.1016/j.patcog.2021.107861_bib0012
  article-title: Secrets of optical flow estimation and their principles
– volume: 16
  start-page: 70
  issue: 4
  year: 1999
  ident: 10.1016/j.patcog.2021.107861_bib0010
  article-title: Estimating motion in image sequences
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.774934
– year: 2017
  ident: 10.1016/j.patcog.2021.107861_bib0052
  article-title: Joint coarse-and-fine reasoning for deep optical flow
– volume: 1
  start-page: 285
  year: 2014
  ident: 10.1016/j.patcog.2021.107861_bib0084
  article-title: aTGV-SF: dense variational scene flow through projective warping and higher order regularization
– start-page: 1506
  year: 2010
  ident: 10.1016/j.patcog.2021.107861_bib0086
  article-title: Multi-view scene flow estimation: a view centered variational approach
– start-page: 484
  year: 2018
  ident: 10.1016/j.patcog.2021.107861_bib0099
  article-title: Learning rigidity in dynamic scenes with a moving camera for 3D motion field estimation
– start-page: 50
  year: 2012
  ident: 10.1016/j.patcog.2021.107861_bib0092
  article-title: Scene flow by tracking in intensity and depth data
– start-page: 211
  year: 2006
  ident: 10.1016/j.patcog.2021.107861_bib0046
  article-title: Bilateral filtering-based optical flow estimation with occlusion detection
– volume: 19
  start-page: 29
  year: 1996
  ident: 10.1016/j.patcog.2021.107861_bib0009
  article-title: Computation and analysis of image motion: a synopsis of current problems and methods
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/BF00131147
– volume: 30
  start-page: 3663
  issue: 10
  year: 2020
  ident: 10.1016/j.patcog.2021.107861_bib0064
  article-title: Optical flow estimation using dual self-attention pyramid networks
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2019.2943140
– volume: 29
  start-page: 1350
  issue: 5
  year: 2019
  ident: 10.1016/j.patcog.2021.107861_bib0049
  article-title: A filtering-based framework for optical flow estimation
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2018.2805101
– start-page: 1647
  year: 2017
  ident: 10.1016/j.patcog.2021.107861_bib0051
  article-title: Flownet 2.0: evolution of optical flow estimation with deep networks
– start-page: 1765
  year: 2016
  ident: 10.1016/j.patcog.2021.107861_bib0112
  article-title: Rigid scene flow for 3D LIDAR scans
– start-page: 5424
  year: 2017
  ident: 10.1016/j.patcog.2021.107861_bib0019
  article-title: Scene flow estimation methodologies and applications a review
– volume: 34
  start-page: 1744
  issue: 9
  year: 2012
  ident: 10.1016/j.patcog.2021.107861_bib0023
  article-title: Motion detail preserving optical flow estimation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.236
– volume: 28
  start-page: 2233
  issue: 9
  year: 2018
  ident: 10.1016/j.patcog.2021.107861_bib0024
  article-title: Coarse-to-fine patchmatch for dense correspondence
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2017.2720175
– start-page: 8063
  year: 2019
  ident: 10.1016/j.patcog.2021.107861_bib0105
  article-title: Unos: unified unsupervised optical-flow and stereo-depth estimation by watching videos
– volume: 24
  start-page: 1499
  issue: 9
  year: 2014
  ident: 10.1016/j.patcog.2021.107861_bib0041
  article-title: Illumination-robust optical flow using a local directional pattern
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2014.2308628
– start-page: 4706
  year: 2016
  ident: 10.1016/j.patcog.2021.107861_bib0031
  article-title: Full flow: optical flow estimation by global optimization over regular grids
– volume: 93
  start-page: 368
  year: 2011
  ident: 10.1016/j.patcog.2021.107861_bib0013
  article-title: Optic flow in harmony
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-011-0422-6
– start-page: 8934
  year: 2018
  ident: 10.1016/j.patcog.2021.107861_bib0061
  article-title: Pwc-Net: CNNs for optical flow using pyramid, warping, and cost volume
– volume: 12
  start-page: 43
  year: 1994
