Assessment of failure rates and reliability of floating offshore wind turbines
•A model is proposed to assess the failure rate of components of floating offshore wind turbines based on onshore turbine data.•A failure rate correction model is presented for the relations of failure between onshore and floating offshore wind turbines.•The results indicate that the failure rates o...
Saved in:
Published in | Reliability engineering & system safety Vol. 228; p. 108777 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Barking
Elsevier Ltd
01.12.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A model is proposed to assess the failure rate of components of floating offshore wind turbines based on onshore turbine data.•A failure rate correction model is presented for the relations of failure between onshore and floating offshore wind turbines.•The results indicate that the failure rates of components of floating wind turbines are higher than those of onshore devices.•A Bayesian network is constructed to analyze the failure rate and reliability of the entire floating offshore wind turbine.•The performance of the proposed model is validated by a comprehensive comparison with the existing studies and models.
A model is proposed to assess the failure rates of components of floating offshore wind turbines based on the knowledge of failure data of corresponding structures of onshore wind turbines with sufficient failure data. A failure rate correction model is first presented to map the relations of failure features between onshore and floating offshore wind turbines. Subsequently, a failure rate analogy model is established to infer the failure rates of elements of support structures that have no correspondence in onshore devices. The results indicate that the failure rates of components of floating offshore wind turbines are higher than those of onshore devices. Accordingly, a Bayesian network is constructed to analyze the failure rate and reliability of the entire floating offshore wind turbine. The uncertainty of the model is investigated to illustrate the factors that significantly affect the predicted failure rates and reliability. Moreover, the performance of the proposed model is validated by a comprehensive comparison with the existing studies and models. The model presented contributes to the risk, failure, and reliability analysis and assessment under insufficient data conditions. |
---|---|
AbstractList | A model is proposed to assess the failure rates of components of floating offshore wind turbines based on the knowledge of failure data of corresponding structures of onshore wind turbines with sufficient failure data. A failure rate correction model is first presented to map the relations of failure features between onshore and floating offshore wind turbines. Subsequently, a failure rate analogy model is established to infer the failure rates of elements of support structures that have no correspondence in onshore devices. The results indicate that the failure rates of components of floating offshore wind turbines are higher than those of onshore devices. Accordingly, a Bayesian network is constructed to analyze the failure rate and reliability of the entire floating offshore wind turbine. The uncertainty of the model is investigated to illustrate the factors that significantly affect the predicted failure rates and reliability. Moreover, the performance of the proposed model is validated by a comprehensive comparison with the existing studies and models. The model presented contributes to the risk, failure, and reliability analysis and assessment under insufficient data conditions. •A model is proposed to assess the failure rate of components of floating offshore wind turbines based on onshore turbine data.•A failure rate correction model is presented for the relations of failure between onshore and floating offshore wind turbines.•The results indicate that the failure rates of components of floating wind turbines are higher than those of onshore devices.•A Bayesian network is constructed to analyze the failure rate and reliability of the entire floating offshore wind turbine.•The performance of the proposed model is validated by a comprehensive comparison with the existing studies and models. A model is proposed to assess the failure rates of components of floating offshore wind turbines based on the knowledge of failure data of corresponding structures of onshore wind turbines with sufficient failure data. A failure rate correction model is first presented to map the relations of failure features between onshore and floating offshore wind turbines. Subsequently, a failure rate analogy model is established to infer the failure rates of elements of support structures that have no correspondence in onshore devices. The results indicate that the failure rates of components of floating offshore wind turbines are higher than those of onshore devices. Accordingly, a Bayesian network is constructed to analyze the failure rate and reliability of the entire floating offshore wind turbine. The uncertainty of the model is investigated to illustrate the factors that significantly affect the predicted failure rates and reliability. Moreover, the performance of the proposed model is validated by a comprehensive comparison with the existing studies and models. The model presented contributes to the risk, failure, and reliability analysis and assessment under insufficient data conditions. |
