Numerical study on combustion efficiency of aluminum particles in solid rocket motor
The combustion of aluminum particles in solid rocket motor plays an important role in energy release of propellants. However, due to the limited residence time, aluminum particles may not be burned completely, thus hindering the improvement of specific impulse. This study aims to explore the charact...
Saved in:
Published in | Chinese journal of aeronautics Vol. 36; no. 5; pp. 66 - 77 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2023
China Academy of Launch Vehicle Technology,Beijing 100076,China%School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The combustion of aluminum particles in solid rocket motor plays an important role in energy release of propellants. However, due to the limited residence time, aluminum particles may not be burned completely, thus hindering the improvement of specific impulse. This study aims to explore the characteristics of aluminum combustion efficiency and its influencing factors by experiments and numerical simulations, providing a guideline for engine performance improvement. As an input of simulation, the initial agglomerate size was measured by a high pressure system. Meanwhile, the size distribution of the particles in plume was measured by ground firing test to validate the numerical model. Then, a two-phase flow model coupling combustion of micro aluminum particle was developed, by which the detailed effects of particle size, detaching position and nozzle convergent section structure on aluminum combustion efficiency were explored. The results suggest that the average combustion temperature in the chamber drops with increasing initial particle size, while the maximum temperature increases slightly. In the tested motors, the aluminum particle burns completely as its diameter is smaller than 50 μm, and beyond 50 μm the combustion efficiency decreases obviously with the increase of initial size. As the diameter approaches to 75 μm, the combustion efficiency becomes more sensitive to particle size. The combustion efficiency of aluminum particle escaping from end-burning surfaces is significantly higher than that from internal burning surface, where the particle combustion efficiency decreases during approaching the convergent section. Furthermore, the combustion efficiency decreases slightly with increasing nozzle convergent section angle. And theoretically it is feasible to improve combustion efficiency of aluminum particles by designing the convergent profile of nozzle. |
---|---|
AbstractList | The combustion of aluminum particles in solid rocket motor plays an important role in energy release of propellants. However, due to the limited residence time, aluminum particles may not be burned completely, thus hindering the improvement of specific impulse. This study aims to explore the characteristics of aluminum combustion efficiency and its influencing factors by experiments and numerical simulations, providing a guideline for engine performance improvement. As an input of simulation, the initial agglomerate size was measured by a high pressure system. Meanwhile, the size distribution of the particles in plume was measured by ground firing test to validate the numerical model. Then, a two-phase flow model coupling combustion of micro aluminum particle was developed, by which the detailed effects of particle size, detaching position and nozzle convergent section structure on aluminum combustion efficiency were explored. The results suggest that the average combustion temperature in the chamber drops with increasing initial particle size, while the maximum temperature increases slightly. In the tested motors, the aluminum particle burns completely as its diameter is smaller than 50 μm, and beyond 50 μm the combustion efficiency decreases obviously with the increase of initial size. As the diameter approaches to 75 μm, the combustion efficiency becomes more sensitive to particle size. The combustion efficiency of aluminum particle escaping from end-burning surfaces is significantly higher than that from internal burning surface, where the particle combustion efficiency decreases during approaching the convergent section. Furthermore, the combustion efficiency decreases slightly with increasing nozzle convergent section angle. And theoretically it is feasible to improve combustion efficiency of aluminum particles by designing the convergent profile of nozzle. The combustion of aluminum particles in solid rocket motor plays an important role in energy release of propellants.However,due to the limited residence time,aluminum particles may not be burned completely,thus hindering the improvement of specific impulse.This study aims to explore the characteristics of aluminum combustion efficiency and its influencing factors by exper-iments and numerical simulations,providing a guideline for engine performance improvement.As an input of simulation,the initial agglomerate size was measured by a high pressure system.Mean-while,the size distribution of the particles in plume was measured by ground firing test to validate the numerical model.Then,a two-phase flow model coupling combustion of micro aluminum par-ticle was developed,by which the detailed effects of particle size,detaching position and nozzle con-vergent section structure on aluminum combustion efficiency were explored.The results suggest that the average combustion temperature in the chamber drops with increasing initial particle size,while the maximum temperature increases slightly.In the tested motors,the aluminum particle burns completely as its diameter is smaller than 50 μm,and beyond 50 μm the combustion efficiency decreases obviously with the increase of initial size.As the diameter approaches to 75 μm,the com-bustion efficiency becomes more sensitive to particle size.The combustion efficiency of aluminum particle escaping from end-burning surfaces is significantly higher than that from internal burning surface,where the particle combustion efficiency decreases during approaching the convergent sec-tion.Furthermore,the combustion efficiency decreases slightly with increasing nozzle convergent section angle.And theoretically it is feasible to improve combustion efficiency of aluminum parti-cles by designing the convergent profile of nozzle. |
Author | SHI, Baolu ZHOU, Yintao WANG, Junlong WANG, Ningfei DONG, Wei ZOU, Xiangrui XIE, Dingjiang |
AuthorAffiliation | School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China;China Academy of Launch Vehicle Technology,Beijing 100076,China%School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China |
AuthorAffiliation_xml | – name: School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China;China Academy of Launch Vehicle Technology,Beijing 100076,China%School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China |
Author_xml | – sequence: 1 givenname: Junlong surname: WANG fullname: WANG, Junlong organization: School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China – sequence: 2 givenname: Ningfei surname: WANG fullname: WANG, Ningfei organization: School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China – sequence: 3 givenname: Xiangrui surname: ZOU fullname: ZOU, Xiangrui organization: School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China – sequence: 4 givenname: Wei surname: DONG fullname: DONG, Wei organization: School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China – sequence: 5 givenname: Yintao surname: ZHOU fullname: ZHOU, Yintao organization: School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China – sequence: 6 givenname: Dingjiang surname: XIE fullname: XIE, Dingjiang organization: School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China – sequence: 7 givenname: Baolu surname: SHI fullname: SHI, Baolu email: shibaolu@bit.edu.cn organization: School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China |
BookMark | eNp9kD1PwzAQQD0UibbwA9i8MbWckzppxIQqvqQKljJbjn0Bp4ld2Q7Qf49LmRg6nc--d-d7EzKyziIhVwzmDFhx085VK-cZZFnK58DYiIwZAMyqvGDnZBJCC5BXJYMx2bwMPXqjZEdDHPSeOkuV6-shRJOO2DRGGbQqPTRUdkNv7NDTnfTRqA4DNZYG1xlNvVNbjLR30fkLctbILuDlX5ySt4f7zepptn59fF7drWcqL7M4q_VCKyzTPznKrMw0AOpCM8kXjAEvOIeSLzjoepFpZPUSecW5kpDrZV0xyKfk-tj3S9pG2nfRusHbNFF8bL9rgUlBDhygTJXlsVJ5F4LHRigT5WHF6KXpBANxUCdakdSJg7rDVVKXSPaP3HnTS78_ydweGUzLfxr0IvxKRG08qii0MyfoH-mviu8 |
CitedBy_id | crossref_primary_10_1016_j_infrared_2024_105312 crossref_primary_10_1016_j_actaastro_2024_02_007 crossref_primary_10_1016_j_combustflame_2025_113983 crossref_primary_10_1016_j_dt_2023_11_002 crossref_primary_10_1016_j_ast_2024_109696 crossref_primary_10_1016_j_cja_2025_103470 crossref_primary_10_1016_j_cja_2024_07_021 crossref_primary_10_1016_j_cja_2024_10_005 crossref_primary_10_1016_j_jaecs_2024_100283 crossref_primary_10_1016_j_actaastro_2023_12_006 crossref_primary_10_1016_j_fpc_2024_07_003 crossref_primary_10_1007_s10409_023_23021_x crossref_primary_10_1016_j_actaastro_2024_04_045 |
Cites_doi | 10.1007/s10494-019-00104-1 10.1016/j.cja.2021.05.024 10.2514/3.23902 10.1016/j.ast.2021.106788 10.1016/j.combustflame.2009.11.005 10.1016/j.actaastro.2019.03.022 10.2514/3.9585 10.1016/j.fuel.2021.121652 10.1016/j.ast.2021.107097 10.1016/j.combustflame.2020.02.008 10.1016/j.proci.2008.06.205 10.2514/3.26212 10.1038/s42005-019-0142-8 10.1016/j.ast.2019.07.003 10.1016/j.ast.2021.107102 10.1016/j.cja.2021.12.005 10.1016/j.cja.2018.06.020 10.1016/j.actaastro.2021.08.047 10.1017/S0022112072001806 10.1016/j.proci.2008.06.006 10.2514/3.48552 10.1016/j.proci.2020.06.028 10.1016/j.fuel.2019.116952 10.1016/j.combustflame.2011.03.007 10.1007/s10573-005-0077-0 10.2514/6.1999-2630 10.1016/j.proci.2006.07.161 10.1016/j.ast.2021.106604 10.1016/j.combustflame.2019.04.036 10.2514/6.1981-38 10.2514/6.2017-4781 10.1016/j.actaastro.2017.01.025 10.1016/j.cja.2020.11.017 |
ContentType | Journal Article |
Copyright | 2023 Chinese Society of Aeronautics and Astronautics Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2023 Chinese Society of Aeronautics and Astronautics – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 6I. AAFTH AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1016/j.cja.2022.10.011 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 77 |
ExternalDocumentID | hkxb_e202305007 10_1016_j_cja_2022_10_011 S1000936122002515 |
GroupedDBID | --K -SC -S~ 0R~ 0SF 1B1 1~5 29B 2B. 2C0 4.4 457 4G. 5GY 5VR 5VS 5XA 5XD 5XL 6I. 7-5 71M 92H 92I 92R 93N 9D9 9DC AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAQFI AAXUO ABMAC ACGFS ADBBV ADEZE ADMUD AEKER AENEX AEXQZ AFTJW AFUIB AGHFR AI. AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV CAJEC CAJUS CCEZO CEKLB CHBEP CS3 CW9 DU5 EBS EJD EO9 EP2 EP3 FA0 FDB FNPLU GBLVA GROUPED_DOAJ HZ~ IPNFZ IXB J1W KQ8 M41 N9A NCXOZ O-L O9- OK1 OZT Q-- Q-2 RIG ROL SDF SDG SES SSZ TCJ TGT U1G U5M VH1 ~M3 AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CITATION 4A8 PSX |
ID | FETCH-LOGICAL-c372t-bd4dce70225ea272d00ed6d1a541105655075450db42de1b8e5955ca03d8b9103 |
IEDL.DBID | IXB |
ISSN | 1000-9361 |
IngestDate | Thu May 29 03:54:25 EDT 2025 Tue Jul 01 01:17:51 EDT 2025 Thu Apr 24 23:09:59 EDT 2025 Fri Feb 23 02:36:01 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Solid rocket motor Particle size Aluminum Eulerian–Lagrangian Combustion efficiency Eulerian-Lagrangian |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-bd4dce70225ea272d00ed6d1a541105655075450db42de1b8e5955ca03d8b9103 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1000936122002515 |
PageCount | 12 |
ParticipantIDs | wanfang_journals_hkxb_e202305007 crossref_citationtrail_10_1016_j_cja_2022_10_011 crossref_primary_10_1016_j_cja_2022_10_011 elsevier_sciencedirect_doi_10_1016_j_cja_2022_10_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chinese journal of aeronautics |
PublicationTitle_FL | Chinese Journal of Aeronautics |
PublicationYear | 2023 |
Publisher | Elsevier Ltd China Academy of Launch Vehicle Technology,Beijing 100076,China%School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China |
Publisher_xml | – name: Elsevier Ltd – name: China Academy of Launch Vehicle Technology,Beijing 100076,China%School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China – name: School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China |
References | Zhao, Guan, Reinecke (b0110) 2019; 2 Liu, Li, Liu (b0095) 2017; 133 Ansys (b0160) 2013 Musa, Chen, Li (b0145) 2019; 92 Melcher J, Burton R, Krier H. Combustion of aluminum particles in solid rocket motor flows. Reston: AIAA; 1999, Report No.: AIAA- 1999-2630. Lynch, Krier, Glumac (b0175) 2009; 32 Wang, Wang, Zou (b0065) 2021; 189 Badiola, Gill, Dreizin (b0180) 2011; 158 Brooks, Beckstead (b0060) 1995; 11 King (b0190) 2009; 32 Beckstead (b0080) 2013; 53 Price EW, Park CJ, Sigman RK, et al. The nature and combustion of agglomerates. Xue, Zheng, Yue (b0115) 2021; 115 Li, Wang, Shi (b0090) 2019; 159 Larson (b0025) 1987; 25 Hermsen R. Aluminum combustion efficiency in solid rocket motors. Reston: AIAA; 1981, Report No.: AIAA-1981-0038. Söğütcü B, Kiper CE, Sumer B. Experimental and numerical investigation of aluminum particle combustion in solid rocket combustion chambers. Zou, Wang, Han (b0140) 2021; 119 McBride (b0200) 1996 Wang JL, Wang NF, Shi BL, et al. Numerical study on combustion characteristic of micron aluminum particle. Reston: AIAA; 2021, Report No.: AIAA-2021-3620. Ecker T, Karl S, Hannemann K. Modeling of aluminum particle combustion in solid rocket combustion chambers. Reston: AIAA; 2017, Report No.: AIAA-2017-4781. Sun, Cai, Shahsavari (b0125) 2021; 34 Li, Zhao, Chen (b0150) 2021; 119 2019. Washburn, Webb, Beckstead (b0185) 2010; 157 1981. Beckstead, Liang, Pudduppakkam (b0070) 2005; 41 Zhu, Chen, Zhou (b0100) 2020; 105 Izumikawa M, Takahashi M, Mitani T, et al. Metal combustion in solid propellants. Tokyo: National Aerospace Lab.; 1988, Report No.: NAL-TR-998. Ren, Wang, Zheng (b0120) 2018; 31 Zou, Wang, Wang (b0135) 2021; 306 Han, Sung (b0105) 2019; 206 Liu, An, Qin (b0130) 2020; 215 Bazyn, Krier, Glumac (b0170) 2007; 31 Zou, Wang, Liao (b0005) 2020; 266 Zou, Wang, Wang (b0010) 2021; 112 Mitani, Izumikawa (b0015) 1991; 28 Hao, Zhang, Hou (b0020) 2022; 35 Zhang, Stein, Luu (b0155) 2022; 35 Braconnier, Gallier, Halter (b0075) 2021; 38 Morsi, Alexander (b0165) 1972; 55 Sambamurthi, Price, Sigman (b0040) 1984; 22 10.1016/j.cja.2022.10.011_b0030 10.1016/j.cja.2022.10.011_b0195 Li (10.1016/j.cja.2022.10.011_b0090) 2019; 159 Zhao (10.1016/j.cja.2022.10.011_b0110) 2019; 2 10.1016/j.cja.2022.10.011_b0050 Sun (10.1016/j.cja.2022.10.011_b0125) 2021; 34 Ansys (10.1016/j.cja.2022.10.011_b0160) 2013 Zhu (10.1016/j.cja.2022.10.011_b0100) 2020; 105 King (10.1016/j.cja.2022.10.011_b0190) 2009; 32 Sambamurthi (10.1016/j.cja.2022.10.011_b0040) 1984; 22 Liu (10.1016/j.cja.2022.10.011_b0130) 2020; 215 Beckstead (10.1016/j.cja.2022.10.011_b0080) 2013; 53 Morsi (10.1016/j.cja.2022.10.011_b0165) 1972; 55 Badiola (10.1016/j.cja.2022.10.011_b0180) 2011; 158 Braconnier (10.1016/j.cja.2022.10.011_b0075) 2021; 38 Zou (10.1016/j.cja.2022.10.011_b0010) 2021; 112 10.1016/j.cja.2022.10.011_b0045 Liu (10.1016/j.cja.2022.10.011_b0095) 2017; 133 Zou (10.1016/j.cja.2022.10.011_b0135) 2021; 306 Han (10.1016/j.cja.2022.10.011_b0105) 2019; 206 10.1016/j.cja.2022.10.011_b0085 Xue (10.1016/j.cja.2022.10.011_b0115) 2021; 115 Washburn (10.1016/j.cja.2022.10.011_b0185) 2010; 157 Hao (10.1016/j.cja.2022.10.011_b0020) 2022; 35 Lynch (10.1016/j.cja.2022.10.011_b0175) 2009; 32 Larson (10.1016/j.cja.2022.10.011_b0025) 1987; 25 Brooks (10.1016/j.cja.2022.10.011_b0060) 1995; 11 Zou (10.1016/j.cja.2022.10.011_b0140) 2021; 119 McBride (10.1016/j.cja.2022.10.011_b0200) 1996 Zhang (10.1016/j.cja.2022.10.011_b0155) 2022; 35 Musa (10.1016/j.cja.2022.10.011_b0145) 2019; 92 Bazyn (10.1016/j.cja.2022.10.011_b0170) 2007; 31 Mitani (10.1016/j.cja.2022.10.011_b0015) 1991; 28 Ren (10.1016/j.cja.2022.10.011_b0120) 2018; 31 10.1016/j.cja.2022.10.011_b0055 Zou (10.1016/j.cja.2022.10.011_b0005) 2020; 266 Wang (10.1016/j.cja.2022.10.011_b0065) 2021; 189 10.1016/j.cja.2022.10.011_b0035 Beckstead (10.1016/j.cja.2022.10.011_b0070) 2005; 41 Li (10.1016/j.cja.2022.10.011_b0150) 2021; 119 |
References_xml | – reference: , 2019. – volume: 189 start-page: 119 year: 2021 end-page: 128 ident: b0065 article-title: Modeling of micro aluminum particle combustion in multiple oxidizers publication-title: Acta Astronaut – volume: 35 start-page: 319 year: 2022 end-page: 332 ident: b0155 article-title: Detailed modeling of aluminum particle combustion - From single particles to cloud combustion in Bunsen flames publication-title: Chin J Aeronaut – volume: 41 start-page: 622 year: 2005 end-page: 638 ident: b0070 article-title: Numerical simulation of single aluminum particle combustion (review) publication-title: Combust Explos Shock Waves – reference: Ecker T, Karl S, Hannemann K. Modeling of aluminum particle combustion in solid rocket combustion chambers. Reston: AIAA; 2017, Report No.: AIAA-2017-4781. – volume: 2 start-page: 44 year: 2019 ident: b0110 article-title: Characterizing hydrogen-fuelled pulsating combustion on thermodynamic properties of a combustor publication-title: Commun Phys – volume: 92 start-page: 750 year: 2019 end-page: 765 ident: b0145 article-title: Combustion characteristics of a novel design of solid-fuel ramjet motor with swirl flow publication-title: Aerosp Sci Technol – volume: 11 start-page: 769 year: 1995 end-page: 780 ident: b0060 article-title: Dynamics of aluminum combustion publication-title: J Propuls Power – volume: 159 start-page: 33 year: 2019 end-page: 40 ident: b0090 article-title: Effects of particle size on two-phase flow loss in aluminized solid rocket motors publication-title: Acta Astronaut – volume: 35 start-page: 98 year: 2022 end-page: 116 ident: b0020 article-title: Radiative properties of alumina/aluminum particles and influence on radiative heat transfer in solid rocket motor publication-title: Chin J Aeronaut – volume: 34 start-page: 17 year: 2021 end-page: 27 ident: b0125 article-title: RANS simulations on combustion and emission characteristics of a premixed NH publication-title: Chin J Aeronaut – volume: 119 year: 2021 ident: b0150 article-title: Numerical investigations on solid-fueled ramjet inlet thermodynamic properties effects on generating self-sustained combustion instability publication-title: Aerosp Sci Technol – volume: 206 start-page: 112 year: 2019 end-page: 122 ident: b0105 article-title: A numerical study on heterogeneous aluminum dust combustion including particle surface and gas-phase reaction publication-title: Combust Flame – volume: 215 start-page: 342 year: 2020 end-page: 351 ident: b0130 article-title: Large eddy simulation of auto-ignition kernel development of transient methane jet in hot co-flow publication-title: Combust Flame – reference: Wang JL, Wang NF, Shi BL, et al. Numerical study on combustion characteristic of micron aluminum particle. Reston: AIAA; 2021, Report No.: AIAA-2021-3620. – volume: 38 start-page: 4355 year: 2021 end-page: 4363 ident: b0075 article-title: Aluminum combustion in CO publication-title: Proc Combust Inst – reference: Hermsen R. Aluminum combustion efficiency in solid rocket motors. Reston: AIAA; 1981, Report No.: AIAA-1981-0038. – volume: 115 year: 2021 ident: b0115 article-title: Reduction of surface friction drag in scramjet engine by boundary layer combustion publication-title: Aerosp Sci Technol – reference: Melcher J, Burton R, Krier H. Combustion of aluminum particles in solid rocket motor flows. Reston: AIAA; 1999, Report No.: AIAA- 1999-2630. – volume: 133 start-page: 136 year: 2017 end-page: 144 ident: b0095 article-title: Experimental investigation of the combustion products in an aluminised solid propellant publication-title: Acta Astronaut – volume: 266 year: 2020 ident: b0005 article-title: Prediction of nano/micro aluminum particles ignition in oxygen atmosphere publication-title: Fuel – volume: 31 start-page: 2021 year: 2007 end-page: 2028 ident: b0170 article-title: Evidence for the transition from the diffusion-limit in aluminum particle combustion publication-title: Proc Combust Inst – volume: 119 year: 2021 ident: b0140 article-title: Numerical investigation on regression rate and thrust regulation behaviors of a combined solid rocket motor with aluminum-based fuel publication-title: Aerosp Sci Technol – year: 1996 ident: b0200 article-title: Computer program for calculation of complex chemical equilibrium compositions and applications – volume: 55 start-page: 193 year: 1972 end-page: 208 ident: b0165 article-title: An investigation of particle trajectories in two-phase flow systems publication-title: J Fluid Mech – year: 2013 ident: b0160 article-title: Ansys Fluent theory guide – volume: 112 year: 2021 ident: b0010 article-title: A numerical investigation on heterogeneous combustion of aluminum nanoparticle clouds publication-title: Aerosp Sci Technol – volume: 158 start-page: 2064 year: 2011 end-page: 2070 ident: b0180 article-title: Combustion characteristics of micron-sized aluminum particles in oxygenated environments publication-title: Combust Flame – volume: 32 start-page: 2107 year: 2009 end-page: 2114 ident: b0190 article-title: Aluminum combustion in a solid rocket motor environment publication-title: Proc Combust Inst – volume: 53 start-page: 1689 year: 2013 end-page: 1699 ident: b0080 article-title: A summary of aluminum combustion publication-title: J Chem Inf Modeling – reference: Price EW, Park CJ, Sigman RK, et al. The nature and combustion of agglomerates. – volume: 32 start-page: 1887 year: 2009 end-page: 1893 ident: b0175 article-title: A correlation for burn time of aluminum particles in the transition regime publication-title: Proc Combust Inst – reference: Izumikawa M, Takahashi M, Mitani T, et al. Metal combustion in solid propellants. Tokyo: National Aerospace Lab.; 1988, Report No.: NAL-TR-998. – volume: 105 start-page: 191 year: 2020 end-page: 212 ident: b0100 article-title: Numerical study of micron-scale aluminum particle combustion in an afterburner using two-way coupling CFD-DEM approach publication-title: Flow Turbulence Combust – volume: 28 start-page: 79 year: 1991 end-page: 84 ident: b0015 article-title: Combustion efficiencies of aluminum and boron in solid propellants publication-title: J Spacecr Rockets – volume: 157 start-page: 540 year: 2010 end-page: 545 ident: b0185 article-title: The simulation of the combustion of micrometer-sized aluminum particles with oxygen and carbon dioxide publication-title: Combust Flame – volume: 25 start-page: 82 year: 1987 end-page: 91 ident: b0025 article-title: Prediction of aluminum combustion efficiency in solid propellant rocket motors publication-title: AIAA J – volume: 31 start-page: 1870 year: 2018 end-page: 1879 ident: b0120 article-title: Numerical studies on supersonic spray combustion in high-temperature shear flows in a scramjet combustor publication-title: Chin J Aeronaut – volume: 306 year: 2021 ident: b0135 article-title: Investigation on the microscale combustion characteristics of AP/HTPB propellant under wide pressure range publication-title: Fuel – volume: 22 start-page: 1132 year: 1984 end-page: 1138 ident: b0040 article-title: Aluminum agglomeration in solid-propellant combustion publication-title: AIAA J – reference: , 1981. – reference: Söğütcü B, Kiper CE, Sumer B. Experimental and numerical investigation of aluminum particle combustion in solid rocket combustion chambers. – ident: 10.1016/j.cja.2022.10.011_b0050 – volume: 105 start-page: 191 issue: 1 year: 2020 ident: 10.1016/j.cja.2022.10.011_b0100 article-title: Numerical study of micron-scale aluminum particle combustion in an afterburner using two-way coupling CFD-DEM approach publication-title: Flow Turbulence Combust doi: 10.1007/s10494-019-00104-1 – volume: 35 start-page: 98 issue: 2 year: 2022 ident: 10.1016/j.cja.2022.10.011_b0020 article-title: Radiative properties of alumina/aluminum particles and influence on radiative heat transfer in solid rocket motor publication-title: Chin J Aeronaut doi: 10.1016/j.cja.2021.05.024 – volume: 11 start-page: 769 issue: 4 year: 1995 ident: 10.1016/j.cja.2022.10.011_b0060 article-title: Dynamics of aluminum combustion publication-title: J Propuls Power doi: 10.2514/3.23902 – volume: 115 year: 2021 ident: 10.1016/j.cja.2022.10.011_b0115 article-title: Reduction of surface friction drag in scramjet engine by boundary layer combustion publication-title: Aerosp Sci Technol doi: 10.1016/j.ast.2021.106788 – volume: 157 start-page: 540 issue: 3 year: 2010 ident: 10.1016/j.cja.2022.10.011_b0185 article-title: The simulation of the combustion of micrometer-sized aluminum particles with oxygen and carbon dioxide publication-title: Combust Flame doi: 10.1016/j.combustflame.2009.11.005 – volume: 159 start-page: 33 year: 2019 ident: 10.1016/j.cja.2022.10.011_b0090 article-title: Effects of particle size on two-phase flow loss in aluminized solid rocket motors publication-title: Acta Astronaut doi: 10.1016/j.actaastro.2019.03.022 – volume: 25 start-page: 82 issue: 1 year: 1987 ident: 10.1016/j.cja.2022.10.011_b0025 article-title: Prediction of aluminum combustion efficiency in solid propellant rocket motors publication-title: AIAA J doi: 10.2514/3.9585 – volume: 306 year: 2021 ident: 10.1016/j.cja.2022.10.011_b0135 article-title: Investigation on the microscale combustion characteristics of AP/HTPB propellant under wide pressure range publication-title: Fuel doi: 10.1016/j.fuel.2021.121652 – ident: 10.1016/j.cja.2022.10.011_b0195 – volume: 119 year: 2021 ident: 10.1016/j.cja.2022.10.011_b0150 article-title: Numerical investigations on solid-fueled ramjet inlet thermodynamic properties effects on generating self-sustained combustion instability publication-title: Aerosp Sci Technol doi: 10.1016/j.ast.2021.107097 – volume: 215 start-page: 342 year: 2020 ident: 10.1016/j.cja.2022.10.011_b0130 article-title: Large eddy simulation of auto-ignition kernel development of transient methane jet in hot co-flow publication-title: Combust Flame doi: 10.1016/j.combustflame.2020.02.008 – volume: 32 start-page: 1887 issue: 2 year: 2009 ident: 10.1016/j.cja.2022.10.011_b0175 article-title: A correlation for burn time of aluminum particles in the transition regime publication-title: Proc Combust Inst doi: 10.1016/j.proci.2008.06.205 – volume: 28 start-page: 79 issue: 1 year: 1991 ident: 10.1016/j.cja.2022.10.011_b0015 article-title: Combustion efficiencies of aluminum and boron in solid propellants publication-title: J Spacecr Rockets doi: 10.2514/3.26212 – volume: 2 start-page: 44 year: 2019 ident: 10.1016/j.cja.2022.10.011_b0110 article-title: Characterizing hydrogen-fuelled pulsating combustion on thermodynamic properties of a combustor publication-title: Commun Phys doi: 10.1038/s42005-019-0142-8 – volume: 92 start-page: 750 year: 2019 ident: 10.1016/j.cja.2022.10.011_b0145 article-title: Combustion characteristics of a novel design of solid-fuel ramjet motor with swirl flow publication-title: Aerosp Sci Technol doi: 10.1016/j.ast.2019.07.003 – year: 1996 ident: 10.1016/j.cja.2022.10.011_b0200 – volume: 119 year: 2021 ident: 10.1016/j.cja.2022.10.011_b0140 article-title: Numerical investigation on regression rate and thrust regulation behaviors of a combined solid rocket motor with aluminum-based fuel publication-title: Aerosp Sci Technol doi: 10.1016/j.ast.2021.107102 – volume: 35 start-page: 319 issue: 5 year: 2022 ident: 10.1016/j.cja.2022.10.011_b0155 article-title: Detailed modeling of aluminum particle combustion - From single particles to cloud combustion in Bunsen flames publication-title: Chin J Aeronaut doi: 10.1016/j.cja.2021.12.005 – volume: 31 start-page: 1870 issue: 9 year: 2018 ident: 10.1016/j.cja.2022.10.011_b0120 article-title: Numerical studies on supersonic spray combustion in high-temperature shear flows in a scramjet combustor publication-title: Chin J Aeronaut doi: 10.1016/j.cja.2018.06.020 – volume: 53 start-page: 1689 issue: 9 year: 2013 ident: 10.1016/j.cja.2022.10.011_b0080 article-title: A summary of aluminum combustion publication-title: J Chem Inf Modeling – volume: 189 start-page: 119 year: 2021 ident: 10.1016/j.cja.2022.10.011_b0065 article-title: Modeling of micro aluminum particle combustion in multiple oxidizers publication-title: Acta Astronaut doi: 10.1016/j.actaastro.2021.08.047 – volume: 55 start-page: 193 issue: 2 year: 1972 ident: 10.1016/j.cja.2022.10.011_b0165 article-title: An investigation of particle trajectories in two-phase flow systems publication-title: J Fluid Mech doi: 10.1017/S0022112072001806 – volume: 32 start-page: 2107 issue: 2 year: 2009 ident: 10.1016/j.cja.2022.10.011_b0190 article-title: Aluminum combustion in a solid rocket motor environment publication-title: Proc Combust Inst doi: 10.1016/j.proci.2008.06.006 – volume: 22 start-page: 1132 issue: 8 year: 1984 ident: 10.1016/j.cja.2022.10.011_b0040 article-title: Aluminum agglomeration in solid-propellant combustion publication-title: AIAA J doi: 10.2514/3.48552 – volume: 38 start-page: 4355 issue: 3 year: 2021 ident: 10.1016/j.cja.2022.10.011_b0075 article-title: Aluminum combustion in CO2-CO-N2 mixtures publication-title: Proc Combust Inst doi: 10.1016/j.proci.2020.06.028 – volume: 266 year: 2020 ident: 10.1016/j.cja.2022.10.011_b0005 article-title: Prediction of nano/micro aluminum particles ignition in oxygen atmosphere publication-title: Fuel doi: 10.1016/j.fuel.2019.116952 – volume: 158 start-page: 2064 issue: 10 year: 2011 ident: 10.1016/j.cja.2022.10.011_b0180 article-title: Combustion characteristics of micron-sized aluminum particles in oxygenated environments publication-title: Combust Flame doi: 10.1016/j.combustflame.2011.03.007 – volume: 41 start-page: 622 issue: 6 year: 2005 ident: 10.1016/j.cja.2022.10.011_b0070 article-title: Numerical simulation of single aluminum particle combustion (review) publication-title: Combust Explos Shock Waves doi: 10.1007/s10573-005-0077-0 – ident: 10.1016/j.cja.2022.10.011_b0035 – ident: 10.1016/j.cja.2022.10.011_b0085 doi: 10.2514/6.1999-2630 – year: 2013 ident: 10.1016/j.cja.2022.10.011_b0160 – volume: 31 start-page: 2021 issue: 2 year: 2007 ident: 10.1016/j.cja.2022.10.011_b0170 article-title: Evidence for the transition from the diffusion-limit in aluminum particle combustion publication-title: Proc Combust Inst doi: 10.1016/j.proci.2006.07.161 – volume: 112 year: 2021 ident: 10.1016/j.cja.2022.10.011_b0010 article-title: A numerical investigation on heterogeneous combustion of aluminum nanoparticle clouds publication-title: Aerosp Sci Technol doi: 10.1016/j.ast.2021.106604 – ident: 10.1016/j.cja.2022.10.011_b0045 – volume: 206 start-page: 112 year: 2019 ident: 10.1016/j.cja.2022.10.011_b0105 article-title: A numerical study on heterogeneous aluminum dust combustion including particle surface and gas-phase reaction publication-title: Combust Flame doi: 10.1016/j.combustflame.2019.04.036 – ident: 10.1016/j.cja.2022.10.011_b0030 doi: 10.2514/6.1981-38 – ident: 10.1016/j.cja.2022.10.011_b0055 doi: 10.2514/6.2017-4781 – volume: 133 start-page: 136 year: 2017 ident: 10.1016/j.cja.2022.10.011_b0095 article-title: Experimental investigation of the combustion products in an aluminised solid propellant publication-title: Acta Astronaut doi: 10.1016/j.actaastro.2017.01.025 – volume: 34 start-page: 17 issue: 12 year: 2021 ident: 10.1016/j.cja.2022.10.011_b0125 article-title: RANS simulations on combustion and emission characteristics of a premixed NH3/H2 swirling flame with reduced chemical kinetic model publication-title: Chin J Aeronaut doi: 10.1016/j.cja.2020.11.017 |
SSID | ssj0039710 |
Score | 2.387977 |
Snippet | The combustion of aluminum particles in solid rocket motor plays an important role in energy release of propellants. However, due to the limited residence... The combustion of aluminum particles in solid rocket motor plays an important role in energy release of propellants.However,due to the limited residence... |
SourceID | wanfang crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 66 |
SubjectTerms | Aluminum Combustion efficiency Eulerian–Lagrangian Particle size Solid rocket motor |
Title | Numerical study on combustion efficiency of aluminum particles in solid rocket motor |
URI | https://dx.doi.org/10.1016/j.cja.2022.10.011 https://d.wanfangdata.com.cn/periodical/hkxb-e202305007 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGA9jIOhBfOJ8kYMnIS5tk7U96nAMwV3cYLfQPKrdZjtmh_75fmlTmQd38FZCEppf0u_7pd8LoZuelJz7KiYayC2x5Y1JxCQjXIaRp4wysbL_IZ9HveGEPU35tIX6TSyMdat0sr-W6ZW0di1dh2Z3mWXdF6-6joOG9iuibAPNAxZVQXzTh0Yag7p1GQkoJbZ3Y9msfLzUzKYe8v076-DleX_ppp3PJE-T_HVD8wwO0L6jjPi-fqtD1DL5EdrbSCR4jMajdW15WeAqXywucgwrkrZUFzyaKk-EDbLERYoTkEdZvn7Hy8YrDmc5hjOYaQzqbG5KDPtXrE7QZPA47g-Jq5dAVBD6JZGaaWVCWA83iR_6mlKje9pLOAMlD8wNuB8QJqol87XxZGR4zLlKaKAjCbQhOEXtvMjNGcKBtQealCZGpSxmMpYBs2DCtAqu02EH0QYpoVwycVvTYiEar7GZAHCFBdc2AbgddPszZFln0tjWmTXwi1_HQYCk3zYMu60S7lP8EG_zLymMrRJPORCi8__NfIF27RS1q-MlapertbkCOlLK6-q8fQP2INuD |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8QY9SD8TPiZw-eTCbd1jJ2VCIBBS5Cwq1ZP9ABDoIj-uf7unUGD3LwtjRts_7avffr-vp7CN3UhGDMk6GjgNw6Jr2xU6eCOkwEdVdqqUNp_kN2e7XWgD4N2bCEGsVdGBNWaW1_btMza21LqhbN6jyOqy9uth0HD-1lRJltoE1gA4HJ39AePhTmGPytlSQgxDHVi6PNLMhLjo32kOfdmQgv1_3LOW19RskoSl5XXE9zH-1Zzojv89c6QCWdHKLdFSXBI9TvLfOjlynOBGPxLMEwJGFydcGjzoQizC1LPBvhCAxSnCzf8bwIi8NxgmERxgqDP5voFMMEzhbHaNB87Ddajk2Y4Eg_8FJHKKqkDmA8TEde4ClCtKopN2IUvDxQNyB_wJiIEtRT2hV1zULGZER8VRfAG_wTVE5miT5F2DcHgnpEIi1HNKQiFD41YEK3EvbTQQWRAikurZq4SWox5UXY2JgDuNyAa4oA3Aq6_Wkyz6U01lWmBfz813rgYOrXNcN2qrj9Fj_42-RLcG3SxBMGjOjsfz1fo-1Wv9vhnXbv-RztmO7yuMcLVE4XS30J3CQVV9na-wYKgt6i |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+study+on+combustion+efficiency+of+aluminum+particles+in+solid+rocket+motor&rft.jtitle=Chinese+journal+of+aeronautics&rft.au=WANG%2C+Junlong&rft.au=WANG%2C+Ningfei&rft.au=ZOU%2C+Xiangrui&rft.au=DONG%2C+Wei&rft.date=2023-05-01&rft.issn=1000-9361&rft.volume=36&rft.issue=5&rft.spage=66&rft.epage=77&rft_id=info:doi/10.1016%2Fj.cja.2022.10.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cja_2022_10_011 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fhkxb-e%2Fhkxb-e.jpg |