  ident: 10.1016/j.patcog.2021.107861_bib0008
  article-title: Performance of optical flow techniques
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/BF01420984
– volume: 3
  start-page: 1835
  year: 2004
  ident: 10.1016/j.patcog.2021.107861_bib0043
  article-title: Robust optical flow from photometric invariants
– year: 2019
  ident: 10.1016/j.patcog.2021.107861_bib0110
  article-title: Sense: a shared encoder network for scene-flow estimation
– start-page: 1890
  year: 2019
  ident: 10.1016/j.patcog.2021.107861_bib0111
  article-title: Bridging stereo matching and optical flow via spatiotemporal correspondence
– start-page: 16
  year: 2015
  ident: 10.1016/j.patcog.2021.107861_bib0034
  article-title: Discrete optimization for optical flow
– start-page: 5099
  year: 2017
  ident: 10.1016/j.patcog.2021.107861_bib0118
  article-title: PointNet++: deep hierarchical feature learning on point sets in a metric space
– start-page: 3061
  year: 2015
  ident: 10.1016/j.patcog.2021.107861_bib0088
  article-title: Object scene flow for autonomous vehicles
– start-page: 713
  year: 2018
  ident: 10.1016/j.patcog.2021.107861_bib0076
  article-title: Unsupervised learning of multi-frame optical flow with occlusions
– ident: 10.1016/j.patcog.2021.107861_bib0119
  doi: 10.1109/WACV45572.2020.9093302
– start-page: 3338
  year: 2018
  ident: 10.1016/j.patcog.2021.107861_bib0060
  article-title: Pyramid structured optical flow learning with motion cues
– volume: 6
  start-page: 43222
  year: 2018
  ident: 10.1016/j.patcog.2021.107861_bib0055
  article-title: Deep optical flow supervised learning with prior assumptions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2863233
– start-page: 3354
  year: 2012
  ident: 10.1016/j.patcog.2021.107861_bib0006
  article-title: Are we ready for autonomous driving? The KITTI vision benchmark suite
– volume: 368
  start-page: 124
  year: 2019
  ident: 10.1016/j.patcog.2021.107861_bib0054
  article-title: Optical flow estimation using channel attention mechanism and dilated convolutional neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.08.040
– start-page: 3850
  year: 2013
  ident: 10.1016/j.patcog.2021.107861_bib0093
  article-title: Local/global scene flow estimation
– volume: 67
  start-page: 141
  year: 2006
  ident: 10.1016/j.patcog.2021.107861_bib0040
  article-title: Highly accurate optic flow computation with theoretically justified warping
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-005-3960-y
– start-page: 7954
  year: 2019
  ident: 10.1016/j.patcog.2021.107861_bib0114
  article-title: Pointflownet: learning representations for rigid motion estimation from point clouds
– ident: 10.1016/j.patcog.2021.107861_bib0021
– start-page: 3249
  year: 2019
  ident: 10.1016/j.patcog.2021.107861_bib0115
  article-title: Hplflownet: hierarchical permutohedral lattice flownet for scene flow estimation on large-scale point clouds
– ident: 10.1016/j.patcog.2021.107861_bib0063
– ident: 10.1016/j.patcog.2021.107861_bib0120
– start-page: 3
  year: 2016
  ident: 10.1016/j.patcog.2021.107861_bib0068
  article-title: Back to basics: Unsupervised learning of optical flow via brightness constancy and motion smoothness
– start-page: 3526
  year: 2014
  ident: 10.1016/j.patcog.2021.107861_bib0095
  article-title: SphereFlow: 6 DOF scene flow from RGB-D pairs
– start-page: 739
  year: 2008
  ident: 10.1016/j.patcog.2021.107861_bib0083
  article-title: Efficient dense scene flow from sparse or dense stereo data
– start-page: 282
  year: 2018
  ident: 10.1016/j.patcog.2021.107861_bib0075
  article-title: Conditional prior networks for optical flow
– start-page: 354
  year: 2017
  ident: 10.1016/j.patcog.2021.107861_bib0074
  article-title: Semi-supervised learning for optical flow with generative adversarial networks
– start-page: 4566
  year: 2019
  ident: 10.1016/j.patcog.2021.107861_bib0078
  article-title: SelFlow: self-supervised learning of optical flow
– ident: 10.1016/j.patcog.2021.107861_bib0018
– ident: 10.1016/j.patcog.2021.107861_bib0066
– volume: 33
  start-page: 500
  issue: 3
  year: 2011
  ident: 10.1016/j.patcog.2021.107861_bib0025
  article-title: Large displacement optical flow: descriptor matching in variational motion estimation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.143
– volume: 27
  start-page: 475
  issue: 3
  year: 2005
  ident: 10.1016/j.patcog.2021.107861_bib0002
  article-title: Three-dimensional scene flow
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.63
– start-page: 1629
  year: 2016
  ident: 10.1016/j.patcog.2021.107861_bib0067
  article-title: Unsupervised convolutional neural networks for motion estimation
– start-page: 3333
  year: 2018
  ident: 10.1016/j.patcog.2021.107861_bib0072
  article-title: Learning optical flow via dilated networks and occlusion reasoning
– start-page: 1377
  year: 2013
  ident: 10.1016/j.patcog.2021.107861_bib0087
  article-title: Piecewise rigid scene flow
– start-page: 611
  year: 2012
  ident: 10.1016/j.patcog.2021.107861_bib0003
  article-title: A naturalistic open source movie for optical flow evaluation
– start-page: 98
  year: 2015
  ident: 10.1016/j.patcog.2021.107861_bib0097
  article-title: A primal-dual framework for real-time dense RGB-D scene flow
– start-page: 38
  year: 2018
  ident: 10.1016/j.patcog.2021.107861_bib0106
  article-title: DF-Net: unsupervised joint learning of depth and flow using cross-task consistency
– start-page: 4236
  year: 2016
  ident: 10.1016/j.patcog.2021.107861_bib0036
  article-title: Patchbatch: a batch augmented loss for optical flow
– start-page: 2720
  year: 2017
  ident: 10.1016/j.patcog.2021.107861_bib0058
  article-title: Optical flow estimation using a spatial pyramid network
– start-page: 4452
  year: 2016
  ident: 10.1016/j.patcog.2021.107861_bib0116
  article-title: Learning sparse high dimensional filters: Image filtering, dense CRFS and bilateral neural networks
SSID ssj0017142
Score 2.62564
Snippet •To the best of our knowledge, this is the first survey paper to cover both optical flow and scene flow estimation comprehensively.•In contrast to existing...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107861
SubjectTerms Convolutional neural networks (CNNs)
Deep learning
Motion analysis
Optical flow
Scene flow
Variational model
Title Optical flow and scene flow estimation: A survey
URI https://dx.doi.org/10.1016/j.patcog.2021.107861
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5KvXjxLdZHycFrbLPJbna9lWKpivViobcl2SRSKdulD8WLv91ks1sURMFjQgaWL8nMZJnvG4BLozPKs8RgyozEjMgQS2EUtqE4S2JiqAgcG_lhFA3H7G4SThrQr7kwrqyy8v3ep5feuprpVGh2iunUcXyd7GDXkVBKZrRjsDPuTvnVx6bMw_X39orhlGC3uqbPlTVehXV382f7SgyIneJxRH4OT19CzmAPdqpcEfX85-xDQ-cHsFv3YUDVtTyE7mNR_pFGZjZ_QyJXyEk0aT90KhqenniNemi5Xrzq9yMYD26e-kNcdULAFslghaWhUtrEP7DZg0moUkwHTKlQKKMpMRlJjH2phYwJm8CZrky0NBFliY4iRW3ORI-hmc9zfQKIc82VkXGsiWAkyKQiURwJGfPMbpRIWkBrANKskgl33SpmaV0P9pJ62FIHW-phawHeWBVeJuOP9bzGNv223an15L9anv7b8gy23cjXeZ1Dc7VY6wubUaxkuzwybdjq3d4PR58KZMp3
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7M7UFfvIvz2gdfw5Ymvfk2hqNzF1822FtomkQmoytzU_z3Jk07FETBx6Y9UL60J1_a830H4E7JlARppBChiiOKuYd4ogTSS3EahViRxDVq5NHYj6f0cebNatCttDCmrLLM_TanF9m6HGmVaLby-dxofI3tYNuIUApl9A40jDuVV4dGpz-Ix9ufCQGm1jScYGQCKgVdUeaV64y3fNYbRRfroSD08c8r1JdVp3cI-yVddDr2jo6gJrNjOKhaMTjlm3kC7ae8-CjtqMXy3Uky4RiXJmkPjZGGVSjeOx3ndbN6kx-nMO09TLoxKpshIA2mu0ZcEc4193c1gVAREYJKlwrhJUJJglWKI6U3ax6lieZwqs0jyZVPaCR9XxBNm8gZ1LNlJs_BCQIZCMXDUOKEYjflAvuhn_AwSPVcJVETSAUAS0uncNOwYsGqkrAXZmFjBjZmYWsC2kbl1injj-uDClv2bcaZTua_Rl78O_IWduPJaMiG_fHgEvbMGVv2dQX19WojrzXBWPOb8gH6BBDzzSg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical+flow+and+scene+flow+estimation%3A+A+survey&rft.jtitle=Pattern+recognition&rft.au=Zhai%2C+Mingliang&rft.au=Xiang%2C+Xuezhi&rft.au=Lv%2C+Ning&rft.au=Kong%2C+Xiangdong&rft.date=2021-06-01&rft.issn=0031-3203&rft.volume=114&rft.spage=107861&rft_id=info:doi/10.1016%2Fj.patcog.2021.107861&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2021_107861
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon