AutoPruner: An end-to-end trainable filter pruning method for efficient deep model inference

•Filter selection and model fine-tuning are integrated into a single end-to-end trainable framework.•Adaptive compression ratio and multi-layer compression.•Good generalization ability. Channel pruning is an important method to speed up CNN model’s inference. Previous filter pruning algorithms regar...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 107; p. 107461
Main Authors Luo, Jian-Hao, Wu, Jianxin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Filter selection and model fine-tuning are integrated into a single end-to-end trainable framework.•Adaptive compression ratio and multi-layer compression.•Good generalization ability. Channel pruning is an important method to speed up CNN model’s inference. Previous filter pruning algorithms regard importance evaluation and model fine-tuning as two independent steps. This paper argues that combining them into a single end-to-end trainable system will lead to better results. We propose an efficient channel selection layer, namely AutoPruner, to find less important filters automatically in a joint training manner. Our AutoPruner takes previous activation responses as an input and generates a true binary index code for pruning. Hence, all the filters corresponding to zero index values can be removed safely after training. By gradually erasing several unimportant filters, we can prevent an excessive drop in model accuracy. Compared with previous state-of-the-art pruning algorithms (including training from scratch), AutoPruner achieves significantly better performance. Furthermore, ablation experiments show that the proposed novel mini-batch pooling and binarization operations are vital for the success of model pruning.
AbstractList •Filter selection and model fine-tuning are integrated into a single end-to-end trainable framework.•Adaptive compression ratio and multi-layer compression.•Good generalization ability. Channel pruning is an important method to speed up CNN model’s inference. Previous filter pruning algorithms regard importance evaluation and model fine-tuning as two independent steps. This paper argues that combining them into a single end-to-end trainable system will lead to better results. We propose an efficient channel selection layer, namely AutoPruner, to find less important filters automatically in a joint training manner. Our AutoPruner takes previous activation responses as an input and generates a true binary index code for pruning. Hence, all the filters corresponding to zero index values can be removed safely after training. By gradually erasing several unimportant filters, we can prevent an excessive drop in model accuracy. Compared with previous state-of-the-art pruning algorithms (including training from scratch), AutoPruner achieves significantly better performance. Furthermore, ablation experiments show that the proposed novel mini-batch pooling and binarization operations are vital for the success of model pruning.
ArticleNumber 107461
Author Wu, Jianxin
Luo, Jian-Hao
Author_xml – sequence: 1
  givenname: Jian-Hao
  orcidid: 0000-0001-8105-805X
  surname: Luo
  fullname: Luo, Jian-Hao
– sequence: 2
  givenname: Jianxin
  surname: Wu
  fullname: Wu, Jianxin
  email: wujx2001@nju.edu.cn
BookMark eNqFkF1LwzAUhoNMcJv-Ay_yBzqTtE2aXQhj-AUDvdA7IbTJyczokpJmgv_elnrlhV69cM55XjjPAs188IDQNSUrSii_Oay6OumwXzHCxpEoOD1Dc1qJPCtpwWZoTkhOs5yR_AIt-v5ACBXDYo7eN6cUXuLJQ1zjjcfgTZZCNgROsXa-blrA1rUJIu6GM-f3-AjpIxhsQ8RgrdMOfMIGoMPHYKDFzluI4DVconNbtz1c_eQSvd3fvW4fs93zw9N2s8t0LljKGiKNkbXgUouC0ELLSlpSUMugKqUgxDIupCy1FII3ecV5xbRtaCFKrrko8yUqpl4dQ99HsKqL7ljHL0WJGg2pg5oMqdGQmgwN2PoXpl2qkwt-fL39D76dYBge-3QQVT-K0GBcBJ2UCe7vgm8qFoWz
CitedBy_id crossref_primary_10_1007_s10489_022_03293_x
crossref_primary_10_1109_TNNLS_2022_3184730
crossref_primary_10_1109_TNNLS_2024_3353763
crossref_primary_10_1016_j_patcog_2021_108056
crossref_primary_10_1007_s13042_023_02076_1
crossref_primary_10_1016_j_patcog_2022_109025
crossref_primary_10_1002_cpe_7143
crossref_primary_10_1016_j_jag_2023_103244
crossref_primary_10_3390_math11234849
crossref_primary_10_1016_j_patcog_2021_107923
crossref_primary_10_1016_j_neucom_2021_07_045
crossref_primary_10_1016_j_neucom_2024_127698
crossref_primary_10_1155_2021_9971669
crossref_primary_10_1371_journal_pone_0319859
crossref_primary_10_1016_j_neucom_2024_128461
crossref_primary_10_1109_TCSVT_2022_3156588
crossref_primary_10_1016_j_patcog_2023_109508
crossref_primary_10_1109_TCAD_2023_3276938
crossref_primary_10_1109_TNNLS_2021_3084856
crossref_primary_10_1007_s00521_024_09719_6
crossref_primary_10_1109_TPAMI_2023_3323496
crossref_primary_10_1007_s11554_022_01209_z
crossref_primary_10_1016_j_cviu_2024_103942
crossref_primary_10_1109_LCA_2021_3101505
crossref_primary_10_1007_s44267_024_00040_3
crossref_primary_10_1109_TPAMI_2022_3226777
crossref_primary_10_1016_j_patcog_2021_108366
crossref_primary_10_1016_j_neucom_2024_127817
crossref_primary_10_1109_TPAMI_2023_3260903
crossref_primary_10_3390_informatics8040077
crossref_primary_10_1007_s10489_025_06332_5
crossref_primary_10_1109_ACCESS_2022_3182659
crossref_primary_10_1109_ACCESS_2022_3140807
crossref_primary_10_3390_app14041491
crossref_primary_10_1109_TNNLS_2022_3147269
crossref_primary_10_1109_TPAMI_2023_3259402
crossref_primary_10_1093_jcde_qwad038
crossref_primary_10_1016_j_neunet_2022_05_002
crossref_primary_10_1016_j_neunet_2024_106263
crossref_primary_10_1109_ACCESS_2024_3454329
crossref_primary_10_1109_ACCESS_2025_3551802
crossref_primary_10_1016_j_eswa_2024_126104
crossref_primary_10_1007_s11633_022_1340_5
crossref_primary_10_1016_j_patcog_2024_110671
crossref_primary_10_1016_j_cviu_2024_104247
crossref_primary_10_1109_TIP_2021_3112041
crossref_primary_10_1142_S1469026823500256
crossref_primary_10_1016_j_neunet_2024_106393
crossref_primary_10_1016_j_patcog_2023_109886
crossref_primary_10_1016_j_suscom_2022_100814
crossref_primary_10_1109_TNNLS_2023_3280899
crossref_primary_10_1109_TGRS_2025_3545416
crossref_primary_10_1016_j_neucom_2024_128488
crossref_primary_10_1109_TCSVT_2022_3175762
crossref_primary_10_1109_TCSVT_2024_3488098
crossref_primary_10_1109_TNNLS_2022_3156047
crossref_primary_10_1007_s10489_024_05690_w
crossref_primary_10_1007_s11633_022_1353_0
crossref_primary_10_1016_j_patcog_2023_109847
crossref_primary_10_1109_JPROC_2021_3119950
crossref_primary_10_1016_j_neucom_2023_02_004
crossref_primary_10_1016_j_neunet_2021_12_020
crossref_primary_10_1016_j_patcog_2024_110488
crossref_primary_10_3390_rs15123144
crossref_primary_10_1007_s11042_023_15608_2
crossref_primary_10_1016_j_asoc_2022_109856
crossref_primary_10_3390_s22218427
crossref_primary_10_1016_j_neucom_2021_08_158
crossref_primary_10_1007_s10462_022_10141_4
crossref_primary_10_1109_TDSC_2023_3267065
crossref_primary_10_1109_JIOT_2021_3116316
crossref_primary_10_1007_s12293_024_00406_6
crossref_primary_10_1016_j_cviu_2021_103220
crossref_primary_10_1016_j_eswa_2022_118313
crossref_primary_10_1007_s11554_022_01227_x
crossref_primary_10_1016_j_dsp_2022_103408
crossref_primary_10_1016_j_ins_2024_120155
crossref_primary_10_1016_j_neunet_2023_01_024
crossref_primary_10_3390_informatics10030072
crossref_primary_10_1109_TCE_2024_3475517
crossref_primary_10_2355_isijinternational_ISIJINT_2023_360
crossref_primary_10_1007_s10489_022_03508_1
crossref_primary_10_3390_app122110952
crossref_primary_10_1007_s10489_022_03774_z
crossref_primary_10_3390_s22124331
crossref_primary_10_1016_j_patcog_2022_108729
Cites_doi 10.1109/TNNLS.2019.2906563
10.1007/s11263-015-0816-y
10.1109/TPAMI.2018.2858232
10.5244/C.28.88
10.1109/TPAMI.2018.2873305
10.1007/s11263-009-0275-4
10.1016/j.patcog.2017.06.032
10.1016/j.patcog.2018.10.029
10.1109/5.726791
10.1109/TPAMI.2015.2502579
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2020.107461
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2020_107461
S0031320320302648
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c372t-b09dd9a769c74014c989f041f2e859700f267995c9776b386682cfb14756c6753
IEDL.DBID .~1
ISSN 0031-3203
IngestDate Thu Apr 24 23:07:55 EDT 2025
Tue Jul 01 02:36:31 EDT 2025
Fri Feb 23 02:49:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords CNN acceleration
Neural network pruning
Model compression
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-b09dd9a769c74014c989f041f2e859700f267995c9776b386682cfb14756c6753
ORCID 0000-0001-8105-805X
ParticipantIDs crossref_primary_10_1016_j_patcog_2020_107461
crossref_citationtrail_10_1016_j_patcog_2020_107461
elsevier_sciencedirect_doi_10_1016_j_patcog_2020_107461
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Denil, Shakibi, Dinh, de Freitas (bib0009) 2013
Huang, Wang (bib0005) 2018; 11220
M. Jaderberg, A. Vedaldi, A. Zisserman, Speeding up convolutional neural networks with low rank expansions, arXiv
Liu, Li, Shen, Huang, Yan, Zhang (bib0017) 2017
He, Zhang, Sun (bib0016) 2017
Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, Li (bib0019) 2015; 115
Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg (bib0052) 2016; 9905
Yu, Yang, Xu, Yang, Huang (bib0049) 2019
Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár, Zitnick (bib0051) 2014; 8693
He, Lin, Liu, Wang, Li, Han (bib0027) 2018; 11211
Lin, Ji, Guo, Li (bib0037) 2016
He, Zhang, Ren, Sun (bib0040) 2016
Molchanov, Mallya, Tyree, Frosio, Kautz (bib0045) 2019
Aghasi, Abdi, Nguyen, Romberg (bib0022) 2017
Hu, Shen, Sun (bib0054) 2018
Lin, Ji, Li, Deng, Li (bib0030) 2020; 31
Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg (bib0038) 2016; 9908
Lin, Ji, Chen, Tao, Luo (bib0036) 2019; 41
Xiao, Jin, Yang, Yang, Sun, Chang (bib0013) 2017; 72
Molchanov, Tyree, Karras, Aila, Kautz (bib0042) 2017
(2015).
