Assessment of failure rates and reliability of floating offshore wind turbines

•A model is proposed to assess the failure rate of components of floating offshore wind turbines based on onshore turbine data.•A failure rate correction model is presented for the relations of failure between onshore and floating offshore wind turbines.•The results indicate that the failure rates o...

Full description

Saved in:
Bibliographic Details
Published inReliability engineering & system safety Vol. 228; p. 108777
Main Authors Li, He, Guedes Soares, C
Format Journal Article
LanguageEnglish
Published Barking Elsevier Ltd 01.12.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A model is proposed to assess the failure rate of components of floating offshore wind turbines based on onshore turbine data.•A failure rate correction model is presented for the relations of failure between onshore and floating offshore wind turbines.•The results indicate that the failure rates of components of floating wind turbines are higher than those of onshore devices.•A Bayesian network is constructed to analyze the failure rate and reliability of the entire floating offshore wind turbine.•The performance of the proposed model is validated by a comprehensive comparison with the existing studies and models. A model is proposed to assess the failure rates of components of floating offshore wind turbines based on the knowledge of failure data of corresponding structures of onshore wind turbines with sufficient failure data. A failure rate correction model is first presented to map the relations of failure features between onshore and floating offshore wind turbines. Subsequently, a failure rate analogy model is established to infer the failure rates of elements of support structures that have no correspondence in onshore devices. The results indicate that the failure rates of components of floating offshore wind turbines are higher than those of onshore devices. Accordingly, a Bayesian network is constructed to analyze the failure rate and reliability of the entire floating offshore wind turbine. The uncertainty of the model is investigated to illustrate the factors that significantly affect the predicted failure rates and reliability. Moreover, the performance of the proposed model is validated by a comprehensive comparison with the existing studies and models. The model presented contributes to the risk, failure, and reliability analysis and assessment under insufficient data conditions.
AbstractList A model is proposed to assess the failure rates of components of floating offshore wind turbines based on the knowledge of failure data of corresponding structures of onshore wind turbines with sufficient failure data. A failure rate correction model is first presented to map the relations of failure features between onshore and floating offshore wind turbines. Subsequently, a failure rate analogy model is established to infer the failure rates of elements of support structures that have no correspondence in onshore devices. The results indicate that the failure rates of components of floating offshore wind turbines are higher than those of onshore devices. Accordingly, a Bayesian network is constructed to analyze the failure rate and reliability of the entire floating offshore wind turbine. The uncertainty of the model is investigated to illustrate the factors that significantly affect the predicted failure rates and reliability. Moreover, the performance of the proposed model is validated by a comprehensive comparison with the existing studies and models. The model presented contributes to the risk, failure, and reliability analysis and assessment under insufficient data conditions.
•A model is proposed to assess the failure rate of components of floating offshore wind turbines based on onshore turbine data.•A failure rate correction model is presented for the relations of failure between onshore and floating offshore wind turbines.•The results indicate that the failure rates of components of floating wind turbines are higher than those of onshore devices.•A Bayesian network is constructed to analyze the failure rate and reliability of the entire floating offshore wind turbine.•The performance of the proposed model is validated by a comprehensive comparison with the existing studies and models. A model is proposed to assess the failure rates of components of floating offshore wind turbines based on the knowledge of failure data of corresponding structures of onshore wind turbines with sufficient failure data. A failure rate correction model is first presented to map the relations of failure features between onshore and floating offshore wind turbines. Subsequently, a failure rate analogy model is established to infer the failure rates of elements of support structures that have no correspondence in onshore devices. The results indicate that the failure rates of components of floating offshore wind turbines are higher than those of onshore devices. Accordingly, a Bayesian network is constructed to analyze the failure rate and reliability of the entire floating offshore wind turbine. The uncertainty of the model is investigated to illustrate the factors that significantly affect the predicted failure rates and reliability. Moreover, the performance of the proposed model is validated by a comprehensive comparison with the existing studies and models. The model presented contributes to the risk, failure, and reliability analysis and assessment under insufficient data conditions.
ArticleNumber 108777
Author Guedes Soares, C
Li, He
Author_xml – sequence: 1
  givenname: He
  surname: Li
  fullname: Li, He
  organization: Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
– sequence: 2
  givenname: C
  orcidid: 0000-0002-8570-4263
  surname: Guedes Soares
  fullname: Guedes Soares, C
  email: c.guedes.soares@centec.tecnico.ulisboa.pt
  organization: Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
BookMark eNp9kLtOwzAUQC1UJNrCDzBFYk7xI8l1JJaq4iUhWGC2nPQGXKV2sR1Q_x6XMDF0smWdY_ueGZlYZ5GQS0YXjLLqerPwGMKCU87TgQSAEzJlEuqcSlFNyJTWJcul4PSMzELYUEqLuoQpeV6GkMwt2pi5Luu06QePmdcRQ6btOvPYG92Y3sT9L9A7HY19T_sufLiEfptExcE3xmI4J6ed7gNe_K1z8nZ3-7p6yJ9e7h9Xy6e8FcBj3oiqQY4V10xXuoGGQSlFC9hWDIqugBJ5kb5c87IWlGmoGyEbUXKoJXSCiTm5Gu_defc5YIhq4wZv05OKQ1lxBhTKRPGRar0LwWOndt5std8rRtWhm9qoQzd16KbGbkmS_6TWxDSzs9GnOsfVm1HFNPqXQa9Ca9C2uDYe26jWzhzTfwBgdopx
CitedBy_id crossref_primary_10_1108_JQME_01_2024_0009
crossref_primary_10_1002_qre_3456
crossref_primary_10_3390_jmse12071051
crossref_primary_10_1002_qre_3334
crossref_primary_10_1016_j_oceaneng_2022_113043
crossref_primary_10_3390_app12199689
crossref_primary_10_1007_s12206_023_0410_0
crossref_primary_10_1002_qre_3582
crossref_primary_10_1016_j_ress_2023_109485
crossref_primary_10_3390_ma16124383
crossref_primary_10_1016_j_esr_2023_101097
crossref_primary_10_1016_j_net_2024_06_055
crossref_primary_10_1002_qre_3342
crossref_primary_10_3390_en16062679
crossref_primary_10_1016_j_oceaneng_2024_117598
crossref_primary_10_1002_qre_3505
crossref_primary_10_3390_modelling5030058
crossref_primary_10_3390_machines12050332
crossref_primary_10_1016_j_ijfatigue_2023_107685
crossref_primary_10_1016_j_ress_2023_109775
crossref_primary_10_1111_ffe_14236
crossref_primary_10_1108_IJSI_08_2024_0129
crossref_primary_10_1088_1361_6501_ace072
crossref_primary_10_3390_en16134886
crossref_primary_10_1088_1361_6501_acce55
crossref_primary_10_1016_j_ress_2023_109494
crossref_primary_10_1002_qre_3316
crossref_primary_10_1002_qre_3558
crossref_primary_10_1002_qre_3313
crossref_primary_10_1002_qre_3314
crossref_primary_10_1177_1748006X241235727
crossref_primary_10_3390_app12199628
crossref_primary_10_1002_qre_3431
crossref_primary_10_1007_s11804_025_00688_3
crossref_primary_10_1115_1_4064855
crossref_primary_10_1002_qre_3715
crossref_primary_10_1016_j_rser_2023_113610
crossref_primary_10_1016_j_apor_2023_103669
crossref_primary_10_1016_j_oceaneng_2023_116372
crossref_primary_10_3390_app14188313
crossref_primary_10_1016_j_ress_2023_109746
crossref_primary_10_1016_j_ress_2024_110508
crossref_primary_10_1016_j_ress_2023_109347
crossref_primary_10_1016_j_ress_2024_110587
crossref_primary_10_3390_app122111276
crossref_primary_10_1088_1361_6501_ada6ec
crossref_primary_10_1016_j_ress_2024_110626
crossref_primary_10_1016_j_ijhydene_2024_05_329
crossref_primary_10_3390_aerospace10090785
crossref_primary_10_1016_j_ress_2024_110350
crossref_primary_10_1002_qre_3564
crossref_primary_10_1002_qre_3323
crossref_primary_10_1002_qre_3562
crossref_primary_10_3390_jmse10111685
crossref_primary_10_1115_1_4066926
crossref_primary_10_3390_s24247909
crossref_primary_10_3390_jmse12040547
crossref_primary_10_3390_su16010333
crossref_primary_10_1016_j_eswa_2024_126171
crossref_primary_10_1016_j_ress_2023_109233
crossref_primary_10_1002_qre_3572
crossref_primary_10_1002_qre_3294
crossref_primary_10_1016_j_ress_2023_109630
crossref_primary_10_1002_qre_3293
crossref_primary_10_1016_j_ress_2023_109351
crossref_primary_10_1002_qre_3259
crossref_primary_10_1002_qre_3257
crossref_primary_10_3390_electronics11233863
crossref_primary_10_1002_qre_3539
crossref_primary_10_1016_j_ress_2023_109729
crossref_primary_10_1016_j_oceaneng_2024_117440
crossref_primary_10_3390_jmse10111616
crossref_primary_10_1002_qre_3538
crossref_primary_10_1016_j_oceaneng_2024_118663
crossref_primary_10_1016_j_ress_2023_109721
crossref_primary_10_1063_5_0125548
crossref_primary_10_3389_fmars_2024_1447754
crossref_primary_10_1002_qre_3262
crossref_primary_10_1002_qre_3383
crossref_primary_10_1016_j_ress_2024_110601
crossref_primary_10_1016_j_engappai_2024_108071
crossref_primary_10_1016_j_ress_2024_110299
crossref_primary_10_1002_qre_3541
crossref_primary_10_1016_j_energy_2023_128442
crossref_primary_10_1002_qre_3308
crossref_primary_10_1016_j_ress_2024_109957
crossref_primary_10_1016_j_oceaneng_2024_118157
crossref_primary_10_1016_j_ijpvp_2022_104821
crossref_primary_10_1002_qre_3272
crossref_primary_10_1016_j_ress_2024_110336
crossref_primary_10_1016_j_marstruc_2023_103562
crossref_primary_10_1080_09537325_2024_2425736
crossref_primary_10_3390_jmse10121830
crossref_primary_10_1002_qre_3518
crossref_primary_10_1016_j_oceaneng_2023_116450
crossref_primary_10_1016_j_rser_2024_114302
crossref_primary_10_2174_2352096516666230705161558
crossref_primary_10_1016_j_ocecoaman_2024_107316
crossref_primary_10_1016_j_ress_2023_109426
crossref_primary_10_1002_qre_3247
crossref_primary_10_1002_qre_3368
crossref_primary_10_3390_jmse10121965
crossref_primary_10_1002_qre_3366
crossref_primary_10_1007_s12597_024_00868_9
crossref_primary_10_1002_qre_3528
crossref_primary_10_3390_pr12020268
crossref_primary_10_1002_qre_3527
crossref_primary_10_1007_s12206_023_0440_7
crossref_primary_10_1016_j_ress_2024_110037
crossref_primary_10_1016_j_ress_2023_109793
crossref_primary_10_1016_j_ress_2024_109970
crossref_primary_10_1016_j_oceaneng_2023_113625
Cites_doi 10.1016/j.ress.2020.107077
10.1016/j.ress.2021.107733
10.1016/j.jweia.2016.04.005
10.1016/j.renene.2020.08.001
10.1016/j.renene.2016.06.016
10.1016/j.ress.2020.107062
10.1088/1742-6596/1102/1/012039
10.1016/j.renene.2019.03.136
10.3390/en10030276
10.1016/j.marstruc.2021.103127
10.1016/j.oceaneng.2020.107827
10.1016/j.renene.2020.09.033
10.1016/j.ress.2021.108208
10.1016/j.marstruc.2022.103244
10.1016/j.rser.2014.10.087
10.1016/j.ress.2005.11.037
10.1016/j.rser.2018.04.004
10.1016/j.oceaneng.2021.109261
10.1016/j.ress.2017.10.004
10.1016/j.ress.2020.107192
10.1016/j.oceaneng.2022.111433
10.3390/en7020619
10.1016/j.ress.2009.09.010
10.1016/j.oceaneng.2019.02.048
10.1016/j.rser.2018.09.035
10.1016/j.oceaneng.2020.107381
10.1109/TII.2018.2858281
10.1016/j.ijepes.2010.01.019
10.1016/j.ress.2008.12.004
10.1016/j.oceaneng.2020.107393
10.1016/j.renene.2018.08.097
10.1016/j.oceaneng.2022.111386
10.1016/S0951-8320(00)00077-6
10.1002/we.1887
10.1016/j.jlp.2009.07.013
10.1016/j.ress.2017.10.002
10.1016/j.ress.2021.108143
10.1016/j.ress.2017.11.024
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright Elsevier BV Dec 2022
Copyright_xml – notice: 2022 The Author(s)
– notice: Copyright Elsevier BV Dec 2022
DBID 6I.
AAFTH
AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
SOI
DOI 10.1016/j.ress.2022.108777
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Environment Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Engineering Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0836
ExternalDocumentID 10_1016_j_ress_2022_108777
S0951832022004008
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7ST
7TB
8FD
C1K
EFKBS
FR3
SOI
ID FETCH-LOGICAL-c372t-b36be2e62a1a6ab7b17583c7ec6174f475e240959259301a79b38b3527987f313
IEDL.DBID .~1
ISSN 0951-8320
IngestDate Wed Aug 13 08:12:50 EDT 2025
Tue Jul 01 00:45:08 EDT 2025
Thu Apr 24 23:03:02 EDT 2025
Fri Feb 23 02:40:43 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Floating offshore wind turbine
Reliability analysis
Failure rate assessment
Failure rate correction model
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-b36be2e62a1a6ab7b17583c7ec6174f475e240959259301a79b38b3527987f313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8570-4263
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0951832022004008
PQID 2756217075
PQPubID 2045406
ParticipantIDs proquest_journals_2756217075
crossref_primary_10_1016_j_ress_2022_108777
crossref_citationtrail_10_1016_j_ress_2022_108777
elsevier_sciencedirect_doi_10_1016_j_ress_2022_108777
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Reliability engineering & system safety
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Li, Guedes Soares, Huang (bib0017) 2020; 217
Kang, Sun, Guedes Soares (bib0010) 2019; 133
Bhardwaj, Teixeira, Guedes Soares (bib0029) 2022; 218
Eryilmaz, Kan (bib0014) 2020; 203
Cai, Kong, Liu, Lin, Yuan, Xu, Ji (bib0037) 2018; 15
Tazi, Châtelet, Bouzidi (bib0018) 2017; 10
Brissaud, Charpentier, Fouladirad, Barros, Bérenguer (bib0034) 2010; 23
Langseth, Portinale (bib0015) 2007; 92
Li, Huang, Guedes Soares (bib0002) 2022; 256
Reder, Yürüşen, Melero (bib0012) 2018; 169
Li, Díaz, Guedes Soares (bib0006) 2020; 164
Bobbio, Portinale, Minichino, Ciancamerla (bib0016) 2001; 71
Alkaff, Qomarudin, Bilfaqih (bib0013) 2020; 204
Zhang, Sun, Sun, Guo, Bai (bib0023) 2016; 154
Santos, Teixeira, Guedes Soares (bib0031) 2014
Arabian-Hoseynabadi, Oraee, Tavner (bib0035) 2010; 32
Díaz, Guedes Soares (bib0001) 2020; 209
Li, Teixeira, Guedes Soares (bib0007) 2020; 162
Carroll, McDonald, McMillan (bib0024) 2016; 19
Sinha, Steel (bib0011) 2015; 42
Guo, Watson, Tavner, Xiang (bib0026) 2009; 94
Bhardwaj, Teixeira, Guedes Soares (bib0009) 2019; 141
Sarazin, Morio, Lagnoux, Balesdent, Brevault (bib0042) 2021; 215
Wang, González-Cao, Islam, Gómez-Gesteira, Guedes Soares (bib0041) 2022; 256
Zhang, Liao, Shi, Babanin, Guedes Soares (bib0040) 2022; 82
Leimeister, Kolios (bib0025) 2018; 91
Li, Guedes Soares (bib0021) 2019
Shafiee, Dinmohammadi (bib0022) 2014; 7
Li, Díaz, Guedes Soares (bib0008) 2021; 234
Bharatbhai (bib0036) 2015; 2
Aven (bib0039) 2010; 95
Scheu, Tremps, Smolka, Kolios, Brennan (bib0020) 2019; 176
Tazi, Châtelet, Bouzidi (bib0032) 2018; 169
Yeter, Garbatov, Guedes Soares (bib0005) 2020; 202
Rahimi, Rausand (bib0033) 2013; 227
Castro-Santos, Silva, Bento, Salvacao, Guedes Soares (bib0004) 2020; 207
Peeters, Basten, Tinga (bib0027) 2018; 172
Hallak, Teixeira, Guedes Soares (bib0043) 2022; 85
Bento, Fontes (bib0030) 2019; 99
Cevasco, Collu, Lin (bib0019) 2018; 1102
