Analysis of Sentiment on Movie Reviews Using Word Embedding Self-Attentive LSTM

In the contemporary world, people share their thoughts rapidly in social media. Mining and extracting knowledge from this information for performing sentiment analysis is a complex task. Even though automated machine learning algorithms and techniques are available, and extraction of semantic and re...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of ambient computing and intelligence Vol. 12; no. 2; pp. 33 - 52
Main Authors Sivakumar, Soubraylu, Rajalakshmi, Ratnavel
Format Journal Article
LanguageEnglish
Published Hershey IGI Global 01.04.2021
Subjects
Online AccessGet full text
ISSN1941-6237
1941-6245
DOI10.4018/IJACI.2021040103

Cover

Loading…
Abstract In the contemporary world, people share their thoughts rapidly in social media. Mining and extracting knowledge from this information for performing sentiment analysis is a complex task. Even though automated machine learning algorithms and techniques are available, and extraction of semantic and relevant key terms from a sparse representation of the review is difficult. Word embedding improves the text classification by solving the problem of sparse matrix and semantics of the word. In this paper, a novel architecture is proposed by combining long short-term memory (LSTM) with word embedding to extract the semantic relationship between the neighboring words and also a weighted self-attention is applied to extract the key terms from the reviews. Based on the experimental analysis on the IMDB dataset, the authors have shown that the proposed architecture word-embedding self-attention LSTM architecture achieved an F1 score of 88.67%, while LSTM and word embedding LSTM-based models resulted in an F1 score of 84.42% and 85.69%, respectively.
AbstractList In the contemporary world, people share their thoughts rapidly in social media. Mining and extracting knowledge from this information for performing sentiment analysis is a complex task. Even though automated machine learning algorithms and techniques are available, and extraction of semantic and relevant key terms from a sparse representation of the review is difficult. Word embedding improves the text classification by solving the problem of sparse matrix and semantics of the word. In this paper, a novel architecture is proposed by combining long short-term memory (LSTM) with word embedding to extract the semantic relationship between the neighboring words and also a weighted self-attention is applied to extract the key terms from the reviews. Based on the experimental analysis on the IMDB dataset, the authors have shown that the proposed architecture word-embedding self-attention LSTM architecture achieved an F1 score of 88.67%, while LSTM and word embedding LSTM-based models resulted in an F1 score of 84.42% and 85.69%, respectively.
Audience Academic
Author Rajalakshmi, Ratnavel
Sivakumar, Soubraylu
AuthorAffiliation School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India
AuthorAffiliation_xml – name: School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India
Author_xml – sequence: 1
  givenname: Soubraylu
  surname: Sivakumar
  fullname: Sivakumar, Soubraylu
  organization: School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India
– sequence: 2
  givenname: Ratnavel
  surname: Rajalakshmi
  fullname: Rajalakshmi, Ratnavel
  organization: School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, India
BookMark eNp9UV1LwzAUDaLg57uPAV_tTJqmaR_L0DmZDJzDx5A2Sc3omtlkE_-9qRUHgr6cey-cc7n3nFNw2NpWAXCJ0ShBOLuZPhTj6ShGMUZhRuQAnOA8wVEaJ_TwpyfsGJw6t0IopYiyEzAvWtF8OOOg1XChWm_WAaBt4aPdGQWfVMB3B5fOtDV8sZ2Et-tSSdmPC9XoqPC-l-0UnC2eH8_BkRaNUxff9Qws726fx_fRbD6ZjotZVBEW-6hUIi8lSRmVMlel1GmKKpaITGeVzhhiOCkpxTIJh8aSpjqXcZnlVWhwibUiZ-Bq2Lvp7NtWOc9XdtuFXxyPc8IYYQRlgXU9sGrRKF5uwxPKBXCmfvWuFlvneMFoTmiCCA70dKBXnXWuU5pXxgtvbOs7YRqOEe-95l9e873XQYh-CTedWYvu4z_JZJCY2uxv75PgVvOfJLhteZ_EX3twTD4BREeZjw
CitedBy_id crossref_primary_10_4018_IJEA_316539
crossref_primary_10_1007_s13278_024_01367_x
crossref_primary_10_1080_09540091_2023_2173145
crossref_primary_10_1109_ACCESS_2023_3293827
crossref_primary_10_1109_ACCESS_2021_3091642
crossref_primary_10_1007_s41870_023_01430_4
crossref_primary_10_1007_s10115_024_02298_x
crossref_primary_10_1016_j_ins_2023_01_138
ContentType Journal Article
Copyright COPYRIGHT 2021 IGI Global
Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
Copyright_xml – notice: COPYRIGHT 2021 IGI Global
– notice: Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
DBID AAYXX
CITATION
N95
7SC
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOI 10.4018/IJACI.2021040103
DatabaseName CrossRef
Gale Business Insights: Global
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Computer Science Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1941-6245
EndPage 52
ExternalDocumentID A759354031
10_4018_IJACI_2021040103
ysis_of_Sentiment_on_Movi10_4018_IJACI_202104010312
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID 0R
4.4
AAYVP
ABEPT
ADEKF
ALMA_UNASSIGNED_HOLDINGS
BTFVE
BYHXH
CBWLS
CDTDJ
CIGCI
CNQXE
COVLG
CTSEY
EBS
HZ
JRD
MV1
NEEBM
O9-
RIF
0R~
AAYXX
ABJCF
ACOJC
AFKRA
ARAPS
BAAKF
BENPR
BGLVJ
CCPQU
CITATION
H13
HCIFZ
HZ~
IAO
ICD
IMI
ITC
K7-
M7S
N95
PHGZM
PHGZT
PTHSS
7SC
8FD
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
L7M
L~C
L~D
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c372t-bea9bd3675dd9ebdf660c74a8f8cf870714b551d40062d56f9d2b89c6f91b1fe3
IEDL.DBID 8FG
ISSN 1941-6237
IngestDate Fri Jul 25 11:55:06 EDT 2025
Fri May 23 02:28:41 EDT 2025
Thu Apr 24 23:12:31 EDT 2025
Tue Jul 01 01:40:29 EDT 2025
Fri Jul 16 13:42:14 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-bea9bd3675dd9ebdf660c74a8f8cf870714b551d40062d56f9d2b89c6f91b1fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5073-8949
0000-0002-6570-483X
PQID 2937737308
PQPubID 2045866
PageCount 20
ParticipantIDs proquest_journals_2937737308
gale_businessinsightsgauss_A759354031
crossref_citationtrail_10_4018_IJACI_2021040103
igi_journals_ysis_of_Sentiment_on_Movi10_4018_IJACI_202104010312
crossref_primary_10_4018_IJACI_2021040103
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Hershey
PublicationPlace_xml – name: Hershey
PublicationTitle International journal of ambient computing and intelligence
PublicationYear 2021
Publisher IGI Global
Publisher_xml – name: IGI Global
SSID ssj0065057
Score 2.2726653
SecondaryResourceType review_article
Snippet In the contemporary world, people share their thoughts rapidly in social media. Mining and extracting knowledge from this information for performing sentiment...
SourceID proquest
gale
crossref
igi
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 33
SubjectTerms Algorithms
Analysis
Data mining
Embedding
Machine learning
Motion pictures
Movie reviews
Semantics
Sentiment analysis
Sparse matrices
Words (language)
Title Analysis of Sentiment on Movie Reviews Using Word Embedding Self-Attentive LSTM
URI http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJACI.2021040103
https://www.proquest.com/docview/2937737308
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYKXLj0BVW3pciHcuBgbZ04sX1qt2i3gMpDPFRuVvxCSJDQJvT3dyZxWFVVuUSRYjvKN-N5x0PIx9w7ZcFSZRL4iYmskqzSoWJF6TPvqggatK-2OC73L8XhVXGVAm5tKqscZWIvqH3jMEY-BbUkZQ78qD7f_2TYNQqzq6mFxgpZ46BpkM_V4tsoiUs0vvussuAM1Lwc0pTgUajpweFs7wDcQ_B4BLY6-EstJeG8cnN984-I7vXO4iV5ngxGOhso_Io8C_Vr8mJsxkDT3twgJ-PxIrSJ9BxrgDDuR5uaHjXwaXRIArS0rxGgP8DnpPM7GzzqLhh_G9ms63Da70C_n18cbZLLxfxib5-lbgnM5TLrmA2Vtj4HB8B7HayPZfnJSVGpqFyEXSm5AKJwL_C3SV-UUfvMKu3ghlseQ_6GrNZNHd4SKryKPPeZK0ImHFfWVhpW5jbY0upST8h0BMu4dJQ4drS4NeBSILymh9cs4Z2Q3ccZ98MxGk-M3UH8TerCCZcW4xTtdfXQtmYmC42xqpxPyBcgkEl7rjUIsWmieYTYNLVBiP_3Ip5NyNZI3eU6S0579_Tj92QdFxvqeLbIavfrIXwAE6Wz2z0fbpO1r_Pj07M_SLziqQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB616QEuvBGBAnugBw6rsPb6dUAQSqqkTQKiqeht8b6qSsUu2AXxp_iNzPjRCCF668Wy5N2x9e143rsD8CK0JtVoqfIE-YnLIE94nrmcR7ENrMk9atCm2mIZT4_k_nF0vAG_-70wVFbZy8RGUNvSUIx8hGopSULkx_TN-TdOXaMou9q30GjZ4sD9-okuW_V69h7XdycI9iar3SnvugpwEyZBzbXLM21DNJStzZy2Po5fmUTmqU-NR-5NhMSPF1bS9kIbxT6zgU4zgzdCC-9CpLsJW5J2tA5g691k-fFTL_tjMvebPLYUHA2LpE2Mog-Tjmb7490ZOqToY0lqrvCXIuzUwebpyek_SqHRdHt34FZnorJxy1N3YcMV9-B23_6BddLgPnzoDzRhpWeHVHVEkUZWFmxRIpisTTtUrKlKYJ8RMjb5qp0lbYnjzzwf1zVN--HY_HC1eABH14LkQxgUZeEeAZM29SK0gYlcII1Itc4zpCy007HO4mwIox4sZbrDy6mHxplCJ4bgVQ28ag3vEF5ezjhvD-64YuwO4a-6vp94qSgyUp3kF1WlxkmUUXQsFEN4iwukur-8UgSxKr26hFiVhSKI__ciEQxhu1_dNZ01bz---vFzuDFdLeZqPlsePIGbRLitItqGQf39wj1FA6nWzzquZPDlun-EP7kkIIk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Sentiment+on+Movie+Reviews+Using+Word+Embedding+Self-Attentive+LSTM&rft.jtitle=International+journal+of+ambient+computing+and+intelligence&rft.au=Sivakumar%2C+Soubraylu&rft.au=Ratnavel+Rajalakshmi&rft.date=2021-04-01&rft.pub=IGI+Global&rft.issn=1941-6237&rft.eissn=1941-6245&rft.volume=12&rft.issue=2&rft.spage=33&rft.epage=52&rft_id=info:doi/10.4018%2FIJACI.2021040103
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1941-6237&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1941-6237&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1941-6237&client=summon