Wen, He, Rajbhandari, Wang, Liu, Hu, Chen, Li (bib0025) 2018
Alvarez, Salzmann (bib0021) 2017
Gao, Zhao, Dudziak, Mullins, Xu (bib0035) 2019
Chen, Wilson, Tyree, Weinberger, Chen (bib0006) 2015
Dong, Huang, Yang, Yan (bib0031) 2017
Lebedev, Lempitsky (bib0007) 2016
(2019).
(2017).
Li, Kadav, Durdanovic, Samet, Graf (bib0023) 2017
Zhang, Zou, He, Sun (bib0048) 2016; 38
2014.
Han, Pool, Tran, Dally (bib0004) 2015
Singh, Verma, Rai, Namboodiri (bib0028) 2019
Lin, Ji, Li, Wu, Huang, Zhang (bib0033) 2018
Wen, Wu, Wang, Chen, Li (bib0014) 2016
G.B. Hacene, C. Lassance, V. Gripon, M. Courbariaux, Y. Bengio, Attention based pruning for shift networks, arXiv
Xu, Yang, Zhang, Liu (bib0011) 2019; 88
Lin, Ji, Yan, Zhang, Cao, Ye, Huang, Doermann (bib0046) 2019
Yu, Li, Chen, Lai, Morariu, Han, Gao, Lin, Davis (bib0026) 2018
Luo, Wu, Lin (bib0002) 2017
Lin, Rao, Lu, Zhou (bib0015) 2017
Krizhevsky (bib0044) 2009
Louizos, Ullrich, Welling (bib0020) 2017
H. Wang, Q. Zhang, Y. Wang, H. Hu, Structured probabilistic pruning for convolutional neural network acceleration, arXiv
LeCun, Bottou, Bengio, Haffner (bib0043) 1998; 86
Everingham, Van Gool, Williams, Winn, Zisserman (bib0050) 2010; 88
Ding, Chen, Huo (bib0012) 2019; 96
Wah, Branson, Welinder, Perona, Belongie (bib0018) 2011
Sandler, Howard, Zhu, Zhmoginov, Chen (bib0041) 2018
Denton, Zaremba, Bruna, LeCun, Fergus (bib0008) 2014
Liu, Sun, Zhou, Huang, Darrell (bib0053) 2019
Han, Mao, Dally (bib0024) 2016
Luo, Zhang, Zhou, Xie, Wu, Lin (bib0003) 2019; 41
Wu, Leng, Wang, Hu, Cheng (bib0010) 2016
Wang, Zhang, Wang, Yu, Hu (bib0029) 2019
G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network, arXiv
Simonyan, Zisserman (bib0001) 2015
Lin (10.1016/j.patcog.2020.107461_bib0037) 2016
He (10.1016/j.patcog.2020.107461_bib0040) 2016
Luo (10.1016/j.patcog.2020.107461_bib0002) 2017
Huang (10.1016/j.patcog.2020.107461_bib0005) 2018; 11220
10.1016/j.patcog.2020.107461_bib0047
Lin (10.1016/j.patcog.2020.107461_bib0030) 2020; 31
Wang (10.1016/j.patcog.2020.107461_bib0029) 2019
Liu (10.1016/j.patcog.2020.107461_bib0038) 2016; 9908
Lin (10.1016/j.patcog.2020.107461_bib0036) 2019; 41
Denil (10.1016/j.patcog.2020.107461_bib0009) 2013
Ding (10.1016/j.patcog.2020.107461_bib0012) 2019; 96
Yu (10.1016/j.patcog.2020.107461_bib0049) 2019
Lin (10.1016/j.patcog.2020.107461_bib0033) 2018
Denton (10.1016/j.patcog.2020.107461_bib0008) 2014
Russakovsky (10.1016/j.patcog.2020.107461_bib0019) 2015; 115
Krizhevsky (10.1016/j.patcog.2020.107461_bib0044) 2009
Louizos (10.1016/j.patcog.2020.107461_bib0020) 2017
Gao (10.1016/j.patcog.2020.107461_bib0035) 2019
Sandler (10.1016/j.patcog.2020.107461_bib0041) 2018
Hu (10.1016/j.patcog.2020.107461_bib0054) 2018
Liu (10.1016/j.patcog.2020.107461_bib0017) 2017
Alvarez (10.1016/j.patcog.2020.107461_bib0021) 2017
Li (10.1016/j.patcog.2020.107461_bib0023) 2017
Wen (10.1016/j.patcog.2020.107461_bib0025) 2018
Luo (10.1016/j.patcog.2020.107461_bib0003) 2019; 41
Molchanov (10.1016/j.patcog.2020.107461_bib0042) 2017
Zhang (10.1016/j.patcog.2020.107461_bib0048) 2016; 38
He (10.1016/j.patcog.2020.107461_bib0027) 2018; 11211
Singh (10.1016/j.patcog.2020.107461_bib0028) 2019
Xu (10.1016/j.patcog.2020.107461_bib0011) 2019; 88
Yu (10.1016/j.patcog.2020.107461_bib0026) 2018
Liu (10.1016/j.patcog.2020.107461_bib0053) 2019
Han (10.1016/j.patcog.2020.107461_bib0004) 2015
Dong (10.1016/j.patcog.2020.107461_bib0031) 2017
LeCun (10.1016/j.patcog.2020.107461_bib0043) 1998; 86
Han (10.1016/j.patcog.2020.107461_bib0024) 2016
Wen (10.1016/j.patcog.2020.107461_bib0014) 2016
Lin (10.1016/j.patcog.2020.107461_bib0046) 2019
Chen (10.1016/j.patcog.2020.107461_bib0006) 2015
Xiao (10.1016/j.patcog.2020.107461_bib0013) 2017; 72
10.1016/j.patcog.2020.107461_bib0034
Lebedev (10.1016/j.patcog.2020.107461_bib0007) 2016
Lin (10.1016/j.patcog.2020.107461_bib0051) 2014; 8693
Molchanov (10.1016/j.patcog.2020.107461_bib0045) 2019
10.1016/j.patcog.2020.107461_bib0039
Lin (10.1016/j.patcog.2020.107461_bib0015) 2017
Aghasi (10.1016/j.patcog.2020.107461_bib0022) 2017
10.1016/j.patcog.2020.107461_bib0032
Wah (10.1016/j.patcog.2020.107461_bib0018) 2011
Everingham (10.1016/j.patcog.2020.107461_bib0050) 2010; 88
Simonyan (10.1016/j.patcog.2020.107461_bib0001) 2015
Wu (10.1016/j.patcog.2020.107461_bib0010) 2016
He (10.1016/j.patcog.2020.107461_bib0016) 2017
Liu (10.1016/j.patcog.2020.107461_bib0052) 2016; 9905
References_xml – start-page: 1135
  year: 2015
  end-page: 1143
  ident: bib0004
  article-title: Learning both weights and connections for efficient neural network
  publication-title: Proceedings of Advances in Neural Information Processing Systems (NeurIPS)
– start-page: 3180
  year: 2017
  end-page: 3189
  ident: bib0022
  article-title: Net-Trim: convex pruning of deep neural networks with performance guarantee
  publication-title: Proceedings of Advances in Neural Information Processing Systems (NeurIPS)
– reference: H. Wang, Q. Zhang, Y. Wang, H. Hu, Structured probabilistic pruning for convolutional neural network acceleration, arXiv:
– volume: 9905
  start-page: 21
  year: 2016
  end-page: 37
  ident: bib0052
  article-title: SSD: single shot multibox detector
  publication-title: Proceeding of European Conference on Computer Vision (ECCV)
– start-page: 1753
  year: 2016
  end-page: 1759
  ident: bib0037
  article-title: Towards convolutional neural networks compression via global error reconstruction
  publication-title: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI)
– year: 2018
  ident: bib0025
  article-title: Learning intrinsic sparse structures within long short-term memory
  publication-title: Proceedings of International Conference on Learning Representations (ICLR)
– year: 2017
  ident: bib0042
  article-title: Pruning convolutional neural networks for resource efficient inference
  publication-title: Proceedings of International Conference on Learning Representations (ICLR)
– start-page: 2755
  year: 2017
  end-page: 2763
  ident: bib0017
  article-title: Learning efficient convolutional networks through network slimming
  publication-title: Proceedings of International Conference on Computer Vision (ICCV)
– volume: 8693
  start-page: 740
  year: 2014
  end-page: 755
  ident: bib0051
  article-title: Microsoft COCO: common objects in context
  publication-title: European Conference on Computer Vision (ECCV)
– reference: (2015).
– volume: 11211
  start-page: 815
  year: 2018
  end-page: 832
  ident: bib0027
  article-title: AMC: AutoML for model compression and acceleration on mobile devices
  publication-title: Proceeding of European Conference on Computer Vision (ECCV)
– start-page: 7132
  year: 2018
  end-page: 7141
  ident: bib0054
  article-title: Squeeze-and-excitation networks
  publication-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2019
  ident: bib0053
  article-title: Rethinking the value of network pruning
  publication-title: Proceedings of International Conference on Learning Representations (ICLR)
– start-page: 5058
  year: 2017
  end-page: 5066
  ident: bib0002
  article-title: ThiNet: a filter level pruning method for deep neural network compression
  publication-title: Proceedings of International Conference on Computer Vision (ICCV)
– start-page: 1389
  year: 2017
  end-page: 1397
  ident: bib0016
  article-title: Channel pruning for accelerating very deep neural networks
  publication-title: Proceedings of International Conference on Computer Vision (ICCV)
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: bib0043
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– year: 2018
  ident: bib0026
  article-title: NISP: pruning networks using neuron importance score propagation
  publication-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 9908
  start-page: 525
  year: 2016
  end-page: 542
  ident: bib0038
  article-title: XNOR-Net: ImageNet classification using binary convolutional neural networks
  publication-title: European Conference on Computer Vision (ECCV)
– volume: 38
  start-page: 1943
  year: 2016
  end-page: 1955
  ident: bib0048
  article-title: Accelerating very deep convolutional networks for classification and detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)
– reference: G.B. Hacene, C. Lassance, V. Gripon, M. Courbariaux, Y. Bengio, Attention based pruning for shift networks, arXiv:
– start-page: 2148
  year: 2013
  end-page: 2156
  ident: bib0009
  article-title: Predicting parameters in deep learning
  publication-title: Proceedings of Advances in Neural Information Processing Systems (NeurIPS)
– year: 2015
  ident: bib0001
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proceedings of International Conference on Learning Representations (ICLR)
– volume: 31
  start-page: 574
  year: 2020
  end-page: 588
  ident: bib0030
  article-title: Toward compact ConvNets via structure-sparsity regularized filter pruning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst. (TNNLS)
– year: 2017
  ident: bib0023
  article-title: Pruning filters for efficient ConvNets
  publication-title: Proceedings of International Conference on Learning Representations (ICLR)
– reference: (2017).
– start-page: 3460
  year: 2019
  end-page: 3466
  ident: bib0028
  article-title: Play and prune: adaptive filter pruning for deep model compression
  publication-title: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI)
– start-page: 2790
  year: 2019
  end-page: 2799
  ident: bib0046
  article-title: Towards optimal structured CNN pruning via generative adversarial learning
  publication-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2019
  ident: bib0049
  article-title: Slimmable neural networks
  publication-title: Proceedings of International Conference on Learning Representations (ICLR)
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: bib0019
  article-title: ImageNet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis. (IJCV)
– start-page: 11264
  year: 2019
  end-page: 11272
  ident: bib0045
  article-title: Importance estimation for neural network pruning
  publication-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2019
  ident: bib0035
  article-title: Dynamic channel pruning: feature boosting and suppression
  publication-title: Proceedings of International Conference on Learning Representations (ICLR)
– start-page: 2425
  year: 2018
  end-page: 2432
  ident: bib0033
  article-title: Accelerating convolutional networks via global & dynamic filter pruning
  publication-title: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI)
– start-page: 2285
  year: 2015
  end-page: 2294
  ident: bib0006
  article-title: Compressing neural networks with the hashing trick
  publication-title: Proceedings of International Conference on Machine Learning (ICML)
– reference: (2019).
– start-page: 1269
  year: 2014
  end-page: 1277
  ident: bib0008
  article-title: Exploiting linear structure within convolutional networks for efficient evaluation
  publication-title: Proceedings of Advances in Neural Information Processing Systems (NeurIPS)
– start-page: 856
  year: 2017
  end-page: 867
  ident: bib0021
  article-title: Compression-aware training of deep networks
  publication-title: Proceedings of Advances in Neural Information Processing Systems (NeurIPS)
– start-page: 2554
  year: 2016
  end-page: 2564
  ident: bib0007
  article-title: Fast convnets using group-wise brain damage
  publication-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2011
  ident: bib0018
  article-title: The Caltech-UCSD Birds-200–2011 Dataset
  publication-title: Technical Report
– volume: 11220
  start-page: 317
  year: 2018
  end-page: 334
  ident: bib0005
  article-title: Data-driven sparse structure selection for deep neural networks
  publication-title: Proceeding of European Conference on Computer Vision (ECCV)
– volume: 96
  start-page: 1
  year: 2019
  end-page: 14
  ident: bib0012
  article-title: Compressing CNN-DBLSTM models for OCR with teacher-student learning and Tucker decomposition
  publication-title: Pattern Recognit. (PR)
– start-page: 5840
  year: 2017
  end-page: 5848
  ident: bib0031
  article-title: More is less: a more complicated network with less inference complexity
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– reference: M. Jaderberg, A. Vedaldi, A. Zisserman, Speeding up convolutional neural networks with low rank expansions, arXiv:
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0040
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 2074
  year: 2016
  end-page: 2082
  ident: bib0014
  article-title: Learning structured sparsity in deep neural networks
  publication-title: Proceedings of Advances in Neural Information Processing Systems (NeurIPS)
– volume: 88
  start-page: 272
  year: 2019
  end-page: 284
  ident: bib0011
  article-title: LightweightNet: toward fast and lightweight convolutional neural networks via architecture distillation
  publication-title: Pattern Recognit. (PR)
– start-page: 3290
  year: 2017
  end-page: 3300
  ident: bib0020
  article-title: Bayesian compression for deep learning
  publication-title: Proceedings of Advances in Neural Information Processing Systems (NeurIPS)
– start-page: 1
  year: 2019
  end-page: 8
  ident: bib0029
  article-title: Structured pruning for efficient ConvNets via incremental regularization
  publication-title: Proceedings of International Joint Conference on Neural Networks (IJCNN)
– reference: G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network, arXiv:
– start-page: 4820
  year: 2016
  end-page: 4828
  ident: bib0010
  article-title: Quantized convolutional neural networks for mobile devices
  publication-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 72
  start-page: 72
  year: 2017
  end-page: 81
  ident: bib0013
  article-title: Building fast and compact convolutional neural networks for offline handwritten chinese character recognition
  publication-title: Pattern Recognit. (PR)
– start-page: 2178
  year: 2017
  end-page: 2188
  ident: bib0015
  article-title: Runtime neural pruning
  publication-title: Proceedings of Advances in Neural Information Processing Systems (NeurIPS)
– reference: 2014.
– volume: 88
  start-page: 303
  year: 2010
  end-page: 338
  ident: bib0050
  article-title: The PASCAL visual object classes (VOC) challenge
  publication-title: Int. J. Comput. Vis. (IJCV)
– volume: 41
  start-page: 2889
  year: 2019
  end-page: 2905
  ident: bib0036
  article-title: Holistic CNN compression via low-rank decomposition with knowledge transfer
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)
– volume: 41
  start-page: 2525
  year: 2019
  end-page: 2538
  ident: bib0003
  article-title: ThiNet: pruning CNN filters for a thinner net
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)
– year: 2009
  ident: bib0044
  publication-title: Learning multiple layers of features from tiny images
– year: 2016
  ident: bib0024
  article-title: Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding
  publication-title: Proceedings of International Conference on Learning Representations (ICLR)
– start-page: 4510
  year: 2018
  end-page: 4520
  ident: bib0041
  article-title: MobileNetV2: inverted residuals and linear bottlenecks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– ident: 10.1016/j.patcog.2020.107461_bib0032
– start-page: 3460
  year: 2019
  ident: 10.1016/j.patcog.2020.107461_bib0028
  article-title: Play and prune: adaptive filter pruning for deep model compression
– start-page: 1
  year: 2019
  ident: 10.1016/j.patcog.2020.107461_bib0029
  article-title: Structured pruning for efficient ConvNets via incremental regularization
– volume: 96
  start-page: 1
  year: 2019
  ident: 10.1016/j.patcog.2020.107461_bib0012
  article-title: Compressing CNN-DBLSTM models for OCR with teacher-student learning and Tucker decomposition
  publication-title: Pattern Recognit. (PR)
– start-page: 7132
  year: 2018
  ident: 10.1016/j.patcog.2020.107461_bib0054
  article-title: Squeeze-and-excitation networks
– volume: 11211
  start-page: 815
  year: 2018
  ident: 10.1016/j.patcog.2020.107461_bib0027
  article-title: AMC: AutoML for model compression and acceleration on mobile devices
– year: 2009
  ident: 10.1016/j.patcog.2020.107461_bib0044
– ident: 10.1016/j.patcog.2020.107461_bib0039
– year: 2018
  ident: 10.1016/j.patcog.2020.107461_bib0026
  article-title: NISP: pruning networks using neuron importance score propagation
– volume: 8693
  start-page: 740
  year: 2014
  ident: 10.1016/j.patcog.2020.107461_bib0051
  article-title: Microsoft COCO: common objects in context
– start-page: 2790
  year: 2019
  ident: 10.1016/j.patcog.2020.107461_bib0046
  article-title: Towards optimal structured CNN pruning via generative adversarial learning
– start-page: 1135
  year: 2015
  ident: 10.1016/j.patcog.2020.107461_bib0004
  article-title: Learning both weights and connections for efficient neural network
– start-page: 2178
  year: 2017
  ident: 10.1016/j.patcog.2020.107461_bib0015
  article-title: Runtime neural pruning
– start-page: 2554
  year: 2016
  ident: 10.1016/j.patcog.2020.107461_bib0007
  article-title: Fast convnets using group-wise brain damage
– volume: 31
  start-page: 574
  issue: 2
  year: 2020
  ident: 10.1016/j.patcog.2020.107461_bib0030
  article-title: Toward compact ConvNets via structure-sparsity regularized filter pruning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst. (TNNLS)
  doi: 10.1109/TNNLS.2019.2906563
– start-page: 11264
  year: 2019
  ident: 10.1016/j.patcog.2020.107461_bib0045
  article-title: Importance estimation for neural network pruning
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 10.1016/j.patcog.2020.107461_bib0019
  article-title: ImageNet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis. (IJCV)
  doi: 10.1007/s11263-015-0816-y
– volume: 41
  start-page: 2525
  issue: 10
  year: 2019
  ident: 10.1016/j.patcog.2020.107461_bib0003
  article-title: ThiNet: pruning CNN filters for a thinner net
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)
  doi: 10.1109/TPAMI.2018.2858232
– start-page: 5840
  year: 2017
  ident: 10.1016/j.patcog.2020.107461_bib0031
  article-title: More is less: a more complicated network with less inference complexity
– ident: 10.1016/j.patcog.2020.107461_bib0047
  doi: 10.5244/C.28.88
– start-page: 1753
  year: 2016
  ident: 10.1016/j.patcog.2020.107461_bib0037
  article-title: Towards convolutional neural networks compression via global error reconstruction
– start-page: 3180
  year: 2017
  ident: 10.1016/j.patcog.2020.107461_bib0022
  article-title: Net-Trim: convex pruning of deep neural networks with performance guarantee
– start-page: 770
  year: 2016
  ident: 10.1016/j.patcog.2020.107461_bib0040
  article-title: Deep residual learning for image recognition
– year: 2017
  ident: 10.1016/j.patcog.2020.107461_bib0023
  article-title: Pruning filters for efficient ConvNets
– start-page: 2285
  year: 2015
  ident: 10.1016/j.patcog.2020.107461_bib0006
  article-title: Compressing neural networks with the hashing trick
– volume: 9905
  start-page: 21
  year: 2016
  ident: 10.1016/j.patcog.2020.107461_bib0052
  article-title: SSD: single shot multibox detector
– year: 2015
  ident: 10.1016/j.patcog.2020.107461_bib0001
  article-title: Very deep convolutional networks for large-scale image recognition
– volume: 41
  start-page: 2889
  issue: 12
  year: 2019
  ident: 10.1016/j.patcog.2020.107461_bib0036
  article-title: Holistic CNN compression via low-rank decomposition with knowledge transfer
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)
  doi: 10.1109/TPAMI.2018.2873305
– start-page: 5058
  year: 2017
  ident: 10.1016/j.patcog.2020.107461_bib0002
  article-title: ThiNet: a filter level pruning method for deep neural network compression
– ident: 10.1016/j.patcog.2020.107461_bib0034
– year: 2018
  ident: 10.1016/j.patcog.2020.107461_bib0025
  article-title: Learning intrinsic sparse structures within long short-term memory
– start-page: 2074
  year: 2016
  ident: 10.1016/j.patcog.2020.107461_bib0014
  article-title: Learning structured sparsity in deep neural networks
– year: 2017
  ident: 10.1016/j.patcog.2020.107461_bib0042
  article-title: Pruning convolutional neural networks for resource efficient inference
– volume: 9908
  start-page: 525
  year: 2016
  ident: 10.1016/j.patcog.2020.107461_bib0038
  article-title: XNOR-Net: ImageNet classification using binary convolutional neural networks
– start-page: 2148
  year: 2013
  ident: 10.1016/j.patcog.2020.107461_bib0009
  article-title: Predicting parameters in deep learning
– volume: 88
  start-page: 303
  issue: 2
  year: 2010
  ident: 10.1016/j.patcog.2020.107461_bib0050
  article-title: The PASCAL visual object classes (VOC) challenge
  publication-title: Int. J. Comput. Vis. (IJCV)
  doi: 10.1007/s11263-009-0275-4
– year: 2019
  ident: 10.1016/j.patcog.2020.107461_bib0053
  article-title: Rethinking the value of network pruning
– volume: 72
  start-page: 72
  year: 2017
  ident: 10.1016/j.patcog.2020.107461_bib0013
  article-title: Building fast and compact convolutional neural networks for offline handwritten chinese character recognition
  publication-title: Pattern Recognit. (PR)
  doi: 10.1016/j.patcog.2017.06.032
– year: 2019
  ident: 10.1016/j.patcog.2020.107461_bib0035
  article-title: Dynamic channel pruning: feature boosting and suppression
– volume: 11220
  start-page: 317
  year: 2018
  ident: 10.1016/j.patcog.2020.107461_bib0005
  article-title: Data-driven sparse structure selection for deep neural networks
– volume: 88
  start-page: 272
  year: 2019
  ident: 10.1016/j.patcog.2020.107461_bib0011
  article-title: LightweightNet: toward fast and lightweight convolutional neural networks via architecture distillation
  publication-title: Pattern Recognit. (PR)
  doi: 10.1016/j.patcog.2018.10.029
– start-page: 2425
  year: 2018
  ident: 10.1016/j.patcog.2020.107461_bib0033
  article-title: Accelerating convolutional networks via global & dynamic filter pruning
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.patcog.2020.107461_bib0043
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– start-page: 1269
  year: 2014
  ident: 10.1016/j.patcog.2020.107461_bib0008
  article-title: Exploiting linear structure within convolutional networks for efficient evaluation
– start-page: 3290
  year: 2017
  ident: 10.1016/j.patcog.2020.107461_bib0020
  article-title: Bayesian compression for deep learning
– start-page: 2755
  year: 2017
  ident: 10.1016/j.patcog.2020.107461_bib0017
  article-title: Learning efficient convolutional networks through network slimming
– start-page: 1389
  year: 2017
  ident: 10.1016/j.patcog.2020.107461_bib0016
  article-title: Channel pruning for accelerating very deep neural networks
– start-page: 856
  year: 2017
  ident: 10.1016/j.patcog.2020.107461_bib0021
  article-title: Compression-aware training of deep networks
– year: 2016
  ident: 10.1016/j.patcog.2020.107461_bib0024
  article-title: Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding
– year: 2011
  ident: 10.1016/j.patcog.2020.107461_bib0018
  article-title: The Caltech-UCSD Birds-200–2011 Dataset
– year: 2019
  ident: 10.1016/j.patcog.2020.107461_bib0049
  article-title: Slimmable neural networks
– volume: 38
  start-page: 1943
  issue: 10
  year: 2016
  ident: 10.1016/j.patcog.2020.107461_bib0048
  article-title: Accelerating very deep convolutional networks for classification and detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)
  doi: 10.1109/TPAMI.2015.2502579
– start-page: 4820
  year: 2016
  ident: 10.1016/j.patcog.2020.107461_bib0010
  article-title: Quantized convolutional neural networks for mobile devices
– start-page: 4510
  year: 2018
  ident: 10.1016/j.patcog.2020.107461_bib0041
  article-title: MobileNetV2: inverted residuals and linear bottlenecks
SSID ssj0017142
Score 2.662579
Snippet •Filter selection and model fine-tuning are integrated into a single end-to-end trainable framework.•Adaptive compression ratio and multi-layer...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107461
SubjectTerms CNN acceleration
Model compression
Neural network pruning
Title AutoPruner: An end-to-end trainable filter pruning method for efficient deep model inference
URI https://dx.doi.org/10.1016/j.patcog.2020.107461
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7LevHiW1wfSw5e46ZJmrTeyuKyKi4eXNiDUJo2kYq0Zele_e1m-hAFUfBUGibQTqfzIPPNh9AlZwm1KqEk86wmIglDkmRaERV4yrPUuHwOsMMPCzlfiruVvxqgaY-FgbbKzve3Pr3x1t3KpNPmpMpzwPjC2EEgAOcU-rQAwS4UWPnV-2ebB_B7txPDuUdAtIfPNT1elXN35YurEhksKSG9n8PTl5Az20M7Xa6Io_Zx9tHAFAdot-dhwN1veYieo01dPq43hVlf46jApshIXRJ3wQ0DBKCjsM3hXBxXTsxFK9wyR2OXsmLTTJFwwQdnxlS44cbBeQ8EPELL2c3TdE461gSScsVqommYZWGiZJgC255IwyC0VHiWmcBVD5RaJmEKXOoyP6l5IGXAUqs9oXyZuvKBH6NhURbmBGHfdyJMcmqkFYpJHbpqJdGSaZcEBdqOEO-VFafdSHF4r7e47x17jVsVx6DiuFXxCJHPXVU7UuMPedV_h_ibacTO6_-68_TfO8_QNty1oMNzNKzXG3Phso9ajxvzGqOt6PZ-vvgAwPLXsg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe9CLb7E-9-B16WaT7ibeSrG09oGHFnoQQjbZlYqkoaT_39k8ioIoeApsZiCZbObBzvcNwIPLI2ZkxGjiGEW9KAholChJpe9IxzCN-ZzFDk9nYrjwnpfdZQP6NRbGtlVWvr_06YW3rlY6lTU72WplMb6WdtAOAHeZ7dPag5Zlp-o2odUbjYez3WGCdLySNNx1qJWuEXRFm1eGHm_9hoUit0vSE87PEepL1Bkcw2GVLpJe-UQn0NDpKRzVoxhI9WeewWtvm69fNttUbx5JLyU6TWi-pnghxRAIC5AiZmWPxkmGYhiwSDk8mmDWSnRBJIHxhyRaZ6QYj0NWNRbwHBaDp3l_SKvBCTR2Jc-pYkGSBJEUQWwH7nlx4AeGeY7h2scCgjHDhSWCizH5E8r1hfB5bJSDxhMxVhDuBTTTdaovgXS7KMKFy7QwnuRCBViwREpwhXmQr0wb3NpYYVyxitv3-gjr9rH3sDRxaE0cliZuA91pZSWrxh_ysv4O4bfdEaLj_1Xz6t-a97A_nE8n4WQ0G1_Dgb1TYhBvoJlvtvoWk5Fc3VWb7RM3Y9pj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AutoPruner%3A+An+end-to-end+trainable+filter+pruning+method+for+efficient+deep+model+inference&rft.jtitle=Pattern+recognition&rft.au=Luo%2C+Jian-Hao&rft.au=Wu%2C+Jianxin&rft.date=2020-11-01&rft.issn=0031-3203&rft.volume=107&rft.spage=107461&rft_id=info:doi/10.1016%2Fj.patcog.2020.107461&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2020_107461
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon