Fusing texture, shape and deep model-learned information at decision level for automated classification of lung nodules on chest CT

•Using nodule heterogeneity (texture/shape) features and representation learned by a deep model.•Constructing an ensemble classifier using back propagation neural network and AdaBoost.•Fusing the decisions made by 3 ensemble classifiers, which are trained on 3 features, respectively.•Outperforming t...

Full description

Saved in:
Bibliographic Details
Published inInformation fusion Vol. 42; pp. 102 - 110
Main Authors Xie, Yutong, Zhang, Jianpeng, Xia, Yong, Fulham, Michael, Zhang, Yanning
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Using nodule heterogeneity (texture/shape) features and representation learned by a deep model.•Constructing an ensemble classifier using back propagation neural network and AdaBoost.•Fusing the decisions made by 3 ensemble classifiers, which are trained on 3 features, respectively.•Outperforming three state-of-the-art nodule classification approaches on the LIDC-IDRI dataset. The separation of malignant from benign lung nodules on chest computed tomography (CT) is important for the early detection of lung cancer, since early detection and management offer the best chance for cure. Although deep learning methods have recently produced a marked improvement in image classification there are still challenges as these methods contain myriad parameters and require large-scale training sets that are not usually available for most routine medical imaging studies. In this paper, we propose an algorithm for lung nodule classification that fuses the texture, shape and deep model-learned information (Fuse-TSD) at the decision level. This algorithm employs a gray level co-occurrence matrix (GLCM)-based texture descriptor, a Fourier shape descriptor to characterize the heterogeneity of nodules and a deep convolutional neural network (DCNN) to automatically learn the feature representation of nodules on a slice-by-slice basis. It trains an AdaBoosted back propagation neural network (BPNN) using each feature type and fuses the decisions made by three classifiers to differentiate nodules. We evaluated this algorithm against three approaches on the LIDC-IDRI dataset. When the nodules with a composite malignancy rate 3 were discarded, regarded as benign or regarded as malignant, our Fuse-TSD algorithm achieved an AUC of 96.65%, 94.45% and 81.24%, respectively, which was substantially higher than the AUC obtained by other approaches. [Display omitted]
AbstractList •Using nodule heterogeneity (texture/shape) features and representation learned by a deep model.•Constructing an ensemble classifier using back propagation neural network and AdaBoost.•Fusing the decisions made by 3 ensemble classifiers, which are trained on 3 features, respectively.•Outperforming three state-of-the-art nodule classification approaches on the LIDC-IDRI dataset. The separation of malignant from benign lung nodules on chest computed tomography (CT) is important for the early detection of lung cancer, since early detection and management offer the best chance for cure. Although deep learning methods have recently produced a marked improvement in image classification there are still challenges as these methods contain myriad parameters and require large-scale training sets that are not usually available for most routine medical imaging studies. In this paper, we propose an algorithm for lung nodule classification that fuses the texture, shape and deep model-learned information (Fuse-TSD) at the decision level. This algorithm employs a gray level co-occurrence matrix (GLCM)-based texture descriptor, a Fourier shape descriptor to characterize the heterogeneity of nodules and a deep convolutional neural network (DCNN) to automatically learn the feature representation of nodules on a slice-by-slice basis. It trains an AdaBoosted back propagation neural network (BPNN) using each feature type and fuses the decisions made by three classifiers to differentiate nodules. We evaluated this algorithm against three approaches on the LIDC-IDRI dataset. When the nodules with a composite malignancy rate 3 were discarded, regarded as benign or regarded as malignant, our Fuse-TSD algorithm achieved an AUC of 96.65%, 94.45% and 81.24%, respectively, which was substantially higher than the AUC obtained by other approaches. [Display omitted]
Author Fulham, Michael
Xia, Yong
Zhang, Jianpeng
Zhang, Yanning
Xie, Yutong
Author_xml – sequence: 1
  givenname: Yutong
  surname: Xie
  fullname: Xie, Yutong
  organization: Shaanxi Key Lab of Speech & Image Information Processing (SAIIP), School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China
– sequence: 2
  givenname: Jianpeng
  surname: Zhang
  fullname: Zhang, Jianpeng
  organization: Shaanxi Key Lab of Speech & Image Information Processing (SAIIP), School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China
– sequence: 3
  givenname: Yong
  surname: Xia
  fullname: Xia, Yong
  email: yxia@nwpu.edu.cn
  organization: Shaanxi Key Lab of Speech & Image Information Processing (SAIIP), School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China
– sequence: 4
  givenname: Michael
  surname: Fulham
  fullname: Fulham, Michael