ArticleNumber | 108777 |
Author | Guedes Soares, C Li, He |
Author_xml | – sequence: 1 givenname: He surname: Li fullname: Li, He organization: Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal – sequence: 2 givenname: C orcidid: 0000-0002-8570-4263 surname: Guedes Soares fullname: Guedes Soares, C email: c.guedes.soares@centec.tecnico.ulisboa.pt organization: Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal |
BookMark | eNp9kLtOwzAUQC1UJNrCDzBFYk7xI8l1JJaq4iUhWGC2nPQGXKV2sR1Q_x6XMDF0smWdY_ueGZlYZ5GQS0YXjLLqerPwGMKCU87TgQSAEzJlEuqcSlFNyJTWJcul4PSMzELYUEqLuoQpeV6GkMwt2pi5Luu06QePmdcRQ6btOvPYG92Y3sT9L9A7HY19T_sufLiEfptExcE3xmI4J6ed7gNe_K1z8nZ3-7p6yJ9e7h9Xy6e8FcBj3oiqQY4V10xXuoGGQSlFC9hWDIqugBJ5kb5c87IWlGmoGyEbUXKoJXSCiTm5Gu_defc5YIhq4wZv05OKQ1lxBhTKRPGRar0LwWOndt5std8rRtWhm9qoQzd16KbGbkmS_6TWxDSzs9GnOsfVm1HFNPqXQa9Ca9C2uDYe26jWzhzTfwBgdopx |
CitedBy_id | crossref_primary_10_1108_JQME_01_2024_0009 crossref_primary_10_1002_qre_3456 crossref_primary_10_3390_jmse12071051 crossref_primary_10_1002_qre_3334 crossref_primary_10_1016_j_oceaneng_2022_113043 crossref_primary_10_3390_app12199689 crossref_primary_10_1007_s12206_023_0410_0 crossref_primary_10_1002_qre_3582 crossref_primary_10_1016_j_ress_2023_109485 crossref_primary_10_3390_ma16124383 crossref_primary_10_1016_j_esr_2023_101097 crossref_primary_10_1016_j_net_2024_06_055 crossref_primary_10_1002_qre_3342 crossref_primary_10_3390_en16062679 crossref_primary_10_1016_j_oceaneng_2024_117598 crossref_primary_10_1002_qre_3505 crossref_primary_10_3390_modelling5030058 crossref_primary_10_3390_machines12050332 crossref_primary_10_1016_j_ijfatigue_2023_107685 crossref_primary_10_1016_j_ress_2023_109775 crossref_primary_10_1111_ffe_14236 crossref_primary_10_1108_IJSI_08_2024_0129 crossref_primary_10_1088_1361_6501_ace072 crossref_primary_10_3390_en16134886 crossref_primary_10_1088_1361_6501_acce55 crossref_primary_10_1016_j_ress_2023_109494 crossref_primary_10_1002_qre_3316 crossref_primary_10_1002_qre_3558 crossref_primary_10_1002_qre_3313 crossref_primary_10_1002_qre_3314 crossref_primary_10_1177_1748006X241235727 crossref_primary_10_3390_app12199628 crossref_primary_10_1002_qre_3431 crossref_primary_10_1007_s11804_025_00688_3 crossref_primary_10_1115_1_4064855 crossref_primary_10_1002_qre_3715 crossref_primary_10_1016_j_rser_2023_113610 crossref_primary_10_1016_j_apor_2023_103669 crossref_primary_10_1016_j_oceaneng_2023_116372 crossref_primary_10_3390_app14188313 crossref_primary_10_1016_j_ress_2023_109746 crossref_primary_10_1016_j_ress_2024_110508 crossref_primary_10_1016_j_ress_2023_109347 crossref_primary_10_1016_j_ress_2024_110587 crossref_primary_10_3390_app122111276 crossref_primary_10_1088_1361_6501_ada6ec crossref_primary_10_1016_j_ress_2024_110626 crossref_primary_10_1016_j_ijhydene_2024_05_329 crossref_primary_10_3390_aerospace10090785 crossref_primary_10_1016_j_ress_2024_110350 crossref_primary_10_1002_qre_3564 crossref_primary_10_1002_qre_3323 crossref_primary_10_1002_qre_3562 crossref_primary_10_3390_jmse10111685 crossref_primary_10_1115_1_4066926 crossref_primary_10_3390_s24247909 crossref_primary_10_3390_jmse12040547 crossref_primary_10_3390_su16010333 crossref_primary_10_1016_j_eswa_2024_126171 crossref_primary_10_1016_j_ress_2023_109233 crossref_primary_10_1002_qre_3572 crossref_primary_10_1002_qre_3294 crossref_primary_10_1016_j_ress_2023_109630 crossref_primary_10_1002_qre_3293 crossref_primary_10_1016_j_ress_2023_109351 crossref_primary_10_1002_qre_3259 crossref_primary_10_1002_qre_3257 crossref_primary_10_3390_electronics11233863 crossref_primary_10_1002_qre_3539 crossref_primary_10_1016_j_ress_2023_109729 crossref_primary_10_1016_j_oceaneng_2024_117440 crossref_primary_10_3390_jmse10111616 crossref_primary_10_1002_qre_3538 crossref_primary_10_1016_j_oceaneng_2024_118663 crossref_primary_10_1016_j_ress_2023_109721 crossref_primary_10_1063_5_0125548 crossref_primary_10_3389_fmars_2024_1447754 crossref_primary_10_1002_qre_3262 crossref_primary_10_1002_qre_3383 crossref_primary_10_1016_j_ress_2024_110601 crossref_primary_10_1016_j_engappai_2024_108071 crossref_primary_10_1016_j_ress_2024_110299 crossref_primary_10_1002_qre_3541 crossref_primary_10_1016_j_energy_2023_128442 crossref_primary_10_1002_qre_3308 crossref_primary_10_1016_j_ress_2024_109957 crossref_primary_10_1016_j_oceaneng_2024_118157 crossref_primary_10_1016_j_ijpvp_2022_104821 crossref_primary_10_1002_qre_3272 crossref_primary_10_1016_j_ress_2024_110336 crossref_primary_10_1016_j_marstruc_2023_103562 crossref_primary_10_1080_09537325_2024_2425736 crossref_primary_10_3390_jmse10121830 crossref_primary_10_1002_qre_3518 crossref_primary_10_1016_j_oceaneng_2023_116450 crossref_primary_10_1016_j_rser_2024_114302 crossref_primary_10_2174_2352096516666230705161558 crossref_primary_10_1016_j_ocecoaman_2024_107316 crossref_primary_10_1016_j_ress_2023_109426 crossref_primary_10_1002_qre_3247 crossref_primary_10_1002_qre_3368 crossref_primary_10_3390_jmse10121965 crossref_primary_10_1002_qre_3366 crossref_primary_10_1007_s12597_024_00868_9 crossref_primary_10_1002_qre_3528 crossref_primary_10_3390_pr12020268 crossref_primary_10_1002_qre_3527 crossref_primary_10_1007_s12206_023_0440_7 crossref_primary_10_1016_j_ress_2024_110037 crossref_primary_10_1016_j_ress_2023_109793 crossref_primary_10_1016_j_ress_2024_109970 crossref_primary_10_1016_j_oceaneng_2023_113625 |
Cites_doi | 10.1016/j.ress.2020.107077 10.1016/j.ress.2021.107733 10.1016/j.jweia.2016.04.005 10.1016/j.renene.2020.08.001 10.1016/j.renene.2016.06.016 10.1016/j.ress.2020.107062 10.1088/1742-6596/1102/1/012039 10.1016/j.renene.2019.03.136 10.3390/en10030276 10.1016/j.marstruc.2021.103127 10.1016/j.oceaneng.2020.107827 10.1016/j.renene.2020.09.033 10.1016/j.ress.2021.108208 10.1016/j.marstruc.2022.103244 10.1016/j.rser.2014.10.087 10.1016/j.ress.2005.11.037 10.1016/j.rser.2018.04.004 10.1016/j.oceaneng.2021.109261 10.1016/j.ress.2017.10.004 10.1016/j.ress.2020.107192 10.1016/j.oceaneng.2022.111433 10.3390/en7020619 10.1016/j.ress.2009.09.010 10.1016/j.oceaneng.2019.02.048 10.1016/j.rser.2018.09.035 10.1016/j.oceaneng.2020.107381 10.1109/TII.2018.2858281 10.1016/j.ijepes.2010.01.019 10.1016/j.ress.2008.12.004 10.1016/j.oceaneng.2020.107393 10.1016/j.renene.2018.08.097 10.1016/j.oceaneng.2022.111386 10.1016/S0951-8320(00)00077-6 10.1002/we.1887 10.1016/j.jlp.2009.07.013 10.1016/j.ress.2017.10.002 10.1016/j.ress.2021.108143 10.1016/j.ress.2017.11.024 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) Copyright Elsevier BV Dec 2022 |
Copyright_xml | – notice: 2022 The Author(s) – notice: Copyright Elsevier BV Dec 2022 |
DBID | 6I. AAFTH AAYXX CITATION 7ST 7TB 8FD C1K FR3 SOI |
DOI | 10.1016/j.ress.2022.108777 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Environment Abstracts |
DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Engineering Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0836 |
ExternalDocumentID | 10_1016_j_ress_2022_108777 S0951832022004008 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABMMH ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSB SSO SST SSZ T5K TN5 WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7ST 7TB 8FD C1K EFKBS FR3 SOI |
ID | FETCH-LOGICAL-c372t-b36be2e62a1a6ab7b17583c7ec6174f475e240959259301a79b38b3527987f313 |
IEDL.DBID | .~1 |
ISSN | 0951-8320 |
IngestDate | Wed Aug 13 08:12:50 EDT 2025 Tue Jul 01 00:45:08 EDT 2025 Thu Apr 24 23:03:02 EDT 2025 Fri Feb 23 02:40:43 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Floating offshore wind turbine Reliability analysis Failure rate assessment Failure rate correction model |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-b36be2e62a1a6ab7b17583c7ec6174f475e240959259301a79b38b3527987f313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8570-4263 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0951832022004008 |
PQID | 2756217075 |
PQPubID | 2045406 |
ParticipantIDs | proquest_journals_2756217075 crossref_primary_10_1016_j_ress_2022_108777 crossref_citationtrail_10_1016_j_ress_2022_108777 elsevier_sciencedirect_doi_10_1016_j_ress_2022_108777 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2022 2022-12-00 20221201 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationPlace | Barking |
PublicationPlace_xml | – name: Barking |
PublicationTitle | Reliability engineering & system safety |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Li, Guedes Soares, Huang (bib0017) 2020; 217 Kang, Sun, Guedes Soares (bib0010) 2019; 133 Bhardwaj, Teixeira, Guedes Soares (bib0029) 2022; 218 Eryilmaz, Kan (bib0014) 2020; 203 Cai, Kong, Liu, Lin, Yuan, Xu, Ji (bib0037) 2018; 15 Tazi, Châtelet, Bouzidi (bib0018) 2017; 10 Brissaud, Charpentier, Fouladirad, Barros, Bérenguer (bib0034) 2010; 23 Langseth, Portinale (bib0015) 2007; 92 Li, Huang, Guedes Soares (bib0002) 2022; 256 Reder, Yürüşen, Melero (bib0012) 2018; 169 Li, Díaz, Guedes Soares (bib0006) 2020; 164 Bobbio, Portinale, Minichino, Ciancamerla (bib0016) 2001; 71 Alkaff, Qomarudin, Bilfaqih (bib0013) 2020; 204 Zhang, Sun, Sun, Guo, Bai (bib0023) 2016; 154 Santos, Teixeira, Guedes Soares (bib0031) 2014 Arabian-Hoseynabadi, Oraee, Tavner (bib0035) 2010; 32 Díaz, Guedes Soares (bib0001) 2020; 209 Li, Teixeira, Guedes Soares (bib0007) 2020; 162 Carroll, McDonald, McMillan (bib0024) 2016; 19 Sinha, Steel (bib0011) 2015; 42 Guo, Watson, Tavner, Xiang (bib0026) 2009; 94 Bhardwaj, Teixeira, Guedes Soares (bib0009) 2019; 141 Sarazin, Morio, Lagnoux, Balesdent, Brevault (bib0042) 2021; 215 Wang, González-Cao, Islam, Gómez-Gesteira, Guedes Soares (bib0041) 2022; 256 Zhang, Liao, Shi, Babanin, Guedes Soares (bib0040) 2022; 82 Leimeister, Kolios (bib0025) 2018; 91 Li, Guedes Soares (bib0021) 2019 Shafiee, Dinmohammadi (bib0022) 2014; 7 Li, Díaz, Guedes Soares (bib0008) 2021; 234 Bharatbhai (bib0036) 2015; 2 Aven (bib0039) 2010; 95 Scheu, Tremps, Smolka, Kolios, Brennan (bib0020) 2019; 176 Tazi, Châtelet, Bouzidi (bib0032) 2018; 169 Yeter, Garbatov, Guedes Soares (bib0005) 2020; 202 Rahimi, Rausand (bib0033) 2013; 227 Castro-Santos, Silva, Bento, Salvacao, Guedes Soares (bib0004) 2020; 207 Peeters, Basten, Tinga (bib0027) 2018; 172 Hallak, Teixeira, Guedes Soares (bib0043) 2022; 85 Bento, Fontes (bib0030) 2019; 99 Cevasco, Collu, Lin (bib0019) 2018; 1102 Tabandeh, Sharma, Gardoni (bib0038) 2022; 219 Castro-Santos, Martins, Guedes Soares (bib0003) 2016; 97 Alkaff, Qomarudin, Bilfaqih (bib0028) 2020; 204 Bobbio (10.1016/j.ress.2022.108777_bib0016) 2001; 71 Li (10.1016/j.ress.2022.108777_bib0007) 2020; 162 Rahimi (10.1016/j.ress.2022.108777_bib0033) 2013; 227 Brissaud (10.1016/j.ress.2022.108777_bib0034) 2010; 23 Tabandeh (10.1016/j.ress.2022.108777_bib0038) 2022; 219 Eryilmaz (10.1016/j.ress.2022.108777_bib0014) 2020; 203 Santos (10.1016/j.ress.2022.108777_bib0031) 2014 Alkaff (10.1016/j.ress.2022.108777_bib0013) 2020; 204 Yeter (10.1016/j.ress.2022.108777_bib0005) 2020; 202 Li (10.1016/j.ress.2022.108777_bib0006) 2020; 164 Carroll (10.1016/j.ress.2022.108777_bib0024) 2016; 19 Bhardwaj (10.1016/j.ress.2022.108777_bib0029) 2022; 218 Tazi (10.1016/j.ress.2022.108777_bib0032) 2018; 169 Arabian-Hoseynabadi (10.1016/j.ress.2022.108777_bib0035) 2010; 32 Cevasco (10.1016/j.ress.2022.108777_bib0019) 2018; 1102 Aven (10.1016/j.ress.2022.108777_bib0039) 2010; 95 Kang (10.1016/j.ress.2022.108777_bib0010) 2019; 133 Castro-Santos (10.1016/j.ress.2022.108777_bib0003) 2016; 97 Reder (10.1016/j.ress.2022.108777_bib0012) 2018; 169 Sinha (10.1016/j.ress.2022.108777_bib0011) 2015; 42 Bhardwaj (10.1016/j.ress.2022.108777_bib0009) 2019; 141 Cai (10.1016/j.ress.2022.108777_bib0037) 2018; 15 Li (10.1016/j.ress.2022.108777_bib0017) 2020; 217 Alkaff (10.1016/j.ress.2022.108777_bib0028) 2020; 204 Bharatbhai (10.1016/j.ress.2022.108777_bib0036) 2015; 2 Peeters (10.1016/j.ress.2022.108777_bib0027) 2018; 172 Tazi (10.1016/j.ress.2022.108777_bib0018) 2017; 10 Wang (10.1016/j.ress.2022.108777_bib0041) 2022; 256 Hallak (10.1016/j.ress.2022.108777_bib0043) 2022; 85 Li (10.1016/j.ress.2022.108777_bib0021) 2019 Castro-Santos (10.1016/j.ress.2022.108777_bib0004) 2020; 207 Scheu (10.1016/j.ress.2022.108777_bib0020) 2019; 176 Li (10.1016/j.ress.2022.108777_bib0002) 2022; 256 Zhang (10.1016/j.ress.2022.108777_bib0023) 2016; 154 Zhang (10.1016/j.ress.2022.108777_bib0040) 2022; 82 Li (10.1016/j.ress.2022.108777_bib0008) 2021; 234 Guo (10.1016/j.ress.2022.108777_bib0026) 2009; 94 Sarazin (10.1016/j.ress.2022.108777_bib0042) 2021; 215 Bento (10.1016/j.ress.2022.108777_bib0030) 2019; 99 Leimeister (10.1016/j.ress.2022.108777_bib0025) 2018; 91 Shafiee (10.1016/j.ress.2022.108777_bib0022) 2014; 7 Langseth (10.1016/j.ress.2022.108777_bib0015) 2007; 92 Díaz (10.1016/j.ress.2022.108777_bib0001) 2020; 209 |
References_xml | – volume: 85 year: 2022 ident: bib0043 article-title: Epistemic uncertainties on the estimation of minimum air gap for semi-submersible platforms publication-title: Mar struct – volume: 92 start-page: 92 year: 2007 end-page: 108 ident: bib0015 article-title: Bayesian networks in reliability publication-title: Reliab Eng Syst Saf – volume: 169 start-page: 531 year: 2018 end-page: 541 ident: bib0032 article-title: How combined performance and propagation of failure dependencies affect the reliability of a MSS publication-title: Reliab Eng Syst Saf – volume: 219 year: 2022 ident: bib0038 article-title: Uncertainty propagation in risk and resilience analysis of hierarchical systems publication-title: Reliab Eng Syst Saf – volume: 10 start-page: 276 year: 2017 ident: bib0018 article-title: Using a hybrid cost-FMEA analysis for wind turbine reliability analysis publication-title: Energies – volume: 32 start-page: 817 year: 2010 end-page: 824 ident: bib0035 article-title: Failure modes and effects analysis (FMEA) for wind turbines publication-title: Int J Electr Power Energy Syst – volume: 162 start-page: 1438 year: 2020 end-page: 1461 ident: bib0007 article-title: A two-stage failure mode and effect analysis of an offshore wind turbine publication-title: Renew Energy – volume: 15 start-page: 2146 year: 2018 end-page: 2157 ident: bib0037 article-title: Application of Bayesian networks in reliability evaluation publication-title: IEEE Trans Ind Inf – volume: 2 start-page: 2394 year: 2015 end-page: 2444 ident: bib0036 article-title: Failure mode and effect analysis of repower 5 M wind turbine publication-title: Int J Adv Res Eng, Sci Technol – volume: 202 year: 2020 ident: bib0005 article-title: Risk-based maintenance planning of offshore wind turbine farms publication-title: Reliab Eng Syst Saf – volume: 176 start-page: 118 year: 2019 end-page: 133 ident: bib0020 article-title: A systematic failure mode effects and criticality analysis for offshore wind turbine systems towards integrated condition based maintenance strategies publication-title: Ocean Eng – volume: 7 start-page: 619 year: 2014 end-page: 642 ident: bib0022 article-title: An FMEA-based risk assessment approach for wind turbine systems: a comparative study of onshore and offshore publication-title: Energies – volume: 209 year: 2020 ident: bib0001 article-title: Review of the current status, technology and future trends of offshore wind farms publication-title: Ocean Eng – volume: 234 year: 2021 ident: bib0008 article-title: A failure analysis of floating offshore wind turbines using AHP-FMEA methodology publication-title: Ocean Eng – volume: 1102 start-page: 1 year: 2018 end-page: 11 ident: bib0019 article-title: O&M cost-Based FMECA: identification and ranking of the most critical components for 2-4 MW geared offshore wind turbines publication-title: J Phys Conf Ser – volume: 141 start-page: 693 year: 2019 end-page: 706 ident: bib0009 article-title: Reliability prediction of an offshore wind turbine gearbox publication-title: Renew Energy – volume: 169 start-page: 554 year: 2018 end-page: 569 ident: bib0012 article-title: Data-driven learning framework for associating weather conditions and wind turbine failures publication-title: Reliab Eng Syst Saf – volume: 172 start-page: 36 year: 2018 end-page: 44 ident: bib0027 article-title: Improving failure analysis efficiency by combining FTA and FMEA in a recursive manner publication-title: Reliab Eng Syst Saf – volume: 218 year: 2022 ident: bib0029 article-title: Bayesian framework for reliability prediction of subsea processing systems accounting for influencing factors uncertainty publication-title: Reliab Eng Syst Saf – volume: 204 year: 2020 ident: bib0028 article-title: Network reliability analysis: matrix-exponential approach publication-title: Reliab Eng Syst Saf – volume: 215 year: 2021 ident: bib0042 article-title: Reliability-oriented sensitivity analysis in presence of data-driven epistemic uncertainty publication-title: Reliab Eng Syst Saf – volume: 164 start-page: 133 year: 2020 end-page: 145 ident: bib0006 article-title: A developed failure mode and effect analysis for floating offshore wind turbine support structures publication-title: Renew Energy – volume: 42 start-page: 735 year: 2015 end-page: 742 ident: bib0011 article-title: A progressive study into offshore wind farm maintenance optimisation using risk based failure analysis publication-title: Renew Sustainable Energy Rev – volume: 204 year: 2020 ident: bib0013 article-title: Network reliability analysis: matrix-exponential approach publication-title: Reliab Eng Syst Saf – volume: 207 year: 2020 ident: bib0004 article-title: Economic feasibility of floating offshore wind farms in Portugal publication-title: Ocean Eng – volume: 94 start-page: 1057 year: 2009 end-page: 1063 ident: bib0026 article-title: Reliability analysis for wind turbines with incomplete failure data collected from after the date of initial installation publication-title: Reliab Eng Syst Saf – start-page: 1183 year: 2014 end-page: 1192 ident: bib0031 article-title: An age-based preventive maintenance for offshore wind turbines. Safety and reliability: methodology and applications publication-title: Safety and reliability: methodology and applications – start-page: 2489 year: 2019 end-page: 2495 ident: bib0021 article-title: Reliability analysis of floating offshore wind turbines support structure using hierarchical bayesian network publication-title: Proceedings of the 29th European Safety and Reliability Conference – volume: 217 year: 2020 ident: bib0017 article-title: Reliability analysis of floating offshore wind turbine using Bayesian networks publication-title: Ocean Eng – volume: 91 start-page: 1065 year: 2018 end-page: 1076 ident: bib0025 article-title: A review of reliability-based methods for risk analysis and their application in the offshore wind industry publication-title: Renewable Sustainable Energy Rev – volume: 99 start-page: 66 year: 2019 end-page: 82 ident: bib0030 article-title: Emergence of floating offshore wind energy: technology and industry publication-title: Renewable Sustainable Energy Rev – volume: 19 start-page: 1107 year: 2016 end-page: 1119 ident: bib0024 article-title: Failure rate, repair time and unscheduled O&M cost analysis of offshore wind turbines publication-title: Wind Energy – volume: 154 start-page: 21 year: 2016 end-page: 33 ident: bib0023 article-title: Floating offshore wind turbine reliability analysis based on system grading and dynamic FTA publication-title: J Wind Eng Ind Aerodyn – volume: 23 start-page: 187 year: 2010 end-page: 193 ident: bib0034 article-title: Failure rate evaluation with influencing factors publication-title: J Loss Prev Process Ind – volume: 256 year: 2022 ident: bib0041 article-title: Uncertainty estimation of mesh-free and mesh-based simulations of the dynamics of floaters publication-title: Ocean Eng – volume: 256 year: 2022 ident: bib0002 article-title: A real-time inspection and opportunistic maintenance strategies for floating offshore wind turbines publication-title: Ocean Eng – volume: 227 start-page: 629 year: 2013 end-page: 640 ident: bib0033 article-title: Prediction of failure rates for new subsea systems: a practical approach and an illustrative example. Proceedings of the Institution of Mechanical Engineers, Part O publication-title: J Risk and Reliability – volume: 71 start-page: 249 year: 2001 end-page: 260 ident: bib0016 article-title: Improving the analysis of dependable systems by mapping fault trees into Bayesian networks publication-title: Reliab Eng Syst Saf – volume: 97 start-page: 866 year: 2016 end-page: 880 ident: bib0003 article-title: Cost assessment methodology for combined wind and wave floating offshore renewable energy systems publication-title: Renew Energy – volume: 133 start-page: 1455 year: 2019 end-page: 1467 ident: bib0010 article-title: Fault Tree Analysis of floating offshore wind turbines publication-title: Renew Energy – volume: 95 start-page: 195 year: 2010 end-page: 201 ident: bib0039 article-title: Some reflections on uncertainty analysis and management publication-title: Reliab Eng Syst Saf – volume: 203 year: 2020 ident: bib0014 article-title: Reliability based modelling and analysis for a wind power system integrated by two wind farms considering wind speed dependence publication-title: Reliab Eng Syst Saf – volume: 82 year: 2022 ident: bib0040 article-title: Effect of initial condition uncertainty on the profile of maximum wave publication-title: Mar struct – volume: 203 year: 2020 ident: 10.1016/j.ress.2022.108777_bib0014 article-title: Reliability based modelling and analysis for a wind power system integrated by two wind farms considering wind speed dependence publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2020.107077 – volume: 215 year: 2021 ident: 10.1016/j.ress.2022.108777_bib0042 article-title: Reliability-oriented sensitivity analysis in presence of data-driven epistemic uncertainty publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2021.107733 – volume: 154 start-page: 21 year: 2016 ident: 10.1016/j.ress.2022.108777_bib0023 article-title: Floating offshore wind turbine reliability analysis based on system grading and dynamic FTA publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2016.04.005 – volume: 2 start-page: 2394 year: 2015 ident: 10.1016/j.ress.2022.108777_bib0036 article-title: Failure mode and effect analysis of repower 5 M wind turbine publication-title: Int J Adv Res Eng, Sci Technol – volume: 162 start-page: 1438 year: 2020 ident: 10.1016/j.ress.2022.108777_bib0007 article-title: A two-stage failure mode and effect analysis of an offshore wind turbine publication-title: Renew Energy doi: 10.1016/j.renene.2020.08.001 – volume: 97 start-page: 866 year: 2016 ident: 10.1016/j.ress.2022.108777_bib0003 article-title: Cost assessment methodology for combined wind and wave floating offshore renewable energy systems publication-title: Renew Energy doi: 10.1016/j.renene.2016.06.016 – volume: 202 year: 2020 ident: 10.1016/j.ress.2022.108777_bib0005 article-title: Risk-based maintenance planning of offshore wind turbine farms publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2020.107062 – volume: 1102 start-page: 1 year: 2018 ident: 10.1016/j.ress.2022.108777_bib0019 article-title: O&M cost-Based FMECA: identification and ranking of the most critical components for 2-4 MW geared offshore wind turbines publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/1102/1/012039 – volume: 227 start-page: 629 year: 2013 ident: 10.1016/j.ress.2022.108777_bib0033 article-title: Prediction of failure rates for new subsea systems: a practical approach and an illustrative example. Proceedings of the Institution of Mechanical Engineers, Part O publication-title: J Risk and Reliability – volume: 141 start-page: 693 year: 2019 ident: 10.1016/j.ress.2022.108777_bib0009 article-title: Reliability prediction of an offshore wind turbine gearbox publication-title: Renew Energy doi: 10.1016/j.renene.2019.03.136 – volume: 10 start-page: 276 year: 2017 ident: 10.1016/j.ress.2022.108777_bib0018 article-title: Using a hybrid cost-FMEA analysis for wind turbine reliability analysis publication-title: Energies doi: 10.3390/en10030276 – volume: 82 year: 2022 ident: 10.1016/j.ress.2022.108777_bib0040 article-title: Effect of initial condition uncertainty on the profile of maximum wave publication-title: Mar struct doi: 10.1016/j.marstruc.2021.103127 – volume: 217 year: 2020 ident: 10.1016/j.ress.2022.108777_bib0017 article-title: Reliability analysis of floating offshore wind turbine using Bayesian networks publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2020.107827 – volume: 164 start-page: 133 year: 2020 ident: 10.1016/j.ress.2022.108777_bib0006 article-title: A developed failure mode and effect analysis for floating offshore wind turbine support structures publication-title: Renew Energy doi: 10.1016/j.renene.2020.09.033 – volume: 219 year: 2022 ident: 10.1016/j.ress.2022.108777_bib0038 article-title: Uncertainty propagation in risk and resilience analysis of hierarchical systems publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2021.108208 – volume: 85 year: 2022 ident: 10.1016/j.ress.2022.108777_bib0043 article-title: Epistemic uncertainties on the estimation of minimum air gap for semi-submersible platforms publication-title: Mar struct doi: 10.1016/j.marstruc.2022.103244 – volume: 42 start-page: 735 year: 2015 ident: 10.1016/j.ress.2022.108777_bib0011 article-title: A progressive study into offshore wind farm maintenance optimisation using risk based failure analysis publication-title: Renew Sustainable Energy Rev doi: 10.1016/j.rser.2014.10.087 – volume: 92 start-page: 92 year: 2007 ident: 10.1016/j.ress.2022.108777_bib0015 article-title: Bayesian networks in reliability publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2005.11.037 – volume: 91 start-page: 1065 year: 2018 ident: 10.1016/j.ress.2022.108777_bib0025 article-title: A review of reliability-based methods for risk analysis and their application in the offshore wind industry publication-title: Renewable Sustainable Energy Rev doi: 10.1016/j.rser.2018.04.004 – volume: 234 year: 2021 ident: 10.1016/j.ress.2022.108777_bib0008 article-title: A failure analysis of floating offshore wind turbines using AHP-FMEA methodology publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2021.109261 – volume: 169 start-page: 554 year: 2018 ident: 10.1016/j.ress.2022.108777_bib0012 article-title: Data-driven learning framework for associating weather conditions and wind turbine failures publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2017.10.004 – volume: 204 year: 2020 ident: 10.1016/j.ress.2022.108777_bib0013 article-title: Network reliability analysis: matrix-exponential approach publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2020.107192 – volume: 256 year: 2022 ident: 10.1016/j.ress.2022.108777_bib0002 article-title: A real-time inspection and opportunistic maintenance strategies for floating offshore wind turbines publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2022.111433 – volume: 7 start-page: 619 year: 2014 ident: 10.1016/j.ress.2022.108777_bib0022 article-title: An FMEA-based risk assessment approach for wind turbine systems: a comparative study of onshore and offshore publication-title: Energies doi: 10.3390/en7020619 – volume: 95 start-page: 195 year: 2010 ident: 10.1016/j.ress.2022.108777_bib0039 article-title: Some reflections on uncertainty analysis and management publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2009.09.010 – volume: 176 start-page: 118 year: 2019 ident: 10.1016/j.ress.2022.108777_bib0020 article-title: A systematic failure mode effects and criticality analysis for offshore wind turbine systems towards integrated condition based maintenance strategies publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2019.02.048 – volume: 99 start-page: 66 year: 2019 ident: 10.1016/j.ress.2022.108777_bib0030 article-title: Emergence of floating offshore wind energy: technology and industry publication-title: Renewable Sustainable Energy Rev doi: 10.1016/j.rser.2018.09.035 – start-page: 1183 year: 2014 ident: 10.1016/j.ress.2022.108777_bib0031 article-title: An age-based preventive maintenance for offshore wind turbines. Safety and reliability: methodology and applications – start-page: 2489 year: 2019 ident: 10.1016/j.ress.2022.108777_bib0021 article-title: Reliability analysis of floating offshore wind turbines support structure using hierarchical bayesian network – volume: 209 year: 2020 ident: 10.1016/j.ress.2022.108777_bib0001 article-title: Review of the current status, technology and future trends of offshore wind farms publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2020.107381 – volume: 15 start-page: 2146 year: 2018 ident: 10.1016/j.ress.2022.108777_bib0037 article-title: Application of Bayesian networks in reliability evaluation publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2018.2858281 – volume: 32 start-page: 817 year: 2010 ident: 10.1016/j.ress.2022.108777_bib0035 article-title: Failure modes and effects analysis (FMEA) for wind turbines publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2010.01.019 – volume: 94 start-page: 1057 year: 2009 ident: 10.1016/j.ress.2022.108777_bib0026 article-title: Reliability analysis for wind turbines with incomplete failure data collected from after the date of initial installation publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2008.12.004 – volume: 207 year: 2020 ident: 10.1016/j.ress.2022.108777_bib0004 article-title: Economic feasibility of floating offshore wind farms in Portugal publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2020.107393 – volume: 133 start-page: 1455 year: 2019 ident: 10.1016/j.ress.2022.108777_bib0010 article-title: Fault Tree Analysis of floating offshore wind turbines publication-title: Renew Energy doi: 10.1016/j.renene.2018.08.097 – volume: 204 year: 2020 ident: 10.1016/j.ress.2022.108777_bib0028 article-title: Network reliability analysis: matrix-exponential approach publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2020.107192 – volume: 256 year: 2022 ident: 10.1016/j.ress.2022.108777_bib0041 article-title: Uncertainty estimation of mesh-free and mesh-based simulations of the dynamics of floaters publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2022.111386 – volume: 71 start-page: 249 year: 2001 ident: 10.1016/j.ress.2022.108777_bib0016 article-title: Improving the analysis of dependable systems by mapping fault trees into Bayesian networks publication-title: Reliab Eng Syst Saf doi: 10.1016/S0951-8320(00)00077-6 – volume: 19 start-page: 1107 year: 2016 ident: 10.1016/j.ress.2022.108777_bib0024 article-title: Failure rate, repair time and unscheduled O&M cost analysis of offshore wind turbines publication-title: Wind Energy doi: 10.1002/we.1887 – volume: 23 start-page: 187 year: 2010 ident: 10.1016/j.ress.2022.108777_bib0034 article-title: Failure rate evaluation with influencing factors publication-title: J Loss Prev Process Ind doi: 10.1016/j.jlp.2009.07.013 – volume: 169 start-page: 531 year: 2018 ident: 10.1016/j.ress.2022.108777_bib0032 article-title: How combined performance and propagation of failure dependencies affect the reliability of a MSS publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2017.10.002 – volume: 218 year: 2022 ident: 10.1016/j.ress.2022.108777_bib0029 article-title: Bayesian framework for reliability prediction of subsea processing systems accounting for influencing factors uncertainty publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2021.108143 – volume: 172 start-page: 36 year: 2018 ident: 10.1016/j.ress.2022.108777_bib0027 article-title: Improving failure analysis efficiency by combining FTA and FMEA in a recursive manner publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2017.11.024 |
SSID | ssj0004957 |
Score | 2.6630483 |
Snippet | •A model is proposed to assess the failure rate of components of floating offshore wind turbines based on onshore turbine data.•A failure rate correction model... A model is proposed to assess the failure rates of components of floating offshore wind turbines based on the knowledge of failure data of corresponding... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 108777 |
SubjectTerms | Bayesian analysis Failure analysis Failure rate assessment Failure rate correction model Failure rates Floating offshore wind turbine Mathematical models Network reliability Offshore Offshore energy sources Offshore structures Reliability analysis Reliability aspects Reliability engineering Turbines Wind power Wind turbines |
Title | Assessment of failure rates and reliability of floating offshore wind turbines |
URI | https://dx.doi.org/10.1016/j.ress.2022.108777 https://www.proquest.com/docview/2756217075 |
Volume | 228 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGK1lhy8Sdomu8nsHkuxVMVetNBb2M0DIyUpbUW8-NudyaM-wB685TG7hNnJzDfwzQxjV1yFvvQRufV5JDFBiYQt0Y5sdJdKqMQYXkwteZj446m4m3mzBhvWtTBEq6x8f-nTC29dPelV2uwt0rT3SOBA0vhvt7BEKvgVAsjKux9fNA9MAKAeJ0_SVeFMyfGijLZLOxDVDgD-Ck6_3HQRe0YHbL8Cjdag_K5D1oizI7b3rZXgMZsMNi02rTyxEp0S39yiRhArS2eRtYznadmT-70QmOeaGM94nayecxR9w-zcwgBkiAh_wqajm6fh2K5mJdghB3dtG-6b2I19Vzva1wYMwgLJQ4hDhCgiEeDFGLuVpzDdwbPQoAyXBtEXKAkJd_gpa2Z5Fp8xCxAhYc6spAYt_LCvPc9NVKQjhDqO0bzFnFpJQVg1Eqd5FvOgZoy9BKTYgBQblIptsevNmkXZRmOrtFfrPvhhDAH6-a3r2vVBBdWviO8BIZ4DCI3O_7ntBdulu5LE0mbN9fI1vkQosjadwtY6bGdwez-efAK599rS |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VMgAD4ikKBTLAhEKbOImTgaHioZZCF0BiM3biiKAqqdqiqgt_ij_IOXHKQ4IBqVuU2Jb1-XL3nfT5DuCIBKHne8jcmiTyMUGJHNNHOzLRXQZOEAtB8q4ltz2v_eBcP7qPFXgv78IoWaX2_YVPz721ftPQaDYGSdK4U-TAV-2_7dwSfa2s7MrpBPO20VnnAg_52LavLu_P26ZuLWCGhNpjUxBPSFt6Nre4xwUVGEV9ElIZYkR3Yoe6EkNd4AaYHeDWOQ0E8QWSFYo5ekwsgusuwKKD7kK1TTh9-9SVYMZBy_71anv6pk4hKlMp9KnastL2UUp_i4Y_4kIe7K7WYFWzVKNVALEOFZluwMqX2oWb0GvNanoaWWzEPFECd0NVnhgZPI2MoewnRRHwaT6gn3ElscbnePSc4dBJgqMw4gmlvN-Ch7kguA3VNEvlDhgUKRkm6YHPKXe8sMld146DiEfIrSzBSQ2sEiQW6srlqoFGn5UStRemgGUKWFYAW4OT2ZxBUbfjz9FuiT37Zn0MA8uf8-rlQTH97-N3ipzSosjFdv-57CEste9vb9hNp9fdg2X1pVDQ1KE6Hr7KfeRBY3GQ250BT_M29A-N8BQf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+failure+rates+and+reliability+of+floating+offshore+wind+turbines&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Li%2C+He&rft.au=Guedes+Soares%2C+C&rft.date=2022-12-01&rft.issn=0951-8320&rft.volume=228&rft.spage=108777&rft_id=info:doi/10.1016%2Fj.ress.2022.108777&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ress_2022_108777 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon |