Fusing texture, shape and deep model-learned information at decision level for automated classification of lung nodules on chest CT
•Using nodule heterogeneity (texture/shape) features and representation learned by a deep model.•Constructing an ensemble classifier using back propagation neural network and AdaBoost.•Fusing the decisions made by 3 ensemble classifiers, which are trained on 3 features, respectively.•Outperforming t...
Saved in:
Published in | Information fusion Vol. 42; pp. 102 - 110 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Using nodule heterogeneity (texture/shape) features and representation learned by a deep model.•Constructing an ensemble classifier using back propagation neural network and AdaBoost.•Fusing the decisions made by 3 ensemble classifiers, which are trained on 3 features, respectively.•Outperforming three state-of-the-art nodule classification approaches on the LIDC-IDRI dataset.
The separation of malignant from benign lung nodules on chest computed tomography (CT) is important for the early detection of lung cancer, since early detection and management offer the best chance for cure. Although deep learning methods have recently produced a marked improvement in image classification there are still challenges as these methods contain myriad parameters and require large-scale training sets that are not usually available for most routine medical imaging studies. In this paper, we propose an algorithm for lung nodule classification that fuses the texture, shape and deep model-learned information (Fuse-TSD) at the decision level. This algorithm employs a gray level co-occurrence matrix (GLCM)-based texture descriptor, a Fourier shape descriptor to characterize the heterogeneity of nodules and a deep convolutional neural network (DCNN) to automatically learn the feature representation of nodules on a slice-by-slice basis. It trains an AdaBoosted back propagation neural network (BPNN) using each feature type and fuses the decisions made by three classifiers to differentiate nodules. We evaluated this algorithm against three approaches on the LIDC-IDRI dataset. When the nodules with a composite malignancy rate 3 were discarded, regarded as benign or regarded as malignant, our Fuse-TSD algorithm achieved an AUC of 96.65%, 94.45% and 81.24%, respectively, which was substantially higher than the AUC obtained by other approaches.
[Display omitted] |
---|---|
AbstractList | •Using nodule heterogeneity (texture/shape) features and representation learned by a deep model.•Constructing an ensemble classifier using back propagation neural network and AdaBoost.•Fusing the decisions made by 3 ensemble classifiers, which are trained on 3 features, respectively.•Outperforming three state-of-the-art nodule classification approaches on the LIDC-IDRI dataset.
The separation of malignant from benign lung nodules on chest computed tomography (CT) is important for the early detection of lung cancer, since early detection and management offer the best chance for cure. Although deep learning methods have recently produced a marked improvement in image classification there are still challenges as these methods contain myriad parameters and require large-scale training sets that are not usually available for most routine medical imaging studies. In this paper, we propose an algorithm for lung nodule classification that fuses the texture, shape and deep model-learned information (Fuse-TSD) at the decision level. This algorithm employs a gray level co-occurrence matrix (GLCM)-based texture descriptor, a Fourier shape descriptor to characterize the heterogeneity of nodules and a deep convolutional neural network (DCNN) to automatically learn the feature representation of nodules on a slice-by-slice basis. It trains an AdaBoosted back propagation neural network (BPNN) using each feature type and fuses the decisions made by three classifiers to differentiate nodules. We evaluated this algorithm against three approaches on the LIDC-IDRI dataset. When the nodules with a composite malignancy rate 3 were discarded, regarded as benign or regarded as malignant, our Fuse-TSD algorithm achieved an AUC of 96.65%, 94.45% and 81.24%, respectively, which was substantially higher than the AUC obtained by other approaches.
[Display omitted] |
Author | Fulham, Michael Xia, Yong Zhang, Jianpeng Zhang, Yanning Xie, Yutong |
Author_xml | – sequence: 1 givenname: Yutong surname: Xie fullname: Xie, Yutong organization: Shaanxi Key Lab of Speech & Image Information Processing (SAIIP), School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China – sequence: 2 givenname: Jianpeng surname: Zhang fullname: Zhang, Jianpeng organization: Shaanxi Key Lab of Speech & Image Information Processing (SAIIP), School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China – sequence: 3 givenname: Yong surname: Xia fullname: Xia, Yong email: yxia@nwpu.edu.cn organization: Shaanxi Key Lab of Speech & Image Information Processing (SAIIP), School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China – sequence: 4 givenname: Michael surname: Fulham fullname: Fulham, Michael organization: Centre for Multidisciplinary Convergence Computing (CMCC), School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China – sequence: 5 givenname: Yanning surname: Zhang fullname: Zhang, Yanning organization: Shaanxi Key Lab of Speech & Image Information Processing (SAIIP), School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China |
BookMark | eNqFkM9OAyEQxompiW31DTzwAO4KS_efBxPTWDUx8VLPGwqDpaHQANvo2ReXdT150BPDN79vJvPN0MQ6CwhdUpJTQqvrXa6tUn3IC0LrJOWElCdoSpu6yCpGykmqy6rKipKVZ2gWwo4kkDA6RZ-rPmj7hiO8x97DFQ5bfgDMrcQS4ID3ToLJDHBvQeK0xvk9j9pZzGMihA5DbeAIBqce5n10CUisMDwErbQYcaew6dMi62RvIOAkiS2EiJfrc3SquAlw8fPO0evqfr18zJ5fHp6Wd8-ZYHURMy65rJsNEY0iNStk2xCiGlHWbFFJtSkUqPRpGWetAlC04lXDG1Krpl3IShI2R4txrvAuBA-qO3i95_6jo6Qbgux23RhkNwQ5qCnIZLv5ZRM6fh8VPdfmP_PtaIZ02FGD74LQYAVI7UHETjr994AvcUuXGg |
CitedBy_id | crossref_primary_10_1109_ACCESS_2020_3010882 crossref_primary_10_1016_j_patrec_2019_11_013 crossref_primary_10_1016_j_compmedimag_2025_102511 crossref_primary_10_32604_cmc_2022_024583 crossref_primary_10_1186_s42492_019_0029_2 crossref_primary_10_1007_s10916_019_1455_6 crossref_primary_10_1142_S0218126623502468 crossref_primary_10_1016_j_eswa_2023_119997 crossref_primary_10_3389_fonc_2023_1140635 crossref_primary_10_3390_diagnostics14202282 crossref_primary_10_3390_s22124426 crossref_primary_10_1016_j_asoc_2021_108088 crossref_primary_10_1016_j_media_2019_07_004 crossref_primary_10_1109_TCYB_2019_2940526 crossref_primary_10_1016_j_ejmp_2021_03_013 crossref_primary_10_1515_jisys_2022_0062 crossref_primary_10_1007_s10278_020_00320_6 crossref_primary_10_1038_s41598_021_83907_5 crossref_primary_10_3390_s19010194 crossref_primary_10_1016_j_inffus_2022_07_019 crossref_primary_10_3389_fendo_2023_1144812 crossref_primary_10_1002_mp_15298 crossref_primary_10_1016_j_bspc_2022_103994 crossref_primary_10_1016_j_asoc_2024_112450 crossref_primary_10_1016_j_canlet_2019_12_007 crossref_primary_10_1016_j_currproblcancer_2024_101077 crossref_primary_10_1016_j_inffus_2024_102361 crossref_primary_10_1007_s00521_025_11006_x crossref_primary_10_1007_s11042_024_19098_8 crossref_primary_10_1016_j_compbiomed_2019_01_026 crossref_primary_10_1016_j_compeleceng_2024_110003 crossref_primary_10_1109_TPAMI_2021_3130759 crossref_primary_10_3389_fmicb_2022_823324 crossref_primary_10_1016_j_eswa_2023_120634 crossref_primary_10_1016_j_ejrad_2024_111347 crossref_primary_10_1155_2022_9469234 crossref_primary_10_2217_fon_2020_0987 crossref_primary_10_1109_JBHI_2022_3171851 crossref_primary_10_3389_fonc_2020_545862 crossref_primary_10_1016_j_ctro_2022_11_011 crossref_primary_10_1007_s11042_019_08250_4 crossref_primary_10_1007_s10916_019_1327_0 crossref_primary_10_1007_s11042_020_08618_x crossref_primary_10_1155_2020_6619076 crossref_primary_10_1016_j_cmpb_2019_105172 crossref_primary_10_1016_j_knosys_2024_112659 crossref_primary_10_1371_journal_pone_0235672 crossref_primary_10_3390_diagnostics13132206 crossref_primary_10_1109_ACCESS_2020_3027812 crossref_primary_10_1038_s41597_024_03658_6 crossref_primary_10_1016_j_eswa_2022_119339 crossref_primary_10_1109_ACCESS_2023_3319558 crossref_primary_10_1587_transfun_E102_A_1364 crossref_primary_10_1109_TCST_2022_3145648 crossref_primary_10_1109_ACCESS_2020_3026168 crossref_primary_10_1016_j_compbiomed_2022_106532 crossref_primary_10_1093_jamiaopen_ooaa063 crossref_primary_10_1002_ett_3823 crossref_primary_10_1109_JBHI_2022_3220430 crossref_primary_10_3389_fonc_2022_994950 crossref_primary_10_1117_1_JMI_6_2_020901 crossref_primary_10_1097_JS9_0000000000001213 crossref_primary_10_1109_ACCESS_2019_2951762 crossref_primary_10_1111_jdv_20031 crossref_primary_10_1016_j_cmpb_2022_106700 crossref_primary_10_1007_s00521_019_04590_2 crossref_primary_10_1109_ACCESS_2020_3044941 crossref_primary_10_1007_s10278_022_00747_z crossref_primary_10_3390_diagnostics9010029 crossref_primary_10_1002_acm2_13964 crossref_primary_10_1016_j_bspc_2022_104217 crossref_primary_10_1016_j_asoc_2021_107386 crossref_primary_10_1007_s10462_019_09788_3 crossref_primary_10_1007_s00432_023_04992_9 crossref_primary_10_1016_j_media_2020_101772 crossref_primary_10_1177_1533033818798800 crossref_primary_10_1007_s11042_023_15238_8 crossref_primary_10_1007_s00371_022_02447_9 crossref_primary_10_1038_s41467_020_15027_z crossref_primary_10_1109_ACCESS_2019_2945524 crossref_primary_10_1109_TMI_2023_3294248 crossref_primary_10_1016_j_knosys_2020_106230 crossref_primary_10_3390_s23042147 crossref_primary_10_1016_j_compbiomed_2018_10_011 crossref_primary_10_1007_s13246_024_01419_8 crossref_primary_10_1016_j_eswa_2020_113564 crossref_primary_10_3233_BME_206005 crossref_primary_10_1016_j_compbiomed_2021_104811 crossref_primary_10_1007_s00521_021_05841_x crossref_primary_10_1007_s11547_019_01130_9 crossref_primary_10_1016_j_engappai_2024_109439 crossref_primary_10_1109_ACCESS_2025_3544439 crossref_primary_10_1007_s11277_020_07732_1 crossref_primary_10_1016_j_neucom_2018_08_022 crossref_primary_10_1016_j_jksuci_2019_11_013 crossref_primary_10_1016_j_patcog_2019_03_004 crossref_primary_10_1002_mp_15539 crossref_primary_10_1109_ACCESS_2023_3289403 crossref_primary_10_1016_j_inffus_2024_102705 crossref_primary_10_36548_jiip_2024_2_010 crossref_primary_10_1007_s00432_019_03098_5 crossref_primary_10_3390_diagnostics14040448 crossref_primary_10_1038_s41523_024_00628_4 crossref_primary_10_1080_23080477_2023_2246285 crossref_primary_10_3390_life13091911 crossref_primary_10_1038_s41597_024_03851_7 crossref_primary_10_1007_s00330_022_08799_z crossref_primary_10_1038_s41598_024_51833_x crossref_primary_10_1002_ima_22721 crossref_primary_10_3390_app11020610 crossref_primary_10_1007_s42600_021_00138_3 crossref_primary_10_1002_ima_22726 crossref_primary_10_1016_j_acra_2022_10_015 crossref_primary_10_1109_TIM_2021_3129498 crossref_primary_10_1109_ACCESS_2019_2961418 crossref_primary_10_1109_TFUZZ_2019_2952831 crossref_primary_10_3390_ai1010003 crossref_primary_10_1007_s12652_022_04368_w crossref_primary_10_1109_TNNLS_2022_3190331 crossref_primary_10_1109_ACCESS_2021_3054735 crossref_primary_10_1007_s10278_020_00372_8 crossref_primary_10_3390_s21217059 crossref_primary_10_1109_TMI_2018_2876510 crossref_primary_10_1016_j_media_2021_101985 crossref_primary_10_1109_ACCESS_2021_3102707 crossref_primary_10_1371_journal_pone_0298527 crossref_primary_10_3390_app10217837 crossref_primary_10_1016_j_media_2019_02_010 crossref_primary_10_1002_ima_22394 crossref_primary_10_1109_JBHI_2022_3179014 crossref_primary_10_1155_2022_5905230 crossref_primary_10_1002_ima_22835 crossref_primary_10_1016_j_hpb_2022_02_004 crossref_primary_10_1016_j_neucom_2019_03_067 crossref_primary_10_3390_cancers15020357 crossref_primary_10_1016_j_compmedimag_2023_102257 crossref_primary_10_1088_1361_6560_ab3fd3 crossref_primary_10_1002_cpe_6998 crossref_primary_10_1016_j_cmpb_2018_10_009 crossref_primary_10_1109_JBHI_2019_2928369 crossref_primary_10_32604_cmc_2022_026855 crossref_primary_10_1016_j_future_2018_10_009 crossref_primary_10_1088_1361_6560_ad2a95 crossref_primary_10_1109_ACCESS_2020_3026080 crossref_primary_10_3389_fradi_2022_810731 crossref_primary_10_1016_j_media_2022_102627 crossref_primary_10_1038_s41598_024_83347_x crossref_primary_10_1016_j_compbiomed_2021_104806 crossref_primary_10_1016_j_bspc_2020_101869 crossref_primary_10_1186_s12890_023_02708_w crossref_primary_10_3389_fonc_2022_1041142 crossref_primary_10_1016_j_chemolab_2023_104763 crossref_primary_10_1097_JS9_0000000000002105 crossref_primary_10_1016_j_measurement_2023_114059 crossref_primary_10_1142_S0219622023500700 crossref_primary_10_1109_TMI_2019_2928056 crossref_primary_10_1093_bib_bbac432 crossref_primary_10_1002_mp_14068 crossref_primary_10_1007_s11042_022_13005_9 crossref_primary_10_1155_2020_8893494 crossref_primary_10_1016_j_inffus_2022_09_023 crossref_primary_10_4103_jmp_jmp_61_21 crossref_primary_10_1016_j_jocs_2021_101374 crossref_primary_10_1097_MD_0000000000018724 crossref_primary_10_1109_ACCESS_2025_3529127 crossref_primary_10_3390_diagnostics11081373 crossref_primary_10_1088_1361_6560_ab2544 crossref_primary_10_1007_s10278_020_00333_1 crossref_primary_10_1016_j_cmpb_2018_04_025 crossref_primary_10_1109_JSAC_2020_3020657 |
Cites_doi | 10.1109/31.31313 10.1001/jama.2012.5521 10.1371/journal.pone.0132386 10.1109/TMI.2016.2535865 10.1109/TMI.2014.2371821 10.1016/j.jhazmat.2012.04.056 10.1016/j.lungcan.2006.08.006 10.1016/j.inffus.2016.05.002 10.1109/TSMC.1985.6313426 10.1016/j.inffus.2011.08.001 10.1109/TPAMI.2002.1017623 10.1016/j.inffus.2015.06.005 10.1016/j.neucom.2015.07.148 10.1016/j.inffus.2003.11.001 10.1007/s10278-014-9718-8 10.1109/TMI.2016.2536809 10.1007/978-3-319-61188-4_11 10.1016/j.ejrad.2009.01.024 10.1056/NEJMoa1102873 10.1118/1.3528204 10.1109/TGRS.2006.876708 10.1109/5.726791 10.1023/A:1010933404324 10.1016/j.inffus.2013.09.001 10.1109/36.752194 10.1145/2733373.2807412 10.1016/j.patrec.2010.02.010 10.1007/BF00994018 10.1126/science.1127647 10.1007/s10278-013-9622-7 10.1371/journal.pone.0123694 10.1007/s10278-012-9547-6 10.3322/caac.20107 10.1109/TMI.2016.2528162 10.1016/j.inffus.2014.09.002 10.1016/j.eswa.2012.04.001 10.1118/1.597626 10.1016/j.inffus.2013.09.002 10.1109/TSMC.1973.4309314 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. |
Copyright_xml | – notice: 2017 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.inffus.2017.10.005 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1872-6305 |
EndPage | 110 |
ExternalDocumentID | 10_1016_j_inffus_2017_10_005 S1566253516301063 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K UHS ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c372t-adad78b0c8f0732d9800f8c57346dfb2fefc5793a39feef16a68a807f894d6d03 |
IEDL.DBID | .~1 |
ISSN | 1566-2535 |
IngestDate | Tue Jul 01 04:14:36 EDT 2025 Thu Apr 24 22:53:06 EDT 2025 Fri Feb 23 02:46:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lung nodule classification AdaBoost, information fusion Chest CT Deep convolutional neural network (DCNN) Back propagation neural network (BPNN) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-adad78b0c8f0732d9800f8c57346dfb2fefc5793a39feef16a68a807f894d6d03 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1016_j_inffus_2017_10_005 crossref_citationtrail_10_1016_j_inffus_2017_10_005 elsevier_sciencedirect_doi_10_1016_j_inffus_2017_10_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2018 2018-07-00 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: July 2018 |
PublicationDecade | 2010 |
PublicationTitle | Information fusion |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | S.G. Armato III, G. McLennan, L. Bidaut, M.F. McNitt-Gray, C.R. Meyer, A.P. Reeves, L.P. Clarke, Data from LIDC-IDRI. Cancer Imaging Arch. O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional networks for biomedical image segmentation, 9351 (2015) 234–241. Shen, Zhou, Yang, Yu, Dong, Yang, Zang, Tian (bib0029) 2015 Vapnik, Lerner (bib0007) 1963; 24 Bach, Mirkin, Oliver, Azzoli, Berry, Brawley (bib0002) 2012; 307 Hinton, Salakhutdinov (bib0025) 2006; 313 Xu, Gietema, Koning, Vernhout, Nackaerts, Prokop (bib0043) 2006; 54 Wang, Guo, Jia, Li, Liang, Li (bib0017) 2009; 74 Han, Wang, Zhang, Han, Song, Li (bib0020) 2015; 28 Krizhevsky, Sutskever, Hinton (bib0027) 2012; 25 Frejlichowski (bib0021) 2010 Ross, Jain (bib0035) 2001 Anthimopoulos, Christodoulidis, Ebner, Christe, Mougiakakou (bib0028) 2016; 35 Dhara, Mukhopadhyay, Dutta, Garg, Khandelwal (bib0050) 2016 Chin, Ong, Teoh, Goh (bib0036) 2014; 18 Jemal, Bray, Center, Ferlay, Ward, Forman (bib0001) 2011; 61 Manivannan, Aggarwal, Devabhaktuni, Kumar, Nims, Bhattacharya (bib0048) 2012; 223-224 Yoshimasu, Kawago, Hirai, Ohashi, Tanaka, Oura (bib0022) 2015; 21 Ciompi, Jacobs, Scholten, Wille, de Jong, Prokop (bib0023) 2015; 34 Shin, Roth, Gao, Lu (bib0026) 2016; 35 Hecht-Nielsen (bib0011) 1988; 1 Huang, Zeng, Wan, Chen (bib0004) 2016; 204 Hua, Hsu, Hidayati, Cheng, Chen (bib0030) 2015; 8 Fauvel, Chanussot, Benediktsson (bib0034) 2006; 44 Alexandre (bib0033) 2010; 31 Abraham (bib0003) 2011; 365 Huo, Giger, Vyborny, Bick, Lu, Wolverton (bib0024) 1995; 22 Mirchandani, Cao (bib0049) 1989; 36 Lécun, Bottou, Bengio, Haffner (bib0045) 1998; 86 Zhao, Ji, Qiang, Han, Pei, Shi (bib0019) 2015; 10 Sankaran, Jain, Vashisth, Vatsa, Singh (bib0009) 2016; 34 Aziz (bib0038) 2014; 18 Setio, Ciompi, Litjens, Gerke, Jacobs, Van (bib0042) 2016; 35 Wu, Sun, Wang, Li, Wang, Huo (bib0018) 2013; 26 Chen, Zhang, Xu, Chen, Zhang (bib0012) 2012; 39 Dasovich, Kim, Raicu, Furst (bib0044) 2010 Cortes, Vapnik (bib0006) 1995; 20 A. Vedaldi, K. Lenc, MatConvNet - convolutional neural networks for MATLAB, Eprint Arxiv, (2016) 689–692. Haralick, Shanmugam, Dinstein, Haralick, Shanmuga, Dinstein (bib0047) 1973; 3 Clark, Smith, Freymann, Kirby, Koppel, Moore (bib0041) 2013; 26 Ojala, Pietikäinen, Mäenpää (bib0052) 2002; 24 Rokach (bib0008) 2016; 27 Breiman (bib0013) 2001; 45 Khaleghi, Khamis, Karray, Razavi (bib0031) 2013; 14 Soh, Tsatsoulis (bib0016) 1999; 37 Kokar, Tomasik, Weyman (bib0032) 2004; 5 Armato III, Mclennan, Bidaut, Mcnittgray, Meyer, Reeves (bib0039) 2011; 38 Sesmero, Alonso-Weber, Gutierrez, Ledezma, Sanchis (bib0014) 2015; 24 Freund, Schapire (bib0015) 1999; 55 Xie, Zhang, Liu, Cai, Xia (bib0037) 2017; 10081 Metz, Ganter, Lorenzen, Marwick, Holzapfel, Herrmann (bib0005) 2014; 10 Keller, Gray, Givens (bib0010) 1985; 15 Freund (10.1016/j.inffus.2017.10.005_bib0015) 1999; 55 Chin (10.1016/j.inffus.2017.10.005_bib0036) 2014; 18 Setio (10.1016/j.inffus.2017.10.005_bib0042) 2016; 35 Soh (10.1016/j.inffus.2017.10.005_bib0016) 1999; 37 Dhara (10.1016/j.inffus.2017.10.005_bib0050) 2016 Jemal (10.1016/j.inffus.2017.10.005_bib0001) 2011; 61 Xu (10.1016/j.inffus.2017.10.005_bib0043) 2006; 54 Manivannan (10.1016/j.inffus.2017.10.005_bib0048) 2012; 223-224 Zhao (10.1016/j.inffus.2017.10.005_bib0019) 2015; 10 Lécun (10.1016/j.inffus.2017.10.005_bib0045) 1998; 86 Aziz (10.1016/j.inffus.2017.10.005_bib0038) 2014; 18 Vapnik (10.1016/j.inffus.2017.10.005_bib0007) 1963; 24 Frejlichowski (10.1016/j.inffus.2017.10.005_bib0021) 2010 Wu (10.1016/j.inffus.2017.10.005_bib0018) 2013; 26 Alexandre (10.1016/j.inffus.2017.10.005_bib0033) 2010; 31 Wang (10.1016/j.inffus.2017.10.005_bib0017) 2009; 74 Krizhevsky (10.1016/j.inffus.2017.10.005_bib0027) 2012; 25 Yoshimasu (10.1016/j.inffus.2017.10.005_bib0022) 2015; 21 Ross (10.1016/j.inffus.2017.10.005_bib0035) 2001 Metz (10.1016/j.inffus.2017.10.005_bib0005) 2014; 10 Armato III (10.1016/j.inffus.2017.10.005_bib0039) 2011; 38 Hecht-Nielsen (10.1016/j.inffus.2017.10.005_bib0011) 1988; 1 Khaleghi (10.1016/j.inffus.2017.10.005_bib0031) 2013; 14 Mirchandani (10.1016/j.inffus.2017.10.005_bib0049) 1989; 36 Clark (10.1016/j.inffus.2017.10.005_bib0041) 2013; 26 Hua (10.1016/j.inffus.2017.10.005_bib0030) 2015; 8 Rokach (10.1016/j.inffus.2017.10.005_bib0008) 2016; 27 Sesmero (10.1016/j.inffus.2017.10.005_bib0014) 2015; 24 Ciompi (10.1016/j.inffus.2017.10.005_bib0023) 2015; 34 Han (10.1016/j.inffus.2017.10.005_bib0020) 2015; 28 Huo (10.1016/j.inffus.2017.10.005_bib0024) 1995; 22 Bach (10.1016/j.inffus.2017.10.005_bib0002) 2012; 307 Huang (10.1016/j.inffus.2017.10.005_bib0004) 2016; 204 10.1016/j.inffus.2017.10.005_bib0040 Cortes (10.1016/j.inffus.2017.10.005_bib0006) 1995; 20 10.1016/j.inffus.2017.10.005_bib0046 Shen (10.1016/j.inffus.2017.10.005_bib0029) 2015 Fauvel (10.1016/j.inffus.2017.10.005_bib0034) 2006; 44 Haralick (10.1016/j.inffus.2017.10.005_bib0047) 1973; 3 Sankaran (10.1016/j.inffus.2017.10.005_bib0009) 2016; 34 Shin (10.1016/j.inffus.2017.10.005_bib0026) 2016; 35 Kokar (10.1016/j.inffus.2017.10.005_bib0032) 2004; 5 Dasovich (10.1016/j.inffus.2017.10.005_bib0044) 2010 Keller (10.1016/j.inffus.2017.10.005_bib0010) 1985; 15 Breiman (10.1016/j.inffus.2017.10.005_bib0013) 2001; 45 Abraham (10.1016/j.inffus.2017.10.005_bib0003) 2011; 365 Ojala (10.1016/j.inffus.2017.10.005_bib0052) 2002; 24 Chen (10.1016/j.inffus.2017.10.005_bib0012) 2012; 39 Xie (10.1016/j.inffus.2017.10.005_bib0037) 2017; 10081 Hinton (10.1016/j.inffus.2017.10.005_bib0025) 2006; 313 Anthimopoulos (10.1016/j.inffus.2017.10.005_bib0028) 2016; 35 10.1016/j.inffus.2017.10.005_bib0051 |
References_xml | – volume: 34 start-page: 962 year: 2015 end-page: 973 ident: bib0023 article-title: Bag-of-frequencies: a descriptor of pulmonary nodules in computed tomography images publication-title: IEEE Trans. Med. Imaging – volume: 10 year: 2014 ident: bib0005 article-title: Multiparametric MR and PET imaging of intratumoral biological heterogeneity in patients with metastatic lung cancer using voxel-by-voxel analysis publication-title: PLoS ONE – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: bib0045 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE – volume: 35 start-page: 1285 year: 2016 end-page: 1298 ident: bib0026 article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning publication-title: IEEE Trans. Med. Imaging – volume: 14 start-page: 28 year: 2013 end-page: 44 ident: bib0031 article-title: Multisensor data fusion: a review of the state-of-the-art publication-title: Inf. Fusion – volume: 37 start-page: 780 year: 1999 end-page: 795 ident: bib0016 article-title: Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 18 start-page: 175 year: 2014 end-page: 186 ident: bib0038 article-title: A new multiple decisions fusion rule for targets detection in multiple sensors distributed detection systems with data fusion publication-title: Inf. Fusion – volume: 10081 start-page: 116 year: 2017 end-page: 125 ident: bib0037 article-title: Lung nodule classification by jointly using visual descriptors and deep features publication-title: Lect. Notes Comput. Sci. – volume: 22 start-page: 1569 year: 1995 end-page: 1579 ident: bib0024 article-title: Analysis of spiculation in the computerized classification of mammographic masses publication-title: Med. Phys. – volume: 44 start-page: 2828 year: 2006 end-page: 2838 ident: bib0034 article-title: Decision fusion for the classification of urban remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – reference: O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional networks for biomedical image segmentation, 9351 (2015) 234–241. – volume: 8 start-page: 2015 year: 2015 end-page: 2022 ident: bib0030 article-title: Computer-aided classification of lung nodules on computed tomography images via deep learning technique publication-title: Oncotargets Ther. – volume: 26 start-page: 1045 year: 2013 end-page: 1057 ident: bib0041 article-title: The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository publication-title: J. Digit. Imaging – start-page: 588 year: 2015 end-page: 599 ident: bib0029 article-title: Multi-scale convolutional neural networks for lung nodule classification publication-title: Inf. Process. Med. Imaging – volume: 21 start-page: 1 year: 2015 end-page: 7 ident: bib0022 article-title: Fast Fourier transform analysis of pulmonary nodules on computed tomography images from patients with lung cancer publication-title: Ann. Thorac. Cardiovasc. Surg. Off. J. Assoc. Thorac. Cardiovasc. Surg. Asia – volume: 31 start-page: 1422 year: 2010 end-page: 1425 ident: bib0033 article-title: Gender recognition: a multiscale decision fusion approach publication-title: Pattern Recognit. Lett. – volume: 36 start-page: 661 year: 1989 end-page: 664 ident: bib0049 article-title: On hidden nodes for neural nets publication-title: IEEE Trans. Circuits Syst. – volume: 25 year: 2012 ident: bib0027 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 74 start-page: 124 year: 2009 end-page: 129 ident: bib0017 article-title: Multilevel binomial logistic prediction model for malignant pulmonary nodules based on texture features of CT image publication-title: Eur. J. Radiol. – volume: 54 start-page: 177 year: 2006 end-page: 184 ident: bib0043 article-title: Nodule management protocol of the NELSON randomised lung cancer screening trial publication-title: Lung Cancer – volume: 307 start-page: 2418 year: 2012 end-page: 2429 ident: bib0002 article-title: Benefits and harms of CT screening for lung cancer: a systematic review publication-title: Jama J. Am. Med. Assoc. – volume: 223-224 start-page: 94 year: 2012 end-page: 103 ident: bib0048 article-title: Particulate matter characterization by gray level co-occurrence matrix based support vector machines publication-title: J. Hazard. Mater. – volume: 24 start-page: 122 year: 2015 end-page: 136 ident: bib0014 article-title: An ensemble approach of dual base learners for multi-class classification problems publication-title: Inf. Fusion – volume: 34 start-page: 1 year: 2016 end-page: 15 ident: bib0009 article-title: Adaptive latent fingerprint segmentation using feature selection and random decision forest classification publication-title: Inf. Fusion – start-page: 1 year: 2016 end-page: 10 ident: bib0050 article-title: A combination of shape and texture features for classification of pulmonary nodules in lung CT images publication-title: J. Digit. Imaging – volume: 24 start-page: 971 year: 2002 end-page: 987 ident: bib0052 article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 10 year: 2015 ident: bib0019 article-title: A new method of detecting pulmonary nodules with PET/CT based on an improved watershed algorithm publication-title: PLoS ONE – volume: 15 start-page: 580 year: 1985 end-page: 585 ident: bib0010 article-title: A fuzzy K-nearest neighbor algorithm publication-title: IEEE Trans. Syst. Man Cybern. – volume: 35 start-page: 1207 year: 2016 end-page: 1216 ident: bib0028 article-title: Lung pattern classification for interstitial lung diseases using a deep convolutional neural network publication-title: IEEE Trans. Med. Imaging – volume: 26 start-page: 797 year: 2013 end-page: 802 ident: bib0018 article-title: Combination of radiological and gray level co-occurrence matrix textural features used to distinguish solitary pulmonary nodules by computed tomography publication-title: J. Digit. Imaging – reference: A. Vedaldi, K. Lenc, MatConvNet - convolutional neural networks for MATLAB, Eprint Arxiv, (2016) 689–692. – volume: 55 start-page: 119 year: 1999 end-page: 139 ident: bib0015 article-title: A desicion-theoretic generalization of on-line learning and an application to boosting publication-title: J. Comput. Syst. Sci. – reference: S.G. Armato III, G. McLennan, L. Bidaut, M.F. McNitt-Gray, C.R. Meyer, A.P. Reeves, L.P. Clarke, Data from LIDC-IDRI. Cancer Imaging Arch. – volume: 5 start-page: 189 year: 2004 end-page: 202 ident: bib0032 article-title: Formalizing classes of information fusion systems publication-title: Inf. Fusion – volume: 3 start-page: 610 year: 1973 end-page: 621 ident: bib0047 article-title: Textural features for image classification