Tabandeh, Sharma, Gardoni (bib0038) 2022; 219
Castro-Santos, Martins, Guedes Soares (bib0003) 2016; 97
Alkaff, Qomarudin, Bilfaqih (bib0028) 2020; 204
Bobbio (10.1016/j.ress.2022.108777_bib0016) 2001; 71
Li (10.1016/j.ress.2022.108777_bib0007) 2020; 162
Rahimi (10.1016/j.ress.2022.108777_bib0033) 2013; 227
Brissaud (10.1016/j.ress.2022.108777_bib0034) 2010; 23
Tabandeh (10.1016/j.ress.2022.108777_bib0038) 2022; 219
Eryilmaz (10.1016/j.ress.2022.108777_bib0014) 2020; 203
Santos (10.1016/j.ress.2022.108777_bib0031) 2014
Alkaff (10.1016/j.ress.2022.108777_bib0013) 2020; 204
Yeter (10.1016/j.ress.2022.108777_bib0005) 2020; 202
Li (10.1016/j.ress.2022.108777_bib0006) 2020; 164
Carroll (10.1016/j.ress.2022.108777_bib0024) 2016; 19
Bhardwaj (10.1016/j.ress.2022.108777_bib0029) 2022; 218
Tazi (10.1016/j.ress.2022.108777_bib0032) 2018; 169
Arabian-Hoseynabadi (10.1016/j.ress.2022.108777_bib0035) 2010; 32
Cevasco (10.1016/j.ress.2022.108777_bib0019) 2018; 1102
Aven (10.1016/j.ress.2022.108777_bib0039) 2010; 95
Kang (10.1016/j.ress.2022.108777_bib0010) 2019; 133
Castro-Santos (10.1016/j.ress.2022.108777_bib0003) 2016; 97
Reder (10.1016/j.ress.2022.108777_bib0012) 2018; 169
Sinha (10.1016/j.ress.2022.108777_bib0011) 2015; 42
Bhardwaj (10.1016/j.ress.2022.108777_bib0009) 2019; 141
Cai (10.1016/j.ress.2022.108777_bib0037) 2018; 15
Li (10.1016/j.ress.2022.108777_bib0017) 2020; 217
Alkaff (10.1016/j.ress.2022.108777_bib0028) 2020; 204
Bharatbhai (10.1016/j.ress.2022.108777_bib0036) 2015; 2
Peeters (10.1016/j.ress.2022.108777_bib0027) 2018; 172
Tazi (10.1016/j.ress.2022.108777_bib0018) 2017; 10
Wang (10.1016/j.ress.2022.108777_bib0041) 2022; 256
Hallak (10.1016/j.ress.2022.108777_bib0043) 2022; 85
Li (10.1016/j.ress.2022.108777_bib0021) 2019
Castro-Santos (10.1016/j.ress.2022.108777_bib0004) 2020; 207
Scheu (10.1016/j.ress.2022.108777_bib0020) 2019; 176
Li (10.1016/j.ress.2022.108777_bib0002) 2022; 256
Zhang (10.1016/j.ress.2022.108777_bib0023) 2016; 154
Zhang (10.1016/j.ress.2022.108777_bib0040) 2022; 82
Li (10.1016/j.ress.2022.108777_bib0008) 2021; 234
Guo (10.1016/j.ress.2022.108777_bib0026) 2009; 94
Sarazin (10.1016/j.ress.2022.108777_bib0042) 2021; 215
Bento (10.1016/j.ress.2022.108777_bib0030) 2019; 99
Leimeister (10.1016/j.ress.2022.108777_bib0025) 2018; 91
Shafiee (10.1016/j.ress.2022.108777_bib0022) 2014; 7
Langseth (10.1016/j.ress.2022.108777_bib0015) 2007; 92
Díaz (10.1016/j.ress.2022.108777_bib0001) 2020; 209
References_xml – volume: 85
  year: 2022
  ident: bib0043
  article-title: Epistemic uncertainties on the estimation of minimum air gap for semi-submersible platforms
  publication-title: Mar struct
– volume: 92
  start-page: 92
  year: 2007
  end-page: 108
  ident: bib0015
  article-title: Bayesian networks in reliability
  publication-title: Reliab Eng Syst Saf
– volume: 169
  start-page: 531
  year: 2018
  end-page: 541
  ident: bib0032
  article-title: How combined performance and propagation of failure dependencies affect the reliability of a MSS
  publication-title: Reliab Eng Syst Saf
– volume: 219
  year: 2022
  ident: bib0038
  article-title: Uncertainty propagation in risk and resilience analysis of hierarchical systems
  publication-title: Reliab Eng Syst Saf
– volume: 10
  start-page: 276
  year: 2017
  ident: bib0018
  article-title: Using a hybrid cost-FMEA analysis for wind turbine reliability analysis
  publication-title: Energies
– volume: 32
  start-page: 817
  year: 2010
  end-page: 824
  ident: bib0035
  article-title: Failure modes and effects analysis (FMEA) for wind turbines
  publication-title: Int J Electr Power Energy Syst
– volume: 162
  start-page: 1438
  year: 2020
  end-page: 1461
  ident: bib0007
  article-title: A two-stage failure mode and effect analysis of an offshore wind turbine
  publication-title: Renew Energy
– volume: 15
  start-page: 2146
  year: 2018
  end-page: 2157
  ident: bib0037
  article-title: Application of Bayesian networks in reliability evaluation
  publication-title: IEEE Trans Ind Inf
– volume: 2
  start-page: 2394
  year: 2015
  end-page: 2444
  ident: bib0036
  article-title: Failure mode and effect analysis of repower 5 M wind turbine
  publication-title: Int J Adv Res Eng, Sci Technol
– volume: 202
  year: 2020
  ident: bib0005
  article-title: Risk-based maintenance planning of offshore wind turbine farms
  publication-title: Reliab Eng Syst Saf
– volume: 176
  start-page: 118
  year: 2019
  end-page: 133
  ident: bib0020
  article-title: A systematic failure mode effects and criticality analysis for offshore wind turbine systems towards integrated condition based maintenance strategies
  publication-title: Ocean Eng
– volume: 7
  start-page: 619
  year: 2014
  end-page: 642
  ident: bib0022
  article-title: An FMEA-based risk assessment approach for wind turbine systems: a comparative study of onshore and offshore
  publication-title: Energies
– volume: 209
  year: 2020
  ident: bib0001