  organization: Centre for Multidisciplinary Convergence Computing (CMCC), School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China
– sequence: 5
  givenname: Yanning
  surname: Zhang
  fullname: Zhang, Yanning
  organization: Shaanxi Key Lab of Speech & Image Information Processing (SAIIP), School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China
BookMark eNqFkM9OAyEQxompiW31DTzwAO4KS_efBxPTWDUx8VLPGwqDpaHQANvo2ReXdT150BPDN79vJvPN0MQ6CwhdUpJTQqvrXa6tUn3IC0LrJOWElCdoSpu6yCpGykmqy6rKipKVZ2gWwo4kkDA6RZ-rPmj7hiO8x97DFQ5bfgDMrcQS4ID3ToLJDHBvQeK0xvk9j9pZzGMihA5DbeAIBqce5n10CUisMDwErbQYcaew6dMi62RvIOAkiS2EiJfrc3SquAlw8fPO0evqfr18zJ5fHp6Wd8-ZYHURMy65rJsNEY0iNStk2xCiGlHWbFFJtSkUqPRpGWetAlC04lXDG1Krpl3IShI2R4txrvAuBA-qO3i95_6jo6Qbgux23RhkNwQ5qCnIZLv5ZRM6fh8VPdfmP_PtaIZ02FGD74LQYAVI7UHETjr994AvcUuXGg
CitedBy_id crossref_primary_10_1109_ACCESS_2020_3010882
crossref_primary_10_1016_j_patrec_2019_11_013
crossref_primary_10_1016_j_compmedimag_2025_102511
crossref_primary_10_32604_cmc_2022_024583
crossref_primary_10_1186_s42492_019_0029_2
crossref_primary_10_1007_s10916_019_1455_6
crossref_primary_10_1142_S0218126623502468
crossref_primary_10_1016_j_eswa_2023_119997
crossref_primary_10_3389_fonc_2023_1140635
crossref_primary_10_3390_diagnostics14202282
crossref_primary_10_3390_s22124426
crossref_primary_10_1016_j_asoc_2021_108088
crossref_primary_10_1016_j_media_2019_07_004
crossref_primary_10_1109_TCYB_2019_2940526
crossref_primary_10_1016_j_ejmp_2021_03_013
crossref_primary_10_1515_jisys_2022_0062
crossref_primary_10_1007_s10278_020_00320_6
crossref_primary_10_1038_s41598_021_83907_5
crossref_primary_10_3390_s19010194
crossref_primary_10_1016_j_inffus_2022_07_019
crossref_primary_10_3389_fendo_2023_1144812
crossref_primary_10_1002_mp_15298
crossref_primary_10_1016_j_bspc_2022_103994
crossref_primary_10_1016_j_asoc_2024_112450
crossref_primary_10_1016_j_canlet_2019_12_007
crossref_primary_10_1016_j_currproblcancer_2024_101077
crossref_primary_10_1016_j_inffus_2024_102361
crossref_primary_10_1007_s00521_025_11006_x
crossref_primary_10_1007_s11042_024_19098_8
crossref_primary_10_1016_j_compbiomed_2019_01_026
crossref_primary_10_1016_j_compeleceng_2024_110003
crossref_primary_10_1109_TPAMI_2021_3130759
crossref_primary_10_3389_fmicb_2022_823324
crossref_primary_10_1016_j_eswa_2023_120634
crossref_primary_10_1016_j_ejrad_2024_111347
crossref_primary_10_1155_2022_9469234
crossref_primary_10_2217_fon_2020_0987
crossref_primary_10_1109_JBHI_2022_3171851
crossref_primary_10_3389_fonc_2020_545862
crossref_primary_10_1016_j_ctro_2022_11_011
crossref_primary_10_1007_s11042_019_08250_4
crossref_primary_10_1007_s10916_019_1327_0
crossref_primary_10_1007_s11042_020_08618_x
crossref_primary_10_1155_2020_6619076
crossref_primary_10_1016_j_cmpb_2019_105172
crossref_primary_10_1016_j_knosys_2024_112659
crossref_primary_10_1371_journal_pone_0235672
crossref_primary_10_3390_diagnostics13132206
crossref_primary_10_1109_ACCESS_2020_3027812
crossref_primary_10_1038_s41597_024_03658_6
crossref_primary_10_1016_j_eswa_2022_119339
crossref_primary_10_1109_ACCESS_2023_3319558
crossref_primary_10_1587_transfun_E102_A_1364
crossref_primary_10_1109_TCST_2022_3145648
crossref_primary_10_1109_ACCESS_2020_3026168
crossref_primary_10_1016_j_compbiomed_2022_106532
crossref_primary_10_1093_jamiaopen_ooaa063
crossref_primary_10_1002_ett_3823
crossref_primary_10_1109_JBHI_2022_3220430
crossref_primary_10_3389_fonc_2022_994950
crossref_primary_10_1117_1_JMI_6_2_020901
crossref_primary_10_1097_JS9_0000000000001213
crossref_primary_10_1109_ACCESS_2019_2951762
crossref_primary_10_1111_jdv_20031
crossref_primary_10_1016_j_cmpb_2022_106700
crossref_primary_10_1007_s00521_019_04590_2
crossref_primary_10_1109_ACCESS_2020_3044941
crossref_primary_10_1007_s10278_022_00747_z
crossref_primary_10_3390_diagnostics9010029
crossref_primary_10_1002_acm2_13964
crossref_primary_10_1016_j_bspc_2022_104217
crossref_primary_10_1016_j_asoc_2021_107386
crossref_primary_10_1007_s10462_019_09788_3
crossref_primary_10_1007_s00432_023_04992_9
crossref_primary_10_1016_j_media_2020_101772
crossref_primary_10_1177_1533033818798800
crossref_primary_10_1007_s11042_023_15238_8
crossref_primary_10_1007_s00371_022_02447_9
crossref_primary_10_1038_s41467_020_15027_z
crossref_primary_10_1109_ACCESS_2019_2945524
crossref_primary_10_1109_TMI_2023_3294248
crossref_primary_10_1016_j_knosys_2020_106230
crossref_primary_10_3390_s23042147
crossref_primary_10_1016_j_compbiomed_2018_10_011
crossref_primary_10_1007_s13246_024_01419_8
crossref_primary_10_1016_j_eswa_2020_113564
crossref_primary_10_3233_BME_206005
crossref_primary_10_1016_j_compbiomed_2021_104811
crossref_primary_10_1007_s00521_021_05841_x
crossref_primary_10_1007_s11547_019_01130_9
crossref_primary_10_1016_j_engappai_2024_109439
crossref_primary_10_1109_ACCESS_2025_3544439
crossref_primary_10_1007_s11277_020_07732_1
crossref_primary_10_1016_j_neucom_2018_08_022
crossref_primary_10_1016_j_jksuci_2019_11_013
crossref_primary_10_1016_j_patcog_2019_03_004
crossref_primary_10_1002_mp_15539
crossref_primary_10_1109_ACCESS_2023_3289403
crossref_primary_10_1016_j_inffus_2024_102705
crossref_primary_10_36548_jiip_2024_2_010
crossref_primary_10_1007_s00432_019_03098_5
crossref_primary_10_3390_diagnostics14040448
crossref_primary_10_1038_s41523_024_00628_4
crossref_primary_10_1080_23080477_2023_2246285
crossref_primary_10_3390_life13091911
crossref_primary_10_1038_s41597_024_03851_7
crossref_primary_10_1007_s00330_022_08799_z
crossref_primary_10_1038_s41598_024_51833_x
crossref_primary_10_1002_ima_22721
crossref_primary_10_3390_app11020610
crossref_primary_10_1007_s42600_021_00138_3
crossref_primary_10_1002_ima_22726
crossref_primary_10_1016_j_acra_2022_10_015
crossref_primary_10_1109_TIM_2021_3129498
crossref_primary_10_1109_ACCESS_2019_2961418
crossref_primary_10_1109_TFUZZ_2019_2952831
crossref_primary_10_3390_ai1010003
crossref_primary_10_1007_s12652_022_04368_w
crossref_primary_10_1109_TNNLS_2022_3190331
crossref_primary_10_1109_ACCESS_2021_3054735
crossref_primary_10_1007_s10278_020_00372_8
crossref_primary_10_3390_s21217059
crossref_primary_10_1109_TMI_2018_2876510
crossref_primary_10_1016_j_media_2021_101985
crossref_primary_10_1109_ACCESS_2021_3102707
crossref_primary_10_1371_journal_pone_0298527
crossref_primary_10_3390_app10217837
crossref_primary_10_1016_j_media_2019_02_010
crossref_primary_10_1002_ima_22394
crossref_primary_10_1109_JBHI_2022_3179014
crossref_primary_10_1155_2022_5905230
crossref_primary_10_1002_ima_22835
crossref_primary_10_1016_j_hpb_2022_02_004
crossref_primary_10_1016_j_neucom_2019_03_067
crossref_primary_10_3390_cancers15020357
crossref_primary_10_1016_j_compmedimag_2023_102257
crossref_primary_10_1088_1361_6560_ab3fd3
crossref_primary_10_1002_cpe_6998
crossref_primary_10_1016_j_cmpb_2018_10_009
crossref_primary_10_1109_JBHI_2019_2928369
crossref_primary_10_32604_cmc_2022_026855
crossref_primary_10_1016_j_future_2018_10_009
crossref_primary_10_1088_1361_6560_ad2a95
crossref_primary_10_1109_ACCESS_2020_3026080
crossref_primary_10_3389_fradi_2022_810731
crossref_primary_10_1016_j_media_2022_102627
crossref_primary_10_1038_s41598_024_83347_x
crossref_primary_10_1016_j_compbiomed_2021_104806
crossref_primary_10_1016_j_bspc_2020_101869
crossref_primary_10_1186_s12890_023_02708_w
crossref_primary_10_3389_fonc_2022_1041142
crossref_primary_10_1016_j_chemolab_2023_104763
crossref_primary_10_1097_JS9_0000000000002105
crossref_primary_10_1016_j_measurement_2023_114059
crossref_primary_10_1142_S0219622023500700
crossref_primary_10_1109_TMI_2019_2928056
crossref_primary_10_1093_bib_bbac432
crossref_primary_10_1002_mp_14068
crossref_primary_10_1007_s11042_022_13005_9
crossref_primary_10_1155_2020_8893494
crossref_primary_10_1016_j_inffus_2022_09_023
crossref_primary_10_4103_jmp_jmp_61_21
crossref_primary_10_1016_j_jocs_2021_101374
crossref_primary_10_1097_MD_0000000000018724
crossref_primary_10_1109_ACCESS_2025_3529127
crossref_primary_10_3390_diagnostics11081373
crossref_primary_10_1088_1361_6560_ab2544
crossref_primary_10_1007_s10278_020_00333_1
crossref_primary_10_1016_j_cmpb_2018_04_025
crossref_primary_10_1109_JSAC_2020_3020657
Cites_doi 10.1109/31.31313
10.1001/jama.2012.5521
10.1371/journal.pone.0132386
10.1109/TMI.2016.2535865
10.1109/TMI.2014.2371821
10.1016/j.jhazmat.2012.04.056
10.1016/j.lungcan.2006.08.006
10.1016/j.inffus.2016.05.002
10.1109/TSMC.1985.6313426
10.1016/j.inffus.2011.08.001
10.1109/TPAMI.2002.1017623
10.1016/j.inffus.2015.06.005
10.1016/j.neucom.2015.07.148
10.1016/j.inffus.2003.11.001
10.1007/s10278-014-9718-8
10.1109/TMI.2016.2536809
10.1007/978-3-319-61188-4_11
10.1016/j.ejrad.2009.01.024
10.1056/NEJMoa1102873
10.1118/1.3528204
10.1109/TGRS.2006.876708
10.1109/5.726791
10.1023/A:1010933404324
10.1016/j.inffus.2013.09.001
10.1109/36.752194
10.1145/2733373.2807412
10.1016/j.patrec.2010.02.010
10.1007/BF00994018
10.1126/science.1127647
10.1007/s10278-013-9622-7
10.1371/journal.pone.0123694
10.1007/s10278-012-9547-6
10.3322/caac.20107
10.1109/TMI.2016.2528162
10.1016/j.inffus.2014.09.002
10.1016/j.eswa.2012.04.001
10.1118/1.597626
10.1016/j.inffus.2013.09.002
10.1109/TSMC.1973.4309314
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.inffus.2017.10.005
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-6305
EndPage 110
ExternalDocumentID 10_1016_j_inffus_2017_10_005
S1566253516301063
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c372t-adad78b0c8f0732d9800f8c57346dfb2fefc5793a39feef16a68a807f894d6d03
IEDL.DBID .~1
ISSN 1566-2535
IngestDate Tue Jul 01 04:14:36 EDT 2025
Thu Apr 24 22:53:06 EDT 2025
Fri Feb 23 02:46:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lung nodule classification
AdaBoost, information fusion
Chest CT
Deep convolutional neural network (DCNN)
Back propagation neural network (BPNN)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-adad78b0c8f0732d9800f8c57346dfb2fefc5793a39feef16a68a807f894d6d03
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_inffus_2017_10_005
crossref_citationtrail_10_1016_j_inffus_2017_10_005
elsevier_sciencedirect_doi_10_1016_j_inffus_2017_10_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2018
2018-07-00
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: July 2018
PublicationDecade 2010
PublicationTitle Information fusion
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References S.G. Armato III, G. McLennan, L. Bidaut, M.F. McNitt-Gray, C.R. Meyer, A.P. Reeves, L.P. Clarke, Data from LIDC-IDRI. Cancer Imaging Arch.
O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional networks for biomedical image segmentation, 9351 (2015) 234–241.
Shen, Zhou, Yang, Yu, Dong, Yang, Zang, Tian (bib0029) 2015
Vapnik, Lerner (bib0007) 1963; 24
Bach, Mirkin, Oliver, Azzoli, Berry, Brawley (bib0002) 2012; 307
Hinton, Salakhutdinov (bib0025) 2006; 313
Xu, Gietema, Koning, Vernhout, Nackaerts, Prokop (bib0043) 2006; 54
Wang, Guo, Jia, Li, Liang, Li (bib0017) 2009; 74
Han, Wang, Zhang, Han, Song, Li (bib0020) 2015; 28
Krizhevsky, Sutskever, Hinton (bib0027) 2012; 25
Frejlichowski (bib0021) 2010
Ross, Jain (bib0035) 2001
Anthimopoulos, Christodoulidis, Ebner, Christe, Mougiakakou (bib0028) 2016; 35
Dhara, Mukhopadhyay, Dutta, Garg, Khandelwal (bib0050) 2016
Chin, Ong, Teoh, Goh (bib0036) 2014; 18
Jemal, Bray, Center, Ferlay, Ward, Forman (bib0001) 2011; 61
Manivannan, Aggarwal, Devabhaktuni, Kumar, Nims, Bhattacharya (bib0048) 2012; 223-224
Yoshimasu, Kawago, Hirai, Ohashi, Tanaka, Oura (bib0022) 2015; 21
Ciompi, Jacobs, Scholten, Wille, de Jong, Prokop (bib0023) 2015; 34
Shin, Roth, Gao, Lu (bib0026) 2016; 35
Hecht-Nielsen (bib0011) 1988; 1
Huang, Zeng, Wan, Chen (bib0004) 2016; 204
Hua, Hsu, Hidayati, Cheng, Chen (bib0030) 2015; 8
Fauvel, Chanussot, Benediktsson (bib0034) 2006; 44
Alexandre (bib0033) 2010; 31
Abraham (bib0003) 2011; 365
Huo, Giger, Vyborny, Bick, Lu, Wolverton (bib0024) 1995; 22
Mirchandani, Cao (bib0049) 1989; 36
Lécun, Bottou, Bengio, Haffner (bib0045) 1998; 86
Zhao, Ji, Qiang, Han, Pei, Shi (bib0019) 2015; 10
Sankaran, Jain, Vashisth, Vatsa, Singh (bib0009) 2016; 34
Aziz (bib0038) 2014; 18
Setio, Ciompi, Litjens, Gerke, Jacobs, Van (bib0042) 2016; 35
Wu, Sun, Wang, Li, Wang, Huo (bib0018) 2013; 26
Chen, Zhang, Xu, Chen, Zhang (bib0012) 2012; 39
Dasovich, Kim, Raicu, Furst (bib0044) 2010
Cortes, Vapnik (bib0006) 1995; 20
A. Vedaldi, K. Lenc, MatConvNet - convolutional neural networks for MATLAB, Eprint Arxiv, (2016) 689–692.
Haralick, Shanmugam, Dinstein, Haralick, Shanmuga, Dinstein (bib0047) 1973; 3
Clark, Smith, Freymann, Kirby, Koppel, Moore (bib0041) 2013; 26
Ojala, Pietikäinen, Mäenpää (bib0052) 2002; 24
Rokach (bib0008) 2016; 27
Breiman (bib0013) 2001; 45
Khaleghi, Khamis, Karray, Razavi (bib0031) 2013; 14
Soh, Tsatsoulis (bib0016) 1999; 37
Kokar, Tomasik, Weyman (bib0032) 2004; 5
Armato III, Mclennan, Bidaut, Mcnittgray, Meyer, Reeves (bib0039) 2011; 38
Sesmero, Alonso-Weber, Gutierrez, Ledezma, Sanchis (bib0014) 2015; 24
Freund, Schapire (bib0015) 1999; 55
Xie, Zhang, Liu, Cai, Xia (bib0037) 2017; 10081
Metz, Ganter, Lorenzen, Marwick, Holzapfel, Herrmann (bib0005) 2014; 10
Keller, Gray, Givens (bib0010) 1985; 15
Freund (10.1016/j.inffus.2017.10.005_bib0015) 1999; 55
Chin (10.1016/j.inffus.2017.10.005_bib0036) 2014; 18
Setio (10.1016/j.inffus.2017.10.005_bib0042) 2016; 35
Soh (10.1016/j.inffus.2017.10.005_bib0016) 1999; 37
Dhara (10.1016/j.inffus.2017.10.005_bib0050) 2016
Jemal (10.1016/j.inffus.2017.10.005_bib0001) 2011; 61
Xu (10.1016/j.inffus.2017.10.005_bib0043) 2006; 54
Manivannan (10.1016/j.inffus.2017.10.005_bib0048) 2012; 223-224
Zhao (10.1016/j.inffus.2017.10.005_bib0019) 2015; 10
Lécun (10.1016/j.inffus.2017.10.005_bib0045) 1998; 86
Aziz (10.1016/j.inffus.2017.10.005_bib0038) 2014; 18
Vapnik (10.1016/j.inffus.2017.10.005_bib0007) 1963; 24
Frejlichowski (10.1016/j.inffus.2017.10.005_bib0021) 2010
Wu (10.1016/j.inffus.2017.10.005_bib0018) 2013; 26
Alexandre (10.1016/j.inffus.2017.10.005_bib0033) 2010; 31
Wang (10.1016/j.inffus.2017.10.005_bib0017) 2009; 74
Krizhevsky (10.1016/j.inffus.2017.10.005_bib0027) 2012; 25
Yoshimasu (10.1016/j.inffus.2017.10.005_bib0022) 2015; 21
Ross (10.1016/j.inffus.2017.10.005_bib0035) 2001
Metz (10.1016/j.inffus.2017.10.005_bib0005) 2014; 10
Armato III (10.1016/j.inffus.2017.10.005_bib0039) 2011; 38
Hecht-Nielsen (10.1016/j.inffus.2017.10.005_bib0011) 1988; 1
Khaleghi (10.1016/j.inffus.2017.10.005_bib0031) 2013; 14
Mirchandani (10.1016/j.inffus.2017.10.005_bib0049) 1989; 36
Clark (10.1016/j.inffus.2017.10.005_bib0041) 2013; 26
Hua (10.1016/j.inffus.2017.10.005_bib0030) 2015; 8
Rokach (10.1016/j.inffus.2017.10.005_bib0008) 2016; 27
Sesmero (10.1016/j.inffus.2017.10.005_bib0014) 2015; 24
Ciompi (10.1016/j.inffus.2017.10.005_bib0023) 2015; 34
Han (10.1016/j.inffus.2017.10.005_bib0020) 2015; 28
Huo (10.1016/j.inffus.2017.10.005_bib0024) 1995; 22
Bach (10.1016/j.inffus.2017.10.005_bib0002) 2012; 307
Huang (10.1016/j.inffus.2017.10.005_bib0004) 2016; 204
10.1016/j.inffus.2017.10.005_bib0040
Cortes (10.1016/j.inffus.2017.10.005_bib0006) 1995; 20
10.1016/j.inffus.2017.10.005_bib0046
Shen (10.1016/j.inffus.2017.10.005_bib0029) 2015
Fauvel (10.1016/j.inffus.2017.10.005_bib0034) 2006; 44
Haralick (10.1016/j.inffus.2017.10.005_bib0047) 1973; 3
Sankaran (10.1016/j.inffus.2017.10.005_bib0009) 2016; 34
Shin (10.1016/j.inffus.2017.10.005_bib0026) 2016; 35
Kokar (10.1016/j.inffus.2017.10.005_bib0032) 2004; 5
Dasovich (10.1016/j.inffus.2017.10.005_bib0044) 2010
Keller (10.1016/j.inffus.2017.10.005_bib0010) 1985; 15
Breiman (10.1016/j.inffus.2017.10.005_bib0013) 2001; 45
Abraham (10.1016/j.inffus.2017.10.005_bib0003) 2011; 365
Ojala (10.1016/j.inffus.2017.10.005_bib0052) 2002; 24
Chen (10.1016/j.inffus.2017.10.005_bib0012) 2012; 39
Xie (10.1016/j.inffus.2017.10.005_bib0037) 2017; 10081
Hinton (10.1016/j.inffus.2017.10.005_bib0025) 2006; 313
Anthimopoulos (10.1016/j.inffus.2017.10.005_bib0028) 2016; 35
10.1016/j.inffus.2017.10.005_bib0051
References_xml – volume: 34
  start-page: 962
  year: 2015
  end-page: 973
  ident: bib0023
  article-title: Bag-of-frequencies: a descriptor of pulmonary nodules in computed tomography images
  publication-title: IEEE Trans. Med. Imaging
– volume: 10
  year: 2014
  ident: bib0005
  article-title: Multiparametric MR and PET imaging of intratumoral biological heterogeneity in patients with metastatic lung cancer using voxel-by-voxel analysis
  publication-title: PLoS ONE
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: bib0045
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– volume: 35
  start-page: 1285
  year: 2016
  end-page: 1298
  ident: bib0026
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans. Med. Imaging
– volume: 14
  start-page: 28
  year: 2013
  end-page: 44
  ident: bib0031
  article-title: Multisensor data fusion: a review of the state-of-the-art
  publication-title: Inf. Fusion
– volume: 37
  start-page: 780
  year: 1999
  end-page: 795
  ident: bib0016
  article-title: Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 18
  start-page: 175
  year: 2014
  end-page: 186
  ident: bib0038
  article-title: A new multiple decisions fusion rule for targets detection in multiple sensors distributed detection systems with data fusion
  publication-title: Inf. Fusion
– volume: 10081
  start-page: 116
  year: 2017
  end-page: 125
  ident: bib0037
  article-title: Lung nodule classification by jointly using visual descriptors and deep features
  publication-title: Lect. Notes Comput. Sci.
– volume: 22
  start-page: 1569
  year: 1995
  end-page: 1579
  ident: bib0024
  article-title: Analysis of spiculation in the computerized classification of mammographic masses
  publication-title: Med. Phys.
– volume: 44
  start-page: 2828
  year: 2006
  end-page: 2838
  ident: bib0034
  article-title: Decision fusion for the classification of urban remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional networks for biomedical image segmentation, 9351 (2015) 234–241.
– volume: 8
  start-page: 2015
  year: 2015
  end-page: 2022
  ident: bib0030
  article-title: Computer-aided classification of lung nodules on computed tomography images via deep learning technique
  publication-title: Oncotargets Ther.
– volume: 26
  start-page: 1045
  year: 2013
  end-page: 1057
  ident: bib0041
  article-title: The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository
  publication-title: J. Digit. Imaging
– start-page: 588
  year: 2015
  end-page: 599
  ident: bib0029
  article-title: Multi-scale convolutional neural networks for lung nodule classification
  publication-title: Inf. Process. Med. Imaging
– volume: 21
  start-page: 1
  year: 2015
  end-page: 7
  ident: bib0022
  article-title: Fast Fourier transform analysis of pulmonary nodules on computed tomography images from patients with lung cancer
  publication-title: Ann. Thorac. Cardiovasc. Surg. Off. J. Assoc. Thorac. Cardiovasc. Surg. Asia
– volume: 31
  start-page: 1422
  year: 2010
  end-page: 1425
  ident: bib0033
  article-title: Gender recognition: a multiscale decision fusion approach
  publication-title: Pattern Recognit. Lett.
– volume: 36
  start-page: 661
  year: 1989
  end-page: 664
  ident: bib0049
  article-title: On hidden nodes for neural nets
  publication-title: IEEE Trans. Circuits Syst.
– volume: 25
  year: 2012
  ident: bib0027
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 74
  start-page: 124
  year: 2009
  end-page: 129
  ident: bib0017
  article-title: Multilevel binomial logistic prediction model for malignant pulmonary nodules based on texture features of CT image
  publication-title: Eur. J. Radiol.
– volume: 54
  start-page: 177
  year: 2006
  end-page: 184
  ident: bib0043
  article-title: Nodule management protocol of the NELSON randomised lung cancer screening trial
  publication-title: Lung Cancer
– volume: 307
  start-page: 2418
  year: 2012
  end-page: 2429
  ident: bib0002
  article-title: Benefits and harms of CT screening for lung cancer: a systematic review
  publication-title: Jama J. Am. Med. Assoc.
– volume: 223-224
  start-page: 94
  year: 2012
  end-page: 103
  ident: bib0048
  article-title: Particulate matter characterization by gray level co-occurrence matrix based support vector machines
  publication-title: J. Hazard. Mater.
– volume: 24
  start-page: 122
  year: 2015
  end-page: 136
  ident: bib0014
  article-title: An ensemble approach of dual base learners for multi-class classification problems
  publication-title: Inf. Fusion
– volume: 34
  start-page: 1
  year: 2016
  end-page: 15
  ident: bib0009
  article-title: Adaptive latent fingerprint segmentation using feature selection and random decision forest classification
  publication-title: Inf. Fusion
– start-page: 1
  year: 2016
  end-page: 10
  ident: bib0050
  article-title: A combination of shape and texture features for classification of pulmonary nodules in lung CT images
  publication-title: J. Digit. Imaging
– volume: 24
  start-page: 971
  year: 2002
  end-page: 987
  ident: bib0052
  article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 10
  year: 2015
  ident: bib0019
  article-title: A new method of detecting pulmonary nodules with PET/CT based on an improved watershed algorithm
  publication-title: PLoS ONE
– volume: 15
  start-page: 580
  year: 1985
  end-page: 585
  ident: bib0010
  article-title: A fuzzy K-nearest neighbor algorithm
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 35
  start-page: 1207
  year: 2016
  end-page: 1216
  ident: bib0028
  article-title: Lung pattern classification for interstitial lung diseases using a deep convolutional neural network
  publication-title: IEEE Trans. Med. Imaging
– volume: 26
  start-page: 797
  year: 2013
  end-page: 802
  ident: bib0018
  article-title: Combination of radiological and gray level co-occurrence matrix textural features used to distinguish solitary pulmonary nodules by computed tomography
  publication-title: J. Digit. Imaging
– reference: A. Vedaldi, K. Lenc, MatConvNet - convolutional neural networks for MATLAB, Eprint Arxiv, (2016) 689–692.