publication-title: IEEE Trans. Syst. Man Cybern. – volume: 35 start-page: 1160 year: 2016 end-page: 1169 ident: bib0042 article-title: Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks publication-title: IEEE Trans. Med. Imaging – volume: 27 start-page: 111 year: 2016 end-page: 125 ident: bib0008 article-title: Decision forest: twenty years of research publication-title: Inf. Fusion – volume: 38 start-page: 915 year: 2011 end-page: 931 ident: bib0039 article-title: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans publication-title: Med. Phys. – volume: 28 start-page: 99 year: 2015 end-page: 115 ident: bib0020 article-title: Texture feature analysis for computer-aided diagnosis on pulmonary nodules publication-title: J. Digit. Imaging – volume: 18 start-page: 161 year: 2014 end-page: 174 ident: bib0036 article-title: Integrated biometrics template protection technique based on fingerprint and palmprint feature-level fusion publication-title: Inf. Fusion – start-page: 185 year: 2010 end-page: 192 ident: bib0044 article-title: A Model for the Relationship Between Semantic and Content Based Similarity Using LIDC – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bib0006 article-title: Support-vector networks publication-title: Mach. Learn. – volume: 204 start-page: 125 year: 2016 end-page: 134 ident: bib0004 article-title: Medical media analytics via ranking and big learning: a multi-modality image-based disease severity prediction study publication-title: Neurocomputing – volume: 365 start-page: 395 year: 2011 end-page: 409 ident: bib0003 article-title: Reduced lung-cancer mortality with low-dose computed tomographic screening publication-title: N. Engl. J. Med. – volume: 61 start-page: 69 year: 2011 end-page: 90 ident: bib0001 article-title: Global cancer statistics, 2012 publication-title: Ca Cancer J. Clin. – volume: 39 start-page: 11503 year: 2012 end-page: 11509 ident: bib0012 article-title: Performance comparison of artificial neural network and logistic regression model for differentiating lung nodules on CT scans publication-title: Expert Syst. Appl. – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: bib0025 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – volume: 24 start-page: 774 year: 1963 end-page: 780 ident: bib0007 article-title: Pattern recognition using generalized portrait method publication-title: Autom. Remote Control – start-page: 2115 year: 2001 end-page: 2125 ident: bib0035 article-title: Information fusion in biometrics publication-title: International Conference on Audio- and Video-Based Biometric Person Authentication – volume: 1 start-page: 65 year: 1988 end-page: 93 ident: bib0011 article-title: Theory of the backpropagation neural network publication-title: Neural Netw. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0013 article-title: Random forests publication-title: Mach. Learn. – start-page: 294 year: 2010 end-page: 305 ident: bib0021 article-title: An experimental comparison of seven shape descriptors in the general shape analysis problem publication-title: International Conference on Image Analysis & Recognition – volume: 36 start-page: 661 issue: 5 year: 1989 ident: 10.1016/j.inffus.2017.10.005_bib0049 article-title: On hidden nodes for neural nets publication-title: IEEE Trans. Circuits Syst. doi: 10.1109/31.31313 – volume: 307 start-page: 2418 issue: 22 year: 2012 ident: 10.1016/j.inffus.2017.10.005_bib0002 article-title: Benefits and harms of CT screening for lung cancer: a systematic review publication-title: Jama J. Am. Med. Assoc. doi: 10.1001/jama.2012.5521 – volume: 10 issue: 7 year: 2014 ident: 10.1016/j.inffus.2017.10.005_bib0005 article-title: Multiparametric MR and PET imaging of intratumoral biological heterogeneity in patients with metastatic lung cancer using voxel-by-voxel analysis publication-title: PLoS ONE doi: 10.1371/journal.pone.0132386 – volume: 35 start-page: 1207 year: 2016 ident: 10.1016/j.inffus.2017.10.005_bib0028 article-title: Lung pattern classification for interstitial lung diseases using a deep convolutional neural network publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2535865 – volume: 25 issue: 2 year: 2012 ident: 10.1016/j.inffus.2017.10.005_bib0027 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 34 start-page: 962 issue: 4 year: 2015 ident: 10.1016/j.inffus.2017.10.005_bib0023 article-title: Bag-of-frequencies: a descriptor of pulmonary nodules in computed tomography images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2014.2371821 – volume: 223-224 start-page: 94 issue: 2 year: 2012 ident: 10.1016/j.inffus.2017.10.005_bib0048 article-title: Particulate matter characterization by gray level co-occurrence matrix based support vector machines publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2012.04.056 – volume: 54 start-page: 177 issue: 2 year: 2006 ident: 10.1016/j.inffus.2017.10.005_bib0043 article-title: Nodule management protocol of the NELSON randomised lung cancer screening trial publication-title: Lung Cancer doi: 10.1016/j.lungcan.2006.08.006 – volume: 34 start-page: 1 year: 2016 ident: 10.1016/j.inffus.2017.10.005_bib0009 article-title: Adaptive latent fingerprint segmentation using feature selection and random decision forest classification publication-title: Inf. Fusion doi: 10.1016/j.inffus.2016.05.002 – volume: 15 start-page: 580 issue: 4 year: 1985 ident: 10.1016/j.inffus.2017.10.005_bib0010 article-title: A fuzzy K-nearest neighbor algorithm publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1985.6313426 – volume: 14 start-page: 28 year: 2013 ident: 10.1016/j.inffus.2017.10.005_bib0031 article-title: Multisensor data fusion: a review of the state-of-the-art publication-title: Inf. Fusion doi: 10.1016/j.inffus.2011.08.001 – volume: 24 start-page: 971 issue: 7 year: 2002 ident: 10.1016/j.inffus.2017.10.005_bib0052 article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2002.1017623 – volume: 27 start-page: 111 year: 2016 ident: 10.1016/j.inffus.2017.10.005_bib0008 article-title: Decision forest: twenty years of research publication-title: Inf. Fusion doi: 10.1016/j.inffus.2015.06.005 – volume: 204 start-page: 125 year: 2016 ident: 10.1016/j.inffus.2017.10.005_bib0004 article-title: Medical media analytics via ranking and big learning: a multi-modality image-based disease severity prediction study publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.07.148 – volume: 5 start-page: 189 issue: 3 year: 2004 ident: 10.1016/j.inffus.2017.10.005_bib0032 article-title: Formalizing classes of information fusion systems publication-title: Inf. Fusion doi: 10.1016/j.inffus.2003.11.001 – volume: 28 start-page: 99 issue: 1 year: 2015 ident: 10.1016/j.inffus.2017.10.005_bib0020 article-title: Texture feature analysis for computer-aided diagnosis on pulmonary nodules publication-title: J. Digit. Imaging doi: 10.1007/s10278-014-9718-8 – ident: 10.1016/j.inffus.2017.10.005_bib0040 – volume: 35 start-page: 1160 issue: 5 year: 2016 ident: 10.1016/j.inffus.2017.10.005_bib0042 article-title: Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2536809 – start-page: 1 year: 2016 ident: 10.1016/j.inffus.2017.10.005_bib0050 article-title: A combination of shape and texture features for classification of pulmonary nodules in lung CT images publication-title: J. Digit. Imaging – start-page: 294 year: 2010 ident: 10.1016/j.inffus.2017.10.005_bib0021 article-title: An experimental comparison of seven shape descriptors in the general shape analysis problem – volume: 10081 start-page: 116 year: 2017 ident: 10.1016/j.inffus.2017.10.005_bib0037 article-title: Lung nodule classification by jointly using visual descriptors and deep features publication-title: Lect. Notes Comput. Sci. doi: 10.1007/978-3-319-61188-4_11 – start-page: 588 year: 2015 ident: 10.1016/j.inffus.2017.10.005_bib0029 article-title: Multi-scale convolutional neural networks for lung nodule classification publication-title: Inf. Process. Med. Imaging – volume: 8 start-page: 2015 year: 2015 ident: 10.1016/j.inffus.2017.10.005_bib0030 article-title: Computer-aided classification of lung nodules on computed tomography images via deep learning technique publication-title: Oncotargets Ther. – volume: 74 start-page: 124 issue: 1 year: 2009 ident: 10.1016/j.inffus.2017.10.005_bib0017 article-title: Multilevel binomial logistic prediction model for malignant pulmonary nodules based on texture features of CT image publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2009.01.024 – volume: 365 start-page: 395 issue: 5 year: 2011 ident: 10.1016/j.inffus.2017.10.005_bib0003 article-title: Reduced lung-cancer mortality with low-dose computed tomographic screening publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1102873 – volume: 38 start-page: 915 issue: 2 year: 2011 ident: 10.1016/j.inffus.2017.10.005_bib0039 article-title: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans publication-title: Med. Phys. doi: 10.1118/1.3528204 – volume: 55 start-page: 119 issue: 7 year: 1999 ident: 10.1016/j.inffus.2017.10.005_bib0015 article-title: A desicion-theoretic generalization of on-line learning and an application to boosting publication-title: J. Comput. Syst. Sci. – ident: 10.1016/j.inffus.2017.10.005_bib0051 – volume: 44 start-page: 2828 issue: 10 year: 2006 ident: 10.1016/j.inffus.2017.10.005_bib0034 article-title: Decision fusion for the classification of urban remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2006.876708 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 10.1016/j.inffus.2017.10.005_bib0045 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.inffus.2017.10.005_bib0013 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 18 start-page: 161 issue: 1 year: 2014 ident: 10.1016/j.inffus.2017.10.005_bib0036 article-title: Integrated biometrics template protection technique based on fingerprint and palmprint feature-level fusion publication-title: Inf. Fusion doi: 10.1016/j.inffus.2013.09.001 – volume: 37 start-page: 780 issue: 2 year: 1999 ident: 10.1016/j.inffus.2017.10.005_bib0016 article-title: Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.752194 – ident: 10.1016/j.inffus.2017.10.005_bib0046 doi: 10.1145/2733373.2807412 – start-page: 2115 year: 2001 ident: 10.1016/j.inffus.2017.10.005_bib0035 article-title: Information fusion in biometrics – volume: 31 start-page: 1422 issue: 11 year: 2010 ident: 10.1016/j.inffus.2017.10.005_bib0033 article-title: Gender recognition: a multiscale decision fusion approach publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2010.02.010 – start-page: 185 year: 2010 ident: 10.1016/j.inffus.2017.10.005_bib0044 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.inffus.2017.10.005_bib0006 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 10.1016/j.inffus.2017.10.005_bib0025 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 26 start-page: 1045 year: 2013 ident: 10.1016/j.inffus.2017.10.005_bib0041 article-title: The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository publication-title: J. Digit. Imaging doi: 10.1007/s10278-013-9622-7 – volume: 10 issue: 4 year: 2015 ident: 10.1016/j.inffus.2017.10.005_bib0019 article-title: A new method of detecting pulmonary nodules with PET/CT based on an improved watershed algorithm publication-title: PLoS ONE doi: 10.1371/journal.pone.0123694 – volume: 26 start-page: 797 issue: 4 year: 2013 ident: 10.1016/j.inffus.2017.10.005_bib0018 article-title: Combination of radiological and gray level co-occurrence matrix textural features used to distinguish solitary pulmonary nodules by computed tomography publication-title: J. Digit. Imaging doi: 10.1007/s10278-012-9547-6 – volume: 61 start-page: 69 issue: 2 year: 2011 ident: 10.1016/j.inffus.2017.10.005_bib0001 article-title: Global cancer statistics, 2012 publication-title: Ca Cancer J. Clin. doi: 10.3322/caac.20107 – volume: 1 start-page: 65 issue: 1 year: 1988 ident: 10.1016/j.inffus.2017.10.005_bib0011 article-title: Theory of the backpropagation neural network publication-title: Neural Netw. – volume: 24 start-page: 774 issue: 6 year: 1963 ident: 10.1016/j.inffus.2017.10.005_bib0007 article-title: Pattern recognition using generalized portrait method publication-title: Autom. Remote Control – volume: 35 start-page: 1285 issue: 5 year: 2016 ident: 10.1016/j.inffus.2017.10.005_bib0026 article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2528162 – volume: 24 start-page: 122 year: 2015 ident: 10.1016/j.inffus.2017.10.005_bib0014 article-title: An ensemble approach of dual base learners for multi-class classification problems publication-title: Inf. Fusion doi: 10.1016/j.inffus.2014.09.002 – volume: 39 start-page: 11503 issue: 13 year: 2012 ident: 10.1016/j.inffus.2017.10.005_bib0012 article-title: Performance comparison of artificial neural network and logistic regression model for differentiating lung nodules on CT scans publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.04.001 – volume: 22 start-page: 1569 issue: 10 year: 1995 ident: 10.1016/j.inffus.2017.10.005_bib0024 article-title: Analysis of spiculation in the computerized classification of mammographic masses publication-title: Med. Phys. doi: 10.1118/1.597626 – volume: 21 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.inffus.2017.10.005_bib0022 article-title: Fast Fourier transform analysis of pulmonary nodules on computed tomography images from patients with lung cancer publication-title: Ann. Thorac. Cardiovasc. Surg. Off. J. Assoc. Thorac. Cardiovasc. Surg. Asia – volume: 18 start-page: 175 issue: 18 year: 2014 ident: 10.1016/j.inffus.2017.10.005_bib0038 article-title: A new multiple decisions fusion rule for targets detection in multiple sensors distributed detection systems with data fusion publication-title: Inf. Fusion doi: 10.1016/j.inffus.2013.09.002 – volume: 3 start-page: 610 issue: 6 year: 1973 ident: 10.1016/j.inffus.2017.10.005_bib0047 article-title: Textural features for image classification publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1973.4309314 |
SSID | ssj0017031 |
Score | 2.584709 |
Snippet | •Using nodule heterogeneity (texture/shape) features and representation learned by a deep model.•Constructing an ensemble classifier using back propagation... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 102 |
SubjectTerms | AdaBoost, information fusion Back propagation neural network (BPNN) Chest CT Deep convolutional neural network (DCNN) Lung nodule classification |
Title | Fusing texture, shape and deep model-learned information at decision level for automated classification of lung nodules on chest CT |
URI | https://dx.doi.org/10.1016/j.inffus.2017.10.005 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SL3oQn_gmB4-m7Ta7SfZYiqU-EW2htyW7SbRStqXdvXrxjzuzj6IgCp6WZGdgyWQnX-Cbbwi5iOGOnOiAMxRDYz4XjikuLJOKu7aW2rMhViPfP4jByL8ZB-M10qtrYZBWWeX-MqcX2bqaaVWr2ZpPJq1nvHl0Ah4AosCLDSp--r7EXd58X9E8PNRnLzRThWBoXZfPFRwvCKLLUbTbk82C4xX8fDx9OXL622Srwoq0W37ODlmz6S7ZvF8JrS73yEcfiesvFPkb-cJe0uWrnluqU0ONtXNaNLphRWsIa2ilkoqxoDoDi7K_Dp0ic4jCO6rzbAYGYJsgrEYeUWk-c3QKeYGmM5NP7ZLCVNFqi_aG-2TUvxr2Bqzqq8ASLjsZ00YbqeJ2ohz84B0TAmh0Kgkk94VxccdZB4OQax46a50ntFBataVToW-EafMD0khnqT0kNI41IBDPamGkjw3-BDgGwsrEcYBO4ojwejmjpBIdx94X06hml71FZRAiDALOQhCOCFt5zUvRjT_sZR2p6NvmieBc-NXz-N-eJ2QDRqpk7p6SRrbI7Rngkyw-LzbgOVnv9p7uHvF5fTt4-AR31ejQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6x7YHlgGDZFW984LjePpzYzhFVVC3QXigSt8iJ7d2iKq3a5Bfwx5nJo2Kl1SJxjD0jRR5n_Fn55huA6wTvyKkJBScxNB4I6bkW0nGlhe8aZXouomrkyVSOnoK75_B5BwZNLQzRKuvcX-X0MlvXI516NTur-bzzSDePfihCRBR0sRFfoE3qVGEL2jfj-9F0-zOBJNpL2VQpOTk0FXQlzQvj6AvS7e6pXyXNK_z3CfXu1BkewH4NF9lN9UaHsOOyb7A32Wqtbo7gdUjc9d-MKBzF2v1kmz9m5ZjJLLPOrVjZ64aX3SGcZbVQKoWDmRwtqhY7bEHkIYZzzBT5Eg3QNiVkTVSiynzp2QJTA8uWtli4DcOhstsWG8y-w9PwdjYY8bq1Ak-F6ufcWGOVTrqp9viN922EuNHrNFQikNYnfe88PkTCiMg753vSSG10V3kdBVbarvgBrWyZuWNgSWIQhPSckVYF1ONPomMonUq9QPQkT0A0yxmnte44tb9YxA3B7CWughBTEGgUg3ACfOu1qnQ3PrBXTaTiv_ZPjEfDfz1PP-15Bbuj2eQhfhhP78_gK87oish7Dq18XbgLhCt5cllvxzcj5uns |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusing+texture%2C+shape+and+deep+model-learned+information+at+decision+level+for+automated+classification+of+lung+nodules+on+chest+CT&rft.jtitle=Information+fusion&rft.au=Xie%2C+Yutong&rft.au=Zhang%2C+Jianpeng&rft.au=Xia%2C+Yong&rft.au=Fulham%2C+Michael&rft.date=2018-07-01&rft.pub=Elsevier+B.V&rft.issn=1566-2535&rft.eissn=1872-6305&rft.volume=42&rft.spage=102&rft.epage=110&rft_id=info:doi/10.1016%2Fj.inffus.2017.10.005&rft.externalDocID=S1566253516301063 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1566-2535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1566-2535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1566-2535&client=summon |