  article-title: Review of the current status, technology and future trends of offshore wind farms
  publication-title: Ocean Eng
– volume: 234
  year: 2021
  ident: bib0008
  article-title: A failure analysis of floating offshore wind turbines using AHP-FMEA methodology
  publication-title: Ocean Eng
– volume: 1102
  start-page: 1
  year: 2018
  end-page: 11
  ident: bib0019
  article-title: O&M cost-Based FMECA: identification and ranking of the most critical components for 2-4 MW geared offshore wind turbines
  publication-title: J Phys Conf Ser
– volume: 141
  start-page: 693
  year: 2019
  end-page: 706
  ident: bib0009
  article-title: Reliability prediction of an offshore wind turbine gearbox
  publication-title: Renew Energy
– volume: 169
  start-page: 554
  year: 2018
  end-page: 569
  ident: bib0012
  article-title: Data-driven learning framework for associating weather conditions and wind turbine failures
  publication-title: Reliab Eng Syst Saf
– volume: 172
  start-page: 36
  year: 2018
  end-page: 44
  ident: bib0027
  article-title: Improving failure analysis efficiency by combining FTA and FMEA in a recursive manner
  publication-title: Reliab Eng Syst Saf
– volume: 218
  year: 2022
  ident: bib0029
  article-title: Bayesian framework for reliability prediction of subsea processing systems accounting for influencing factors uncertainty
  publication-title: Reliab Eng Syst Saf
– volume: 204
  year: 2020
  ident: bib0028
  article-title: Network reliability analysis: matrix-exponential approach
  publication-title: Reliab Eng Syst Saf
– volume: 215
  year: 2021
  ident: bib0042
  article-title: Reliability-oriented sensitivity analysis in presence of data-driven epistemic uncertainty
  publication-title: Reliab Eng Syst Saf
– volume: 164
  start-page: 133
  year: 2020
  end-page: 145
  ident: bib0006
  article-title: A developed failure mode and effect analysis for floating offshore wind turbine support structures
  publication-title: Renew Energy
– volume: 42
  start-page: 735
  year: 2015
  end-page: 742
  ident: bib0011
  article-title: A progressive study into offshore wind farm maintenance optimisation using risk based failure analysis
  publication-title: Renew Sustainable Energy Rev
– volume: 204
  year: 2020
  ident: bib0013
  article-title: Network reliability analysis: matrix-exponential approach
  publication-title: Reliab Eng Syst Saf
– volume: 207
  year: 2020
  ident: bib0004
  article-title: Economic feasibility of floating offshore wind farms in Portugal
  publication-title: Ocean Eng
– volume: 94
  start-page: 1057
  year: 2009
  end-page: 1063
  ident: bib0026
  article-title: Reliability analysis for wind turbines with incomplete failure data collected from after the date of initial installation
  publication-title: Reliab Eng Syst Saf
– start-page: 1183
  year: 2014
  end-page: 1192
  ident: bib0031
  article-title: An age-based preventive maintenance for offshore wind turbines. Safety and reliability: methodology and applications
  publication-title: Safety and reliability: methodology and applications
– start-page: 2489
  year: 2019
  end-page: 2495
  ident: bib0021
  article-title: Reliability analysis of floating offshore wind turbines support structure using hierarchical bayesian network
  publication-title: Proceedings of the 29th European Safety and Reliability Conference
– volume: 217
  year: 2020
  ident: bib0017
  article-title: Reliability analysis of floating offshore wind turbine using Bayesian networks
  publication-title: Ocean Eng
– volume: 91
  start-page: 1065
  year: 2018
  end-page: 1076
  ident: bib0025
  article-title: A review of reliability-based methods for risk analysis and their application in the offshore wind industry
  publication-title: Renewable Sustainable Energy Rev
– volume: 99
  start-page: 66
  year: 2019
  end-page: 82
  ident: bib0030
  article-title: Emergence of floating offshore wind energy: technology and industry
  publication-title: Renewable Sustainable Energy Rev
– volume: 19
  start-page: 1107
  year: 2016
  end-page: 1119
  ident: bib0024
  article-title: Failure rate, repair time and unscheduled O&M cost analysis of offshore wind turbines
  publication-title: Wind Energy
– volume: 154
  start-page: 21
  year: 2016
  end-page: 33
  ident: bib0023
  article-title: Floating offshore wind turbine reliability analysis based on system grading and dynamic FTA
  publication-title: J Wind Eng Ind Aerodyn
– volume: 23
  start-page: 187
  year: 2010
  end-page: 193
  ident: bib0034
  article-title: Failure rate evaluation with influencing factors
  publication-title: J Loss Prev Process Ind
– volume: 256
  year: 2022
  ident: bib0041
  article-title: Uncertainty estimation of mesh-free and mesh-based simulations of the dynamics of floaters
  publication-title: Ocean Eng
– volume: 256
  year: 2022
  ident: bib0002
  article-title: A real-time inspection and opportunistic maintenance strategies for floating offshore wind turbines
