Optical flow and scene flow estimation: A survey
•To the best of our knowledge, this is the first survey paper to cover both optical flow and scene flow estimation comprehensively.•In contrast to existing surveys, this survey includes knowledge-driven, data-driven and hybrid-driven methods.•Comprehensive comparisons of existing methods on several...
Saved in:
Published in | Pattern recognition Vol. 114; p. 107861 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0031-3203 1873-5142 |
DOI | 10.1016/j.patcog.2021.107861 |
Cover
Loading…
Abstract | •To the best of our knowledge, this is the first survey paper to cover both optical flow and scene flow estimation comprehensively.•In contrast to existing surveys, this survey includes knowledge-driven, data-driven and hybrid-driven methods.•Comprehensive comparisons of existing methods on several datasets are provided with insightful observations and sufficient analyses.•Some of the open issues and potential research directions are discussed.
Motion analysis is one of the most fundamental and challenging problems in the field of computer vision, which can be widely applied in many areas, such as autonomous driving, action recognition, scene understanding, and robotics. In general, the displacement field between subsequent frames can be divided into two types: optical flow and scene flow. The optical flow represents the pixel motion of adjacent frames. In contrast, the scene flow is a 3D motion field of the dynamic scene between two frames. Traditional approaches for the estimation of optical flow and scene flow usually leverage the variational technique, which can be solved as an energy minimization process. In recent years, deep learning has emerged as a powerful technique for learning feature representations directly from data. It has led to remarkable progress in the field of optical flow and scene flow estimation. In this paper, we provide a comprehensive survey of optical flow and scene flow estimation. First, we briefly review the pioneering approaches that use variational technique and then we delve in detail into the deep learning-based approaches. Furthermore, we present insightful observations on evaluation issues, specifically benchmark datasets, evaluation metrics, and state-of-the-art performance. Finally, we give the promising directions for future research. To the best of our knowledge, we are the first to review both optical flow and scene flow estimation, and the first to cover both traditional and deep learning-based approaches. |
---|---|
AbstractList | •To the best of our knowledge, this is the first survey paper to cover both optical flow and scene flow estimation comprehensively.•In contrast to existing surveys, this survey includes knowledge-driven, data-driven and hybrid-driven methods.•Comprehensive comparisons of existing methods on several datasets are provided with insightful observations and sufficient analyses.•Some of the open issues and potential research directions are discussed.
Motion analysis is one of the most fundamental and challenging problems in the field of computer vision, which can be widely applied in many areas, such as autonomous driving, action recognition, scene understanding, and robotics. In general, the displacement field between subsequent frames can be divided into two types: optical flow and scene flow. The optical flow represents the pixel motion of adjacent frames. In contrast, the scene flow is a 3D motion field of the dynamic scene between two frames. Traditional approaches for the estimation of optical flow and scene flow usually leverage the variational technique, which can be solved as an energy minimization process. In recent years, deep learning has emerged as a powerful technique for learning feature representations directly from data. It has led to remarkable progress in the field of optical flow and scene flow estimation. In this paper, we provide a comprehensive survey of optical flow and scene flow estimation. First, we briefly review the pioneering approaches that use variational technique and then we delve in detail into the deep learning-based approaches. Furthermore, we present insightful observations on evaluation issues, specifically benchmark datasets, evaluation metrics, and state-of-the-art performance. Finally, we give the promising directions for future research. To the best of our knowledge, we are the first to review both optical flow and scene flow estimation, and the first to cover both traditional and deep learning-based approaches. |
ArticleNumber | 107861 |
Author | Xiang, Xuezhi Zhai, Mingliang Lv, Ning Kong, Xiangdong |
Author_xml | – sequence: 1 givenname: Mingliang surname: Zhai fullname: Zhai, Mingliang – sequence: 2 givenname: Xuezhi surname: Xiang fullname: Xiang, Xuezhi email: xiangxuezhi@hrbeu.edu.cn – sequence: 3 givenname: Ning surname: Lv fullname: Lv, Ning – sequence: 4 givenname: Xiangdong surname: Kong fullname: Kong, Xiangdong |
BookMark | eNqFj8FKAzEQhoNUsK2-gYd9ga2ZJN3s9iCUolUo9KLnkE0mkmXdLUms9O3dup48KHMYZobvZ74ZmXR9h4TcAl0AheKuWRx0Mv3bglEGw0qWBVyQKZSS50sQbEKmlHLIOaP8isxibCgFORymhO4PyRvdZq7tPzPd2Swa7HAcMSb_rpPvu1W2zuJHOOLpmlw63Ua8-elz8vr48LJ5ynf77fNmvcsNlyzlteN1LYVkvJKu4tYKZMLapbYOOTgDlYNSLIXQUICjdYW1K7iosCgsZ0PNyWrMNaGPMaBTxqfvX1LQvlVA1dldNWp0V2d3NboPsPgFH8JgEk7_YfcjhoPY0WNQ0XjsDFof0CRle_93wBcbWXbI |
CitedBy_id | crossref_primary_10_3390_s24082450 crossref_primary_10_1109_TMECH_2023_3300729 crossref_primary_10_1049_cth2_12373 crossref_primary_10_1088_1361_6420_ad7495 crossref_primary_10_3390_app14146335 crossref_primary_10_1016_j_patcog_2022_109101 crossref_primary_10_1016_j_patcog_2024_110337 crossref_primary_10_1111_cgf_14774 crossref_primary_10_1016_j_cja_2023_09_012 crossref_primary_10_1109_TPAMI_2024_3410637 crossref_primary_10_1016_j_jocs_2022_101760 crossref_primary_10_1109_JSEN_2024_3386051 crossref_primary_10_3390_atmos14060953 crossref_primary_10_20965_jdr_2024_p0239 crossref_primary_10_1016_j_image_2021_116560 crossref_primary_10_1109_TGRS_2024_3369402 crossref_primary_10_1109_TGRS_2024_3514305 crossref_primary_10_1016_j_ecoinf_2022_101790 crossref_primary_10_1007_s11760_023_02776_9 crossref_primary_10_3390_math11091988 crossref_primary_10_1016_j_eswa_2024_124342 crossref_primary_10_1016_j_media_2024_103385 crossref_primary_10_1016_j_neunet_2025_107296 crossref_primary_10_3390_electronics13050812 crossref_primary_10_1016_j_oceaneng_2023_113693 crossref_primary_10_1109_TIM_2023_3343769 crossref_primary_10_5909_JBE_2024_29_6_809 crossref_primary_10_1109_ACCESS_2024_3496723 crossref_primary_10_21105_joss_04080 crossref_primary_10_1017_S1431927622011321 crossref_primary_10_1049_itr2_12370 crossref_primary_10_1109_TIP_2023_3345153 crossref_primary_10_1109_LRA_2022_3145057 crossref_primary_10_1088_1742_6596_2280_1_012038 crossref_primary_10_1016_j_cviu_2022_103418 crossref_primary_10_1109_TCSVT_2021_3135440 crossref_primary_10_3390_s23125435 crossref_primary_10_1007_s11554_023_01322_7 crossref_primary_10_1016_j_patcog_2023_109487 crossref_primary_10_1109_TCE_2024_3425610 crossref_primary_10_1109_ACCESS_2024_3382818 crossref_primary_10_1093_ehjdh_ztad077 crossref_primary_10_1088_1361_6420_ad9776 crossref_primary_10_1007_s11227_024_05957_6 crossref_primary_10_1145_3519021 crossref_primary_10_1016_j_jhydrol_2024_132446 crossref_primary_10_1111_cgf_14795 crossref_primary_10_1016_j_jrras_2024_101169 crossref_primary_10_1016_j_ecoinf_2021_101535 crossref_primary_10_3390_app13127027 crossref_primary_10_1109_TPAMI_2023_3319448 crossref_primary_10_1016_j_cviu_2024_104160 crossref_primary_10_1109_ACCESS_2023_3314188 crossref_primary_10_1016_j_optlaseng_2024_108502 crossref_primary_10_1016_j_neucom_2025_129899 crossref_primary_10_1364_AO_500442 crossref_primary_10_1016_j_neucom_2022_10_008 crossref_primary_10_4028_p_tCIe16 crossref_primary_10_1029_2024GL112000 crossref_primary_10_3389_frai_2021_768516 crossref_primary_10_3390_s24134035 crossref_primary_10_3390_s22218583 crossref_primary_10_1007_s11042_024_20246_3 crossref_primary_10_3390_app132413056 crossref_primary_10_1016_j_measurement_2024_116615 crossref_primary_10_1021_acsphotonics_3c01349 crossref_primary_10_1088_2632_2153_ad1a50 crossref_primary_10_1038_s41598_024_65003_6 crossref_primary_10_1109_JSYST_2023_3306380 crossref_primary_10_1007_s10489_023_05131_0 crossref_primary_10_1080_00295450_2024_2410610 crossref_primary_10_1016_j_neucom_2023_126768 crossref_primary_10_3390_s24051615 crossref_primary_10_1016_j_patcog_2023_109918 crossref_primary_10_1016_j_engappai_2025_110213 crossref_primary_10_3390_rs14081773 crossref_primary_10_1016_j_optlaseng_2022_107184 crossref_primary_10_1007_s11760_024_03544_z crossref_primary_10_1109_TGRS_2024_3439621 crossref_primary_10_3390_s24113346 crossref_primary_10_1109_TNSRE_2023_3269569 crossref_primary_10_1016_j_cviu_2024_103959 |
Cites_doi | 10.1109/34.121791 10.1109/TPAMI.2018.2859970 10.2307/426044 10.1016/0004-3702(81)90024-2 10.1109/TIP.2019.2903656 10.1007/s11263-019-01258-1 10.1109/TMM.2018.2815784 10.1007/978-3-540-24673-2_3 10.1007/s11263-010-0390-2 10.1109/TMM.2019.2929934 10.1109/ACCESS.2019.2898988 10.1007/s11263-006-8671-5 10.1007/s11263-011-0490-7 10.1007/978-3-540-34767-5_5 10.1109/TIP.2008.925381 10.1016/j.cviu.2015.02.008 10.1007/s11263-006-4331-z 10.1109/79.774934 10.1007/BF00131147 10.1109/TCSVT.2019.2943140 10.1109/TCSVT.2018.2805101 10.1109/TPAMI.2011.236 10.1109/TCSVT.2017.2720175 10.1109/TCSVT.2014.2308628 10.1007/s11263-011-0422-6 10.1007/BF01420984 10.1109/WACV45572.2020.9093302 10.1109/ACCESS.2018.2863233 10.1016/j.neucom.2019.08.040 10.1007/s11263-005-3960-y 10.1109/TPAMI.2010.143 10.1109/TPAMI.2005.63 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.patcog.2021.107861 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-5142 |
ExternalDocumentID | 10_1016_j_patcog_2021_107861 S0031320321000480 |
GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c372t-bf3bb7472397f93dd4e24dd5adfe31fc19f184544a161f0b9ebf6349e66d32323 |
IEDL.DBID | .~1 |
ISSN | 0031-3203 |
IngestDate | Tue Jul 01 02:36:33 EDT 2025 Thu Apr 24 23:02:32 EDT 2025 Fri Feb 23 02:45:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Variational model Convolutional neural networks (CNNs) Scene flow Motion analysis Optical flow |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-bf3bb7472397f93dd4e24dd5adfe31fc19f184544a161f0b9ebf6349e66d32323 |
ParticipantIDs | crossref_citationtrail_10_1016_j_patcog_2021_107861 crossref_primary_10_1016_j_patcog_2021_107861 elsevier_sciencedirect_doi_10_1016_j_patcog_2021_107861 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2021 2021-06-00 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
PublicationDecade | 2020 |
PublicationTitle | Pattern recognition |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | X.T. Tak-Wai Hui, C.C. Loy, A lightweight optical flow cnnrevisiting data fidelity and regularization, arXiv Menze, Heipke, Geiger (bib0007) 2015 Quiroga, Brox, Devernay, Crowley (bib0094) 2014 Hur, Roth (bib0077) 2019 Ferstl, Reinbacher, Riegler, Rther, Bischof (bib0084) 2014; 1 Dewan, Caselitz, Tipaldi, Burgard (bib0112) 2016 Horncek, Fitzgibbon, Rother (bib0095) 2014 Mitiche, Bouthemy (bib0009) 1996; 19 Ince, Konrad (bib0037) 2008; 17 Ren, Yan, Ni, Liu, Yang, Zha (bib0069) 2017 Zhang, Ge, Chen, Li, Liu, Chen (bib0050) 2020; 22 Mahjourian, Wicke, Angelova (bib0103) 2018 van de Weijer, Gevers (bib0043) 2004; 3 Chen, Koltun (bib0031) 2016 Vogel, Schindler, Roth (bib0087) 2013 Hu, Song, Li (bib0033) 2016 Zimmer, Bruhn, Weickert (bib0013) 2011; 93 Vedula, Rander, Collins, Kanade (bib0002) 2005; 27 Geiger, Lenz, Urtasun (bib0006) 2012 Chen, Cai, Lai, Xie (bib0049) 2019; 29 Zhao, Li (bib0053) 2017 Fortun, Bouthemy, Kervrann (bib0015) 2015; 134 Papenberg, Bruhn, Brox, Didas, Weickert (bib0040) 2006; 67 Menze, Heipke, Geiger (bib0034) 2015 Quiroga, Devernay, Crowley (bib0093) 2013 Yin, Shi (bib0104) 2018 Su, Jampani, Sun, Maji, Kalogerakis, Yang, Kautz (bib0121) 2018 Liu, Lyu, King, Xu (bib0078) 2019 Lv, Kim, Troccoli, Sun, Rehg, Kautz (bib0099) 2018 Zou, Luo, Huang (bib0106) 2018 Ilg, Mayer, Saikia, Keuper, Dosovitskiy, Brox (bib0051) 2017 Güney, Geiger (bib0035) 2017 Schuster, Wasenmuller, Kuschk, Bailer, Stricker (bib0089) 2018 Liu, Qi, Guibas (bib0117) 2019 Yu, Harley, Derpanis (bib0068) 2016 X.X. Zike Yan, Scene flow estimation: a survey, arXiv Gadot, Wolf (bib0036) 2016 Hur, Roth (bib0039) 2017 Jaimez, Souiai, Gonzalez-Jimenez, Cremers (bib0097) 2015 Cao, Kar, Hne, Malik (bib0108) 2019 Bao, Yang, Jin (bib0027) 2014 Jiang, Sun, Jampani, Lv, Learned-Miller, Kautz (bib0110) 2019 Ilg, Saikia, Keuper, Brox (bib0098) 2018 (2020). Weinzaepfel, Revaud, Harchaoui, Schmid (bib0026) 2013 Menze, Geiger (bib0088) 2015 Zhao, Sheng, Dong, Chang, Xu (bib0065) 2020 Gu, Wang, Wu, Lee, Wang (bib0115) 2019 Liu, King, Liu, Xu (bib0079) 2019 Ma, Wang, Hu, Xiong, Urtasun (bib0109) 2019 Zhu, Newsam (bib0072) 2018 Zhai, Xiang, Zhang, Lv, Saddik (bib0054) 2019; 368 Pons, Keriven, Faugeras (bib0081) 2007; 72 Wang, Yang, Yang, Zhao, Wang, Xu (bib0073) 2018 Sun, Yang, Liu, Kautz (bib0061) 2018 W. Wu, Z. Wang, Z. Li, W. Liu, L. Fuxin, PointPWC-Net: a coarse-to-fine network for supervised and self-supervised scene flow estimation on 3D point clouds, arXiv Chao, Gu, Napolitano (bib0016) 2013 Li, Hu, Song, Rao, Wang (bib0024) 2018; 28 Z. Wang, S. Li, H. Howard-Jenkins, V.A. Prisacariu, M. Chen, FlowNet3D++: geometric losses for deep scene flow estimation, arXiv Hu, Wang, Tan (bib0059) 2018; 20 Mohamed, Rashwan, Mertsching, Garca, Puig (bib0041) 2014; 24 (2016). Mayer, Ilg, Husser, Fischer, Cremers, Dosovitskiy, Brox (bib0005) 2016 Xiao, Cheng, Sawhney, Rao, Isnardi (bib0046) 2006 B. Lucas, T. Kanade, An iterative technique of image registration and its application to stereo (1981). The 7th International Joint Conference on Artificial Intelligence, IJCAI. (1981) 674–679. Lai, Tsai, Chiu (bib0111) 2019 Lai, Huang, Yang (bib0074) 2017 Wedel, Rabe, Vaudrey, Brox, Franke, Cremers (bib0083) 2008 Bao, Zhang, Chen, Gao (bib0048) 2019; 28 Basha, Moses, Kiryati (bib0086) 2010 Yang, Soatto (bib0075) 2018 Yang, Wang, Wang, Xu, Nevatia (bib0102) 2018 Zhai, Xiang, Zhang, Lv, El Saddik (bib0056) 2019; 7 Ayvaci, Raptis, Soatto (bib0038) 2011; 97 Zhu, Newsam (bib0070) 2017 Quiroga, Devernay, Crowley (bib0092) 2012 Xu, Jia, Matsushita (bib0023) 2012; 34 Tu, Van Gemeren, Veltkamp (bib0045) 2015 R. Schuster, O. Wasenmüller, C. Unger, G. Kuschk, D. Stricker, Sceneflowfields++: multi-frame matching, visibility prediction, and robust interpolation for scene flow estimation, arXiv Xuezhi, Ali, Zhai, Xiao (bib0019) 2017 Butler, Wulff, Stanley, Black (bib0003) 2012 Tu, Xie, Zhang, Poppe, Veltkamp, Li, Yuan (bib0017) 2019; 72 Horn, Schunck (bib0020) 1981; 17 Behl, Paschalidou, Donn, Geiger (bib0114) 2019 Eigen, Puhrsch, Fergus (bib0123) 2014 Hadfield, Bowden (bib0091) 2011 J.D. Zachary Teed, Raft: recurrent all-pairs field transforms for optical flow Stiller, Konrad (bib0010) 1999; 16 Revaud, Weinzaepfel, Harchaoui, Schmid (bib0032) 2015 Wang, Wang, Yang, Luo, Yang, Xu (bib0105) 2019 Brox, Malik (bib0025) 2011; 33 Meister, Hur, Roth (bib0071) 2018 (2019). Jampani, Kiefel, Gehler (bib0116) 2016 Bao, Zhang, Chen, Gao (bib0047) 2018 Mileva, Bruhn, Weickert (bib0044) 2007 Hui, Tang, Loy (bib0062) 2018 Xiang, Zhai, Zhang, Qiao, El Saddik (bib0055) 2018; 6 Ushani, Wolcott, Walls, Eustice (bib0113) 2017 Weickert, Bruhn, Brox, Papenberg (bib0011) 2006; 10 Dai, Huang, Nguyen (bib0060) 2018 Lopez, Moreno-Noguer, Sanfeliu (bib0052) 2017 T. Brox, A. Bruhn, N. Papenberg, J. Weickert, High accuracy optical flow estimation based on a theory for warping, volume 3024, 2004, pp. 25–36. Zhai, Xiang, Zhang, Lv, El Saddik (bib0064) 2020; 30 Sun, Sudderth, Pfister (bib0096) 2015 Cech, Sanchez-Riera, Horaud (bib0085) 2011 Sun, Roth, Black (bib0012) 2010 Ranjan, Black (bib0058) 2017 Dosovitskiy, Fischer, Ilg, Husser, Hazirbas, Golkov, van der Smagt, Cremers, Brox (bib0004) 2015 Chen, Jin, Lin, Cohen, Wu (bib0028) 2013 Besl, McKay (bib0122) 1992; 14 Baker, Roth, Scharstein, Black, Lewis, Szeliski (bib0080) 2007 Zhou, Brown, Snavely, Lowe (bib0100) 2017 Sun, Roth, Black (bib0029) 2010 Huguet, Devernay (bib0082) 2007 Barron, Fleet, Beauchemin (bib0008) 1994; 12 Yang, Wang, Xu, Zhao, Nevatia (bib0101) 2018 Aujol, Gilboa, Chan, Osher (bib0042) 2006; 67 Janai, Güney, Ranjan, Black, Geiger (bib0076) 2018 Baker, Scharstein, Lewis, Roth, Black, Szeliski (bib0014) 2007; 92 Arnheim, Gibson (bib0001) 1952; 11 Ahmadi, Patras (bib0067) 2016 Ranjan, Jampani, Balles, Kim, Sun, Wulff, Black (bib0107) 2019 Qi, Yi, Su, Guibas (bib0118) 2017 Cheng, Tsai, Wang, Yang (bib0057) 2017 Bailer, Taetz, Stricker (bib0030) 2019; 41 Pons (10.1016/j.patcog.2021.107861_bib0081) 2007; 72 Aujol (10.1016/j.patcog.2021.107861_bib0042) 2006; 67 Hui (10.1016/j.patcog.2021.107861_bib0062) 2018 Mitiche (10.1016/j.patcog.2021.107861_bib0009) 1996; 19 Ince (10.1016/j.patcog.2021.107861_bib0037) 2008; 17 10.1016/j.patcog.2021.107861_bib0066 10.1016/j.patcog.2021.107861_bib0063 Vogel (10.1016/j.patcog.2021.107861_bib0087) 2013 Behl (10.1016/j.patcog.2021.107861_bib0114) 2019 Dosovitskiy (10.1016/j.patcog.2021.107861_bib0004) 2015 Cheng (10.1016/j.patcog.2021.107861_bib0057) 2017 Papenberg (10.1016/j.patcog.2021.107861_bib0040) 2006; 67 Schuster (10.1016/j.patcog.2021.107861_bib0089) 2018 Tu (10.1016/j.patcog.2021.107861_bib0017) 2019; 72 Menze (10.1016/j.patcog.2021.107861_bib0088) 2015 Meister (10.1016/j.patcog.2021.107861_bib0071) 2018 Quiroga (10.1016/j.patcog.2021.107861_bib0092) 2012 Janai (10.1016/j.patcog.2021.107861_bib0076) 2018 Ren (10.1016/j.patcog.2021.107861_bib0069) 2017 Brox (10.1016/j.patcog.2021.107861_bib0025) 2011; 33 Liu (10.1016/j.patcog.2021.107861_bib0078) 2019 Chen (10.1016/j.patcog.2021.107861_bib0031) 2016 Ma (10.1016/j.patcog.2021.107861_bib0109) 2019 Butler (10.1016/j.patcog.2021.107861_bib0003) 2012 Zhai (10.1016/j.patcog.2021.107861_bib0056) 2019; 7 Chao (10.1016/j.patcog.2021.107861_bib0016) 2013 Ayvaci (10.1016/j.patcog.2021.107861_bib0038) 2011; 97 Mileva (10.1016/j.patcog.2021.107861_bib0044) 2007 Mayer (10.1016/j.patcog.2021.107861_bib0005) 2016 Lai (10.1016/j.patcog.2021.107861_bib0074) 2017 Gadot (10.1016/j.patcog.2021.107861_bib0036) 2016 Yang (10.1016/j.patcog.2021.107861_bib0075) 2018 Hu (10.1016/j.patcog.2021.107861_bib0059) 2018; 20 Huguet (10.1016/j.patcog.2021.107861_bib0082) 2007 10.1016/j.patcog.2021.107861_bib0120 Besl (10.1016/j.patcog.2021.107861_bib0122) 1992; 14 Zou (10.1016/j.patcog.2021.107861_bib0106) 2018 Li (10.1016/j.patcog.2021.107861_bib0024) 2018; 28 Eigen (10.1016/j.patcog.2021.107861_bib0123) 2014 Xu (10.1016/j.patcog.2021.107861_bib0023) 2012; 34 Basha (10.1016/j.patcog.2021.107861_bib0086) 2010 Horncek (10.1016/j.patcog.2021.107861_bib0095) 2014 Sun (10.1016/j.patcog.2021.107861_bib0096) 2015 Liu (10.1016/j.patcog.2021.107861_bib0079) 2019 Zhou (10.1016/j.patcog.2021.107861_bib0100) 2017 Bailer (10.1016/j.patcog.2021.107861_bib0030) 2019; 41 Stiller (10.1016/j.patcog.2021.107861_bib0010) 1999; 16 Dewan (10.1016/j.patcog.2021.107861_bib0112) 2016 Xiao (10.1016/j.patcog.2021.107861_bib0046) 2006 10.1016/j.patcog.2021.107861_bib0119 Revaud (10.1016/j.patcog.2021.107861_bib0032) 2015 Hadfield (10.1016/j.patcog.2021.107861_bib0091) 2011 Yu (10.1016/j.patcog.2021.107861_bib0068) 2016 Fortun (10.1016/j.patcog.2021.107861_bib0015) 2015; 134 Zhao (10.1016/j.patcog.2021.107861_bib0053) 2017 Bao (10.1016/j.patcog.2021.107861_bib0027) 2014 Baker (10.1016/j.patcog.2021.107861_bib0080) 2007 Geiger (10.1016/j.patcog.2021.107861_bib0006) 2012 Yang (10.1016/j.patcog.2021.107861_bib0102) 2018 Qi (10.1016/j.patcog.2021.107861_bib0118) 2017 Ranjan (10.1016/j.patcog.2021.107861_bib0058) 2017 10.1016/j.patcog.2021.107861_bib0021 Menze (10.1016/j.patcog.2021.107861_bib0034) 2015 Zhu (10.1016/j.patcog.2021.107861_bib0072) 2018 10.1016/j.patcog.2021.107861_bib0022 Jaimez (10.1016/j.patcog.2021.107861_bib0097) 2015 Jiang (10.1016/j.patcog.2021.107861_bib0110) 2019 Sun (10.1016/j.patcog.2021.107861_bib0029) 2010 Hur (10.1016/j.patcog.2021.107861_bib0039) 2017 Ahmadi (10.1016/j.patcog.2021.107861_bib0067) 2016 Wang (10.1016/j.patcog.2021.107861_bib0105) 2019 Menze (10.1016/j.patcog.2021.107861_bib0007) 2015 Lai (10.1016/j.patcog.2021.107861_bib0111) 2019 Sun (10.1016/j.patcog.2021.107861_bib0061) 2018 Zhao (10.1016/j.patcog.2021.107861_bib0065) 2020 Ushani (10.1016/j.patcog.2021.107861_bib0113) 2017 Xiang (10.1016/j.patcog.2021.107861_bib0055) 2018; 6 10.1016/j.patcog.2021.107861_bib0018 Chen (10.1016/j.patcog.2021.107861_bib0049) 2019; 29 Liu (10.1016/j.patcog.2021.107861_bib0117) 2019 Güney (10.1016/j.patcog.2021.107861_bib0035) 2017 Baker (10.1016/j.patcog.2021.107861_bib0014) 2007; 92 Hur (10.1016/j.patcog.2021.107861_bib0077) 2019 10.1016/j.patcog.2021.107861_bib0090 Zhai (10.1016/j.patcog.2021.107861_bib0064) 2020; 30 van de Weijer (10.1016/j.patcog.2021.107861_bib0043) 2004; 3 Weickert (10.1016/j.patcog.2021.107861_bib0011) 2006; 10 Cech (10.1016/j.patcog.2021.107861_bib0085) 2011 Cao (10.1016/j.patcog.2021.107861_bib0108) 2019 Ferstl (10.1016/j.patcog.2021.107861_bib0084) 2014; 1 Mahjourian (10.1016/j.patcog.2021.107861_bib0103) 2018 Wedel (10.1016/j.patcog.2021.107861_bib0083) 2008 Ilg (10.1016/j.patcog.2021.107861_bib0098) 2018 Bao (10.1016/j.patcog.2021.107861_bib0048) 2019; 28 Yin (10.1016/j.patcog.2021.107861_bib0104) 2018 Lopez (10.1016/j.patcog.2021.107861_bib0052) 2017 Quiroga (10.1016/j.patcog.2021.107861_bib0093) 2013 Vedula (10.1016/j.patcog.2021.107861_bib0002) 2005; 27 Su (10.1016/j.patcog.2021.107861_bib0121) 2018 Ilg (10.1016/j.patcog.2021.107861_bib0051) 2017 Zimmer (10.1016/j.patcog.2021.107861_bib0013) 2011; 93 Zhu (10.1016/j.patcog.2021.107861_bib0070) 2017 Lv (10.1016/j.patcog.2021.107861_bib0099) 2018 Jampani (10.1016/j.patcog.2021.107861_bib0116) 2016 Gu (10.1016/j.patcog.2021.107861_bib0115) 2019 Arnheim (10.1016/j.patcog.2021.107861_bib0001) 1952; 11 Ranjan (10.1016/j.patcog.2021.107861_bib0107) 2019 Mohamed (10.1016/j.patcog.2021.107861_bib0041) 2014; 24 Barron (10.1016/j.patcog.2021.107861_bib0008) 1994; 12 Dai (10.1016/j.patcog.2021.107861_bib0060) 2018 Zhai (10.1016/j.patcog.2021.107861_bib0054) 2019; 368 Wang (10.1016/j.patcog.2021.107861_bib0073) 2018 Xuezhi (10.1016/j.patcog.2021.107861_bib0019) 2017 Tu (10.1016/j.patcog.2021.107861_bib0045) 2015 Yang (10.1016/j.patcog.2021.107861_bib0101) 2018 Hu (10.1016/j.patcog.2021.107861_bib0033) 2016 Quiroga (10.1016/j.patcog.2021.107861_bib0094) 2014 Sun (10.1016/j.patcog.2021.107861_bib0012) 2010 Chen (10.1016/j.patcog.2021.107861_bib0028) 2013 Bao (10.1016/j.patcog.2021.107861_bib0047) 2018 Horn (10.1016/j.patcog.2021.107861_bib0020) 1981; 17 Weinzaepfel (10.1016/j.patcog.2021.107861_bib0026) 2013 Zhang (10.1016/j.patcog.2021.107861_bib0050) 2020; 22 |
References_xml | – year: 2017 ident: bib0052 article-title: Joint coarse-and-fine reasoning for deep optical flow publication-title: 2017 IEEE International Conference on Image Processing (ICIP) – year: 2017 ident: bib0069 article-title: Unsupervised deep learning for optical flow estimation publication-title: AAAI Conference on Artificial Intelligence (AAAI) – volume: 3 start-page: 1835 year: 2004 end-page: 1838 ident: bib0043 article-title: Robust optical flow from photometric invariants publication-title: 2004 International Conference on Image Processing, 2004. ICIP ’04. – start-page: 3338 year: 2018 end-page: 3342 ident: bib0060 article-title: Pyramid structured optical flow learning with motion cues publication-title: 25th IEEE International Conference on Image Processing (ICIP) – start-page: 2443 year: 2013 end-page: 2450 ident: bib0028 article-title: Large displacement optical flow from nearest neighbor fields publication-title: 2013 IEEE Conference on Computer Vision and Pattern Recognition – volume: 20 start-page: 2814 year: 2018 end-page: 2823 ident: bib0059 article-title: Recurrent spatial pyramid CNN for optical flow estimation publication-title: IEEE Trans. Multimed. – start-page: 3609 year: 2019 end-page: 3617 ident: bib0109 article-title: Deep rigid instance scene flow publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 611 year: 2012 end-page: 625 ident: bib0003 article-title: A naturalistic open source movie for optical flow evaluation publication-title: European Conf. on Computer Vision (ECCV) – reference: X.X. Zike Yan, Scene flow estimation: a survey, arXiv: – start-page: 1890 year: 2019 end-page: 1899 ident: bib0111 article-title: Bridging stereo matching and optical flow via spatiotemporal correspondence publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 33 start-page: 500 year: 2011 end-page: 513 ident: bib0025 article-title: Large displacement optical flow: descriptor matching in variational motion estimation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 211 year: 2006 end-page: 224 ident: bib0046 article-title: Bilateral filtering-based optical flow estimation with occlusion detection publication-title: Computer Vision – ECCV 2006 – start-page: 6612 year: 2017 end-page: 6619 ident: bib0100 article-title: Unsupervised learning of depth and EGO-motion from video publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 3343 year: 2018 end-page: 3347 ident: bib0047 article-title: KalmanFlow: efficient Kalman filtering for video optical flow publication-title: 2018 25th IEEE International Conference on Image Processing (ICIP) – volume: 93 start-page: 368 year: 2011 end-page: 388 ident: bib0013 article-title: Optic flow in harmony publication-title: Int. J. Comput. Vis. – start-page: 312 year: 2017 end-page: 321 ident: bib0039 article-title: MirrorFlow: exploiting symmetries in joint optical flow and occlusion estimation publication-title: 2017 IEEE International Conference on Computer Vision (ICCV) – volume: 6 start-page: 43222 year: 2018 end-page: 43232 ident: bib0055 article-title: Deep optical flow supervised learning with prior assumptions publication-title: IEEE Access – start-page: 5099 year: 2017 end-page: 5108 ident: bib0118 article-title: PointNet++: deep hierarchical feature learning on point sets in a metric space publication-title: Advances in Neural Information Processing Systems 30 – volume: 97 start-page: 322 year: 2011 end-page: 338 ident: bib0038 article-title: Sparse occlusion detection with optical flow publication-title: Int. J. Comput. Vis. – start-page: 6277 year: 2020 end-page: 6286 ident: bib0065 article-title: Maskflownet: asymmetric feature matching with learnable occlusion mask publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 92 start-page: 1 year: 2007 end-page: 31 ident: bib0014 article-title: A database and evaluation methodology for optical flow publication-title: Int. J. Comput. Vis. – start-page: 5747 year: 2019 end-page: 5756 ident: bib0077 article-title: Iterative residual refinement for joint optical flow and occlusion estimation publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 2720 year: 2017 end-page: 2729 ident: bib0058 article-title: Optical flow estimation using a spatial pyramid network publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 50 year: 2012 end-page: 57 ident: bib0092 article-title: Scene flow by tracking in intensity and depth data publication-title: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops – start-page: 790 year: 2017 end-page: 794 ident: bib0070 article-title: Densenet for dense flow publication-title: IEEE International Conference on Image Processing (ICIP) – volume: 72 start-page: 179 year: 2007 end-page: 193 ident: bib0081 article-title: Multi-view stereo reconstruction and scene flow estimation with a global image-based matching score publication-title: Int. J. Comput. Vis. – start-page: 4884 year: 2018 end-page: 4893 ident: bib0073 article-title: Occlusion aware unsupervised learning of optical flow publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition – reference: W. Wu, Z. Wang, Z. Li, W. Liu, L. Fuxin, PointPWC-Net: a coarse-to-fine network for supervised and self-supervised scene flow estimation on 3D point clouds, arXiv: – volume: 17 start-page: 185 year: 1981 end-page: 203 ident: bib0020 article-title: Determining optical flow publication-title: Artif. Intell. – start-page: 38 year: 2018 end-page: 55 ident: bib0106 article-title: DF-Net: unsupervised joint learning of depth and flow using cross-task consistency publication-title: Computer Vision – ECCV 2018 – volume: 368 start-page: 124 year: 2019 end-page: 132 ident: bib0054 article-title: Optical flow estimation using channel attention mechanism and dilated convolutional neural networks publication-title: Neurocomputing – start-page: 5587 year: 2019 end-page: 5596 ident: bib0108 article-title: Learning independent object motion from unlabelled stereoscopic videos publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 686 year: 2017 end-page: 695 ident: bib0057 article-title: SegFlow: joint learning for video object segmentation and optical flow publication-title: IEEE International Conference on Computer Vision (ICCV) – volume: 67 start-page: 141 year: 2006 end-page: 158 ident: bib0040 article-title: Highly accurate optic flow computation with theoretically justified warping publication-title: Int. J. Comput. Vis. – start-page: 2432 year: 2010 end-page: 2439 ident: bib0012 article-title: Secrets of optical flow estimation and their principles publication-title: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition – volume: 22 start-page: 349 year: 2020 end-page: 364 ident: bib0050 article-title: Refined TV-L1 optical flow estimation using joint filtering publication-title: IEEE Trans. Multimed. – start-page: 413 year: 2015 end-page: 427 ident: bib0045 article-title: Improved color patch similarity measure based weighted median filter publication-title: Computer Vision – ACCV 2014 – reference: (2016). – volume: 28 start-page: 4233 year: 2019 end-page: 4246 ident: bib0048 article-title: KalmanFlow 2.0: efficient video optical flow estimation via context-aware Kalman filtering publication-title: IEEE Trans. Image Process. – start-page: 3129 year: 2011 end-page: 3136 ident: bib0085 article-title: Scene flow estimation by growing correspondence seeds publication-title: CVPR 2011 – start-page: 484 year: 2018 end-page: 501 ident: bib0099 article-title: Learning rigidity in dynamic scenes with a moving camera for 3D motion field estimation publication-title: Computer Vision – ECCV 2018 – start-page: 3850 year: 2013 end-page: 3854 ident: bib0093 article-title: Local/global scene flow estimation publication-title: IEEE International Conference on Image Processing – start-page: 626 year: 2018 end-page: 643 ident: bib0098 article-title: Occlusions, motion and depth boundaries with a generic network for disparity, optical flow or scene flow estimation publication-title: Computer Vision – ECCV 2018 – year: 2019 ident: bib0079 article-title: DDflow: learning optical flow with unlabeled data distillation publication-title: AAAI – volume: 1 start-page: 285 year: 2014 end-page: 292 ident: bib0084 article-title: aTGV-SF: dense variational scene flow through projective warping and higher order regularization publication-title: 2nd International Conference on 3D Vision – start-page: 207 year: 2017 end-page: 224 ident: bib0035 article-title: Deep discrete flow publication-title: Computer Vision – ACCV 2016 – reference: B. Lucas, T. Kanade, An iterative technique of image registration and its application to stereo (1981). The 7th International Joint Conference on Artificial Intelligence, IJCAI. (1981) 674–679. – start-page: 3249 year: 2019 end-page: 3258 ident: bib0115 article-title: Hplflownet: hierarchical permutohedral lattice flownet for scene flow estimation on large-scale point clouds publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 2366 year: 2014 end-page: 2374 ident: bib0123 article-title: Depth map prediction from a single image using a multi-scale deep network publication-title: Advances in Neural Information Processing Systems 27 – volume: 27 start-page: 475 year: 2005 end-page: 480 ident: bib0002 article-title: Three-dimensional scene flow publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 5704 year: 2016 end-page: 5712 ident: bib0033 article-title: Efficient coarse-to-fine patch match for large displacement optical flow publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 548 year: 2015 end-page: 556 ident: bib0096 article-title: Layered RGBD scene flow estimation publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 1 year: 2007 end-page: 7 ident: bib0082 article-title: A variational method for scene flow estimation from stereo sequences publication-title: IEEE 11th International Conference on Computer Vision – volume: 28 start-page: 2233 year: 2018 end-page: 2245 ident: bib0024 article-title: Coarse-to-fine patchmatch for dense correspondence publication-title: IEEE Trans. Circuits Syst. Video Technol. – year: 2019 ident: bib0110 article-title: Sense: a shared encoder network for scene-flow estimation publication-title: The IEEE International Conference on Computer Vision (ICCV) – volume: 24 start-page: 1499 year: 2014 end-page: 1508 ident: bib0041 article-title: Illumination-robust optical flow using a local directional pattern publication-title: IEEE Trans. Circuits Syst. Video Technol. – start-page: 739 year: 2008 end-page: 751 ident: bib0083 article-title: Efficient dense scene flow from sparse or dense stereo data publication-title: Computer Vision – ECCV 2008 – volume: 72 start-page: 9 year: 2019 end-page: 24 ident: bib0017 article-title: A survey of variational and CNN-based optical flow techniques publication-title: Signal Process. – start-page: 5424 year: 2017 end-page: 5429 ident: bib0019 article-title: Scene flow estimation methodologies and applications a review publication-title: 2017 29th Chinese Control And Decision Conference (CCDC) – start-page: 225 year: 2018 end-page: 234 ident: bib0102 article-title: Lego: learning edge with geometry all at once by watching videos publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 16 year: 2015 end-page: 28 ident: bib0034 article-title: Discrete optimization for optical flow publication-title: Pattern Recognition – reference: X.T. Tak-Wai Hui, C.C. Loy, A lightweight optical flow cnnrevisiting data fidelity and regularization, arXiv: – start-page: 1765 year: 2016 end-page: 1770 ident: bib0112 article-title: Rigid scene flow for 3D LIDAR scans publication-title: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) – start-page: 4706 year: 2016 end-page: 4714 ident: bib0031 article-title: Full flow: optical flow estimation by global optimization over regular grids publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 12232 year: 2019 end-page: 12241 ident: bib0107 article-title: Competitive collaboration: Joint unsupervised learning of depth, camera motion, optical flow and motion segmentation publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 567 year: 2014 end-page: 582 ident: bib0094 article-title: Dense semi-rigid scene flow estimation from RGBD images publication-title: Computer Vision – ECCV 2014 – start-page: 282 year: 2018 end-page: 298 ident: bib0075 article-title: Conditional prior networks for optical flow publication-title: Computer Vision – ECCV 2018 – start-page: 5666 year: 2017 end-page: 5673 ident: bib0113 article-title: A learning approach for real-time temporal scene flow estimation from LIDAR data publication-title: IEEE International Conference on Robotics and Automation (ICRA) – start-page: 713 year: 2018 end-page: 731 ident: bib0076 article-title: Unsupervised learning of multi-frame optical flow with occlusions publication-title: Computer Vision – ECCV 2018 – start-page: 3534 year: 2014 end-page: 3541 ident: bib0027 article-title: Fast edge-preserving patchmatch for large displacement optical flow publication-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition – year: 2018 ident: bib0101 article-title: Unsupervised learning of geometry from videos with edge-aware depth-normal consistency publication-title: AAAI Conference on Artificial Intelligence – volume: 7 start-page: 22566 year: 2019 end-page: 22578 ident: bib0056 article-title: Learning optical flow using deep dilated residual networks publication-title: IEEE Access – reference: R. Schuster, O. Wasenmüller, C. Unger, G. Kuschk, D. Stricker, Sceneflowfields++: multi-frame matching, visibility prediction, and robust interpolation for scene flow estimation, arXiv: – start-page: 354 year: 2017 end-page: 364 ident: bib0074 article-title: Semi-supervised learning for optical flow with generative adversarial networks publication-title: Advances in Neural Information Processing Systems 30 – volume: 12 start-page: 43 year: 1994 end-page: 77 ident: bib0008 article-title: Performance of optical flow techniques publication-title: Int. J. Comput. Vis. – volume: 134 start-page: 1 year: 2015 end-page: 21 ident: bib0015 article-title: Optical flow modeling and computation: a survey publication-title: Comput. Vis. Image Underst. – year: 2018 ident: bib0071 article-title: UnFlow: unsupervised learning of optical flow with a bidirectional census loss publication-title: AAAI, New Orleans, Louisiana – volume: 29 start-page: 1350 year: 2019 end-page: 1364 ident: bib0049 article-title: A filtering-based framework for optical flow estimation publication-title: IEEE Trans. Circuits Syst. Video Technol. – start-page: 1385 year: 2013 end-page: 1392 ident: bib0026 article-title: DeepFlow: large displacement optical flow with deep matching publication-title: 2013 IEEE International Conference on Computer Vision – start-page: 1629 year: 2016 end-page: 1633 ident: bib0067 article-title: Unsupervised convolutional neural networks for motion estimation publication-title: IEEE International Conference on Image Processing (ICIP) – reference: (2020). – start-page: 3 year: 2016 end-page: 10 ident: bib0068 article-title: Back to basics: Unsupervised learning of optical flow via brightness constancy and motion smoothness publication-title: Computer Vision – ECCV 2016 Workshops – reference: T. Brox, A. Bruhn, N. Papenberg, J. Weickert, High accuracy optical flow estimation based on a theory for warping, volume 3024, 2004, pp. 25–36. – volume: 30 start-page: 3663 year: 2020 end-page: 3674 ident: bib0064 article-title: Optical flow estimation using dual self-attention pyramid networks publication-title: IEEE Trans. Circuits Syst. Video Technol. – start-page: 98 year: 2015 end-page: 104 ident: bib0097 article-title: A primal-dual framework for real-time dense RGB-D scene flow publication-title: IEEE International Conference on Robotics and Automation (ICRA) – volume: 10 start-page: 103 year: 2006 end-page: 136 ident: bib0011 article-title: A survey on variational optic flow methods for small displacements publication-title: Mathematical Models for Registration and Applications to Medical Imaging – start-page: 4236 year: 2016 end-page: 4245 ident: bib0036 article-title: Patchbatch: a batch augmented loss for optical flow publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 8981 year: 2018 end-page: 8989 ident: bib0062 article-title: Liteflownet: a lightweight convolutional neural network for optical flow estimation publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 1647 year: 2017 end-page: 1655 ident: bib0051 article-title: Flownet 2.0: evolution of optical flow estimation with deep networks publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 1377 year: 2013 end-page: 1384 ident: bib0087 article-title: Piecewise rigid scene flow publication-title: IEEE International Conference on Computer Vision – start-page: 5667 year: 2018 end-page: 5675 ident: bib0103 article-title: Unsupervised learning of depth and EGO-motion from monocular video using 3D geometric constraints publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 19 start-page: 29 year: 1996 end-page: 55 ident: bib0009 article-title: Computation and analysis of image motion: a synopsis of current problems and methods publication-title: Int. J. Comput. Vis. – volume: 16 start-page: 70 year: 1999 end-page: 91 ident: bib0010 article-title: Estimating motion in image sequences publication-title: IEEE Signal Process. Mag. – start-page: 1164 year: 2015 end-page: 1172 ident: bib0032 article-title: EpicFlow: edge-preserving interpolation of correspondences for optical flow publication-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 3333 year: 2018 end-page: 3337 ident: bib0072 article-title: Learning optical flow via dilated networks and occlusion reasoning publication-title: 25th IEEE International Conference on Image Processing (ICIP) – start-page: 3061 year: 2015 end-page: 3070 ident: bib0088 article-title: Object scene flow for autonomous vehicles publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 2290 year: 2011 end-page: 2295 ident: bib0091 article-title: Kinecting the dots: particle based scene flow from depth sensors publication-title: International Conference on Computer Vision – start-page: 152 year: 2007 end-page: 162 ident: bib0044 article-title: Illumination-robust variational optical flow with photometric invariants publication-title: Pattern Recognition – start-page: 7954 year: 2019 end-page: 7963 ident: bib0114 article-title: Pointflownet: learning representations for rigid motion estimation from point clouds publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 8063 year: 2019 end-page: 8073 ident: bib0105 article-title: Unos: unified unsupervised optical-flow and stereo-depth estimation by watching videos publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 3354 year: 2012 end-page: 3361 ident: bib0006 article-title: Are we ready for autonomous driving? The KITTI vision benchmark suite publication-title: 2012 IEEE Conference on Computer Vision and Pattern Recognition – volume: 17 start-page: 1443 year: 2008 end-page: 1451 ident: bib0037 article-title: Occlusion-aware optical flow estimation publication-title: IEEE Trans. Image Process. – volume: 14 start-page: 239 year: 1992 end-page: 256 ident: bib0122 article-title: A method for registration of 3-D shapes publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 2432 year: 2010 end-page: 2439 ident: bib0029 article-title: Secrets of optical flow estimation and their principles publication-title: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition – start-page: 1056 year: 2018 end-page: 1065 ident: bib0089 article-title: Sceneflowfields: dense interpolation of sparse scene flow correspondences publication-title: IEEE Winter Conference on Applications of Computer Vision (WACV) – start-page: 8934 year: 2018 end-page: 8943 ident: bib0061 article-title: Pwc-Net: CNNs for optical flow using pyramid, warping, and cost volume publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 1506 year: 2010 end-page: 1513 ident: bib0086 article-title: Multi-view scene flow estimation: a view centered variational approach publication-title: IEEE Computer Society Conference on Computer Vision and Pattern Recognition – reference: (2019). – reference: J.D. Zachary Teed, Raft: recurrent all-pairs field transforms for optical flow, – start-page: 4040 year: 2016 end-page: 4048 ident: bib0005 article-title: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – year: 2015 ident: bib0007 article-title: Joint 3D estimation of vehicles and scene flow publication-title: ISPRS Workshop on Image Sequence Analysis (ISA) – reference: Z. Wang, S. Li, H. Howard-Jenkins, V.A. Prisacariu, M. Chen, FlowNet3D++: geometric losses for deep scene flow estimation, arXiv: – start-page: 3526 year: 2014 end-page: 3533 ident: bib0095 article-title: SphereFlow: 6 DOF scene flow from RGB-D pairs publication-title: IEEE Conference on Computer Vision and Pattern Recognition – start-page: 710 year: 2013 end-page: 716 ident: bib0016 article-title: A survey of optical flow techniques for UAV navigation applications publication-title: 2013 International Conference on Unmanned Aircraft Systems (ICUAS) – start-page: 4566 year: 2019 end-page: 4575 ident: bib0078 article-title: SelFlow: self-supervised learning of optical flow publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 34 start-page: 1744 year: 2012 end-page: 1757 ident: bib0023 article-title: Motion detail preserving optical flow estimation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 529 year: 2019 end-page: 537 ident: bib0117 article-title: FlowNet3D: learning scene flow in 3D point clouds publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) – year: 2017 ident: bib0053 article-title: Deep optical flow estimation via multi-scale correspondence structure learning publication-title: Proceedings of the 26th International Joint Conference on Artificial Intelligence – start-page: 4452 year: 2016 end-page: 4461 ident: bib0116 article-title: Learning sparse high dimensional filters: Image filtering, dense CRFS and bilateral neural networks publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 1983 year: 2018 end-page: 1992 ident: bib0104 article-title: GeoNet: unsupervised learning of dense depth, optical flow and camera pose publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 1 year: 2007 end-page: 8 ident: bib0080 article-title: A database and evaluation methodology for optical flow publication-title: IEEE 11th International Conference on Computer Vision – start-page: 2530 year: 2018 end-page: 2539 ident: bib0121 article-title: Splatnet: sparse lattice networks for point cloud processing publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 67 start-page: 111 year: 2006 end-page: 136 ident: bib0042 article-title: Structure-texture image decomposition-modeling, algorithms, and parameter selection publication-title: Int. J. Comput. Vis. – volume: 41 start-page: 1879 year: 2019 end-page: 1892 ident: bib0030 article-title: Flow fields: dense correspondence fields for highly accurate large displacement optical flow estimation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 2758 year: 2015 end-page: 2766 ident: bib0004 article-title: FlowNet: learning optical flow with convolutional networks publication-title: 2015 IEEE International Conference on Computer Vision (ICCV) – volume: 11 start-page: 172 year: 1952 ident: bib0001 article-title: The perception of the visual world publication-title: J. Aesthet. Art Crit. – volume: 14 start-page: 239 issue: 2 year: 1992 ident: 10.1016/j.patcog.2021.107861_bib0122 article-title: A method for registration of 3-D shapes publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.121791 – start-page: 5704 year: 2016 ident: 10.1016/j.patcog.2021.107861_bib0033 article-title: Efficient coarse-to-fine patch match for large displacement optical flow – start-page: 548 year: 2015 ident: 10.1016/j.patcog.2021.107861_bib0096 article-title: Layered RGBD scene flow estimation – start-page: 12232 year: 2019 ident: 10.1016/j.patcog.2021.107861_bib0107 article-title: Competitive collaboration: Joint unsupervised learning of depth, camera motion, optical flow and motion segmentation – volume: 41 start-page: 1879 issue: 8 year: 2019 ident: 10.1016/j.patcog.2021.107861_bib0030 article-title: Flow fields: dense correspondence fields for highly accurate large displacement optical flow estimation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2018.2859970 – year: 2018 ident: 10.1016/j.patcog.2021.107861_bib0071 article-title: UnFlow: unsupervised learning of optical flow with a bidirectional census loss – volume: 72 start-page: 9 year: 2019 ident: 10.1016/j.patcog.2021.107861_bib0017 article-title: A survey of variational and CNN-based optical flow techniques publication-title: Signal Process. – start-page: 225 year: 2018 ident: 10.1016/j.patcog.2021.107861_bib0102 article-title: Lego: learning edge with geometry all at once by watching videos – volume: 11 start-page: 172 year: 1952 ident: 10.1016/j.patcog.2021.107861_bib0001 article-title: The perception of the visual world publication-title: J. Aesthet. Art Crit. doi: 10.2307/426044 – start-page: 4040 year: 2016 ident: 10.1016/j.patcog.2021.107861_bib0005 article-title: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation – start-page: 3609 year: 2019 ident: 10.1016/j.patcog.2021.107861_bib0109 article-title: Deep rigid instance scene flow – start-page: 5667 year: 2018 ident: 10.1016/j.patcog.2021.107861_bib0103 article-title: Unsupervised learning of depth and EGO-motion from monocular video using 3D geometric constraints – start-page: 413 year: 2015 ident: 10.1016/j.patcog.2021.107861_bib0045 article-title: Improved color patch similarity measure based weighted median filter – start-page: 6612 year: 2017 ident: 10.1016/j.patcog.2021.107861_bib0100 article-title: Unsupervised learning of depth and EGO-motion from video – start-page: 3534 year: 2014 ident: 10.1016/j.patcog.2021.107861_bib0027 article-title: Fast edge-preserving patchmatch for large displacement optical flow – volume: 17 start-page: 185 issue: 1 year: 1981 ident: 10.1016/j.patcog.2021.107861_bib0020 article-title: Determining optical flow publication-title: Artif. Intell. doi: 10.1016/0004-3702(81)90024-2 – start-page: 2366 year: 2014 ident: 10.1016/j.patcog.2021.107861_bib0123 article-title: Depth map prediction from a single image using a multi-scale deep network – start-page: 8981 year: 2018 ident: 10.1016/j.patcog.2021.107861_bib0062 article-title: Liteflownet: a lightweight convolutional neural network for optical flow estimation – start-page: 529 year: 2019 ident: 10.1016/j.patcog.2021.107861_bib0117 article-title: FlowNet3D: learning scene flow in 3D point clouds – year: 2017 ident: 10.1016/j.patcog.2021.107861_bib0069 article-title: Unsupervised deep learning for optical flow estimation – start-page: 1056 year: 2018 ident: 10.1016/j.patcog.2021.107861_bib0089 article-title: Sceneflowfields: dense interpolation of sparse scene flow correspondences – year: 2015 ident: 10.1016/j.patcog.2021.107861_bib0007 article-title: Joint 3D estimation of vehicles and scene flow – start-page: 2290 year: 2011 ident: 10.1016/j.patcog.2021.107861_bib0091 article-title: Kinecting the dots: particle based scene flow from depth sensors – volume: 28 start-page: 4233 issue: 9 year: 2019 ident: 10.1016/j.patcog.2021.107861_bib0048 article-title: KalmanFlow 2.0: efficient video optical flow estimation via context-aware Kalman filtering publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2903656 – start-page: 2758 year: 2015 ident: 10.1016/j.patcog.2021.107861_bib0004 article-title: FlowNet: learning optical flow with convolutional networks – ident: 10.1016/j.patcog.2021.107861_bib0090 doi: 10.1007/s11263-019-01258-1 – start-page: 5587 year: 2019 ident: 10.1016/j.patcog.2021.107861_bib0108 article-title: Learning independent object motion from unlabelled stereoscopic videos – start-page: 2443 year: 2013 ident: 10.1016/j.patcog.2021.107861_bib0028 article-title: Large displacement optical flow from nearest neighbor fields – volume: 20 start-page: 2814 issue: 10 year: 2018 ident: 10.1016/j.patcog.2021.107861_bib0059 article-title: Recurrent spatial pyramid CNN for optical flow estimation publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2018.2815784 – start-page: 152 year: 2007 ident: 10.1016/j.patcog.2021.107861_bib0044 article-title: Illumination-robust variational optical flow with photometric invariants – start-page: 3343 year: 2018 ident: 10.1016/j.patcog.2021.107861_bib0047 article-title: KalmanFlow: efficient Kalman filtering for video optical flow – start-page: 567 year: 2014 ident: 10.1016/j.patcog.2021.107861_bib0094 article-title: Dense semi-rigid scene flow estimation from RGBD images – ident: 10.1016/j.patcog.2021.107861_bib0022 doi: 10.1007/978-3-540-24673-2_3 – start-page: 4884 year: 2018 ident: 10.1016/j.patcog.2021.107861_bib0073 article-title: Occlusion aware unsupervised learning of optical flow – volume: 92 start-page: 1 year: 2007 ident: 10.1016/j.patcog.2021.107861_bib0014 article-title: A database and evaluation methodology for optical flow publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-010-0390-2 – start-page: 312 year: 2017 ident: 10.1016/j.patcog.2021.107861_bib0039 article-title: MirrorFlow: exploiting symmetries in joint optical flow and occlusion estimation – start-page: 6277 year: 2020 ident: 10.1016/j.patcog.2021.107861_bib0065 article-title: Maskflownet: asymmetric feature matching with learnable occlusion mask – start-page: 3129 year: 2011 ident: 10.1016/j.patcog.2021.107861_bib0085 article-title: Scene flow estimation by growing correspondence seeds – start-page: 5666 year: 2017 ident: 10.1016/j.patcog.2021.107861_bib0113 article-title: A learning approach for real-time temporal scene flow estimation from LIDAR data – start-page: 686 year: 2017 ident: 10.1016/j.patcog.2021.107861_bib0057 article-title: SegFlow: joint learning for video object segmentation and optical flow – start-page: 207 year: 2017 ident: 10.1016/j.patcog.2021.107861_bib0035 article-title: Deep discrete flow – start-page: 790 year: 2017 ident: 10.1016/j.patcog.2021.107861_bib0070 article-title: Densenet for dense flow – start-page: 1 year: 2007 ident: 10.1016/j.patcog.2021.107861_bib0082 article-title: A variational method for scene flow estimation from stereo sequences – year: 2018 ident: 10.1016/j.patcog.2021.107861_bib0101 article-title: Unsupervised learning of geometry from videos with edge-aware depth-normal consistency – volume: 22 start-page: 349 issue: 2 year: 2020 ident: 10.1016/j.patcog.2021.107861_bib0050 article-title: Refined TV-L1 optical flow estimation using joint filtering publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2019.2929934 – volume: 7 start-page: 22566 year: 2019 ident: 10.1016/j.patcog.2021.107861_bib0056 article-title: Learning optical flow using deep dilated residual networks publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2898988 – volume: 72 start-page: 179 year: 2007 ident: 10.1016/j.patcog.2021.107861_bib0081 article-title: Multi-view stereo reconstruction and scene flow estimation with a global image-based matching score publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-006-8671-5 – volume: 97 start-page: 322 year: 2011 ident: 10.1016/j.patcog.2021.107861_bib0038 article-title: Sparse occlusion detection with optical flow publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-011-0490-7 – start-page: 626 year: 2018 ident: 10.1016/j.patcog.2021.107861_bib0098 article-title: Occlusions, motion and depth boundaries with a generic network for disparity, optical flow or scene flow estimation – start-page: 5747 year: 2019 ident: 10.1016/j.patcog.2021.107861_bib0077 article-title: Iterative residual refinement for joint optical flow and occlusion estimation – start-page: 2432 year: 2010 ident: 10.1016/j.patcog.2021.107861_bib0029 article-title: Secrets of optical flow estimation and their principles – start-page: 710 year: 2013 ident: 10.1016/j.patcog.2021.107861_bib0016 article-title: A survey of optical flow techniques for UAV navigation applications – volume: 10 start-page: 103 year: 2006 ident: 10.1016/j.patcog.2021.107861_bib0011 article-title: A survey on variational optic flow methods for small displacements publication-title: Mathematical Models for Registration and Applications to Medical Imaging doi: 10.1007/978-3-540-34767-5_5 – start-page: 1 year: 2007 ident: 10.1016/j.patcog.2021.107861_bib0080 article-title: A database and evaluation methodology for optical flow – start-page: 2530 year: 2018 ident: 10.1016/j.patcog.2021.107861_bib0121 article-title: Splatnet: sparse lattice networks for point cloud processing – volume: 17 start-page: 1443 issue: 8 year: 2008 ident: 10.1016/j.patcog.2021.107861_bib0037 article-title: Occlusion-aware optical flow estimation publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2008.925381 – start-page: 1164 year: 2015 ident: 10.1016/j.patcog.2021.107861_bib0032 article-title: EpicFlow: edge-preserving interpolation of correspondences for optical flow – volume: 134 start-page: 1 year: 2015 ident: 10.1016/j.patcog.2021.107861_bib0015 article-title: Optical flow modeling and computation: a survey publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2015.02.008 – year: 2019 ident: 10.1016/j.patcog.2021.107861_bib0079 article-title: DDflow: learning optical flow with unlabeled data distillation – start-page: 1385 year: 2013 ident: 10.1016/j.patcog.2021.107861_bib0026 article-title: DeepFlow: large displacement optical flow with deep matching – year: 2017 ident: 10.1016/j.patcog.2021.107861_bib0053 article-title: Deep optical flow estimation via multi-scale correspondence structure learning – volume: 67 start-page: 111 year: 2006 ident: 10.1016/j.patcog.2021.107861_bib0042 article-title: Structure-texture image decomposition-modeling, algorithms, and parameter selection publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-006-4331-z – start-page: 1983 year: 2018 ident: 10.1016/j.patcog.2021.107861_bib0104 article-title: GeoNet: unsupervised learning of dense depth, optical flow and camera pose – start-page: 2432 year: 2010 ident: 10.1016/j.patcog.2021.107861_bib0012 article-title: Secrets of optical flow estimation and their principles – volume: 16 start-page: 70 issue: 4 year: 1999 ident: 10.1016/j.patcog.2021.107861_bib0010 article-title: Estimating motion in image sequences publication-title: IEEE Signal Process. Mag. doi: 10.1109/79.774934 – year: 2017 ident: 10.1016/j.patcog.2021.107861_bib0052 article-title: Joint coarse-and-fine reasoning for deep optical flow – volume: 1 start-page: 285 year: 2014 ident: 10.1016/j.patcog.2021.107861_bib0084 article-title: aTGV-SF: dense variational scene flow through projective warping and higher order regularization – start-page: 1506 year: 2010 ident: 10.1016/j.patcog.2021.107861_bib0086 article-title: Multi-view scene flow estimation: a view centered variational approach – start-page: 484 year: 2018 ident: 10.1016/j.patcog.2021.107861_bib0099 article-title: Learning rigidity in dynamic scenes with a moving camera for 3D motion field estimation – start-page: 50 year: 2012 ident: 10.1016/j.patcog.2021.107861_bib0092 article-title: Scene flow by tracking in intensity and depth data – start-page: 211 year: 2006 ident: 10.1016/j.patcog.2021.107861_bib0046 article-title: Bilateral filtering-based optical flow estimation with occlusion detection – volume: 19 start-page: 29 year: 1996 ident: 10.1016/j.patcog.2021.107861_bib0009 article-title: Computation and analysis of image motion: a synopsis of current problems and methods publication-title: Int. J. Comput. Vis. doi: 10.1007/BF00131147 – volume: 30 start-page: 3663 issue: 10 year: 2020 ident: 10.1016/j.patcog.2021.107861_bib0064 article-title: Optical flow estimation using dual self-attention pyramid networks publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2019.2943140 – volume: 29 start-page: 1350 issue: 5 year: 2019 ident: 10.1016/j.patcog.2021.107861_bib0049 article-title: A filtering-based framework for optical flow estimation publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2018.2805101 – start-page: 1647 year: 2017 ident: 10.1016/j.patcog.2021.107861_bib0051 article-title: Flownet 2.0: evolution of optical flow estimation with deep networks – start-page: 1765 year: 2016 ident: 10.1016/j.patcog.2021.107861_bib0112 article-title: Rigid scene flow for 3D LIDAR scans – start-page: 5424 year: 2017 ident: 10.1016/j.patcog.2021.107861_bib0019 article-title: Scene flow estimation methodologies and applications a review – volume: 34 start-page: 1744 issue: 9 year: 2012 ident: 10.1016/j.patcog.2021.107861_bib0023 article-title: Motion detail preserving optical flow estimation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2011.236 – volume: 28 start-page: 2233 issue: 9 year: 2018 ident: 10.1016/j.patcog.2021.107861_bib0024 article-title: Coarse-to-fine patchmatch for dense correspondence publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2017.2720175 – start-page: 8063 year: 2019 ident: 10.1016/j.patcog.2021.107861_bib0105 article-title: Unos: unified unsupervised optical-flow and stereo-depth estimation by watching videos – volume: 24 start-page: 1499 issue: 9 year: 2014 ident: 10.1016/j.patcog.2021.107861_bib0041 article-title: Illumination-robust optical flow using a local directional pattern publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2014.2308628 – start-page: 4706 year: 2016 ident: 10.1016/j.patcog.2021.107861_bib0031 article-title: Full flow: optical flow estimation by global optimization over regular grids – volume: 93 start-page: 368 year: 2011 ident: 10.1016/j.patcog.2021.107861_bib0013 article-title: Optic flow in harmony publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-011-0422-6 – start-page: 8934 year: 2018 ident: 10.1016/j.patcog.2021.107861_bib0061 article-title: Pwc-Net: CNNs for optical flow using pyramid, warping, and cost volume – volume: 12 start-page: 43 year: 1994 ident: 10.1016/j.patcog.2021.107861_bib0008 article-title: Performance of optical flow techniques publication-title: Int. J. Comput. Vis. doi: 10.1007/BF01420984 – volume: 3 start-page: 1835 year: 2004 ident: 10.1016/j.patcog.2021.107861_bib0043 article-title: Robust optical flow from photometric invariants – year: 2019 ident: 10.1016/j.patcog.2021.107861_bib0110 article-title: Sense: a shared encoder network for scene-flow estimation – start-page: 1890 year: 2019 ident: 10.1016/j.patcog.2021.107861_bib0111 article-title: Bridging stereo matching and optical flow via spatiotemporal correspondence – start-page: 16 year: 2015 ident: 10.1016/j.patcog.2021.107861_bib0034 article-title: Discrete optimization for optical flow – start-page: 5099 year: 2017 ident: 10.1016/j.patcog.2021.107861_bib0118 article-title: PointNet++: deep hierarchical feature learning on point sets in a metric space – start-page: 3061 year: 2015 ident: 10.1016/j.patcog.2021.107861_bib0088 article-title: Object scene flow for autonomous vehicles – start-page: 713 year: 2018 ident: 10.1016/j.patcog.2021.107861_bib0076 article-title: Unsupervised learning of multi-frame optical flow with occlusions – ident: 10.1016/j.patcog.2021.107861_bib0119 doi: 10.1109/WACV45572.2020.9093302 – start-page: 3338 year: 2018 ident: 10.1016/j.patcog.2021.107861_bib0060 article-title: Pyramid structured optical flow learning with motion cues – volume: 6 start-page: 43222 year: 2018 ident: 10.1016/j.patcog.2021.107861_bib0055 article-title: Deep optical flow supervised learning with prior assumptions publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2863233 – start-page: 3354 year: 2012 ident: 10.1016/j.patcog.2021.107861_bib0006 article-title: Are we ready for autonomous driving? The KITTI vision benchmark suite – volume: 368 start-page: 124 year: 2019 ident: 10.1016/j.patcog.2021.107861_bib0054 article-title: Optical flow estimation using channel attention mechanism and dilated convolutional neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.08.040 – start-page: 3850 year: 2013 ident: 10.1016/j.patcog.2021.107861_bib0093 article-title: Local/global scene flow estimation – volume: 67 start-page: 141 year: 2006 ident: 10.1016/j.patcog.2021.107861_bib0040 article-title: Highly accurate optic flow computation with theoretically justified warping publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-005-3960-y – start-page: 7954 year: 2019 ident: 10.1016/j.patcog.2021.107861_bib0114 article-title: Pointflownet: learning representations for rigid motion estimation from point clouds – ident: 10.1016/j.patcog.2021.107861_bib0021 – start-page: 3249 year: 2019 ident: 10.1016/j.patcog.2021.107861_bib0115 article-title: Hplflownet: hierarchical permutohedral lattice flownet for scene flow estimation on large-scale point clouds – ident: 10.1016/j.patcog.2021.107861_bib0063 – ident: 10.1016/j.patcog.2021.107861_bib0120 – start-page: 3 year: 2016 ident: 10.1016/j.patcog.2021.107861_bib0068 article-title: Back to basics: Unsupervised learning of optical flow via brightness constancy and motion smoothness – start-page: 3526 year: 2014 ident: 10.1016/j.patcog.2021.107861_bib0095 article-title: SphereFlow: 6 DOF scene flow from RGB-D pairs – start-page: 739 year: 2008 ident: 10.1016/j.patcog.2021.107861_bib0083 article-title: Efficient dense scene flow from sparse or dense stereo data – start-page: 282 year: 2018 ident: 10.1016/j.patcog.2021.107861_bib0075 article-title: Conditional prior networks for optical flow – start-page: 354 year: 2017 ident: 10.1016/j.patcog.2021.107861_bib0074 article-title: Semi-supervised learning for optical flow with generative adversarial networks – start-page: 4566 year: 2019 ident: 10.1016/j.patcog.2021.107861_bib0078 article-title: SelFlow: self-supervised learning of optical flow – ident: 10.1016/j.patcog.2021.107861_bib0018 – ident: 10.1016/j.patcog.2021.107861_bib0066 – volume: 33 start-page: 500 issue: 3 year: 2011 ident: 10.1016/j.patcog.2021.107861_bib0025 article-title: Large displacement optical flow: descriptor matching in variational motion estimation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.143 – volume: 27 start-page: 475 issue: 3 year: 2005 ident: 10.1016/j.patcog.2021.107861_bib0002 article-title: Three-dimensional scene flow publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.63 – start-page: 1629 year: 2016 ident: 10.1016/j.patcog.2021.107861_bib0067 article-title: Unsupervised convolutional neural networks for motion estimation – start-page: 3333 year: 2018 ident: 10.1016/j.patcog.2021.107861_bib0072 article-title: Learning optical flow via dilated networks and occlusion reasoning – start-page: 1377 year: 2013 ident: 10.1016/j.patcog.2021.107861_bib0087 article-title: Piecewise rigid scene flow – start-page: 611 year: 2012 ident: 10.1016/j.patcog.2021.107861_bib0003 article-title: A naturalistic open source movie for optical flow evaluation – start-page: 98 year: 2015 ident: 10.1016/j.patcog.2021.107861_bib0097 article-title: A primal-dual framework for real-time dense RGB-D scene flow – start-page: 38 year: 2018 ident: 10.1016/j.patcog.2021.107861_bib0106 article-title: DF-Net: unsupervised joint learning of depth and flow using cross-task consistency – start-page: 4236 year: 2016 ident: 10.1016/j.patcog.2021.107861_bib0036 article-title: Patchbatch: a batch augmented loss for optical flow – start-page: 2720 year: 2017 ident: 10.1016/j.patcog.2021.107861_bib0058 article-title: Optical flow estimation using a spatial pyramid network – start-page: 4452 year: 2016 ident: 10.1016/j.patcog.2021.107861_bib0116 article-title: Learning sparse high dimensional filters: Image filtering, dense CRFS and bilateral neural networks |
SSID | ssj0017142 |
Score | 2.62564 |
Snippet | •To the best of our knowledge, this is the first survey paper to cover both optical flow and scene flow estimation comprehensively.•In contrast to existing... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107861 |
SubjectTerms | Convolutional neural networks (CNNs) Deep learning Motion analysis Optical flow Scene flow Variational model |
Title | Optical flow and scene flow estimation: A survey |
URI | https://dx.doi.org/10.1016/j.patcog.2021.107861 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5KvXjxLdZHycFrbLPJbna9lWKpivViobcl2SRSKdulD8WLv91ks1sURMFjQgaWL8nMZJnvG4BLozPKs8RgyozEjMgQS2EUtqE4S2JiqAgcG_lhFA3H7G4SThrQr7kwrqyy8v3ep5feuprpVGh2iunUcXyd7GDXkVBKZrRjsDPuTvnVx6bMw_X39orhlGC3uqbPlTVehXV382f7SgyIneJxRH4OT19CzmAPdqpcEfX85-xDQ-cHsFv3YUDVtTyE7mNR_pFGZjZ_QyJXyEk0aT90KhqenniNemi5Xrzq9yMYD26e-kNcdULAFslghaWhUtrEP7DZg0moUkwHTKlQKKMpMRlJjH2phYwJm8CZrky0NBFliY4iRW3ORI-hmc9zfQKIc82VkXGsiWAkyKQiURwJGfPMbpRIWkBrANKskgl33SpmaV0P9pJ62FIHW-phawHeWBVeJuOP9bzGNv223an15L9anv7b8gy23cjXeZ1Dc7VY6wubUaxkuzwybdjq3d4PR58KZMp3 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7M7UFfvIvz2gdfw5Ymvfk2hqNzF1822FtomkQmoytzU_z3Jk07FETBx6Y9UL60J1_a830H4E7JlARppBChiiOKuYd4ogTSS3EahViRxDVq5NHYj6f0cebNatCttDCmrLLM_TanF9m6HGmVaLby-dxofI3tYNuIUApl9A40jDuVV4dGpz-Ix9ufCQGm1jScYGQCKgVdUeaV64y3fNYbRRfroSD08c8r1JdVp3cI-yVddDr2jo6gJrNjOKhaMTjlm3kC7ae8-CjtqMXy3Uky4RiXJmkPjZGGVSjeOx3ndbN6kx-nMO09TLoxKpshIA2mu0ZcEc4193c1gVAREYJKlwrhJUJJglWKI6U3ax6lieZwqs0jyZVPaCR9XxBNm8gZ1LNlJs_BCQIZCMXDUOKEYjflAvuhn_AwSPVcJVETSAUAS0uncNOwYsGqkrAXZmFjBjZmYWsC2kbl1injj-uDClv2bcaZTua_Rl78O_IWduPJaMiG_fHgEvbMGVv2dQX19WojrzXBWPOb8gH6BBDzzSg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical+flow+and+scene+flow+estimation%3A+A+survey&rft.jtitle=Pattern+recognition&rft.au=Zhai%2C+Mingliang&rft.au=Xiang%2C+Xuezhi&rft.au=Lv%2C+Ning&rft.au=Kong%2C+Xiangdong&rft.date=2021-06-01&rft.issn=0031-3203&rft.volume=114&rft.spage=107861&rft_id=info:doi/10.1016%2Fj.patcog.2021.107861&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2021_107861 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |