Analysis of Sentiment on Movie Reviews Using Word Embedding Self-Attentive LSTM
In the contemporary world, people share their thoughts rapidly in social media. Mining and extracting knowledge from this information for performing sentiment analysis is a complex task. Even though automated machine learning algorithms and techniques are available, and extraction of semantic and re...
Saved in:
Published in | International journal of ambient computing and intelligence Vol. 12; no. 2; pp. 33 - 52 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hershey
IGI Global
01.04.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1941-6237 1941-6245 |
DOI | 10.4018/IJACI.2021040103 |
Cover
Loading…
Abstract | In the contemporary world, people share their thoughts rapidly in social media. Mining and extracting knowledge from this information for performing sentiment analysis is a complex task. Even though automated machine learning algorithms and techniques are available, and extraction of semantic and relevant key terms from a sparse representation of the review is difficult. Word embedding improves the text classification by solving the problem of sparse matrix and semantics of the word. In this paper, a novel architecture is proposed by combining long short-term memory (LSTM) with word embedding to extract the semantic relationship between the neighboring words and also a weighted self-attention is applied to extract the key terms from the reviews. Based on the experimental analysis on the IMDB dataset, the authors have shown that the proposed architecture word-embedding self-attention LSTM architecture achieved an F1 score of 88.67%, while LSTM and word embedding LSTM-based models resulted in an F1 score of 84.42% and 85.69%, respectively. |
---|---|
AbstractList | In the contemporary world, people share their thoughts rapidly in social media. Mining and extracting knowledge from this information for performing sentiment analysis is a complex task. Even though automated machine learning algorithms and techniques are available, and extraction of semantic and relevant key terms from a sparse representation of the review is difficult. Word embedding improves the text classification by solving the problem of sparse matrix and semantics of the word. In this paper, a novel architecture is proposed by combining long short-term memory (LSTM) with word embedding to extract the semantic relationship between the neighboring words and also a weighted self-attention is applied to extract the key terms from the reviews. Based on the experimental analysis on the IMDB dataset, the authors have shown that the proposed architecture word-embedding self-attention LSTM architecture achieved an F1 score of 88.67%, while LSTM and word embedding LSTM-based models resulted in an F1 score of 84.42% and 85.69%, respectively. |
Audience | Academic |
Author | Rajalakshmi, Ratnavel Sivakumar, Soubraylu |
AuthorAffiliation | School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India |
AuthorAffiliation_xml | – name: School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India |
Author_xml | – sequence: 1 givenname: Soubraylu surname: Sivakumar fullname: Sivakumar, Soubraylu organization: School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India – sequence: 2 givenname: Ratnavel surname: Rajalakshmi fullname: Rajalakshmi, Ratnavel organization: School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India |
BookMark | eNp9UV1LwzAUDaLg57uPAV_tTJqmaR_L0DmZDJzDx5A2Sc3omtlkE_-9qRUHgr6cey-cc7n3nFNw2NpWAXCJ0ShBOLuZPhTj6ShGMUZhRuQAnOA8wVEaJ_TwpyfsGJw6t0IopYiyEzAvWtF8OOOg1XChWm_WAaBt4aPdGQWfVMB3B5fOtDV8sZ2Et-tSSdmPC9XoqPC-l-0UnC2eH8_BkRaNUxff9Qws726fx_fRbD6ZjotZVBEW-6hUIi8lSRmVMlel1GmKKpaITGeVzhhiOCkpxTIJh8aSpjqXcZnlVWhwibUiZ-Bq2Lvp7NtWOc9XdtuFXxyPc8IYYQRlgXU9sGrRKF5uwxPKBXCmfvWuFlvneMFoTmiCCA70dKBXnXWuU5pXxgtvbOs7YRqOEe-95l9e873XQYh-CTedWYvu4z_JZJCY2uxv75PgVvOfJLhteZ_EX3twTD4BREeZjw |
CitedBy_id | crossref_primary_10_4018_IJEA_316539 crossref_primary_10_1007_s13278_024_01367_x crossref_primary_10_1080_09540091_2023_2173145 crossref_primary_10_1109_ACCESS_2023_3293827 crossref_primary_10_1109_ACCESS_2021_3091642 crossref_primary_10_1007_s41870_023_01430_4 crossref_primary_10_1007_s10115_024_02298_x crossref_primary_10_1016_j_ins_2023_01_138 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2021 IGI Global Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. |
Copyright_xml | – notice: COPYRIGHT 2021 IGI Global – notice: Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. |
DBID | AAYXX CITATION N95 7SC 8FD 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
DOI | 10.4018/IJACI.2021040103 |
DatabaseName | CrossRef Gale Business Insights: Global Computer and Information Systems Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database (subscription) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1941-6245 |
EndPage | 52 |
ExternalDocumentID | A759354031 10_4018_IJACI_2021040103 ysis_of_Sentiment_on_Movi10_4018_IJACI_202104010312 |
GeographicLocations | India |
GeographicLocations_xml | – name: India |
GroupedDBID | 0R 4.4 AAYVP ABEPT ADEKF ALMA_UNASSIGNED_HOLDINGS BTFVE BYHXH CBWLS CDTDJ CIGCI CNQXE COVLG CTSEY EBS HZ JRD MV1 NEEBM O9- RIF 0R~ AAYXX ABJCF ACOJC AFKRA ARAPS BAAKF BENPR BGLVJ CCPQU CITATION H13 HCIFZ HZ~ IAO ICD IMI ITC K7- M7S N95 PHGZM PHGZT PTHSS 7SC 8FD 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V L7M L~C L~D P62 PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c372t-bea9bd3675dd9ebdf660c74a8f8cf870714b551d40062d56f9d2b89c6f91b1fe3 |
IEDL.DBID | 8FG |
ISSN | 1941-6237 |
IngestDate | Fri Jul 25 11:55:06 EDT 2025 Fri May 23 02:28:41 EDT 2025 Thu Apr 24 23:12:31 EDT 2025 Tue Jul 01 01:40:29 EDT 2025 Fri Jul 16 13:42:14 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-bea9bd3675dd9ebdf660c74a8f8cf870714b551d40062d56f9d2b89c6f91b1fe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5073-8949 0000-0002-6570-483X |
PQID | 2937737308 |
PQPubID | 2045866 |
PageCount | 20 |
ParticipantIDs | proquest_journals_2937737308 gale_businessinsightsgauss_A759354031 crossref_citationtrail_10_4018_IJACI_2021040103 igi_journals_ysis_of_Sentiment_on_Movi10_4018_IJACI_202104010312 crossref_primary_10_4018_IJACI_2021040103 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hershey |
PublicationPlace_xml | – name: Hershey |
PublicationTitle | International journal of ambient computing and intelligence |
PublicationYear | 2021 |
Publisher | IGI Global |
Publisher_xml | – name: IGI Global |
SSID | ssj0065057 |
Score | 2.2726653 |
SecondaryResourceType | review_article |
Snippet | In the contemporary world, people share their thoughts rapidly in social media. Mining and extracting knowledge from this information for performing sentiment... |
SourceID | proquest gale crossref igi |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 33 |
SubjectTerms | Algorithms Analysis Data mining Embedding Machine learning Motion pictures Movie reviews Semantics Sentiment analysis Sparse matrices Words (language) |
Title | Analysis of Sentiment on Movie Reviews Using Word Embedding Self-Attentive LSTM |
URI | http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJACI.2021040103 https://www.proquest.com/docview/2937737308 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYKXLj0BVW3pciHcuBgbZ04sX1qt2i3gMpDPFRuVvxCSJDQJvT3dyZxWFVVuUSRYjvKN-N5x0PIx9w7ZcFSZRL4iYmskqzSoWJF6TPvqggatK-2OC73L8XhVXGVAm5tKqscZWIvqH3jMEY-BbUkZQ78qD7f_2TYNQqzq6mFxgpZ46BpkM_V4tsoiUs0vvussuAM1Lwc0pTgUajpweFs7wDcQ_B4BLY6-EstJeG8cnN984-I7vXO4iV5ngxGOhso_Io8C_Vr8mJsxkDT3twgJ-PxIrSJ9BxrgDDuR5uaHjXwaXRIArS0rxGgP8DnpPM7GzzqLhh_G9ms63Da70C_n18cbZLLxfxib5-lbgnM5TLrmA2Vtj4HB8B7HayPZfnJSVGpqFyEXSm5AKJwL_C3SV-UUfvMKu3ghlseQ_6GrNZNHd4SKryKPPeZK0ImHFfWVhpW5jbY0upST8h0BMu4dJQ4drS4NeBSILymh9cs4Z2Q3ccZ98MxGk-M3UH8TerCCZcW4xTtdfXQtmYmC42xqpxPyBcgkEl7rjUIsWmieYTYNLVBiP_3Ip5NyNZI3eU6S0579_Tj92QdFxvqeLbIavfrIXwAE6Wz2z0fbpO1r_Pj07M_SLziqQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB616QEuvBGBAnugBw6rsPb6dUAQSqqkTQKiqeht8b6qSsUu2AXxp_iNzPjRCCF668Wy5N2x9e143rsD8CK0JtVoqfIE-YnLIE94nrmcR7ENrMk9atCm2mIZT4_k_nF0vAG_-70wVFbZy8RGUNvSUIx8hGopSULkx_TN-TdOXaMou9q30GjZ4sD9-okuW_V69h7XdycI9iar3SnvugpwEyZBzbXLM21DNJStzZy2Po5fmUTmqU-NR-5NhMSPF1bS9kIbxT6zgU4zgzdCC-9CpLsJW5J2tA5g691k-fFTL_tjMvebPLYUHA2LpE2Mog-Tjmb7490ZOqToY0lqrvCXIuzUwebpyek_SqHRdHt34FZnorJxy1N3YcMV9-B23_6BddLgPnzoDzRhpWeHVHVEkUZWFmxRIpisTTtUrKlKYJ8RMjb5qp0lbYnjzzwf1zVN--HY_HC1eABH14LkQxgUZeEeAZM29SK0gYlcII1Itc4zpCy007HO4mwIox4sZbrDy6mHxplCJ4bgVQ28ag3vEF5ezjhvD-64YuwO4a-6vp94qSgyUp3kF1WlxkmUUXQsFEN4iwukur-8UgSxKr26hFiVhSKI__ciEQxhu1_dNZ01bz---vFzuDFdLeZqPlsePIGbRLitItqGQf39wj1FA6nWzzquZPDlun-EP7kkIIk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Sentiment+on+Movie+Reviews+Using+Word+Embedding+Self-Attentive+LSTM&rft.jtitle=International+journal+of+ambient+computing+and+intelligence&rft.au=Sivakumar%2C+Soubraylu&rft.au=Ratnavel+Rajalakshmi&rft.date=2021-04-01&rft.pub=IGI+Global&rft.issn=1941-6237&rft.eissn=1941-6245&rft.volume=12&rft.issue=2&rft.spage=33&rft.epage=52&rft_id=info:doi/10.4018%2FIJACI.2021040103 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1941-6237&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1941-6237&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1941-6237&client=summon |