– volume: 55
  start-page: 119
  year: 1999
  end-page: 139
  ident: bib0015
  article-title: A desicion-theoretic generalization of on-line learning and an application to boosting
  publication-title: J. Comput. Syst. Sci.
– reference: S.G. Armato III, G. McLennan, L. Bidaut, M.F. McNitt-Gray, C.R. Meyer, A.P. Reeves, L.P. Clarke, Data from LIDC-IDRI. Cancer Imaging Arch.
– volume: 5
  start-page: 189
  year: 2004
  end-page: 202
  ident: bib0032
  article-title: Formalizing classes of information fusion systems
  publication-title: Inf. Fusion
– volume: 3
  start-page: 610
  year: 1973
  end-page: 621
  ident: bib0047
  article-title: Textural features for image classification
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 35
  start-page: 1160
  year: 2016
  end-page: 1169
  ident: bib0042
  article-title: Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks
  publication-title: IEEE Trans. Med. Imaging
– volume: 27
  start-page: 111
  year: 2016
  end-page: 125
  ident: bib0008
  article-title: Decision forest: twenty years of research
  publication-title: Inf. Fusion
– volume: 38
  start-page: 915
  year: 2011
  end-page: 931
  ident: bib0039
  article-title: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans
  publication-title: Med. Phys.
– volume: 28
  start-page: 99
  year: 2015
  end-page: 115
  ident: bib0020
  article-title: Texture feature analysis for computer-aided diagnosis on pulmonary nodules
  publication-title: J. Digit. Imaging
– volume: 18
  start-page: 161
  year: 2014
  end-page: 174
  ident: bib0036
  article-title: Integrated biometrics template protection technique based on fingerprint and palmprint feature-level fusion
  publication-title: Inf. Fusion
– start-page: 185
  year: 2010
  end-page: 192
  ident: bib0044
  article-title: A Model for the Relationship Between Semantic and Content Based Similarity Using LIDC
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib0006
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– volume: 204
  start-page: 125
  year: 2016
  end-page: 134
  ident: bib0004
  article-title: Medical media analytics via ranking and big learning: a multi-modality image-based disease severity prediction study
  publication-title: Neurocomputing
– volume: 365
  start-page: 395
  year: 2011
  end-page: 409
  ident: bib0003
  article-title: Reduced lung-cancer mortality with low-dose computed tomographic screening
  publication-title: N. Engl. J. Med.
– volume: 61
  start-page: 69
  year: 2011
  end-page: 90
  ident: bib0001
  article-title: Global cancer statistics, 2012
  publication-title: Ca Cancer J. Clin.
– volume: 39
  start-page: 11503
  year: 2012
  end-page: 11509
  ident: bib0012
  article-title: Performance comparison of artificial neural network and logistic regression model for differentiating lung nodules on CT scans
  publication-title: Expert Syst. Appl.
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: bib0025
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 24
  start-page: 774
  year: 1963
  end-page: 780
  ident: bib0007
  article-title: Pattern recognition using generalized portrait method
  publication-title: Autom. Remote Control
– start-page: 2115
  year: 2001
  end-page: 2125
  ident: bib0035
  article-title: Information fusion in biometrics
  publication-title: International Conference on Audio- and Video-Based Biometric Person Authentication
– volume: 1
  start-page: 65
  year: 1988
  end-page: 93
  ident: bib0011
  article-title: Theory of the backpropagation neural network
  publication-title: Neural Netw.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0013
  article-title: Random forests
  publication-title: Mach. Learn.
– start-page: 294
  year: 2010
  end-page: 305
  ident: bib0021
  article-title: An experimental comparison of seven shape descriptors in the general shape analysis problem
  publication-title: International Conference on Image Analysis & Recognition
– volume: 36
  start-page: 661
  issue: 5
  year: 1989
  ident: 10.1016/j.inffus.2017.10.005_bib0049
  article-title: On hidden nodes for neural nets
  publication-title: IEEE Trans. Circuits Syst.
  doi: 10.1109/31.31313
– volume: 307
  start-page: 2418
  issue: 22
  year: 2012
  ident: 10.1016/j.inffus.2017.10.005_bib0002
  article-title: Benefits and harms of CT screening for lung cancer: a systematic review
  publication-title: Jama J. Am. Med. Assoc.
  doi: 10.1001/jama.2012.5521
– volume: 10
  issue: 7
  year: 2014
  ident: 10.1016/j.inffus.2017.10.005_bib0005
  article-title: Multiparametric MR and PET imaging of intratumoral biological heterogeneity in patients with metastatic lung cancer using voxel-by-voxel analysis
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0132386
– volume: 35
  start-page: 1207
  year: 2016
  ident: 10.1016/j.inffus.2017.10.005_bib0028
  article-title: Lung pattern classification for interstitial lung diseases using a deep convolutional neural network
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2535865
– volume: 25
  issue: 2
  year: 2012
  ident: 10.1016/j.inffus.2017.10.005_bib0027
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 34
  start-page: 962
  issue: 4
  year: 2015
  ident: 10.1016/j.inffus.2017.10.005_bib0023
  article-title: Bag-of-frequencies: a descriptor of pulmonary nodules in computed tomography images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2371821
– volume: 223-224
  start-page: 94
  issue: 2
  year: 2012
  ident: 10.1016/j.inffus.2017.10.005_bib0048
  article-title: Particulate matter characterization by gray level co-occurrence matrix based support vector machines
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2012.04.056
– volume: 54
  start-page: 177
  issue: 2
  year: 2006
  ident: 10.1016/j.inffus.2017.10.005_bib0043
  article-title: Nodule management protocol of the NELSON randomised lung cancer screening trial
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2006.08.006
– volume: 34
  start-page: 1
  year: 2016
  ident: 10.1016/j.inffus.2017.10.005_bib0009
  article-title: Adaptive latent fingerprint segmentation using feature selection and random decision forest classification
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2016.05.002
– volume: 15
  start-page: 580
  issue: 4
  year: 1985
  ident: 10.1016/j.inffus.2017.10.005_bib0010
  article-title: A fuzzy K-nearest neighbor algorithm
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1985.6313426
– volume: 14
  start-page: 28
  year: 2013
  ident: 10.1016/j.inffus.2017.10.005_bib0031
  article-title: Multisensor data fusion: a review of the state-of-the-art
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2011.08.001
– volume: 24
  start-page: 971
  issue: 7
  year: 2002
  ident: 10.1016/j.inffus.2017.10.005_bib0052
  article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2002.1017623
– volume: 27
  start-page: 111
  year: 2016
  ident: 10.1016/j.inffus.2017.10.005_bib0008
  article-title: Decision forest: twenty years of research
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2015.06.005
– volume: 204
  start-page: 125
  year: 2016
  ident: 10.1016/j.inffus.2017.10.005_bib0004
  article-title: Medical media analytics via ranking and big learning: a multi-modality image-based disease severity prediction study
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.07.148
– volume: 5
  start-page: 189
  issue: 3
  year: 2004
  ident: 10.1016/j.inffus.2017.10.005_bib0032
  article-title: Formalizing classes of information fusion systems
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2003.11.001
– volume: 28
  start-page: 99
  issue: 1
  year: 2015
  ident: 10.1016/j.inffus.2017.10.005_bib0020
  article-title: Texture feature analysis for computer-aided diagnosis on pulmonary nodules
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-014-9718-8
– ident: 10.1016/j.inffus.2017.10.005_bib0040
– volume: 35
  start-page: 1160
  issue: 5
  year: 2016
  ident: 10.1016/j.inffus.2017.10.005_bib0042
  article-title: Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2536809
– start-page: 1
  year: 2016
  ident: 10.1016/j.inffus.2017.10.005_bib0050
  article-title: A combination of shape and texture features for classification of pulmonary nodules in lung CT images
  publication-title: J. Digit. Imaging
– start-page: 294
  year: 2010
  ident: 10.1016/j.inffus.2017.10.005_bib0021
  article-title: An experimental comparison of seven shape descriptors in the general shape analysis problem
– volume: 10081
  start-page: 116
  year: 2017
  ident: 10.1016/j.inffus.2017.10.005_bib0037
  article-title: Lung nodule classification by jointly using visual descriptors and deep features
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-319-61188-4_11
– start-page: 588
  year: 2015
  ident: 10.1016/j.inffus.2017.10.005_bib0029
  article-title: Multi-scale convolutional neural networks for lung nodule classification
  publication-title: Inf. Process. Med. Imaging
– volume: 8
  start-page: 2015
  year: 2015
  ident: 10.1016/j.inffus.2017.10.005_bib0030
  article-title: Computer-aided classification of lung nodules on computed tomography images via deep learning technique
  publication-title: Oncotargets Ther.
– volume: 74
  start-page: 124
  issue: 1
  year: 2009
  ident: 10.1016/j.inffus.2017.10.005_bib0017
  article-title: Multilevel binomial logistic prediction model for malignant pulmonary nodules based on texture features of CT image
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2009.01.024
– volume: 365
  start-page: 395
  issue: 5
  year: 2011
  ident: 10.1016/j.inffus.2017.10.005_bib0003
  article-title: Reduced lung-cancer mortality with low-dose computed tomographic screening
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1102873
– volume: 38
  start-page: 915
  issue: 2
  year: 2011
  ident: 10.1016/j.inffus.2017.10.005_bib0039
  article-title: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans
  publication-title: Med. Phys.
  doi: 10.1118/1.3528204
– volume: 55
  start-page: 119
  issue: 7
  year: 1999
  ident: 10.1016/j.inffus.2017.10.005_bib0015
  article-title: A desicion-theoretic generalization of on-line learning and an application to boosting
  publication-title: J. Comput. Syst. Sci.
– ident: 10.1016/j.inffus.2017.10.005_bib0051
– volume: 44
  start-page: 2828
  issue: 10
  year: 2006
  ident: 10.1016/j.inffus.2017.10.005_bib0034
  article-title: Decision fusion for the classification of urban remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.876708
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.inffus.2017.10.005_bib0045
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.inffus.2017.10.005_bib0013
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 18
  start-page: 161
  issue: 1
  year: 2014
  ident: 10.1016/j.inffus.2017.10.005_bib0036
  article-title: Integrated biometrics template protection technique based on fingerprint and palmprint feature-level fusion
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2013.09.001
– volume: 37
  start-page: 780
  issue: 2
  year: 1999
  ident: 10.1016/j.inffus.2017.10.005_bib0016
  article-title: Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.752194
– ident: 10.1016/j.inffus.2017.10.005_bib0046
  doi: 10.1145/2733373.2807412
– start-page: 2115
  year: 2001
  ident: 10.1016/j.inffus.2017.10.005_bib0035
  article-title: Information fusion in biometrics
– volume: 31
  start-page: 1422
  issue: 11
  year: 2010
  ident: 10.1016/j.inffus.2017.10.005_bib0033
  article-title: Gender recognition: a multiscale decision fusion approach
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2010.02.010
– start-page: 185
  year: 2010
  ident: 10.1016/j.inffus.2017.10.005_bib0044
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.inffus.2017.10.005_bib0006
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.inffus.2017.10.005_bib0025
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 26
  start-page: 1045
  year: 2013
  ident: 10.1016/j.inffus.2017.10.005_bib0041
  article-title: The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-013-9622-7
– volume: 10
  issue: 4
  year: 2015
  ident: 10.1016/j.inffus.2017.10.005_bib0019
  article-title: A new method of detecting pulmonary nodules with PET/CT based on an improved watershed algorithm
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0123694
– volume: 26
  start-page: 797
  issue: 4
  year: 2013
  ident: 10.1016/j.inffus.2017.10.005_bib0018
  article-title: Combination of radiological and gray level co-occurrence matrix textural features used to distinguish solitary pulmonary nodules by computed tomography
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-012-9547-6
– volume: 61
  start-page: 69
  issue: 2
  year: 2011
  ident: 10.1016/j.inffus.2017.10.005_bib0001
  article-title: Global cancer statistics, 2012
  publication-title: Ca Cancer J. Clin.
  doi: 10.3322/caac.20107
– volume: 1
  start-page: 65
  issue: 1
  year: 1988
  ident: 10.1016/j.inffus.2017.10.005_bib0011
  article-title: Theory of the backpropagation neural network
  publication-title: Neural Netw.