  publication-title: Ocean Eng
– volume: 227
  start-page: 629
  year: 2013
  end-page: 640
  ident: bib0033
  article-title: Prediction of failure rates for new subsea systems: a practical approach and an illustrative example. Proceedings of the Institution of Mechanical Engineers, Part O
  publication-title: J Risk and Reliability
– volume: 71
  start-page: 249
  year: 2001
  end-page: 260
  ident: bib0016
  article-title: Improving the analysis of dependable systems by mapping fault trees into Bayesian networks
  publication-title: Reliab Eng Syst Saf
– volume: 97
  start-page: 866
  year: 2016
  end-page: 880
  ident: bib0003
  article-title: Cost assessment methodology for combined wind and wave floating offshore renewable energy systems
  publication-title: Renew Energy
– volume: 133
  start-page: 1455
  year: 2019
  end-page: 1467
  ident: bib0010
  article-title: Fault Tree Analysis of floating offshore wind turbines
  publication-title: Renew Energy
– volume: 95
  start-page: 195
  year: 2010
  end-page: 201
  ident: bib0039
  article-title: Some reflections on uncertainty analysis and management
  publication-title: Reliab Eng Syst Saf
– volume: 203
  year: 2020
  ident: bib0014
  article-title: Reliability based modelling and analysis for a wind power system integrated by two wind farms considering wind speed dependence
  publication-title: Reliab Eng Syst Saf
– volume: 82
  year: 2022
  ident: bib0040
  article-title: Effect of initial condition uncertainty on the profile of maximum wave
  publication-title: Mar struct
– volume: 203
  year: 2020
  ident: 10.1016/j.ress.2022.108777_bib0014
  article-title: Reliability based modelling and analysis for a wind power system integrated by two wind farms considering wind speed dependence
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2020.107077
– volume: 215
  year: 2021
  ident: 10.1016/j.ress.2022.108777_bib0042
  article-title: Reliability-oriented sensitivity analysis in presence of data-driven epistemic uncertainty
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.107733
– volume: 154
  start-page: 21
  year: 2016
  ident: 10.1016/j.ress.2022.108777_bib0023
  article-title: Floating offshore wind turbine reliability analysis based on system grading and dynamic FTA
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2016.04.005
– volume: 2
  start-page: 2394
  year: 2015
  ident: 10.1016/j.ress.2022.108777_bib0036
  article-title: Failure mode and effect analysis of repower 5 M wind turbine
  publication-title: Int J Adv Res Eng, Sci Technol
– volume: 162
  start-page: 1438
  year: 2020
  ident: 10.1016/j.ress.2022.108777_bib0007
  article-title: A two-stage failure mode and effect analysis of an offshore wind turbine
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.08.001
– volume: 97
  start-page: 866
  year: 2016
  ident: 10.1016/j.ress.2022.108777_bib0003
  article-title: Cost assessment methodology for combined wind and wave floating offshore renewable energy systems
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.06.016
– volume: 202
  year: 2020
  ident: 10.1016/j.ress.2022.108777_bib0005
  article-title: Risk-based maintenance planning of offshore wind turbine farms
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2020.107062
– volume: 1102
  start-page: 1
  year: 2018
  ident: 10.1016/j.ress.2022.108777_bib0019
  article-title: O&M cost-Based FMECA: identification and ranking of the most critical components for 2-4 MW geared offshore wind turbines
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/1102/1/012039
– volume: 227
  start-page: 629
  year: 2013
  ident: 10.1016/j.ress.2022.108777_bib0033
  article-title: Prediction of failure rates for new subsea systems: a practical approach and an illustrative example. Proceedings of the Institution of Mechanical Engineers, Part O
  publication-title: J Risk and Reliability
– volume: 141
  start-page: 693
  year: 2019
  ident: 10.1016/j.ress.2022.108777_bib0009
  article-title: Reliability prediction of an offshore wind turbine gearbox
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.03.136
– volume: 10
  start-page: 276
  year: 2017
  ident: 10.1016/j.ress.2022.108777_bib0018
  article-title: Using a hybrid cost-FMEA analysis for wind turbine reliability analysis
  publication-title: Energies
  doi: 10.3390/en10030276
– volume: 82
  year: 2022
  ident: 10.1016/j.ress.2022.108777_bib0040
  article-title: Effect of initial condition uncertainty on the profile of maximum wave
  publication-title: Mar struct
  doi: 10.1016/j.marstruc.2021.103127
– volume: 217
  year: 2020
  ident: 10.1016/j.ress.2022.108777_bib0017
  article-title: Reliability analysis of floating offshore wind turbine using Bayesian networks
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2020.107827
– volume: 164
  start-page: 133
  year: 2020
  ident: 10.1016/j.ress.2022.108777_bib0006
  article-title: A developed failure mode and effect analysis for floating offshore wind turbine support structures
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.09.033
– volume: 219
  year: 2022
  ident: 10.1016/j.ress.2022.108777_bib0038
  article-title: Uncertainty propagation in risk and resilience analysis of hierarchical systems
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.108208
– volume: 85
  year: 2022
  ident: 10.1016/j.ress.2022.108777_bib0043
  article-title: Epistemic uncertainties on the estimation of minimum air gap for semi-submersible platforms
  publication-title: Mar struct
  doi: 10.1016/j.marstruc.2022.103244
– volume: 42
  start-page: 735
  year: 2015
  ident: 10.1016/j.ress.2022.108777_bib0011
  article-title: A progressive study into offshore wind farm maintenance optimisation using risk based failure analysis
  publication-title: Renew Sustainable Energy Rev
  doi: 10.1016/j.rser.2014.10.087
– volume: 92
  start-page: 92
  year: 2007
  ident: 10.1016/j.ress.2022.108777_bib0015
  article-title: Bayesian networks in reliability
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2005.11.037
– volume: 91
  start-page: 1065
  year: 2018
  ident: 10.1016/j.ress.2022.108777_bib0025
  article-title: A review of reliability-based methods for risk analysis and their application in the offshore wind industry
  publication-title: Renewable Sustainable Energy Rev
  doi: 10.1016/j.rser.2018.04.004
– volume: 234
  year: 2021
  ident: 10.1016/j.ress.2022.108777_bib0008
  article-title: A failure analysis of floating offshore wind turbines using AHP-FMEA methodology
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2021.109261
– volume: 169
  start-page: 554
  year: 2018
  ident: 10.1016/j.ress.2022.108777_bib0012
  article-title: Data-driven learning framework for associating weather conditions and wind turbine failures
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2017.10.004
– volume: 204
  year: 2020
  ident: 10.1016/j.ress.2022.108777_bib0013
  article-title: Network reliability analysis: matrix-exponential approach
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2020.107192
– volume: 256
  year: 2022
  ident: 10.1016/j.ress.2022.108777_bib0002
  article-title: A real-time inspection and opportunistic maintenance strategies for floating offshore wind turbines
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2022.111433
– volume: 7
  start-page: 619
  year: 2014
  ident: 10.1016/j.ress.2022.108777_bib0022
  article-title: An FMEA-based risk assessment approach for wind turbine systems: a comparative study of onshore and offshore
  publication-title: Energies
  doi: 10.3390/en7020619
– volume: 95
  start-page: 195
  year: 2010
  ident: 10.1016/j.ress.2022.108777_bib0039
  article-title: Some reflections on uncertainty analysis and management
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2009.09.010
– volume: 176
  start-page: 118
  year: 2019
  ident: 10.1016/j.ress.2022.108777_bib0020
  article-title: A systematic failure mode effects and criticality analysis for offshore wind turbine systems towards integrated condition based maintenance strategies
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2019.02.048
– volume: 99
  start-page: 66
  year: 2019
  ident: 10.1016/j.ress.2022.108777_bib0030
  article-title: Emergence of floating offshore wind energy: technology and industry
  publication-title: Renewable Sustainable Energy Rev
  doi: 10.1016/j.rser.2018.09.035
– start-page: 1183
  year: 2014
  ident: 10.1016/j.ress.2022.108777_bib0031
  article-title: An age-based preventive maintenance for offshore wind turbines. Safety and reliability: methodology and applications
– start-page: 2489
  year: 2019
  ident: 10.1016/j.ress.2022.108777_bib0021
  article-title: Reliability analysis of floating offshore wind turbines support structure using hierarchical bayesian network
– volume: 209
  year: 2020
  ident: 10.1016/j.ress.2022.108777_bib0001
  article-title: Review of the current status, technology and future trends of offshore wind farms
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2020.107381
– volume: 15
  start-page: 2146
  year: 2018
  ident: 10.1016/j.ress.2022.108777_bib0037
  article-title: Application of Bayesian networks in reliability evaluation
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2018.2858281
– volume: 32
  start-page: 817
  year: 2010
  ident: 10.1016/j.ress.2022.108777_bib0035
  article-title: Failure modes and effects analysis (FMEA) for wind turbines
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2010.01.019
– volume: 94
  start-page: 1057
  year: 2009
  ident: 10.1016/j.ress.2022.108777_bib0026
  article-title: Reliability analysis for wind turbines with incomplete failure data collected from after the date of initial installation
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2008.12.004
– volume: 207
  year: 2020
  ident: 10.1016/j.ress.2022.108777_bib0004
  article-title: Economic feasibility of floating offshore wind farms in Portugal
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2020.107393
– volume: 133
  start-page: 1455
  year: 2019
  ident: 10.1016/j.ress.2022.108777_bib0010
  article-title: Fault Tree Analysis of floating offshore wind turbines
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.08.097
– volume: 204
  year: 2020
  ident: 10.1016/j.ress.2022.108777_bib0028
  article-title: Network reliability analysis: matrix-exponential approach
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2020.107192
– volume: 256
  year: 2022
  ident: 10.1016/j.ress.2022.108777_bib0041
  article-title: Uncertainty estimation of mesh-free and mesh-based simulations of the dynamics of floaters
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2022.111386
– volume: 71
  start-page: 249
  year: 2001
  ident: 10.1016/j.ress.2022.108777_bib0016
  article-title: Improving the analysis of dependable systems by mapping fault trees into Bayesian networks
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/S0951-8320(00)00077-6
– volume: 19
  start-page: 1107
  year: 2016
  ident: 10.1016/j.ress.2022.108777_bib0024
  article-title: Failure rate, repair time and unscheduled O&M cost analysis of offshore wind turbines
  publication-title: Wind Energy
  doi: 10.1002/we.1887
– volume: 23
  start-page: 187
  year: 2010
  ident: 10.1016/j.ress.2022.108777_bib0034
  article-title: Failure rate evaluation with influencing factors
  publication-title: J Loss Prev Process Ind
  doi: 10.1016/j.jlp.2009.07.013
– volume: 169
  start-page: 531
  year: 2018
  ident: 10.1016/j.ress.2022.108777_bib0032
  article-title: How combined performance and propagation of failure dependencies affect the reliability of a MSS
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2017.10.002
– volume: 218
  year: 2022
  ident: 10.1016/j.ress.2022.108777_bib0029
  article-title: Bayesian framework for reliability prediction of subsea processing systems accounting for influencing factors uncertainty
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.108143
– volume: 172
  start-page: 36
  year: 2018
  ident: 10.1016/j.ress.2022.108777_bib0027
  article-title: Improving failure analysis efficiency by combining FTA and FMEA in a recursive manner
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2017.11.024
SSID ssj0004957
Score 2.6630483
Snippet •A model is proposed to assess the failure rate of components of floating offshore wind turbines based on onshore turbine data.•A failure rate correction model...
A model is proposed to assess the failure rates of components of floating offshore wind turbines based on the knowledge of failure data of corresponding...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108777
SubjectTerms Bayesian analysis
Failure analysis
Failure rate assessment
Failure rate correction model
Failure rates
Floating offshore wind turbine
Mathematical models
Network reliability
Offshore
Offshore energy sources
Offshore structures
Reliability analysis
Reliability aspects
Reliability engineering
Turbines
Wind power
Wind turbines
Title Assessment of failure rates and reliability of floating offshore wind turbines
URI https://dx.doi.org/10.1016/j.ress.2022.108777
https://www.proquest.com/docview/2756217075
Volume 228
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGK1lhy8Sdomu8nsHkuxVMVetNBb2M0DIyUpbUW8-NudyaM-wB685TG7hNnJzDfwzQxjV1yFvvQRufV5JDFBiYQt0Y5sdJdKqMQYXkwteZj446m4m3mzBhvWtTBEq6x8f-nTC29dPelV2uwt0rT3SOBA0vhvt7BEKvgVAsjKux9fNA9MAKAeJ0_SVeFMyfGijLZLOxDVDgD-Ck6_3HQRe0YHbL8Cjdag_K5D1oizI7b3rZXgMZsMNi02rTyxEp0S39yiRhArS2eRtYznadmT-70QmOeaGM94nayecxR9w-zcwgBkiAh_wqajm6fh2K5mJdghB3dtG-6b2I19Vzva1wYMwgLJQ4hDhCgiEeDFGLuVpzDdwbPQoAyXBtEXKAkJd_gpa2Z5Fp8xCxAhYc6spAYt_LCvPc9NVKQjhDqO0bzFnFpJQVg1Eqd5FvOgZoy9BKTYgBQblIptsevNmkXZRmOrtFfrPvhhDAH6-a3r2vVBBdWviO8BIZ4DCI3O_7ntBdulu5LE0mbN9fI1vkQosjadwtY6bGdwez-efAK599rS
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VMgAD4ikKBTLAhEKbOImTgaHioZZCF0BiM3biiKAqqdqiqgt_ij_IOXHKQ4IBqVuU2Jb1-XL3nfT5DuCIBKHne8jcmiTyMUGJHNNHOzLRXQZOEAtB8q4ltz2v_eBcP7qPFXgv78IoWaX2_YVPz721ftPQaDYGSdK4U-TAV-2_7dwSfa2s7MrpBPO20VnnAg_52LavLu_P26ZuLWCGhNpjUxBPSFt6Nre4xwUVGEV9ElIZYkR3Yoe6EkNd4AaYHeDWOQ0E8QWSFYo5ekwsgusuwKKD7kK1TTh9-9SVYMZBy_71anv6pk4hKlMp9KnastL2UUp_i4Y_4kIe7K7WYFWzVKNVALEOFZluwMqX2oWb0GvNanoaWWzEPFECd0NVnhgZPI2MoewnRRHwaT6gn3ElscbnePSc4dBJgqMw4gmlvN-Ch7kguA3VNEvlDhgUKRkm6YHPKXe8sMld146DiEfIrSzBSQ2sEiQW6srlqoFGn5UStRemgGUKWFYAW4OT2ZxBUbfjz9FuiT37Zn0MA8uf8-rlQTH97-N3ipzSosjFdv-57CEste9vb9hNp9fdg2X1pVDQ1KE6Hr7KfeRBY3GQ250BT_M29A-N8BQf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+failure+rates+and+reliability+of+floating+offshore+wind+turbines&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Li%2C+He&rft.au=Guedes+Soares%2C+C&rft.date=2022-12-01&rft.issn=0951-8320&rft.volume=228&rft.spage=108777&rft_id=info:doi/10.1016%2Fj.ress.2022.108777&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ress_2022_108777
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon