Numerical study on combustion efficiency of aluminum particles in solid rocket motor

The combustion of aluminum particles in solid rocket motor plays an important role in energy release of propellants. However, due to the limited residence time, aluminum particles may not be burned completely, thus hindering the improvement of specific impulse. This study aims to explore the charact...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of aeronautics Vol. 36; no. 5; pp. 66 - 77
Main Authors WANG, Junlong, WANG, Ningfei, ZOU, Xiangrui, DONG, Wei, ZHOU, Yintao, XIE, Dingjiang, SHI, Baolu
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2023
China Academy of Launch Vehicle Technology,Beijing 100076,China%School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China
School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The combustion of aluminum particles in solid rocket motor plays an important role in energy release of propellants. However, due to the limited residence time, aluminum particles may not be burned completely, thus hindering the improvement of specific impulse. This study aims to explore the characteristics of aluminum combustion efficiency and its influencing factors by experiments and numerical simulations, providing a guideline for engine performance improvement. As an input of simulation, the initial agglomerate size was measured by a high pressure system. Meanwhile, the size distribution of the particles in plume was measured by ground firing test to validate the numerical model. Then, a two-phase flow model coupling combustion of micro aluminum particle was developed, by which the detailed effects of particle size, detaching position and nozzle convergent section structure on aluminum combustion efficiency were explored. The results suggest that the average combustion temperature in the chamber drops with increasing initial particle size, while the maximum temperature increases slightly. In the tested motors, the aluminum particle burns completely as its diameter is smaller than 50 μm, and beyond 50 μm the combustion efficiency decreases obviously with the increase of initial size. As the diameter approaches to 75 μm, the combustion efficiency becomes more sensitive to particle size. The combustion efficiency of aluminum particle escaping from end-burning surfaces is significantly higher than that from internal burning surface, where the particle combustion efficiency decreases during approaching the convergent section. Furthermore, the combustion efficiency decreases slightly with increasing nozzle convergent section angle. And theoretically it is feasible to improve combustion efficiency of aluminum particles by designing the convergent profile of nozzle.
AbstractList The combustion of aluminum particles in solid rocket motor plays an important role in energy release of propellants. However, due to the limited residence time, aluminum particles may not be burned completely, thus hindering the improvement of specific impulse. This study aims to explore the characteristics of aluminum combustion efficiency and its influencing factors by experiments and numerical simulations, providing a guideline for engine performance improvement. As an input of simulation, the initial agglomerate size was measured by a high pressure system. Meanwhile, the size distribution of the particles in plume was measured by ground firing test to validate the numerical model. Then, a two-phase flow model coupling combustion of micro aluminum particle was developed, by which the detailed effects of particle size, detaching position and nozzle convergent section structure on aluminum combustion efficiency were explored. The results suggest that the average combustion temperature in the chamber drops with increasing initial particle size, while the maximum temperature increases slightly. In the tested motors, the aluminum particle burns completely as its diameter is smaller than 50 μm, and beyond 50 μm the combustion efficiency decreases obviously with the increase of initial size. As the diameter approaches to 75 μm, the combustion efficiency becomes more sensitive to particle size. The combustion efficiency of aluminum particle escaping from end-burning surfaces is significantly higher than that from internal burning surface, where the particle combustion efficiency decreases during approaching the convergent section. Furthermore, the combustion efficiency decreases slightly with increasing nozzle convergent section angle. And theoretically it is feasible to improve combustion efficiency of aluminum particles by designing the convergent profile of nozzle.
The combustion of aluminum particles in solid rocket motor plays an important role in energy release of propellants.However,due to the limited residence time,aluminum particles may not be burned completely,thus hindering the improvement of specific impulse.This study aims to explore the characteristics of aluminum combustion efficiency and its influencing factors by exper-iments and numerical simulations,providing a guideline for engine performance improvement.As an input of simulation,the initial agglomerate size was measured by a high pressure system.Mean-while,the size distribution of the particles in plume was measured by ground firing test to validate the numerical model.Then,a two-phase flow model coupling combustion of micro aluminum par-ticle was developed,by which the detailed effects of particle size,detaching position and nozzle con-vergent section structure on aluminum combustion efficiency were explored.The results suggest that the average combustion temperature in the chamber drops with increasing initial particle size,while the maximum temperature increases slightly.In the tested motors,the aluminum particle burns completely as its diameter is smaller than 50 μm,and beyond 50 μm the combustion efficiency decreases obviously with the increase of initial size.As the diameter approaches to 75 μm,the com-bustion efficiency becomes more sensitive to particle size.The combustion efficiency of aluminum particle escaping from end-burning surfaces is significantly higher than that from internal burning surface,where the particle combustion efficiency decreases during approaching the convergent sec-tion.Furthermore,the combustion efficiency decreases slightly with increasing nozzle convergent section angle.And theoretically it is feasible to improve combustion efficiency of aluminum parti-cles by designing the convergent profile of nozzle.
Author SHI, Baolu
ZHOU, Yintao
WANG, Junlong
WANG, Ningfei
DONG, Wei
ZOU, Xiangrui
XIE, Dingjiang
AuthorAffiliation School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China;China Academy of Launch Vehicle Technology,Beijing 100076,China%School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China
AuthorAffiliation_xml – name: School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China;China Academy of Launch Vehicle Technology,Beijing 100076,China%School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China
Author_xml – sequence: 1
  givenname: Junlong
  surname: WANG
  fullname: WANG, Junlong
  organization: School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
– sequence: 2
  givenname: Ningfei
  surname: WANG
  fullname: WANG, Ningfei
  organization: School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
– sequence: 3
  givenname: Xiangrui
  surname: ZOU
  fullname: ZOU, Xiangrui
  organization: School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
– sequence: 4
  givenname: Wei
  surname: DONG
  fullname: DONG, Wei
  organization: School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
– sequence: 5
  givenname: Yintao
  surname: ZHOU
  fullname: ZHOU, Yintao
  organization: School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
– sequence: 6
  givenname: Dingjiang
  surname: XIE
  fullname: XIE, Dingjiang
  organization: School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
– sequence: 7
  givenname: Baolu
  surname: SHI
  fullname: SHI, Baolu
  email: shibaolu@bit.edu.cn
  organization: School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
BookMark eNp9kD1PwzAQQD0UibbwA9i8MbWckzppxIQqvqQKljJbjn0Bp4ld2Q7Qf49LmRg6nc--d-d7EzKyziIhVwzmDFhx085VK-cZZFnK58DYiIwZAMyqvGDnZBJCC5BXJYMx2bwMPXqjZEdDHPSeOkuV6-shRJOO2DRGGbQqPTRUdkNv7NDTnfTRqA4DNZYG1xlNvVNbjLR30fkLctbILuDlX5ySt4f7zepptn59fF7drWcqL7M4q_VCKyzTPznKrMw0AOpCM8kXjAEvOIeSLzjoepFpZPUSecW5kpDrZV0xyKfk-tj3S9pG2nfRusHbNFF8bL9rgUlBDhygTJXlsVJ5F4LHRigT5WHF6KXpBANxUCdakdSJg7rDVVKXSPaP3HnTS78_ydweGUzLfxr0IvxKRG08qii0MyfoH-mviu8
CitedBy_id crossref_primary_10_1016_j_infrared_2024_105312
crossref_primary_10_1016_j_actaastro_2024_02_007
crossref_primary_10_1016_j_combustflame_2025_113983
crossref_primary_10_1016_j_dt_2023_11_002
crossref_primary_10_1016_j_ast_2024_109696
crossref_primary_10_1016_j_cja_2025_103470
crossref_primary_10_1016_j_cja_2024_07_021
crossref_primary_10_1016_j_cja_2024_10_005
crossref_primary_10_1016_j_jaecs_2024_100283
crossref_primary_10_1016_j_actaastro_2023_12_006
crossref_primary_10_1016_j_fpc_2024_07_003
crossref_primary_10_1007_s10409_023_23021_x
crossref_primary_10_1016_j_actaastro_2024_04_045
Cites_doi 10.1007/s10494-019-00104-1
10.1016/j.cja.2021.05.024
10.2514/3.23902
10.1016/j.ast.2021.106788
10.1016/j.combustflame.2009.11.005
10.1016/j.actaastro.2019.03.022
10.2514/3.9585
10.1016/j.fuel.2021.121652
10.1016/j.ast.2021.107097
10.1016/j.combustflame.2020.02.008
10.1016/j.proci.2008.06.205
10.2514/3.26212
10.1038/s42005-019-0142-8
10.1016/j.ast.2019.07.003
10.1016/j.ast.2021.107102
10.1016/j.cja.2021.12.005
10.1016/j.cja.2018.06.020
10.1016/j.actaastro.2021.08.047
10.1017/S0022112072001806
10.1016/j.proci.2008.06.006
10.2514/3.48552
10.1016/j.proci.2020.06.028
10.1016/j.fuel.2019.116952
10.1016/j.combustflame.2011.03.007
10.1007/s10573-005-0077-0
10.2514/6.1999-2630
10.1016/j.proci.2006.07.161
10.1016/j.ast.2021.106604
10.1016/j.combustflame.2019.04.036
10.2514/6.1981-38
10.2514/6.2017-4781
10.1016/j.actaastro.2017.01.025
10.1016/j.cja.2020.11.017
ContentType Journal Article
Copyright 2023 Chinese Society of Aeronautics and Astronautics
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2023 Chinese Society of Aeronautics and Astronautics
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1016/j.cja.2022.10.011
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 77
ExternalDocumentID hkxb_e202305007
10_1016_j_cja_2022_10_011
S1000936122002515
GroupedDBID --K
-SC
-S~
0R~
0SF
1B1
1~5
29B
2B.
2C0
4.4
457
4G.
5GY
5VR
5VS
5XA
5XD
5XL
6I.
7-5
71M
92H
92I
92R
93N
9D9
9DC
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADMUD
AEKER
AENEX
AEXQZ
AFTJW
AFUIB
AGHFR
AI.
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
CAJEC
CAJUS
CCEZO
CEKLB
CHBEP
CS3
CW9
DU5
EBS
EJD
EO9
EP2
EP3
FA0
FDB
FNPLU
GBLVA
GROUPED_DOAJ
HZ~
IPNFZ
IXB
J1W
KQ8
M41
N9A
NCXOZ
O-L
O9-
OK1
OZT
Q--
Q-2
RIG
ROL
SDF
SDG
SES
SSZ
TCJ
TGT
U1G
U5M
VH1
~M3
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
4A8
PSX
ID FETCH-LOGICAL-c372t-bd4dce70225ea272d00ed6d1a541105655075450db42de1b8e5955ca03d8b9103
IEDL.DBID IXB
ISSN 1000-9361
IngestDate Thu May 29 03:54:25 EDT 2025
Tue Jul 01 01:17:51 EDT 2025
Thu Apr 24 23:09:59 EDT 2025
Fri Feb 23 02:36:01 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Solid rocket motor
Particle size
Aluminum
Eulerian–Lagrangian
Combustion efficiency
Eulerian-Lagrangian
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-bd4dce70225ea272d00ed6d1a541105655075450db42de1b8e5955ca03d8b9103
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1000936122002515
PageCount 12
ParticipantIDs wanfang_journals_hkxb_e202305007
crossref_citationtrail_10_1016_j_cja_2022_10_011
crossref_primary_10_1016_j_cja_2022_10_011
elsevier_sciencedirect_doi_10_1016_j_cja_2022_10_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Chinese journal of aeronautics
PublicationTitle_FL Chinese Journal of Aeronautics
PublicationYear 2023
Publisher Elsevier Ltd
China Academy of Launch Vehicle Technology,Beijing 100076,China%School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China
School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China
Publisher_xml – name: Elsevier Ltd
– name: China Academy of Launch Vehicle Technology,Beijing 100076,China%School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China
– name: School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China
References Zhao, Guan, Reinecke (b0110) 2019; 2
Liu, Li, Liu (b0095) 2017; 133
Ansys (b0160) 2013
Musa, Chen, Li (b0145) 2019; 92
Melcher J, Burton R, Krier H. Combustion of aluminum particles in solid rocket motor flows. Reston: AIAA; 1999, Report No.: AIAA- 1999-2630.
Lynch, Krier, Glumac (b0175) 2009; 32
Wang, Wang, Zou (b0065) 2021; 189
Badiola, Gill, Dreizin (b0180) 2011; 158
Brooks, Beckstead (b0060) 1995; 11
King (b0190) 2009; 32
Beckstead (b0080) 2013; 53
Price EW, Park CJ, Sigman RK, et al. The nature and combustion of agglomerates.
Xue, Zheng, Yue (b0115) 2021; 115
Li, Wang, Shi (b0090) 2019; 159
Larson (b0025) 1987; 25
Hermsen R. Aluminum combustion efficiency in solid rocket motors. Reston: AIAA; 1981, Report No.: AIAA-1981-0038.
Söğütcü B, Kiper CE, Sumer B. Experimental and numerical investigation of aluminum particle combustion in solid rocket combustion chambers.
Zou, Wang, Han (b0140) 2021; 119
McBride (b0200) 1996
Wang JL, Wang NF, Shi BL, et al. Numerical study on combustion characteristic of micron aluminum particle. Reston: AIAA; 2021, Report No.: AIAA-2021-3620.
Ecker T, Karl S, Hannemann K. Modeling of aluminum particle combustion in solid rocket combustion chambers. Reston: AIAA; 2017, Report No.: AIAA-2017-4781.
Sun, Cai, Shahsavari (b0125) 2021; 34
Li, Zhao, Chen (b0150) 2021; 119
2019.
Washburn, Webb, Beckstead (b0185) 2010; 157
1981.
Beckstead, Liang, Pudduppakkam (b0070) 2005; 41
Zhu, Chen, Zhou (b0100) 2020; 105
Izumikawa M, Takahashi M, Mitani T, et al. Metal combustion in solid propellants. Tokyo: National Aerospace Lab.; 1988, Report No.: NAL-TR-998.
Ren, Wang, Zheng (b0120) 2018; 31
Zou, Wang, Wang (b0135) 2021; 306
Han, Sung (b0105) 2019; 206
Liu, An, Qin (b0130) 2020; 215
Bazyn, Krier, Glumac (b0170) 2007; 31
Zou, Wang, Liao (b0005) 2020; 266
Zou, Wang, Wang (b0010) 2021; 112
Mitani, Izumikawa (b0015) 1991; 28
Hao, Zhang, Hou (b0020) 2022; 35
Zhang, Stein, Luu (b0155) 2022; 35
Braconnier, Gallier, Halter (b0075) 2021; 38
Morsi, Alexander (b0165) 1972; 55
Sambamurthi, Price, Sigman (b0040) 1984; 22
10.1016/j.cja.2022.10.011_b0030
10.1016/j.cja.2022.10.011_b0195
Li (10.1016/j.cja.2022.10.011_b0090) 2019; 159
Zhao (10.1016/j.cja.2022.10.011_b0110) 2019; 2
10.1016/j.cja.2022.10.011_b0050
Sun (10.1016/j.cja.2022.10.011_b0125) 2021; 34
Ansys (10.1016/j.cja.2022.10.011_b0160) 2013
Zhu (10.1016/j.cja.2022.10.011_b0100) 2020; 105
King (10.1016/j.cja.2022.10.011_b0190) 2009; 32
Sambamurthi (10.1016/j.cja.2022.10.011_b0040) 1984; 22
Liu (10.1016/j.cja.2022.10.011_b0130) 2020; 215
Beckstead (10.1016/j.cja.2022.10.011_b0080) 2013; 53
Morsi (10.1016/j.cja.2022.10.011_b0165) 1972; 55
Badiola (10.1016/j.cja.2022.10.011_b0180) 2011; 158
Braconnier (10.1016/j.cja.2022.10.011_b0075) 2021; 38
Zou (10.1016/j.cja.2022.10.011_b0010) 2021; 112
10.1016/j.cja.2022.10.011_b0045
Liu (10.1016/j.cja.2022.10.011_b0095) 2017; 133
Zou (10.1016/j.cja.2022.10.011_b0135) 2021; 306
Han (10.1016/j.cja.2022.10.011_b0105) 2019; 206
10.1016/j.cja.2022.10.011_b0085
Xue (10.1016/j.cja.2022.10.011_b0115) 2021; 115
Washburn (10.1016/j.cja.2022.10.011_b0185) 2010; 157
Hao (10.1016/j.cja.2022.10.011_b0020) 2022; 35
Lynch (10.1016/j.cja.2022.10.011_b0175) 2009; 32
Larson (10.1016/j.cja.2022.10.011_b0025) 1987; 25
Brooks (10.1016/j.cja.2022.10.011_b0060) 1995; 11
Zou (10.1016/j.cja.2022.10.011_b0140) 2021; 119
McBride (10.1016/j.cja.2022.10.011_b0200) 1996
Zhang (10.1016/j.cja.2022.10.011_b0155) 2022; 35
Musa (10.1016/j.cja.2022.10.011_b0145) 2019; 92
Bazyn (10.1016/j.cja.2022.10.011_b0170) 2007; 31
Mitani (10.1016/j.cja.2022.10.011_b0015) 1991; 28
Ren (10.1016/j.cja.2022.10.011_b0120) 2018; 31
10.1016/j.cja.2022.10.011_b0055
Zou (10.1016/j.cja.2022.10.011_b0005) 2020; 266
Wang (10.1016/j.cja.2022.10.011_b0065) 2021; 189
10.1016/j.cja.2022.10.011_b0035
Beckstead (10.1016/j.cja.2022.10.011_b0070) 2005; 41
Li (10.1016/j.cja.2022.10.011_b0150) 2021; 119
References_xml – reference: , 2019.
– volume: 189
  start-page: 119
  year: 2021
  end-page: 128
  ident: b0065
  article-title: Modeling of micro aluminum particle combustion in multiple oxidizers
  publication-title: Acta Astronaut
– volume: 35
  start-page: 319
  year: 2022
  end-page: 332
  ident: b0155
  article-title: Detailed modeling of aluminum particle combustion - From single particles to cloud combustion in Bunsen flames
  publication-title: Chin J Aeronaut
– volume: 41
  start-page: 622
  year: 2005
  end-page: 638
  ident: b0070
  article-title: Numerical simulation of single aluminum particle combustion (review)
  publication-title: Combust Explos Shock Waves
– reference: Ecker T, Karl S, Hannemann K. Modeling of aluminum particle combustion in solid rocket combustion chambers. Reston: AIAA; 2017, Report No.: AIAA-2017-4781.
– volume: 2
  start-page: 44
  year: 2019
  ident: b0110
  article-title: Characterizing hydrogen-fuelled pulsating combustion on thermodynamic properties of a combustor
  publication-title: Commun Phys
– volume: 92
  start-page: 750
  year: 2019
  end-page: 765
  ident: b0145
  article-title: Combustion characteristics of a novel design of solid-fuel ramjet motor with swirl flow
  publication-title: Aerosp Sci Technol
– volume: 11
  start-page: 769
  year: 1995
  end-page: 780
  ident: b0060
  article-title: Dynamics of aluminum combustion
  publication-title: J Propuls Power
– volume: 159
  start-page: 33
  year: 2019
  end-page: 40
  ident: b0090
  article-title: Effects of particle size on two-phase flow loss in aluminized solid rocket motors
  publication-title: Acta Astronaut
– volume: 35
  start-page: 98
  year: 2022
  end-page: 116
  ident: b0020
  article-title: Radiative properties of alumina/aluminum particles and influence on radiative heat transfer in solid rocket motor
  publication-title: Chin J Aeronaut
– volume: 34
  start-page: 17
  year: 2021
  end-page: 27
  ident: b0125
  article-title: RANS simulations on combustion and emission characteristics of a premixed NH
  publication-title: Chin J Aeronaut
– volume: 119
  year: 2021
  ident: b0150
  article-title: Numerical investigations on solid-fueled ramjet inlet thermodynamic properties effects on generating self-sustained combustion instability
  publication-title: Aerosp Sci Technol
– volume: 206
  start-page: 112
  year: 2019
  end-page: 122
  ident: b0105
  article-title: A numerical study on heterogeneous aluminum dust combustion including particle surface and gas-phase reaction
  publication-title: Combust Flame
– volume: 215
  start-page: 342
  year: 2020
  end-page: 351
  ident: b0130
  article-title: Large eddy simulation of auto-ignition kernel development of transient methane jet in hot co-flow
  publication-title: Combust Flame
– reference: Wang JL, Wang NF, Shi BL, et al. Numerical study on combustion characteristic of micron aluminum particle. Reston: AIAA; 2021, Report No.: AIAA-2021-3620.
– volume: 38
  start-page: 4355
  year: 2021
  end-page: 4363
  ident: b0075
  article-title: Aluminum combustion in CO
  publication-title: Proc Combust Inst
– reference: Hermsen R. Aluminum combustion efficiency in solid rocket motors. Reston: AIAA; 1981, Report No.: AIAA-1981-0038.
– volume: 115
  year: 2021
  ident: b0115
  article-title: Reduction of surface friction drag in scramjet engine by boundary layer combustion
  publication-title: Aerosp Sci Technol
– reference: Melcher J, Burton R, Krier H. Combustion of aluminum particles in solid rocket motor flows. Reston: AIAA; 1999, Report No.: AIAA- 1999-2630.
– volume: 133
  start-page: 136
  year: 2017
  end-page: 144
  ident: b0095
  article-title: Experimental investigation of the combustion products in an aluminised solid propellant
  publication-title: Acta Astronaut
– volume: 266
  year: 2020
  ident: b0005
  article-title: Prediction of nano/micro aluminum particles ignition in oxygen atmosphere
  publication-title: Fuel
– volume: 31
  start-page: 2021
  year: 2007
  end-page: 2028
  ident: b0170
  article-title: Evidence for the transition from the diffusion-limit in aluminum particle combustion
  publication-title: Proc Combust Inst
– volume: 119
  year: 2021
  ident: b0140
  article-title: Numerical investigation on regression rate and thrust regulation behaviors of a combined solid rocket motor with aluminum-based fuel
  publication-title: Aerosp Sci Technol
– year: 1996
  ident: b0200
  article-title: Computer program for calculation of complex chemical equilibrium compositions and applications
– volume: 55
  start-page: 193
  year: 1972
  end-page: 208
  ident: b0165
  article-title: An investigation of particle trajectories in two-phase flow systems
  publication-title: J Fluid Mech
– year: 2013
  ident: b0160
  article-title: Ansys Fluent theory guide
– volume: 112
  year: 2021
  ident: b0010
  article-title: A numerical investigation on heterogeneous combustion of aluminum nanoparticle clouds
  publication-title: Aerosp Sci Technol
– volume: 158
  start-page: 2064
  year: 2011
  end-page: 2070
  ident: b0180
  article-title: Combustion characteristics of micron-sized aluminum particles in oxygenated environments
  publication-title: Combust Flame
– volume: 32
  start-page: 2107
  year: 2009
  end-page: 2114
  ident: b0190
  article-title: Aluminum combustion in a solid rocket motor environment
  publication-title: Proc Combust Inst
– volume: 53
  start-page: 1689
  year: 2013
  end-page: 1699
  ident: b0080
  article-title: A summary of aluminum combustion
  publication-title: J Chem Inf Modeling
– reference: Price EW, Park CJ, Sigman RK, et al. The nature and combustion of agglomerates.
– volume: 32
  start-page: 1887
  year: 2009
  end-page: 1893
  ident: b0175
  article-title: A correlation for burn time of aluminum particles in the transition regime
  publication-title: Proc Combust Inst
– reference: Izumikawa M, Takahashi M, Mitani T, et al. Metal combustion in solid propellants. Tokyo: National Aerospace Lab.; 1988, Report No.: NAL-TR-998.
– volume: 105
  start-page: 191
  year: 2020
  end-page: 212
  ident: b0100
  article-title: Numerical study of micron-scale aluminum particle combustion in an afterburner using two-way coupling CFD-DEM approach
  publication-title: Flow Turbulence Combust
– volume: 28
  start-page: 79
  year: 1991
  end-page: 84
  ident: b0015
  article-title: Combustion efficiencies of aluminum and boron in solid propellants
  publication-title: J Spacecr Rockets
– volume: 157
  start-page: 540
  year: 2010
  end-page: 545
  ident: b0185
  article-title: The simulation of the combustion of micrometer-sized aluminum particles with oxygen and carbon dioxide
  publication-title: Combust Flame
– volume: 25
  start-page: 82
  year: 1987
  end-page: 91
  ident: b0025
  article-title: Prediction of aluminum combustion efficiency in solid propellant rocket motors
  publication-title: AIAA J
– volume: 31
  start-page: 1870
  year: 2018
  end-page: 1879
  ident: b0120
  article-title: Numerical studies on supersonic spray combustion in high-temperature shear flows in a scramjet combustor
  publication-title: Chin J Aeronaut
– volume: 306
  year: 2021
  ident: b0135
  article-title: Investigation on the microscale combustion characteristics of AP/HTPB propellant under wide pressure range
  publication-title: Fuel
– volume: 22
  start-page: 1132
  year: 1984
  end-page: 1138
  ident: b0040
  article-title: Aluminum agglomeration in solid-propellant combustion
  publication-title: AIAA J
– reference: , 1981.
– reference: Söğütcü B, Kiper CE, Sumer B. Experimental and numerical investigation of aluminum particle combustion in solid rocket combustion chambers.
– ident: 10.1016/j.cja.2022.10.011_b0050
– volume: 105
  start-page: 191
  issue: 1
  year: 2020
  ident: 10.1016/j.cja.2022.10.011_b0100
  article-title: Numerical study of micron-scale aluminum particle combustion in an afterburner using two-way coupling CFD-DEM approach
  publication-title: Flow Turbulence Combust
  doi: 10.1007/s10494-019-00104-1
– volume: 35
  start-page: 98
  issue: 2
  year: 2022
  ident: 10.1016/j.cja.2022.10.011_b0020
  article-title: Radiative properties of alumina/aluminum particles and influence on radiative heat transfer in solid rocket motor
  publication-title: Chin J Aeronaut
  doi: 10.1016/j.cja.2021.05.024
– volume: 11
  start-page: 769
  issue: 4
  year: 1995
  ident: 10.1016/j.cja.2022.10.011_b0060
  article-title: Dynamics of aluminum combustion
  publication-title: J Propuls Power
  doi: 10.2514/3.23902
– volume: 115
  year: 2021
  ident: 10.1016/j.cja.2022.10.011_b0115
  article-title: Reduction of surface friction drag in scramjet engine by boundary layer combustion
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2021.106788
– volume: 157
  start-page: 540
  issue: 3
  year: 2010
  ident: 10.1016/j.cja.2022.10.011_b0185
  article-title: The simulation of the combustion of micrometer-sized aluminum particles with oxygen and carbon dioxide
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2009.11.005
– volume: 159
  start-page: 33
  year: 2019
  ident: 10.1016/j.cja.2022.10.011_b0090
  article-title: Effects of particle size on two-phase flow loss in aluminized solid rocket motors
  publication-title: Acta Astronaut
  doi: 10.1016/j.actaastro.2019.03.022
– volume: 25
  start-page: 82
  issue: 1
  year: 1987
  ident: 10.1016/j.cja.2022.10.011_b0025
  article-title: Prediction of aluminum combustion efficiency in solid propellant rocket motors
  publication-title: AIAA J
  doi: 10.2514/3.9585
– volume: 306
  year: 2021
  ident: 10.1016/j.cja.2022.10.011_b0135
  article-title: Investigation on the microscale combustion characteristics of AP/HTPB propellant under wide pressure range
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.121652
– ident: 10.1016/j.cja.2022.10.011_b0195
– volume: 119
  year: 2021
  ident: 10.1016/j.cja.2022.10.011_b0150
  article-title: Numerical investigations on solid-fueled ramjet inlet thermodynamic properties effects on generating self-sustained combustion instability
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2021.107097
– volume: 215
  start-page: 342
  year: 2020
  ident: 10.1016/j.cja.2022.10.011_b0130
  article-title: Large eddy simulation of auto-ignition kernel development of transient methane jet in hot co-flow
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2020.02.008
– volume: 32
  start-page: 1887
  issue: 2
  year: 2009
  ident: 10.1016/j.cja.2022.10.011_b0175
  article-title: A correlation for burn time of aluminum particles in the transition regime
  publication-title: Proc Combust Inst
  doi: 10.1016/j.proci.2008.06.205
– volume: 28
  start-page: 79
  issue: 1
  year: 1991
  ident: 10.1016/j.cja.2022.10.011_b0015
  article-title: Combustion efficiencies of aluminum and boron in solid propellants
  publication-title: J Spacecr Rockets
  doi: 10.2514/3.26212
– volume: 2
  start-page: 44
  year: 2019
  ident: 10.1016/j.cja.2022.10.011_b0110
  article-title: Characterizing hydrogen-fuelled pulsating combustion on thermodynamic properties of a combustor
  publication-title: Commun Phys
  doi: 10.1038/s42005-019-0142-8
– volume: 92
  start-page: 750
  year: 2019
  ident: 10.1016/j.cja.2022.10.011_b0145
  article-title: Combustion characteristics of a novel design of solid-fuel ramjet motor with swirl flow
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2019.07.003
– year: 1996
  ident: 10.1016/j.cja.2022.10.011_b0200
– volume: 119
  year: 2021
  ident: 10.1016/j.cja.2022.10.011_b0140
  article-title: Numerical investigation on regression rate and thrust regulation behaviors of a combined solid rocket motor with aluminum-based fuel
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2021.107102
– volume: 35
  start-page: 319
  issue: 5
  year: 2022
  ident: 10.1016/j.cja.2022.10.011_b0155
  article-title: Detailed modeling of aluminum particle combustion - From single particles to cloud combustion in Bunsen flames
  publication-title: Chin J Aeronaut
  doi: 10.1016/j.cja.2021.12.005
– volume: 31
  start-page: 1870
  issue: 9
  year: 2018
  ident: 10.1016/j.cja.2022.10.011_b0120
  article-title: Numerical studies on supersonic spray combustion in high-temperature shear flows in a scramjet combustor
  publication-title: Chin J Aeronaut
  doi: 10.1016/j.cja.2018.06.020
– volume: 53
  start-page: 1689
  issue: 9
  year: 2013
  ident: 10.1016/j.cja.2022.10.011_b0080
  article-title: A summary of aluminum combustion
  publication-title: J Chem Inf Modeling
– volume: 189
  start-page: 119
  year: 2021
  ident: 10.1016/j.cja.2022.10.011_b0065
  article-title: Modeling of micro aluminum particle combustion in multiple oxidizers
  publication-title: Acta Astronaut
  doi: 10.1016/j.actaastro.2021.08.047
– volume: 55
  start-page: 193
  issue: 2
  year: 1972
  ident: 10.1016/j.cja.2022.10.011_b0165
  article-title: An investigation of particle trajectories in two-phase flow systems
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112072001806
– volume: 32
  start-page: 2107
  issue: 2
  year: 2009
  ident: 10.1016/j.cja.2022.10.011_b0190
  article-title: Aluminum combustion in a solid rocket motor environment
  publication-title: Proc Combust Inst
  doi: 10.1016/j.proci.2008.06.006
– volume: 22
  start-page: 1132
  issue: 8
  year: 1984
  ident: 10.1016/j.cja.2022.10.011_b0040
  article-title: Aluminum agglomeration in solid-propellant combustion
  publication-title: AIAA J
  doi: 10.2514/3.48552
– volume: 38
  start-page: 4355
  issue: 3
  year: 2021
  ident: 10.1016/j.cja.2022.10.011_b0075
  article-title: Aluminum combustion in CO2-CO-N2 mixtures
  publication-title: Proc Combust Inst
  doi: 10.1016/j.proci.2020.06.028
– volume: 266
  year: 2020
  ident: 10.1016/j.cja.2022.10.011_b0005
  article-title: Prediction of nano/micro aluminum particles ignition in oxygen atmosphere
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.116952
– volume: 158
  start-page: 2064
  issue: 10
  year: 2011
  ident: 10.1016/j.cja.2022.10.011_b0180
  article-title: Combustion characteristics of micron-sized aluminum particles in oxygenated environments
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2011.03.007
– volume: 41
  start-page: 622
  issue: 6
  year: 2005
  ident: 10.1016/j.cja.2022.10.011_b0070
  article-title: Numerical simulation of single aluminum particle combustion (review)
  publication-title: Combust Explos Shock Waves
  doi: 10.1007/s10573-005-0077-0
– ident: 10.1016/j.cja.2022.10.011_b0035
– ident: 10.1016/j.cja.2022.10.011_b0085
  doi: 10.2514/6.1999-2630
– year: 2013
  ident: 10.1016/j.cja.2022.10.011_b0160
– volume: 31
  start-page: 2021
  issue: 2
  year: 2007
  ident: 10.1016/j.cja.2022.10.011_b0170
  article-title: Evidence for the transition from the diffusion-limit in aluminum particle combustion
  publication-title: Proc Combust Inst
  doi: 10.1016/j.proci.2006.07.161
– volume: 112
  year: 2021
  ident: 10.1016/j.cja.2022.10.011_b0010
  article-title: A numerical investigation on heterogeneous combustion of aluminum nanoparticle clouds
  publication-title: Aerosp Sci Technol
  doi: 10.1016/j.ast.2021.106604
– ident: 10.1016/j.cja.2022.10.011_b0045
– volume: 206
  start-page: 112
  year: 2019
  ident: 10.1016/j.cja.2022.10.011_b0105
  article-title: A numerical study on heterogeneous aluminum dust combustion including particle surface and gas-phase reaction
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2019.04.036
– ident: 10.1016/j.cja.2022.10.011_b0030
  doi: 10.2514/6.1981-38
– ident: 10.1016/j.cja.2022.10.011_b0055
  doi: 10.2514/6.2017-4781
– volume: 133
  start-page: 136
  year: 2017
  ident: 10.1016/j.cja.2022.10.011_b0095
  article-title: Experimental investigation of the combustion products in an aluminised solid propellant
  publication-title: Acta Astronaut
  doi: 10.1016/j.actaastro.2017.01.025
– volume: 34
  start-page: 17
  issue: 12
  year: 2021
  ident: 10.1016/j.cja.2022.10.011_b0125
  article-title: RANS simulations on combustion and emission characteristics of a premixed NH3/H2 swirling flame with reduced chemical kinetic model
  publication-title: Chin J Aeronaut
  doi: 10.1016/j.cja.2020.11.017
SSID ssj0039710
Score 2.387977
Snippet The combustion of aluminum particles in solid rocket motor plays an important role in energy release of propellants. However, due to the limited residence...
The combustion of aluminum particles in solid rocket motor plays an important role in energy release of propellants.However,due to the limited residence...
SourceID wanfang
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 66
SubjectTerms Aluminum
Combustion efficiency
Eulerian–Lagrangian
Particle size
Solid rocket motor
Title Numerical study on combustion efficiency of aluminum particles in solid rocket motor
URI https://dx.doi.org/10.1016/j.cja.2022.10.011
https://d.wanfangdata.com.cn/periodical/hkxb-e202305007
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGA9jIOhBfOJ8kYMnIS5tk7U96nAMwV3cYLfQPKrdZjtmh_75fmlTmQd38FZCEppf0u_7pd8LoZuelJz7KiYayC2x5Y1JxCQjXIaRp4wysbL_IZ9HveGEPU35tIX6TSyMdat0sr-W6ZW0di1dh2Z3mWXdF6-6joOG9iuibAPNAxZVQXzTh0Yag7p1GQkoJbZ3Y9msfLzUzKYe8v076-DleX_ppp3PJE-T_HVD8wwO0L6jjPi-fqtD1DL5EdrbSCR4jMajdW15WeAqXywucgwrkrZUFzyaKk-EDbLERYoTkEdZvn7Hy8YrDmc5hjOYaQzqbG5KDPtXrE7QZPA47g-Jq5dAVBD6JZGaaWVCWA83iR_6mlKje9pLOAMlD8wNuB8QJqol87XxZGR4zLlKaKAjCbQhOEXtvMjNGcKBtQealCZGpSxmMpYBs2DCtAqu02EH0QYpoVwycVvTYiEar7GZAHCFBdc2AbgddPszZFln0tjWmTXwi1_HQYCk3zYMu60S7lP8EG_zLymMrRJPORCi8__NfIF27RS1q-MlapertbkCOlLK6-q8fQP2INuD
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8QY9SD8TPiZw-eTCbd1jJ2VCIBBS5Cwq1ZP9ABDoIj-uf7unUGD3LwtjRts_7avffr-vp7CN3UhGDMk6GjgNw6Jr2xU6eCOkwEdVdqqUNp_kN2e7XWgD4N2bCEGsVdGBNWaW1_btMza21LqhbN6jyOqy9uth0HD-1lRJltoE1gA4HJ39AePhTmGPytlSQgxDHVi6PNLMhLjo32kOfdmQgv1_3LOW19RskoSl5XXE9zH-1Zzojv89c6QCWdHKLdFSXBI9TvLfOjlynOBGPxLMEwJGFydcGjzoQizC1LPBvhCAxSnCzf8bwIi8NxgmERxgqDP5voFMMEzhbHaNB87Ddajk2Y4Eg_8FJHKKqkDmA8TEde4ClCtKopN2IUvDxQNyB_wJiIEtRT2hV1zULGZER8VRfAG_wTVE5miT5F2DcHgnpEIi1HNKQiFD41YEK3EvbTQQWRAikurZq4SWox5UXY2JgDuNyAa4oA3Aq6_Wkyz6U01lWmBfz813rgYOrXNcN2qrj9Fj_42-RLcG3SxBMGjOjsfz1fo-1Wv9vhnXbv-RztmO7yuMcLVE4XS30J3CQVV9na-wYKgt6i
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+study+on+combustion+efficiency+of+aluminum+particles+in+solid+rocket+motor&rft.jtitle=Chinese+journal+of+aeronautics&rft.au=WANG%2C+Junlong&rft.au=WANG%2C+Ningfei&rft.au=ZOU%2C+Xiangrui&rft.au=DONG%2C+Wei&rft.date=2023-05-01&rft.issn=1000-9361&rft.volume=36&rft.issue=5&rft.spage=66&rft.epage=77&rft_id=info:doi/10.1016%2Fj.cja.2022.10.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cja_2022_10_011
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fhkxb-e%2Fhkxb-e.jpg