– volume: 24
  start-page: 774
  issue: 6
  year: 1963
  ident: 10.1016/j.inffus.2017.10.005_bib0007
  article-title: Pattern recognition using generalized portrait method
  publication-title: Autom. Remote Control
– volume: 35
  start-page: 1285
  issue: 5
  year: 2016
  ident: 10.1016/j.inffus.2017.10.005_bib0026
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2528162
– volume: 24
  start-page: 122
  year: 2015
  ident: 10.1016/j.inffus.2017.10.005_bib0014
  article-title: An ensemble approach of dual base learners for multi-class classification problems
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2014.09.002
– volume: 39
  start-page: 11503
  issue: 13
  year: 2012
  ident: 10.1016/j.inffus.2017.10.005_bib0012
  article-title: Performance comparison of artificial neural network and logistic regression model for differentiating lung nodules on CT scans
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.04.001
– volume: 22
  start-page: 1569
  issue: 10
  year: 1995
  ident: 10.1016/j.inffus.2017.10.005_bib0024
  article-title: Analysis of spiculation in the computerized classification of mammographic masses
  publication-title: Med. Phys.
  doi: 10.1118/1.597626
– volume: 21
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.inffus.2017.10.005_bib0022
  article-title: Fast Fourier transform analysis of pulmonary nodules on computed tomography images from patients with lung cancer
  publication-title: Ann. Thorac. Cardiovasc. Surg. Off. J. Assoc. Thorac. Cardiovasc. Surg. Asia
– volume: 18
  start-page: 175
  issue: 18
  year: 2014
  ident: 10.1016/j.inffus.2017.10.005_bib0038
  article-title: A new multiple decisions fusion rule for targets detection in multiple sensors distributed detection systems with data fusion
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2013.09.002
– volume: 3
  start-page: 610
  issue: 6
  year: 1973
  ident: 10.1016/j.inffus.2017.10.005_bib0047
  article-title: Textural features for image classification
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1973.4309314
SSID ssj0017031
Score 2.584709
Snippet •Using nodule heterogeneity (texture/shape) features and representation learned by a deep model.•Constructing an ensemble classifier using back propagation...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102
SubjectTerms AdaBoost, information fusion
Back propagation neural network (BPNN)
Chest CT
Deep convolutional neural network (DCNN)
Lung nodule classification
Title Fusing texture, shape and deep model-learned information at decision level for automated classification of lung nodules on chest CT
URI https://dx.doi.org/10.1016/j.inffus.2017.10.005
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SL3oQn_gmB4-m7Ta7SfZYiqU-EW2htyW7SbRStqXdvXrxjzuzj6IgCp6WZGdgyWQnX-Cbbwi5iOGOnOiAMxRDYz4XjikuLJOKu7aW2rMhViPfP4jByL8ZB-M10qtrYZBWWeX-MqcX2bqaaVWr2ZpPJq1nvHl0Ah4AosCLDSp--r7EXd58X9E8PNRnLzRThWBoXZfPFRwvCKLLUbTbk82C4xX8fDx9OXL622Srwoq0W37ODlmz6S7ZvF8JrS73yEcfiesvFPkb-cJe0uWrnluqU0ONtXNaNLphRWsIa2ilkoqxoDoDi7K_Dp0ic4jCO6rzbAYGYJsgrEYeUWk-c3QKeYGmM5NP7ZLCVNFqi_aG-2TUvxr2Bqzqq8ASLjsZ00YbqeJ2ohz84B0TAmh0Kgkk94VxccdZB4OQax46a50ntFBataVToW-EafMD0khnqT0kNI41IBDPamGkjw3-BDgGwsrEcYBO4ojwejmjpBIdx94X06hml71FZRAiDALOQhCOCFt5zUvRjT_sZR2p6NvmieBc-NXz-N-eJ2QDRqpk7p6SRrbI7Rngkyw-LzbgOVnv9p7uHvF5fTt4-AR31ejQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6x7YHlgGDZFW984LjePpzYzhFVVC3QXigSt8iJ7d2iKq3a5Bfwx5nJo2Kl1SJxjD0jRR5n_Fn55huA6wTvyKkJBScxNB4I6bkW0nGlhe8aZXouomrkyVSOnoK75_B5BwZNLQzRKuvcX-X0MlvXI516NTur-bzzSDePfihCRBR0sRFfoE3qVGEL2jfj-9F0-zOBJNpL2VQpOTk0FXQlzQvj6AvS7e6pXyXNK_z3CfXu1BkewH4NF9lN9UaHsOOyb7A32Wqtbo7gdUjc9d-MKBzF2v1kmz9m5ZjJLLPOrVjZ64aX3SGcZbVQKoWDmRwtqhY7bEHkIYZzzBT5Eg3QNiVkTVSiynzp2QJTA8uWtli4DcOhstsWG8y-w9PwdjYY8bq1Ak-F6ufcWGOVTrqp9viN922EuNHrNFQikNYnfe88PkTCiMg753vSSG10V3kdBVbarvgBrWyZuWNgSWIQhPSckVYF1ONPomMonUq9QPQkT0A0yxmnte44tb9YxA3B7CWughBTEGgUg3ACfOu1qnQ3PrBXTaTiv_ZPjEfDfz1PP-15Bbuj2eQhfhhP78_gK87oish7Dq18XbgLhCt5cllvxzcj5uns
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusing+texture%2C+shape+and+deep+model-learned+information+at+decision+level+for+automated+classification+of+lung+nodules+on+chest+CT&rft.jtitle=Information+fusion&rft.au=Xie%2C+Yutong&rft.au=Zhang%2C+Jianpeng&rft.au=Xia%2C+Yong&rft.au=Fulham%2C+Michael&rft.date=2018-07-01&rft.pub=Elsevier+B.V&rft.issn=1566-2535&rft.eissn=1872-6305&rft.volume=42&rft.spage=102&rft.epage=110&rft_id=info:doi/10.1016%2Fj.inffus.2017.10.005&rft.externalDocID=S1566253516301063
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1566-2535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1566-2535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1566-2535&client=summon