On hyperparameter optimization of machine learning algorithms: Theory and practice

Machine learning algorithms have been used widely in various applications and areas. To fit a machine learning model into different problems, its hyper-parameters must be tuned. Selecting the best hyper-parameter configuration for machine learning models has a direct impact on the model’s performanc...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 415; pp. 295 - 316
Main Authors Yang, Li, Shami, Abdallah
Format Journal Article
LanguageEnglish
Published Elsevier B.V 20.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Machine learning algorithms have been used widely in various applications and areas. To fit a machine learning model into different problems, its hyper-parameters must be tuned. Selecting the best hyper-parameter configuration for machine learning models has a direct impact on the model’s performance. It often requires deep knowledge of machine learning algorithms and appropriate hyper-parameter optimization techniques. Although several automatic optimization techniques exist, they have different strengths and drawbacks when applied to different types of problems. In this paper, optimizing the hyper-parameters of common machine learning models is studied. We introduce several state-of-the-art optimization techniques and discuss how to apply them to machine learning algorithms. Many available libraries and frameworks developed for hyper-parameter optimization problems are provided, and some open challenges of hyper-parameter optimization research are also discussed in this paper. Moreover, experiments are conducted on benchmark datasets to compare the performance of different optimization methods and provide practical examples of hyper-parameter optimization. This survey paper will help industrial users, data analysts, and researchers to better develop machine learning models by identifying the proper hyper-parameter configurations effectively.
AbstractList Machine learning algorithms have been used widely in various applications and areas. To fit a machine learning model into different problems, its hyper-parameters must be tuned. Selecting the best hyper-parameter configuration for machine learning models has a direct impact on the model’s performance. It often requires deep knowledge of machine learning algorithms and appropriate hyper-parameter optimization techniques. Although several automatic optimization techniques exist, they have different strengths and drawbacks when applied to different types of problems. In this paper, optimizing the hyper-parameters of common machine learning models is studied. We introduce several state-of-the-art optimization techniques and discuss how to apply them to machine learning algorithms. Many available libraries and frameworks developed for hyper-parameter optimization problems are provided, and some open challenges of hyper-parameter optimization research are also discussed in this paper. Moreover, experiments are conducted on benchmark datasets to compare the performance of different optimization methods and provide practical examples of hyper-parameter optimization. This survey paper will help industrial users, data analysts, and researchers to better develop machine learning models by identifying the proper hyper-parameter configurations effectively.
Author Yang, Li
Shami, Abdallah
Author_xml – sequence: 1
  givenname: Li
  surname: Yang
  fullname: Yang, Li
  email: lyang339@uwo.ca
– sequence: 2
  givenname: Abdallah
  surname: Shami
  fullname: Shami, Abdallah
  email: abdallah.shami@uwo.ca
BookMark eNqFkMtKAzEYhYNUsFbfwEVeYMYkc00XghRvUChIXYd_kn86KZ1kyEShPr2tdeVCV2f1Hc75LsnEeYeE3HCWcsbL223q8F37PhVMsJRVKSv5GZnyuhJJLepyQqZMiiIRGRcX5HIct4zxigs5Ja8rR7v9gGGAAD1GDNQP0fb2E6L1jvqW9qA765DuEIKzbkNht_HBxq4f53TdoQ97Cs7QIYCOVuMVOW9hN-L1T87I2-PDevGcLFdPL4v7ZaKzSsQEGim1kE0uDZS6ZgWKouRNzk0mSwDGJGBhsOJZY7TM8pzVheZoWol5LnmWzcj81KuDH8eArdI2fq-OAexOcaaOdtRWneyoox3FKnWwc4DzX_AQbA9h_x92d8LwcOzDYlCjtug0GhtQR2W8_bvgC_TdhOY
CitedBy_id crossref_primary_10_1007_s11227_024_06716_3
crossref_primary_10_1016_j_oceaneng_2022_112595
crossref_primary_10_1109_TMTT_2022_3218024
crossref_primary_10_1016_j_mtcomm_2024_109391
crossref_primary_10_1109_JIOT_2023_3253813
crossref_primary_10_1109_TCNS_2024_3395723
crossref_primary_10_1109_ACCESS_2024_3410675
crossref_primary_10_1016_j_asoc_2022_109724
crossref_primary_10_1111_exsy_13539
crossref_primary_10_1109_IOTM_0001_2100012
crossref_primary_10_3390_electronics13234775
crossref_primary_10_1088_2634_4505_acef57
crossref_primary_10_1016_j_atech_2025_100851
crossref_primary_10_1016_j_ifset_2024_103773
crossref_primary_10_1007_s11709_024_1025_y
crossref_primary_10_1371_journal_pone_0289195
crossref_primary_10_1186_s13059_023_03138_x
crossref_primary_10_3390_rs14153694
crossref_primary_10_1155_2022_1940375
crossref_primary_10_1007_s11831_022_09786_9
crossref_primary_10_1111_1556_4029_15473
crossref_primary_10_1007_s10589_024_00633_0
crossref_primary_10_1016_j_ymssp_2022_109976
crossref_primary_10_3390_diagnostics13223439
crossref_primary_10_1515_jisys_2024_0077
crossref_primary_10_1016_j_isci_2022_105853
crossref_primary_10_3389_fcell_2023_1164757
crossref_primary_10_17341_gazimmfd_1023147
crossref_primary_10_1016_j_gsf_2023_101541
crossref_primary_10_1111_ejss_13204
crossref_primary_10_1002_cjce_25358
crossref_primary_10_1080_19401493_2024_2399053
crossref_primary_10_1016_j_conbuildmat_2024_139398
crossref_primary_10_1007_s12257_024_00174_7
crossref_primary_10_1016_j_heliyon_2024_e35778
crossref_primary_10_32604_jai_2023_045617
crossref_primary_10_18267_j_aip_226
crossref_primary_10_3390_info15060326
crossref_primary_10_1111_jfr3_12947
crossref_primary_10_3390_app132413157
crossref_primary_10_1049_tje2_12292
crossref_primary_10_3390_s23115243
crossref_primary_10_1016_j_asoc_2024_111362
crossref_primary_10_1016_j_ceramint_2022_06_156
crossref_primary_10_1016_j_engappai_2025_110075
crossref_primary_10_1109_ACCESS_2025_3529622
crossref_primary_10_1007_s11831_023_10005_2
crossref_primary_10_32604_cmc_2023_046478
crossref_primary_10_3390_jcs9030103
crossref_primary_10_1016_j_ijdrr_2023_104109
crossref_primary_10_1016_j_esr_2024_101436
crossref_primary_10_1016_j_inffus_2024_102914
crossref_primary_10_1049_cmu2_12735
crossref_primary_10_3390_w15132349
crossref_primary_10_38016_jista_1566965
crossref_primary_10_1016_j_neuroimage_2023_120253
crossref_primary_10_1111_mice_13387
crossref_primary_10_1371_journal_pone_0303566
crossref_primary_10_3390_su14094909
crossref_primary_10_1007_s11269_024_03940_7
crossref_primary_10_1021_acs_energyfuels_3c04930
crossref_primary_10_1007_s11042_024_18156_5
crossref_primary_10_1080_10106049_2022_2082550
crossref_primary_10_1109_ACCESS_2024_3429073
crossref_primary_10_1007_s43995_024_00094_w
crossref_primary_10_1002_mp_16299
crossref_primary_10_1016_j_engappai_2024_107877
crossref_primary_10_3390_electronics11213513
crossref_primary_10_1016_j_apenergy_2022_120096
crossref_primary_10_1016_j_bspc_2023_104894
crossref_primary_10_1103_PhysRevE_111_035303
crossref_primary_10_1038_s41598_024_82838_1
crossref_primary_10_1080_02286203_2024_2371682
crossref_primary_10_3390_w14010026
crossref_primary_10_1016_j_measurement_2024_115540
crossref_primary_10_1007_s44196_024_00653_y
crossref_primary_10_3390_electronics11111775
crossref_primary_10_35940_ijies_E4124_11060624
crossref_primary_10_1155_2022_2123662
crossref_primary_10_1162_opmi_a_00126
crossref_primary_10_2322_tjsass_67_1
crossref_primary_10_1109_ACCESS_2021_3138976
crossref_primary_10_1016_j_cej_2023_144826
crossref_primary_10_1016_j_jweia_2025_106047
crossref_primary_10_3390_plants14050653
crossref_primary_10_1186_s40537_024_01020_6
crossref_primary_10_1016_j_engappai_2024_107869
crossref_primary_10_3390_app14072950
crossref_primary_10_46300_9106_2022_16_134
crossref_primary_10_1109_ACCESS_2024_3443145
crossref_primary_10_11648_j_ajist_20240802_12
crossref_primary_10_1016_j_conbuildmat_2023_133540
crossref_primary_10_1109_ACCESS_2021_3134138
crossref_primary_10_1016_j_ribaf_2022_101846
crossref_primary_10_31127_tuje_1624366
crossref_primary_10_31801_cfsuasmas_899206
crossref_primary_10_1016_j_heliyon_2024_e32495
crossref_primary_10_1016_j_chaos_2023_113927
crossref_primary_10_1541_ieejsmas_145_33
crossref_primary_10_3390_molecules26237254
crossref_primary_10_1016_j_pnsc_2024_07_024
crossref_primary_10_1109_ACCESS_2024_3456630
crossref_primary_10_1016_j_tbs_2023_100640
crossref_primary_10_1007_s10853_023_08901_w
crossref_primary_10_1007_s10462_024_10829_9
crossref_primary_10_1007_s10115_024_02111_9
crossref_primary_10_3390_en16114271
crossref_primary_10_1016_j_engappai_2024_108901
crossref_primary_10_1109_TAI_2023_3322394
crossref_primary_10_1109_ACCESS_2020_3042834
crossref_primary_10_1111_iwj_14556
crossref_primary_10_1016_j_simpa_2022_100383
crossref_primary_10_1016_j_asoc_2024_112652
crossref_primary_10_3390_ani14213082
crossref_primary_10_1007_s13201_024_02301_4
crossref_primary_10_1016_j_jmrt_2024_06_076
crossref_primary_10_1016_j_nima_2024_169232
crossref_primary_10_1002_mop_33691
crossref_primary_10_1007_s10586_023_04001_1
crossref_primary_10_1016_j_ijft_2024_100849
crossref_primary_10_1007_s10950_023_10168_2
crossref_primary_10_1021_acs_jproteome_4c00204
crossref_primary_10_1061__ASCE_CF_1943_5509_0001664
crossref_primary_10_3390_app14219766
crossref_primary_10_1016_j_jksuci_2023_101740
crossref_primary_10_1007_s10712_024_09853_9
crossref_primary_10_1007_s12597_024_00746_4
crossref_primary_10_1088_2057_1976_adbdd3
crossref_primary_10_1061_JPCFEV_CFENG_4323
crossref_primary_10_3390_electronics12071663
crossref_primary_10_1007_s44196_024_00633_2
crossref_primary_10_1016_j_measurement_2024_114895
crossref_primary_10_1109_TCAD_2023_3305934
crossref_primary_10_1109_ACCESS_2025_3538566
crossref_primary_10_1002_wwp2_12255
crossref_primary_10_3390_fire8040121
crossref_primary_10_1007_s00466_024_02490_4
crossref_primary_10_1021_acs_jctc_2c00702
crossref_primary_10_1002_mma_10346
crossref_primary_10_1016_j_istruc_2023_06_022
crossref_primary_10_3390_a17120588
crossref_primary_10_3390_s24041310
crossref_primary_10_4236_jcc_2024_123010
crossref_primary_10_1016_j_indcrop_2023_116750
crossref_primary_10_1016_j_ins_2022_08_091
crossref_primary_10_3390_technologies11040087
crossref_primary_10_3389_fnins_2024_1333712
crossref_primary_10_1016_j_ins_2024_121824
crossref_primary_10_1007_s00603_024_04287_6
crossref_primary_10_1007_s41660_023_00367_2
crossref_primary_10_3390_sym15010140
crossref_primary_10_7232_JKIIE_2024_50_6_418
crossref_primary_10_1016_j_jconhyd_2021_103844
crossref_primary_10_1109_TCOMM_2022_3187150
crossref_primary_10_1007_s00521_024_09681_3
crossref_primary_10_3390_cells12222645
crossref_primary_10_1016_j_gsd_2024_101403
crossref_primary_10_1016_j_pce_2022_103229
crossref_primary_10_1016_j_neucom_2021_12_086
crossref_primary_10_1371_journal_pone_0284951
crossref_primary_10_1016_j_compchemeng_2023_108556
crossref_primary_10_1016_j_engappai_2025_110043
crossref_primary_10_1016_j_iot_2024_101164
crossref_primary_10_1109_ACCESS_2023_3312046
crossref_primary_10_1016_j_engappai_2023_106671
crossref_primary_10_3390_electronics12204289
crossref_primary_10_1063_5_0238444
crossref_primary_10_1016_j_knosys_2025_113351
crossref_primary_10_1016_j_pnucene_2025_105722
crossref_primary_10_3390_s22093506
crossref_primary_10_1016_j_engstruct_2021_112808
crossref_primary_10_1109_ACCESS_2022_3166525
crossref_primary_10_1016_j_jobe_2022_105570
crossref_primary_10_3846_ntcs_2024_21574
crossref_primary_10_1109_TPWRS_2024_3437651
crossref_primary_10_5194_gmd_16_1925_2023
crossref_primary_10_1145_3637066
crossref_primary_10_1016_j_envsoft_2024_106264
crossref_primary_10_1016_j_ijmecsci_2024_109108
crossref_primary_10_1016_j_jobe_2025_111893
crossref_primary_10_1111_ffe_14410
crossref_primary_10_1016_j_autcon_2021_103653
crossref_primary_10_1177_02670836241308470
crossref_primary_10_1016_j_aej_2025_03_022
crossref_primary_10_1021_acs_iecr_4c00075
crossref_primary_10_1186_s40537_024_00956_z
crossref_primary_10_1109_ACCESS_2023_3235953
crossref_primary_10_1007_s12243_021_00884_6
crossref_primary_10_1115_1_4053824
crossref_primary_10_1007_s10489_023_04820_0
crossref_primary_10_1016_j_biortech_2024_130361
crossref_primary_10_1016_j_asr_2024_03_014
crossref_primary_10_1016_j_energy_2023_129988
crossref_primary_10_1109_JSEN_2024_3476918
crossref_primary_10_1016_j_compbiolchem_2021_107619
crossref_primary_10_1109_ACCESS_2023_3340719
crossref_primary_10_1002_ett_4443
crossref_primary_10_1021_acs_iecr_2c04583
crossref_primary_10_1155_2021_7231126
crossref_primary_10_1016_j_comptc_2024_114599
crossref_primary_10_1016_j_aichem_2024_100073
crossref_primary_10_3390_diagnostics13122107
crossref_primary_10_1111_exsy_13379
crossref_primary_10_1016_j_neucom_2023_126516
crossref_primary_10_3390_informatics11010006
crossref_primary_10_3390_land13091427
crossref_primary_10_1080_10106049_2024_2432866
crossref_primary_10_1021_acs_analchem_2c00370
crossref_primary_10_3390_app122412606
crossref_primary_10_1007_s11053_024_10372_y
crossref_primary_10_1038_s41598_024_62959_3
crossref_primary_10_3390_atmos14060953
crossref_primary_10_1002_int_22700
crossref_primary_10_1016_j_conbuildmat_2025_140256
crossref_primary_10_1016_j_tra_2021_10_001
crossref_primary_10_1109_TNSM_2023_3278937
crossref_primary_10_1007_s11740_022_01130_1
crossref_primary_10_1109_JSTARS_2024_3382580
crossref_primary_10_1109_TCSI_2021_3102303
crossref_primary_10_1177_03635465231189201
crossref_primary_10_3389_fbinf_2024_1457619
crossref_primary_10_1016_j_bspc_2024_107155
crossref_primary_10_1177_09544070231158240
crossref_primary_10_3846_jcem_2024_21356
crossref_primary_10_3390_math12020295
crossref_primary_10_1007_s00477_025_02911_7
crossref_primary_10_56124_encriptar_v6i11_0001
crossref_primary_10_1016_j_jece_2024_113011
crossref_primary_10_1016_j_nima_2023_168694
crossref_primary_10_3389_fpls_2025_1498913
crossref_primary_10_3390_ijerph20065059
crossref_primary_10_3390_app13031912
crossref_primary_10_1016_j_corsci_2022_110500
crossref_primary_10_3390_en15093242
crossref_primary_10_1007_s00366_023_01809_8
crossref_primary_10_1109_TPEL_2023_3328438
crossref_primary_10_3390_w16233515
crossref_primary_10_1080_10242422_2022_2030317
crossref_primary_10_1016_j_segan_2023_101160
crossref_primary_10_1186_s12874_023_02056_7
crossref_primary_10_1016_j_epsr_2024_111119
crossref_primary_10_1007_s13762_024_06308_x
crossref_primary_10_1007_s00500_025_10405_5
crossref_primary_10_1016_j_compbiomed_2025_110044
crossref_primary_10_3390_math12162542
crossref_primary_10_1007_s12145_023_01120_6
crossref_primary_10_1016_j_ces_2024_121165
crossref_primary_10_1016_j_biombioe_2025_107644
crossref_primary_10_1016_j_jclepro_2024_144621
crossref_primary_10_3390_app10238494
crossref_primary_10_3389_fdata_2024_1406365
crossref_primary_10_1007_s00354_023_00215_4
crossref_primary_10_70669_ijedt_1491511
crossref_primary_10_1051_bioconf_202515707002
crossref_primary_10_3390_en18010105
crossref_primary_10_1007_s10586_023_04161_0
crossref_primary_10_23919_CSMS_2024_0019
crossref_primary_10_1007_s00521_024_10398_6
crossref_primary_10_1016_j_mfglet_2023_08_056
crossref_primary_10_1038_s41598_023_39079_5
crossref_primary_10_1080_15623599_2024_2304392
crossref_primary_10_3390_su14031729
crossref_primary_10_1002_csc2_20836
crossref_primary_10_3390_knowledge4040029
crossref_primary_10_1016_j_gee_2024_01_007
crossref_primary_10_3390_su17030827
crossref_primary_10_1016_j_jclepro_2024_144612
crossref_primary_10_1016_j_engappai_2023_106873
crossref_primary_10_1016_j_eswa_2022_119162
crossref_primary_10_1093_glycob_cwad033
crossref_primary_10_1109_TETCI_2024_3369331
crossref_primary_10_1016_j_knosys_2021_107835
crossref_primary_10_1016_j_advwatres_2023_104569
crossref_primary_10_1007_s44268_023_00019_x
crossref_primary_10_1007_s11042_024_18890_w
crossref_primary_10_3390_app15020501
crossref_primary_10_1016_j_jobe_2023_106081
crossref_primary_10_1016_j_mfglet_2024_09_156
crossref_primary_10_1016_j_est_2024_110560
crossref_primary_10_1016_j_jksuci_2023_101737
crossref_primary_10_1016_j_osnem_2023_100273
crossref_primary_10_1016_j_est_2023_109037
crossref_primary_10_1016_j_measurement_2021_110660
crossref_primary_10_3390_agronomy14020254
crossref_primary_10_1177_20552076251314097
crossref_primary_10_1039_D2NA00608A
crossref_primary_10_1177_03611981241287196
crossref_primary_10_1109_JSEN_2021_3072404
crossref_primary_10_1007_s00603_024_04012_3
crossref_primary_10_3390_w14223647
crossref_primary_10_29137_umagd_1468766
crossref_primary_10_1080_01431161_2023_2217982
crossref_primary_10_1117_1_NPh_11_2_025001
crossref_primary_10_3390_jcm13154337
crossref_primary_10_1080_08982112_2024_2374888
crossref_primary_10_1002_eom2_12194
crossref_primary_10_1038_s41598_025_85371_x
crossref_primary_10_1007_s11783_024_1780_y
crossref_primary_10_1109_TDSC_2023_3234561
crossref_primary_10_1016_j_jhydrol_2024_132549
crossref_primary_10_1007_s42979_023_02544_z
crossref_primary_10_1016_j_aap_2024_107740
crossref_primary_10_3390_w15010059
crossref_primary_10_1016_j_buildenv_2023_110276
crossref_primary_10_1016_j_ymssp_2023_110888
crossref_primary_10_3390_polym16010115
crossref_primary_10_1016_j_energy_2025_135396
crossref_primary_10_1002_biot_202100239
crossref_primary_10_1016_j_knosys_2023_110580
crossref_primary_10_1016_j_eswa_2023_122682
crossref_primary_10_1007_s11042_023_15995_6
crossref_primary_10_3233_JIFS_219376
crossref_primary_10_1109_TRO_2023_3344033
crossref_primary_10_1016_j_jocs_2021_101517
crossref_primary_10_3390_s25010068
crossref_primary_10_1088_2632_2153_acb316
crossref_primary_10_1016_j_compag_2022_107540
crossref_primary_10_3389_fphys_2023_1281506
crossref_primary_10_1007_s00170_024_13351_y
crossref_primary_10_1016_j_atech_2024_100543
crossref_primary_10_1016_j_engappai_2023_107700
crossref_primary_10_1061_JPEODX_PVENG_1382
crossref_primary_10_1080_08839514_2022_2071406
crossref_primary_10_1016_j_iot_2023_101012
crossref_primary_10_1016_j_compbiomed_2023_106722
crossref_primary_10_3390_aerospace12020106
crossref_primary_10_1007_s00466_022_02238_y
crossref_primary_10_1039_D2SM00431C
crossref_primary_10_1186_s12884_025_07303_x
crossref_primary_10_3390_w13233390
crossref_primary_10_1016_j_chemosphere_2024_142697
crossref_primary_10_1016_j_iswa_2022_200100
crossref_primary_10_3390_analytics3010003
crossref_primary_10_1016_j_procs_2023_01_216
crossref_primary_10_1016_j_aap_2023_107235
crossref_primary_10_3390_w16162216
crossref_primary_10_1016_j_jag_2024_104158
crossref_primary_10_1016_j_energy_2024_130638
crossref_primary_10_1063_5_0197688
crossref_primary_10_1016_j_envpol_2024_123386
crossref_primary_10_1049_itr2_12551
crossref_primary_10_15446_dyna_v92n235_115909
crossref_primary_10_3390_info14040210
crossref_primary_10_1007_s10869_024_09997_w
crossref_primary_10_7717_peerj_cs_606
crossref_primary_10_1016_j_cherd_2022_08_041
crossref_primary_10_1016_j_ecoinf_2023_102141
crossref_primary_10_1016_j_eswa_2023_120244
crossref_primary_10_31436_iiumej_v26i1_3379
crossref_primary_10_1016_j_camwa_2025_01_014
crossref_primary_10_1016_j_engappai_2022_105687
crossref_primary_10_48084_etasr_8863
crossref_primary_10_1007_s11063_021_10606_7
crossref_primary_10_1109_ACCESS_2025_3543776
crossref_primary_10_1177_13272314241295925
crossref_primary_10_1016_j_compgeo_2023_105707
crossref_primary_10_1016_j_cageo_2024_105768
crossref_primary_10_3390_s22134964
crossref_primary_10_1007_s41939_025_00808_0
crossref_primary_10_1093_bioinformatics_btad577
crossref_primary_10_1016_j_scienta_2023_112651
crossref_primary_10_1109_ACCESS_2025_3544625
crossref_primary_10_3758_s13428_024_02474_5
crossref_primary_10_1016_j_jlp_2025_105594
crossref_primary_10_1016_j_microc_2024_111981
crossref_primary_10_2139_ssrn_4010487
crossref_primary_10_3390_s23156843
crossref_primary_10_1016_j_procir_2023_06_074
crossref_primary_10_1002_jtr_2812
crossref_primary_10_1007_s13349_024_00825_6
crossref_primary_10_2166_hydro_2023_006
crossref_primary_10_1016_j_advengsoft_2025_103883
crossref_primary_10_1016_j_ijhydene_2025_02_342
crossref_primary_10_1109_JOE_2022_3180764
crossref_primary_10_1007_s10489_023_04598_1
crossref_primary_10_1080_15567036_2023_2223154
crossref_primary_10_1080_00223131_2024_2449451
crossref_primary_10_1007_s10586_024_04376_9
crossref_primary_10_1016_j_ifacol_2024_12_027
crossref_primary_10_3934_DSFE
crossref_primary_10_1016_j_jhydrol_2024_132228
crossref_primary_10_1016_j_engfracmech_2024_110204
crossref_primary_10_1049_itr2_12461
crossref_primary_10_5937_bnsr15_54993
crossref_primary_10_1016_j_rsase_2024_101154
crossref_primary_10_3390_su151712836
crossref_primary_10_1016_j_ins_2024_121693
crossref_primary_10_1016_j_foodres_2023_113105
crossref_primary_10_7554_eLife_72819
crossref_primary_10_1155_2021_6662932
crossref_primary_10_1007_s42243_024_01179_5
crossref_primary_10_1016_j_conbuildmat_2024_135114
crossref_primary_10_3390_buildings13092215
crossref_primary_10_1145_3579829
crossref_primary_10_1016_j_engappai_2022_105786
crossref_primary_10_1111_coin_12689
crossref_primary_10_1016_j_ijpe_2023_109099
crossref_primary_10_3390_a16050256
crossref_primary_10_1016_j_engappai_2024_109228
crossref_primary_10_1109_ACCESS_2024_3403457
crossref_primary_10_3390_info16010060
crossref_primary_10_1007_s10706_023_02535_0
crossref_primary_10_1109_JIOT_2024_3429338
crossref_primary_10_1111_1748_8583_12426
crossref_primary_10_3390_app14135909
crossref_primary_10_1016_j_asoc_2022_109285
crossref_primary_10_3390_ijgi11020130
crossref_primary_10_1109_JSTARS_2024_3372138
crossref_primary_10_1007_s12065_022_00764_5
crossref_primary_10_1007_s11440_023_01871_y
crossref_primary_10_3390_agronomy13041003
crossref_primary_10_3390_su15010522
crossref_primary_10_1007_s10651_024_00642_6
crossref_primary_10_1080_00405000_2023_2269760
crossref_primary_10_1016_j_cma_2023_116155
crossref_primary_10_3390_appliedmath5010008
crossref_primary_10_1016_j_scitotenv_2022_153311
crossref_primary_10_1016_j_measurement_2023_112465
crossref_primary_10_1016_j_scs_2022_104034
crossref_primary_10_1016_j_icheatmasstransfer_2024_108537
crossref_primary_10_1007_s13369_024_08935_5
crossref_primary_10_1016_j_crmeth_2023_100547
crossref_primary_10_1016_j_engstruct_2024_118404
crossref_primary_10_1109_TNSM_2024_3447532
crossref_primary_10_1016_j_ndteint_2023_102969
crossref_primary_10_1016_j_rineng_2025_104307
crossref_primary_10_1038_s41598_024_83666_z
crossref_primary_10_2139_ssrn_4136053
crossref_primary_10_3390_computers13070168
crossref_primary_10_3389_fmats_2024_1377941
crossref_primary_10_1080_1206212X_2025_2452849
crossref_primary_10_3390_ma16124366
crossref_primary_10_1038_s41598_025_92253_9
crossref_primary_10_1109_OJVT_2024_3457499
crossref_primary_10_1016_j_epsr_2021_107569
crossref_primary_10_1016_j_knosys_2024_112706
crossref_primary_10_1016_j_infrared_2023_104692
crossref_primary_10_1007_s13349_022_00596_y
crossref_primary_10_55213_kmujens_1418280
crossref_primary_10_1016_j_eswa_2024_125923
crossref_primary_10_1111_1475_679X_12590
crossref_primary_10_1016_j_cageo_2024_105723
crossref_primary_10_1061__ASCE_SC_1943_5576_0000683
crossref_primary_10_1515_revce_2023_0021
crossref_primary_10_1016_j_buildenv_2025_112620
crossref_primary_10_3390_pr13030877
crossref_primary_10_1016_j_fub_2025_100046
crossref_primary_10_1002_hyp_15309
crossref_primary_10_1016_j_ecoinf_2024_102887
crossref_primary_10_1016_j_mlwa_2024_100539
crossref_primary_10_1016_j_uclim_2024_101962
crossref_primary_10_61453_jods_v2023no56
crossref_primary_10_1016_j_ymssp_2023_110676
crossref_primary_10_1016_j_rineng_2025_104323
crossref_primary_10_1109_COMST_2023_3273121
crossref_primary_10_1007_s11425_023_2293_3
crossref_primary_10_1016_j_ijepes_2023_109695
crossref_primary_10_1038_s41598_024_64594_4
crossref_primary_10_1016_j_matdes_2024_113443
crossref_primary_10_1016_j_resourpol_2023_103994
crossref_primary_10_1080_15481603_2022_2153447
crossref_primary_10_1016_j_energy_2024_131221
crossref_primary_10_3390_rs14215425
crossref_primary_10_1177_03019233241265806
crossref_primary_10_3390_biomimetics8030278
crossref_primary_10_14778_3538598_3538604
crossref_primary_10_3390_app14166868
crossref_primary_10_3390_rs16234365
crossref_primary_10_1038_s41597_024_03483_x
crossref_primary_10_1109_ACCESS_2024_3484668
crossref_primary_10_1007_s42107_023_00799_8
crossref_primary_10_1080_19475683_2024_2304203
crossref_primary_10_1016_j_apr_2023_101739
crossref_primary_10_1016_j_wace_2023_100595
crossref_primary_10_3390_coatings15030325
crossref_primary_10_3390_info14110621
crossref_primary_10_1016_j_ecmx_2024_100772
crossref_primary_10_1109_JIOT_2021_3107581
crossref_primary_10_1007_s12553_024_00916_w
crossref_primary_10_1371_journal_pone_0296494
crossref_primary_10_3390_math12142280
crossref_primary_10_1109_ACCESS_2024_3450894
crossref_primary_10_1177_03611981231196152
crossref_primary_10_1039_D4RA01257G
crossref_primary_10_1038_s41598_022_22057_8
crossref_primary_10_1016_j_fuel_2023_129670
crossref_primary_10_1016_j_ejrh_2024_102118
crossref_primary_10_1111_gcb_17548
crossref_primary_10_1007_s10489_024_06206_2
crossref_primary_10_3390_s22072497
crossref_primary_10_1016_j_radphyschem_2022_110444
crossref_primary_10_1016_j_asr_2024_08_048
crossref_primary_10_3390_diagnostics12112879
crossref_primary_10_1093_jbmr_zjae025
crossref_primary_10_1007_s40747_024_01400_8
crossref_primary_10_1016_j_ecoinf_2024_102868
crossref_primary_10_1016_j_apenergy_2024_123423
crossref_primary_10_1016_j_uclim_2022_101357
crossref_primary_10_1038_s41598_024_73932_5
crossref_primary_10_1186_s43065_024_00094_z
crossref_primary_10_3390_app13158589
crossref_primary_10_1016_j_compgeo_2024_106155
crossref_primary_10_1186_s43065_023_00086_5
crossref_primary_10_1016_j_ins_2024_121266
crossref_primary_10_3390_s23135862
crossref_primary_10_1016_j_jmat_2024_07_006
crossref_primary_10_1080_1064119X_2022_2057261
crossref_primary_10_3390_diagnostics14222504
crossref_primary_10_3390_app122010283
crossref_primary_10_3390_app13179906
crossref_primary_10_1016_j_geoen_2024_212899
crossref_primary_10_1016_j_cej_2023_144362
crossref_primary_10_1016_j_eswa_2023_121294
crossref_primary_10_1016_j_jclepro_2023_139233
crossref_primary_10_1007_s42107_024_00994_1
crossref_primary_10_24193_subbi_2024_1_02
crossref_primary_10_3390_rs14163912
crossref_primary_10_1002_int_22611
crossref_primary_10_1007_s12539_024_00656_5
crossref_primary_10_1109_ACCESS_2025_3544699
crossref_primary_10_1016_j_cstp_2023_101009
crossref_primary_10_1016_j_csbj_2024_02_003
crossref_primary_10_1016_j_jgsce_2024_205365
crossref_primary_10_3390_math12193006
crossref_primary_10_1007_s11004_023_10116_3
crossref_primary_10_1007_s41062_025_01894_2
crossref_primary_10_3390_batteries10090324
crossref_primary_10_1007_s00500_024_10350_9
crossref_primary_10_1016_j_wasman_2022_01_012
crossref_primary_10_1016_j_csite_2024_104124
crossref_primary_10_1016_j_epsr_2022_109065
crossref_primary_10_1016_j_aej_2023_11_047
crossref_primary_10_1016_j_rineng_2024_103125
crossref_primary_10_3390_molecules30030650
crossref_primary_10_3390_app13148531
crossref_primary_10_3390_rs17010085
crossref_primary_10_3233_JIFS_233813
crossref_primary_10_1016_j_comnet_2024_110294
crossref_primary_10_1007_s11030_021_10238_y
crossref_primary_10_1016_j_agsy_2024_103886
crossref_primary_10_1016_j_engappai_2024_108120
crossref_primary_10_1016_j_chemosphere_2024_142859
crossref_primary_10_1063_5_0146634
crossref_primary_10_1177_14680874241292695
crossref_primary_10_1371_journal_pone_0311242
crossref_primary_10_1038_s41598_023_44166_8
crossref_primary_10_1016_j_rineng_2024_102908
crossref_primary_10_9758_cpn_24_1165
crossref_primary_10_38124_ijisrt_IJISRT24OCT497
crossref_primary_10_1016_j_bspc_2023_105121
crossref_primary_10_1109_TGRS_2023_3270892
crossref_primary_10_1016_j_compeleceng_2024_109878
crossref_primary_10_3390_s24185975
crossref_primary_10_32604_jbd_2023_041319
crossref_primary_10_3390_rs15184450
crossref_primary_10_1007_s10515_021_00319_5
crossref_primary_10_3934_mbe_2024275
crossref_primary_10_3390_polym17050660
crossref_primary_10_1007_s00170_024_13228_0
crossref_primary_10_1039_D4YA00313F
crossref_primary_10_2139_ssrn_4018990
crossref_primary_10_1016_j_chroma_2023_464467
crossref_primary_10_4108_eetismla_4094
crossref_primary_10_1016_j_biortech_2025_132434
crossref_primary_10_1155_2021_8834713
crossref_primary_10_1007_s10462_020_09948_w
crossref_primary_10_1029_2023GC011037
crossref_primary_10_1109_ACCESS_2024_3441108
crossref_primary_10_1016_j_carres_2025_109453
crossref_primary_10_1016_j_ascom_2024_100857
crossref_primary_10_3390_s23010005
crossref_primary_10_1016_j_oceaneng_2023_116167
crossref_primary_10_1007_s11053_024_10358_w
crossref_primary_10_1016_j_mechmachtheory_2023_105521
crossref_primary_10_1116_6_0003434
crossref_primary_10_1016_j_iot_2023_100882
crossref_primary_10_1016_j_simpat_2023_102811
crossref_primary_10_3390_informatics8040079
crossref_primary_10_1002_hfm_20927
crossref_primary_10_1016_j_scitotenv_2025_178411
crossref_primary_10_1080_10589759_2024_2375567
crossref_primary_10_18596_jotcsa_1473948
crossref_primary_10_1016_j_eswa_2022_118658
crossref_primary_10_1016_j_jss_2024_112159
crossref_primary_10_3390_s24041197
crossref_primary_10_1039_D4RA00710G
crossref_primary_10_1080_27660400_2022_2080483
crossref_primary_10_3390_agronomy14102434
crossref_primary_10_1109_JAS_2024_124335
crossref_primary_10_1016_j_aej_2024_09_084
crossref_primary_10_1016_j_cad_2023_103520
crossref_primary_10_1007_s40098_024_00949_y
crossref_primary_10_1109_ACCESS_2025_3539746
crossref_primary_10_1109_ACCESS_2024_3523415
crossref_primary_10_1007_s11356_024_33987_3
crossref_primary_10_3390_smartcities6050114
crossref_primary_10_1096_fj_202300245R
crossref_primary_10_1016_j_asoc_2024_112282
crossref_primary_10_1177_14759217231174369
crossref_primary_10_1186_s12871_024_02840_y
crossref_primary_10_1016_j_trc_2024_104607
crossref_primary_10_3390_en15155475
crossref_primary_10_1016_j_ijpharm_2024_124888
crossref_primary_10_1016_j_bej_2022_108764
crossref_primary_10_1155_2023_1675867
crossref_primary_10_1109_TCYB_2024_3443396
crossref_primary_10_1016_j_fbp_2023_11_004
crossref_primary_10_1016_j_neucom_2025_129455
crossref_primary_10_1109_TPDS_2021_3133868
crossref_primary_10_1016_j_ins_2024_120500
crossref_primary_10_1049_cit2_12335
crossref_primary_10_1016_j_eswa_2024_123350
crossref_primary_10_1016_j_jafr_2024_101605
crossref_primary_10_3390_fi14050153
crossref_primary_10_1007_s11356_023_30452_5
crossref_primary_10_1016_j_corsci_2024_112100
crossref_primary_10_1002_lrh2_10478
crossref_primary_10_1007_s11356_022_23022_8
crossref_primary_10_1016_j_cie_2024_110103
crossref_primary_10_1007_s13198_024_02535_0
crossref_primary_10_1016_j_ress_2024_110199
crossref_primary_10_1007_s10845_023_02225_x
crossref_primary_10_1109_ACCESS_2023_3312997
crossref_primary_10_1038_s41598_025_87794_y
crossref_primary_10_1159_000539787
crossref_primary_10_1016_j_ijbiomac_2024_138045
crossref_primary_10_1016_j_ijmedinf_2024_105700
crossref_primary_10_1016_j_compbiomed_2021_104606
crossref_primary_10_1016_j_memsci_2024_123105
crossref_primary_10_1088_2053_1591_ad8ca2
crossref_primary_10_1016_j_mtcomm_2024_108804
crossref_primary_10_1186_s13040_024_00387_9
crossref_primary_10_1177_1748006X241279480
crossref_primary_10_1109_TIM_2024_3470020
crossref_primary_10_1016_j_apenergy_2023_121765
crossref_primary_10_1016_j_engappai_2024_109894
crossref_primary_10_2196_50890
crossref_primary_10_1016_j_neucom_2025_129686
crossref_primary_10_3390_math11183813
crossref_primary_10_3390_polym15193962
crossref_primary_10_1109_TSG_2021_3093515
crossref_primary_10_1016_j_jbiotec_2023_10_005
crossref_primary_10_1016_j_eswa_2023_122198
crossref_primary_10_1016_j_jpse_2021_09_007
crossref_primary_10_1371_journal_pone_0292047
crossref_primary_10_1016_j_cscm_2024_e03543
crossref_primary_10_1093_bib_bbae683
crossref_primary_10_2478_remav_2025_0001
crossref_primary_10_1186_s11671_024_04155_w
crossref_primary_10_3390_rs15123095
crossref_primary_10_1109_ACCESS_2024_3512543
crossref_primary_10_1007_s10661_024_13447_8
crossref_primary_10_1007_s11424_022_1039_2
crossref_primary_10_1016_j_cherd_2024_12_040
crossref_primary_10_1109_ACCESS_2021_3079182
crossref_primary_10_1061_JCCEE5_CPENG_5512
crossref_primary_10_1002_pen_26546
crossref_primary_10_1038_s41598_023_41353_5
crossref_primary_10_1007_s00521_024_10260_9
crossref_primary_10_1080_15481603_2022_2152304
crossref_primary_10_1002_asi_24996
crossref_primary_10_1038_s43856_023_00397_4
crossref_primary_10_1038_s41467_022_35108_5
crossref_primary_10_3390_electronics11152417
crossref_primary_10_1007_s10515_023_00402_z
crossref_primary_10_1061_JTEPBS_TEENG_7577
crossref_primary_10_3390_app15042067
crossref_primary_10_1364_OE_549712
crossref_primary_10_3390_jmse10081158
crossref_primary_10_1021_acsomega_5c00075
crossref_primary_10_12677_aam_2025_142085
crossref_primary_10_1016_j_egyai_2023_100319
crossref_primary_10_1111_tgis_70028
crossref_primary_10_1109_TNSE_2024_3391613
crossref_primary_10_1142_S0219622021500425
crossref_primary_10_1016_j_uclim_2023_101485
crossref_primary_10_1016_j_jclepro_2022_131815
crossref_primary_10_1109_ACCESS_2024_3388299
crossref_primary_10_1016_j_mtcomm_2023_107837
crossref_primary_10_3390_ma17030602
crossref_primary_10_1016_j_measurement_2024_114935
crossref_primary_10_1155_2022_7611670
crossref_primary_10_1038_s41524_022_00819_2
crossref_primary_10_1016_j_eti_2024_103793
crossref_primary_10_1016_j_compag_2023_108250
crossref_primary_10_1016_j_engstruct_2023_116359
crossref_primary_10_1002_ett_4827
crossref_primary_10_1016_j_jobe_2025_112372
crossref_primary_10_1038_s41598_024_62641_8
crossref_primary_10_1007_s00477_024_02776_2
crossref_primary_10_1007_s10115_024_02202_7
crossref_primary_10_3390_batteries9050264
crossref_primary_10_1016_j_egyai_2023_100310
crossref_primary_10_1016_j_ijhydene_2024_04_283
crossref_primary_10_3390_s22186826
crossref_primary_10_1109_JBHI_2023_3304369
crossref_primary_10_1007_s41062_024_01466_w
crossref_primary_10_2139_ssrn_4352028
crossref_primary_10_29109_gujsc_1517800
crossref_primary_10_1038_s41598_024_81132_4
crossref_primary_10_1371_journal_pone_0308015
crossref_primary_10_3390_app11209580
crossref_primary_10_1016_j_energy_2022_124152
crossref_primary_10_1016_j_molliq_2024_126327
crossref_primary_10_1371_journal_pcbi_1009928
crossref_primary_10_1109_ACCESS_2021_3132684
crossref_primary_10_3390_electronics13091659
crossref_primary_10_1016_j_biortech_2022_128547
crossref_primary_10_1016_j_actatropica_2024_107225
crossref_primary_10_3390_app14146196
crossref_primary_10_32604_iasc_2023_036871
crossref_primary_10_1007_s00500_021_06403_y
crossref_primary_10_1016_j_imu_2024_101448
crossref_primary_10_1016_j_knosys_2024_111490
crossref_primary_10_1016_j_jgsce_2025_205602
crossref_primary_10_1016_j_nanoen_2023_108656
crossref_primary_10_1142_S021987702450055X
crossref_primary_10_1016_j_neucom_2024_128483
crossref_primary_10_3390_a15100349
crossref_primary_10_1016_j_geoen_2024_213554
crossref_primary_10_3389_fspor_2022_1054783
crossref_primary_10_1016_j_triboint_2024_109965
crossref_primary_10_1145_3691629
crossref_primary_10_1002_rse2_357
crossref_primary_10_1016_j_engstruct_2023_117225
crossref_primary_10_1016_j_eswa_2025_126718
crossref_primary_10_2139_ssrn_4146989
crossref_primary_10_29109_gujsc_1489959
crossref_primary_10_1109_TIA_2024_3351619
crossref_primary_10_1051_e3sconf_202449901017
crossref_primary_10_1371_journal_pone_0275714
crossref_primary_10_1016_j_ensm_2025_104054
crossref_primary_10_1016_j_prime_2024_100453
crossref_primary_10_1109_TMM_2022_3187607
crossref_primary_10_1016_j_procs_2024_01_080
crossref_primary_10_1063_5_0204164
crossref_primary_10_1002_oca_2845
crossref_primary_10_1016_j_istruc_2024_106774
crossref_primary_10_1007_s00521_025_11121_9
crossref_primary_10_1016_j_rineng_2025_104123
crossref_primary_10_1007_s44196_022_00070_z
crossref_primary_10_1007_s10722_024_02042_y
crossref_primary_10_1109_ACCESS_2023_3294282
crossref_primary_10_48130_fia_0025_0007
crossref_primary_10_1002_tee_24243
crossref_primary_10_1016_j_enbuild_2022_112098
crossref_primary_10_1080_17499518_2023_2251128
crossref_primary_10_1016_j_ins_2023_01_119
crossref_primary_10_1038_s41598_025_86274_7
crossref_primary_10_1177_03611981231170128
crossref_primary_10_2196_59882
crossref_primary_10_3390_w16101365
crossref_primary_10_1016_j_chemosphere_2024_142597
crossref_primary_10_1109_TNNLS_2023_3251999
crossref_primary_10_1007_s40899_024_01064_9
crossref_primary_10_3390_electronics13234652
crossref_primary_10_1016_j_asoc_2022_109848
crossref_primary_10_1016_j_istruc_2023_05_136
crossref_primary_10_1016_j_bspc_2023_105644
crossref_primary_10_3390_sym17010103
crossref_primary_10_1080_13632469_2024_2400194
crossref_primary_10_1007_s13369_024_09061_y
crossref_primary_10_1007_s00170_024_14688_0
crossref_primary_10_1016_j_chemosphere_2022_137689
crossref_primary_10_1016_j_eclinm_2025_103069
crossref_primary_10_1016_j_scitotenv_2024_170909
crossref_primary_10_2139_ssrn_4170657
crossref_primary_10_2139_ssrn_4170656
crossref_primary_10_1007_s00521_022_07423_x
crossref_primary_10_1016_j_buildenv_2023_110595
crossref_primary_10_1016_j_tsep_2024_102882
crossref_primary_10_1016_j_dajour_2024_100516
crossref_primary_10_1016_j_rse_2022_113220
crossref_primary_10_1016_j_swevo_2024_101755
crossref_primary_10_1007_s11219_023_09623_7
crossref_primary_10_1177_14759217241309075
crossref_primary_10_1016_j_autcon_2024_105793
crossref_primary_10_1109_TAP_2021_3111299
crossref_primary_10_1016_j_jweia_2024_105834
crossref_primary_10_1016_j_dyepig_2025_112693
crossref_primary_10_1016_j_scs_2021_103254
crossref_primary_10_3390_min12121621
crossref_primary_10_1016_j_compag_2023_107929
crossref_primary_10_3390_app14010341
crossref_primary_10_1051_metal_2022032
crossref_primary_10_1088_1742_6596_2394_1_012008
crossref_primary_10_23939_mmc2023_02_511
crossref_primary_10_1002_adfm_202401887
crossref_primary_10_1016_j_infrared_2024_105584
crossref_primary_10_1109_OJVT_2024_3431449
crossref_primary_10_3233_JIFS_232268
crossref_primary_10_3390_batteries9020114
crossref_primary_10_1088_1742_6596_2394_1_012010
crossref_primary_10_1063_5_0205472
crossref_primary_10_3390_s24113601
crossref_primary_10_1007_s11750_024_00683_x
crossref_primary_10_1007_s12559_022_10070_y
crossref_primary_10_3390_s24041230
crossref_primary_10_1016_j_compchemeng_2022_108107
crossref_primary_10_1016_j_compchemeng_2024_108900
crossref_primary_10_1109_TIM_2022_3198477
crossref_primary_10_1016_j_ins_2023_119987
crossref_primary_10_1109_ACCESS_2023_3295500
crossref_primary_10_1007_s10462_024_11101_w
crossref_primary_10_1016_j_asej_2024_103130
crossref_primary_10_1038_s41598_022_26138_6
crossref_primary_10_1007_s10064_022_02708_w
crossref_primary_10_1016_j_engappai_2024_108842
crossref_primary_10_1007_s00521_021_06824_8
crossref_primary_10_1007_s11135_025_02056_3
crossref_primary_10_1016_j_measurement_2022_111779
crossref_primary_10_1038_s41598_023_29681_y
crossref_primary_10_1080_15481603_2024_2393489
crossref_primary_10_1016_j_cmpb_2022_107088
crossref_primary_10_1016_j_agrformet_2024_110263
crossref_primary_10_3389_fmicb_2024_1516667
crossref_primary_10_3390_su152316245
crossref_primary_10_1016_j_biombioe_2023_106993
crossref_primary_10_3390_ma15124270
crossref_primary_10_1007_s10661_024_12700_4
crossref_primary_10_1093_ageing_afae201
crossref_primary_10_1016_j_applthermaleng_2023_122155
crossref_primary_10_1016_j_cscee_2024_100750
crossref_primary_10_1016_j_cie_2023_109352
crossref_primary_10_1190_geo2022_0231_1
crossref_primary_10_1109_TTE_2023_3346874
crossref_primary_10_1016_j_neucom_2023_126808
crossref_primary_10_3389_fendo_2022_959546
crossref_primary_10_1016_j_future_2024_107499
crossref_primary_10_1007_s41870_022_00996_9
crossref_primary_10_1080_19942060_2024_2364745
crossref_primary_10_1177_25152459231202677
crossref_primary_10_1021_acs_jpcc_4c00028
crossref_primary_10_1186_s44167_024_00045_9
crossref_primary_10_1016_j_oceaneng_2024_117013
crossref_primary_10_1103_PhysRevResearch_6_L022033
crossref_primary_10_1016_j_ijmedinf_2025_105845
crossref_primary_10_1088_1402_4896_ad3515
crossref_primary_10_1021_acs_iecr_4c03264
crossref_primary_10_1002_adem_202402486
crossref_primary_10_1016_j_fuel_2023_128604
crossref_primary_10_1007_s10346_022_01923_6
crossref_primary_10_1007_s10207_024_00834_y
crossref_primary_10_1007_s10618_024_01059_2
crossref_primary_10_1145_3533378
crossref_primary_10_1016_j_compchemeng_2024_108928
crossref_primary_10_1016_j_jclepro_2023_138842
crossref_primary_10_1016_j_jhydrol_2023_129307
crossref_primary_10_52601_bpr_2021_210019
crossref_primary_10_1002_pc_28238
crossref_primary_10_1016_j_enconman_2025_119544
crossref_primary_10_1016_j_apenergy_2024_125171
crossref_primary_10_1515_rams_2024_0014
crossref_primary_10_1016_j_ejmp_2021_02_006
crossref_primary_10_1109_ACCESS_2024_3518923
crossref_primary_10_1109_ACCESS_2021_3124633
crossref_primary_10_1016_j_jhydrol_2023_130363
crossref_primary_10_1109_JBHI_2022_3196697
crossref_primary_10_3390_app13127169
crossref_primary_10_1016_j_ribaf_2024_102575
crossref_primary_10_1007_s00521_024_10422_9
crossref_primary_10_4271_10_08_02_0016
crossref_primary_10_1080_08839514_2022_2058165
crossref_primary_10_1109_ACCESS_2024_3387016
crossref_primary_10_52756_ijerr_2024_v43spl_004
crossref_primary_10_1016_j_procs_2024_05_007
crossref_primary_10_1021_acs_jpcc_4c02459
crossref_primary_10_3389_fnhum_2024_1201574
crossref_primary_10_1016_j_cej_2024_149661
crossref_primary_10_1016_j_conbuildmat_2022_128843
crossref_primary_10_3390_app12010089
crossref_primary_10_3389_fpls_2022_821365
crossref_primary_10_1016_j_atmosenv_2024_120350
crossref_primary_10_1088_1402_4896_ad619a
crossref_primary_10_1109_TNSM_2024_3376631
crossref_primary_10_1016_j_knosys_2022_109570
crossref_primary_10_3390_rs16163011
crossref_primary_10_1088_2057_1976_ad9c7e
crossref_primary_10_1088_1361_6560_ace754
crossref_primary_10_3389_fonc_2022_1017911
crossref_primary_10_1007_s44227_024_00039_8
crossref_primary_10_3390_a17060234
crossref_primary_10_1007_s11069_024_06481_9
crossref_primary_10_1007_s13198_024_02495_5
crossref_primary_10_1007_s13762_023_04763_6
crossref_primary_10_1038_s41598_024_72307_0
crossref_primary_10_32604_csse_2023_033003
crossref_primary_10_32604_iasc_2024_059429
crossref_primary_10_1016_j_jece_2025_116064
crossref_primary_10_32604_iasc_2024_043091
crossref_primary_10_1016_j_advengsoft_2024_103856
crossref_primary_10_1061_JWRMD5_WRENG_6665
crossref_primary_10_3390_diagnostics13182953
crossref_primary_10_1007_s12665_025_12140_4
crossref_primary_10_1016_j_jenvman_2024_122724
crossref_primary_10_1109_ACCESS_2025_3536034
crossref_primary_10_1016_j_jobe_2024_111248
crossref_primary_10_7717_peerj_18405
crossref_primary_10_1016_j_matpr_2021_02_486
crossref_primary_10_1016_j_engstruct_2025_119854
crossref_primary_10_1016_j_iot_2024_101280
crossref_primary_10_1021_acs_chemmater_2c01333
crossref_primary_10_7717_peerj_17793
crossref_primary_10_1007_s00521_024_10444_3
crossref_primary_10_1007_s11668_022_01463_0
crossref_primary_10_1007_s42107_023_00739_6
crossref_primary_10_1007_s12273_023_1045_x
crossref_primary_10_1016_j_vehcom_2022_100470
crossref_primary_10_1007_s42967_024_00433_7
crossref_primary_10_1016_j_cesys_2024_100188
crossref_primary_10_3934_DSFE_2024020
crossref_primary_10_3389_frwa_2023_1028922
crossref_primary_10_1007_s10706_023_02737_6
crossref_primary_10_32604_cmc_2023_041970
crossref_primary_10_1155_2024_6628110
crossref_primary_10_1016_j_compchemeng_2024_108954
crossref_primary_10_1016_j_mtcomm_2024_110006
crossref_primary_10_1109_JIOT_2023_3324392
crossref_primary_10_1016_j_oceaneng_2022_111155
crossref_primary_10_1038_s41598_024_57278_6
crossref_primary_10_1016_j_jenvman_2023_118177
crossref_primary_10_1109_TPWRS_2024_3367183
crossref_primary_10_3390_make4020015
crossref_primary_10_1007_s11227_023_05385_y
crossref_primary_10_1111_exsy_12792
crossref_primary_10_3390_land14040678
crossref_primary_10_1007_s11042_023_16407_5
crossref_primary_10_1016_j_chemosphere_2023_140936
crossref_primary_10_1021_acsestwater_3c00020
crossref_primary_10_1145_3696110
crossref_primary_10_1007_s12530_024_09621_5
crossref_primary_10_1016_j_ress_2024_109974
crossref_primary_10_1016_j_jwpe_2024_106914
crossref_primary_10_1016_j_bar_2025_101563
crossref_primary_10_3390_s23094399
crossref_primary_10_1016_j_asoc_2023_110705
crossref_primary_10_1007_s10994_024_06544_9
crossref_primary_10_1016_j_advmem_2023_100072
crossref_primary_10_1016_j_oceaneng_2023_115862
crossref_primary_10_3390_computers13010002
crossref_primary_10_1109_TNSM_2024_3407017
crossref_primary_10_3390_su16051789
crossref_primary_10_1016_j_simpa_2023_100503
crossref_primary_10_1007_s11071_021_06504_1
crossref_primary_10_1002_srin_202300887
crossref_primary_10_3390_batteries10100367
crossref_primary_10_18618_REP_e202455
crossref_primary_10_3390_app14124991
crossref_primary_10_1007_s10666_023_09920_2
crossref_primary_10_1038_s41598_024_74990_5
crossref_primary_10_1016_j_eswa_2024_126160
crossref_primary_10_1021_acs_energyfuels_3c05092
crossref_primary_10_1016_j_geoen_2023_212564
crossref_primary_10_3390_s25030823
crossref_primary_10_1029_2023MS004097
crossref_primary_10_1080_01431161_2023_2208709
crossref_primary_10_3390_en15228707
crossref_primary_10_3847_1538_3881_acbd4b
crossref_primary_10_3390_app14062609
crossref_primary_10_4271_12_07_02_0015
crossref_primary_10_1016_j_jenvman_2023_118756
crossref_primary_10_1016_j_simpa_2022_100459
crossref_primary_10_1016_j_mfglet_2024_09_017
crossref_primary_10_1021_acspolymersau_2c00037
crossref_primary_10_3390_a14020042
crossref_primary_10_3389_fmats_2024_1445547
crossref_primary_10_3390_app13137622
crossref_primary_10_1002_aepp_13448
crossref_primary_10_1520_JTE20220594
crossref_primary_10_1177_00187208231177574
crossref_primary_10_1016_j_cscee_2024_100902
crossref_primary_10_1016_j_ecoinf_2024_102595
crossref_primary_10_1016_j_future_2024_02_024
crossref_primary_10_1007_s11071_023_08919_4
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125441
crossref_primary_10_1021_acs_est_3c01259
crossref_primary_10_1038_s41576_023_00679_6
crossref_primary_10_7746_jkros_2024_19_4_381
crossref_primary_10_1007_s10479_022_04759_4
crossref_primary_10_1155_2022_8347235
crossref_primary_10_1007_s10489_021_02679_7
crossref_primary_10_3390_en17122840
crossref_primary_10_1109_TPWRS_2023_3281498
crossref_primary_10_1177_03611981241278354
crossref_primary_10_1016_j_ecoinf_2023_102067
crossref_primary_10_2478_ijssis_2024_0024
crossref_primary_10_1007_s10109_024_00451_2
crossref_primary_10_1371_journal_pone_0312124
crossref_primary_10_1016_j_geoen_2023_212303
crossref_primary_10_3390_s22166206
crossref_primary_10_4316_AECE_2022_04006
crossref_primary_10_1109_TKDE_2023_3266893
crossref_primary_10_1038_s41538_024_00310_w
crossref_primary_10_3390_jne5030015
crossref_primary_10_1016_j_ndteint_2022_102657
crossref_primary_10_1016_j_engappai_2022_105366
crossref_primary_10_1007_s11633_023_1435_7
crossref_primary_10_1177_00034894241253376
crossref_primary_10_1177_20552076241272739
crossref_primary_10_2351_7_0001367
crossref_primary_10_1093_bioinformatics_btab236
crossref_primary_10_3390_rs16142595
crossref_primary_10_1016_j_autcon_2022_104714
crossref_primary_10_1016_j_aap_2024_107696
crossref_primary_10_1021_acs_jpcc_4c03379
crossref_primary_10_1109_TGRS_2024_3500000
crossref_primary_10_1016_j_cscm_2023_e02836
crossref_primary_10_3389_fneur_2023_1106612
crossref_primary_10_1016_j_ijhydene_2025_03_089
crossref_primary_10_1109_LCOMM_2023_3235722
crossref_primary_10_1155_2022_8482022
crossref_primary_10_1016_j_compchemeng_2023_108228
crossref_primary_10_3389_ffgc_2024_1420533
crossref_primary_10_1016_j_envc_2025_101113
crossref_primary_10_1016_j_jpse_2024_100244
crossref_primary_10_1109_ACCESS_2025_3532326
crossref_primary_10_1016_j_jelechem_2024_118812
crossref_primary_10_1109_ACCESS_2023_3247448
crossref_primary_10_1016_j_agwat_2025_109384
crossref_primary_10_1080_10106049_2023_2243884
crossref_primary_10_1371_journal_pone_0308718
crossref_primary_10_1080_19393555_2024_2362813
crossref_primary_10_1177_23998083241254573
crossref_primary_10_1016_j_engappai_2023_106720
crossref_primary_10_2139_ssrn_4125018
crossref_primary_10_1016_j_eja_2024_127422
crossref_primary_10_3390_s24196384
crossref_primary_10_1007_s13218_022_00763_9
crossref_primary_10_1109_ACCESS_2022_3233775
crossref_primary_10_1109_JMMCT_2024_3509773
crossref_primary_10_1016_j_ceramint_2025_01_252
crossref_primary_10_3390_math10050787
crossref_primary_10_1007_s42484_024_00180_1
crossref_primary_10_3934_mbe_2023660
crossref_primary_10_1007_s42107_023_00698_y
crossref_primary_10_1109_IOTM_001_2300285
crossref_primary_10_1016_j_cemconcomp_2023_105090
crossref_primary_10_1142_S0218001424520074
crossref_primary_10_3389_fpls_2025_1539068
crossref_primary_10_1016_j_ipm_2023_103578
crossref_primary_10_1002_dac_5768
crossref_primary_10_1016_j_bar_2024_101457
crossref_primary_10_1016_j_molliq_2023_122456
crossref_primary_10_3390_electronics11071033
crossref_primary_10_1016_j_engappai_2023_106732
crossref_primary_10_3390_rs14236017
crossref_primary_10_1109_JIOT_2021_3084796
crossref_primary_10_3390_electronics14061128
crossref_primary_10_1177_13694332241267901
crossref_primary_10_1007_s11192_022_04567_4
crossref_primary_10_1016_j_tust_2023_105243
crossref_primary_10_3390_systems13030209
crossref_primary_10_1016_j_geoen_2023_212518
crossref_primary_10_1109_ACCESS_2025_3531659
crossref_primary_10_1007_s11663_024_03092_4
crossref_primary_10_1016_j_geoen_2023_211427
crossref_primary_10_1016_j_soildyn_2021_107130
crossref_primary_10_1061_NHREFO_NHENG_1976
crossref_primary_10_1016_j_cscm_2023_e01928
crossref_primary_10_1109_TNNLS_2022_3190331
crossref_primary_10_1016_j_measurement_2023_113196
crossref_primary_10_3390_info14100539
crossref_primary_10_1016_j_jafrearsci_2024_105431
crossref_primary_10_1016_j_sciaf_2024_e02171
crossref_primary_10_3390_info15100647
crossref_primary_10_1016_j_jes_2025_02_041
crossref_primary_10_1016_j_rser_2023_113891
crossref_primary_10_3390_su131810239
crossref_primary_10_1016_j_coche_2024_101034
crossref_primary_10_1109_ACCESS_2021_3078432
crossref_primary_10_3390_math12162467
crossref_primary_10_1016_j_eswa_2024_123953
crossref_primary_10_3390_electronics11101640
crossref_primary_10_1016_j_simpa_2022_100446
crossref_primary_10_1016_j_applthermaleng_2024_123769
crossref_primary_10_3390_w16162335
crossref_primary_10_1016_j_jhazmat_2023_133196
crossref_primary_10_1016_j_trd_2024_104407
crossref_primary_10_1088_2632_2153_abd614
crossref_primary_10_1007_s10596_023_10248_9
crossref_primary_10_1016_j_isatra_2024_11_001
crossref_primary_10_3390_en16207094
crossref_primary_10_1007_s42979_024_02902_5
crossref_primary_10_1016_j_artmed_2025_103074
crossref_primary_10_1080_19479832_2021_2019133
crossref_primary_10_1007_s12667_024_00656_w
crossref_primary_10_1109_ACCESS_2024_3495708
crossref_primary_10_1007_s11042_023_17273_x
crossref_primary_10_1109_ACCESS_2024_3388529
crossref_primary_10_1155_2022_9443955
crossref_primary_10_1080_0013791X_2024_2328526
crossref_primary_10_1016_j_autcon_2025_106008
crossref_primary_10_1109_TNSM_2021_3100308
crossref_primary_10_1038_s41598_023_28510_6
crossref_primary_10_3390_f15050800
crossref_primary_10_1007_s10462_023_10415_5
crossref_primary_10_1016_j_istruc_2025_108329
crossref_primary_10_3390_buildings13122914
crossref_primary_10_1088_1361_6501_ad060f
crossref_primary_10_1109_TIFS_2024_3396390
crossref_primary_10_1515_rams_2024_0081
crossref_primary_10_1016_j_acags_2024_100198
crossref_primary_10_1016_j_wsee_2024_09_004
crossref_primary_10_1007_s42729_024_01705_0
crossref_primary_10_1111_ffe_14379
crossref_primary_10_1007_s10725_024_01128_y
crossref_primary_10_1007_s11042_024_19360_z
crossref_primary_10_59681_2175_4411_v16_iEspecial_2024_1333
crossref_primary_10_1016_j_jcom_2023_100202
crossref_primary_10_1103_PhysRevResearch_5_033127
crossref_primary_10_3390_s21030849
crossref_primary_10_1007_s10898_024_01443_8
crossref_primary_10_3390_info15030124
crossref_primary_10_1007_s13580_023_00559_2
crossref_primary_10_1016_j_enconman_2023_117440
crossref_primary_10_1016_j_marpetgeo_2024_107010
crossref_primary_10_3390_s22155858
crossref_primary_10_1007_s11227_023_05729_8
crossref_primary_10_3233_IDA_230653
crossref_primary_10_1016_j_ijhydene_2024_09_054
crossref_primary_10_3390_su15097179
crossref_primary_10_1093_iti_liad004
crossref_primary_10_1016_j_heliyon_2024_e40568
crossref_primary_10_3390_min12101207
crossref_primary_10_1063_5_0245473
crossref_primary_10_3390_ma15155369
crossref_primary_10_3390_math11061335
crossref_primary_10_1016_j_jhazmat_2024_134666
crossref_primary_10_1021_acs_jctc_4c00474
crossref_primary_10_1061_JMCEE7_MTENG_17222
crossref_primary_10_1080_19648189_2024_2335343
crossref_primary_10_1007_s11069_025_07109_2
crossref_primary_10_3390_logistics8040123
crossref_primary_10_3390_pr11123325
crossref_primary_10_1039_D4CP04214J
crossref_primary_10_1057_s41599_024_03160_9
crossref_primary_10_1093_micmic_ozac050
crossref_primary_10_3390_app14062347
crossref_primary_10_1007_s00521_024_10187_1
crossref_primary_10_1007_s10726_025_09920_5
crossref_primary_10_1016_j_est_2023_108579
crossref_primary_10_1016_j_micron_2023_103581
crossref_primary_10_1016_j_mtcomm_2025_112055
crossref_primary_10_1109_ACCESS_2024_3482179
crossref_primary_10_1038_s41598_021_90624_6
crossref_primary_10_1016_j_ress_2024_110496
crossref_primary_10_1007_s11042_023_14429_7
crossref_primary_10_56748_ejse_24661
crossref_primary_10_1109_ACCESS_2023_3277625
crossref_primary_10_3390_rs17010140
crossref_primary_10_1109_TSM_2023_3240033
crossref_primary_10_1016_j_jenvman_2024_123309
crossref_primary_10_1016_j_trd_2023_103889
crossref_primary_10_1108_IJSI_06_2023_0054
crossref_primary_10_1109_ACCESS_2021_3063523
crossref_primary_10_1016_j_aei_2024_102644
crossref_primary_10_1145_3617181
crossref_primary_10_1039_D4RA02159B
crossref_primary_10_3390_en17010074
crossref_primary_10_1190_geo2023_0657_1
crossref_primary_10_1002_widm_1484
crossref_primary_10_1016_j_trc_2025_105027
crossref_primary_10_1177_00220345221089251
crossref_primary_10_1016_j_mtcomm_2024_109830
crossref_primary_10_1108_IJHMA_11_2022_0172
crossref_primary_10_1007_s43253_024_00114_4
crossref_primary_10_1016_j_rse_2024_114321
crossref_primary_10_1016_j_neunet_2024_106665
crossref_primary_10_1016_j_rineng_2024_102182
crossref_primary_10_1016_j_knosys_2024_111729
crossref_primary_10_1016_j_conengprac_2025_106263
crossref_primary_10_1007_s43069_023_00224_5
crossref_primary_10_1145_3610536
crossref_primary_10_4018_JCIT_356504
crossref_primary_10_1109_ACCESS_2022_3196920
crossref_primary_10_1007_s11440_022_01777_1
crossref_primary_10_1016_j_ecoinf_2024_102510
crossref_primary_10_3390_risks12090139
crossref_primary_10_3390_atmos13101672
crossref_primary_10_1016_j_cej_2024_153274
crossref_primary_10_11627_jksie_2024_47_2_001
crossref_primary_10_61435_ijred_2024_59998
crossref_primary_10_1080_02640414_2024_2404783
crossref_primary_10_1016_j_mtcomm_2024_108758
crossref_primary_10_1016_j_mtcomm_2024_109847
crossref_primary_10_1007_s00202_024_02281_3
crossref_primary_10_3389_fresc_2025_1469797
crossref_primary_10_3390_pr11020349
crossref_primary_10_1016_j_tsep_2025_103236
crossref_primary_10_3390_diagnostics13122098
crossref_primary_10_1109_ACCESS_2023_3266983
crossref_primary_10_1109_ACCESS_2024_3420707
crossref_primary_10_1109_JIOT_2024_3492801
crossref_primary_10_3390_info15040187
crossref_primary_10_1016_j_engappai_2025_110403
crossref_primary_10_15575_join_v7i2_858
crossref_primary_10_1016_j_measurement_2023_112592
crossref_primary_10_1016_j_jpowsour_2025_236432
crossref_primary_10_1109_ACCESS_2022_3193643
crossref_primary_10_3390_en17102290
crossref_primary_10_1007_s10462_022_10359_2
crossref_primary_10_3390_agronomy12010197
crossref_primary_10_3846_jcem_2023_19226
crossref_primary_10_1021_acs_iecr_2c02638
crossref_primary_10_1016_j_jfoodeng_2023_111883
crossref_primary_10_1089_dia_2023_0531
crossref_primary_10_1007_s11368_024_03914_7
crossref_primary_10_1109_OJITS_2024_3405797
crossref_primary_10_1016_j_iswcr_2023_09_005
crossref_primary_10_3390_risks12020025
crossref_primary_10_3390_math13010017
crossref_primary_10_1016_j_asoc_2023_110466
crossref_primary_10_1016_j_istruc_2024_106850
crossref_primary_10_1016_j_nxmate_2023_100025
crossref_primary_10_1016_j_seppur_2023_123682
crossref_primary_10_1016_j_ecolind_2025_113233
crossref_primary_10_1016_j_eswa_2025_127287
crossref_primary_10_1016_j_catena_2023_107008
crossref_primary_10_1007_s10796_023_10431_4
crossref_primary_10_1061_JHYEFF_HEENG_6227
crossref_primary_10_1109_ACCESS_2024_3354173
crossref_primary_10_1016_j_watres_2024_122591
crossref_primary_10_1109_TAI_2023_3262503
crossref_primary_10_1007_s11053_023_10289_y
crossref_primary_10_1016_j_tust_2023_105532
crossref_primary_10_1016_j_eswa_2024_125832
crossref_primary_10_3390_electronics12040871
crossref_primary_10_1021_acsestwater_4c00219
crossref_primary_10_1007_s13278_024_01250_9
crossref_primary_10_3390_machines12040220
crossref_primary_10_1016_j_oooo_2025_01_002
crossref_primary_10_3390_systems12110480
crossref_primary_10_1080_17477778_2023_2219401
crossref_primary_10_1088_1755_1315_1458_1_012019
crossref_primary_10_52756_ijerr_2024_v45spl_009
crossref_primary_10_1145_3646549
crossref_primary_10_1016_j_oceaneng_2024_118945
crossref_primary_10_2139_ssrn_4839465
crossref_primary_10_1177_03611981241257512
crossref_primary_10_3390_app122412525
crossref_primary_10_1007_s11172_023_3811_2
crossref_primary_10_1016_j_future_2024_107636
crossref_primary_10_1016_j_measurement_2023_113221
crossref_primary_10_1155_2022_8534739
crossref_primary_10_1007_s00521_024_10350_8
crossref_primary_10_3390_atmos13111887
crossref_primary_10_1016_j_agwat_2024_108718
crossref_primary_10_1016_j_ecoinf_2024_102500
crossref_primary_10_1093_nargab_lqae011
crossref_primary_10_1016_j_cose_2023_103138
crossref_primary_10_3390_rs13040648
crossref_primary_10_3390_rs13224694
crossref_primary_10_1016_j_bspc_2024_106266
crossref_primary_10_1016_j_applthermaleng_2024_122926
crossref_primary_10_1016_j_jenvman_2025_124738
crossref_primary_10_1080_08839514_2022_2145632
crossref_primary_10_51477_mejs_1427004
crossref_primary_10_37394_232018_2024_12_33
crossref_primary_10_1007_s10489_022_04238_0
crossref_primary_10_1109_JIOT_2022_3212056
crossref_primary_10_3233_JIFS_231775
crossref_primary_10_1109_ACCESS_2025_3543475
crossref_primary_10_1007_s42417_021_00286_x
crossref_primary_10_1155_2024_6162232
crossref_primary_10_1109_TAI_2024_3375260
crossref_primary_10_3390_s22249927
crossref_primary_10_1038_s41598_024_64386_w
crossref_primary_10_1016_j_ejco_2021_100012
crossref_primary_10_3389_fnins_2024_1391465
crossref_primary_10_1016_j_future_2024_107600
crossref_primary_10_1016_j_scitotenv_2024_174973
crossref_primary_10_25046_aj070619
crossref_primary_10_1016_j_scs_2023_104472
crossref_primary_10_1109_TPDS_2024_3468892
crossref_primary_10_1109_ACCESS_2024_3440502
crossref_primary_10_1016_j_pmatsci_2022_101043
crossref_primary_10_1007_s00034_023_02551_8
crossref_primary_10_1016_j_foodchem_2025_143555
crossref_primary_10_1016_j_envsoft_2024_105956
crossref_primary_10_1016_j_trgeo_2024_101202
crossref_primary_10_1002_jbio_202400426
crossref_primary_10_1111_1750_3841_17421
crossref_primary_10_3390_rs16193668
crossref_primary_10_1007_s10614_024_10801_3
crossref_primary_10_1016_j_compchemeng_2022_107946
crossref_primary_10_1016_j_heliyon_2023_e18148
crossref_primary_10_1080_08839514_2021_2001178
crossref_primary_10_1109_ACCESS_2021_3067949
crossref_primary_10_3390_app13063945
crossref_primary_10_1007_s00500_024_09840_7
crossref_primary_10_1016_j_fraope_2024_100136
crossref_primary_10_1016_j_jenvman_2024_121189
crossref_primary_10_1109_TITS_2022_3174626
crossref_primary_10_1016_j_irfa_2024_103239
crossref_primary_10_1038_s41598_023_32027_3
crossref_primary_10_1109_ACCESS_2024_3424276
crossref_primary_10_1021_acs_jpcc_4c08353
crossref_primary_10_1007_s12065_024_00950_7
crossref_primary_10_1109_ACCESS_2024_3516198
crossref_primary_10_1016_j_scs_2023_104480
crossref_primary_10_1177_09713557221136273
crossref_primary_10_1051_e3sconf_202561201002
crossref_primary_10_3390_ma14071687
crossref_primary_10_37394_232018_2024_12_10
crossref_primary_10_3390_math9161976
crossref_primary_10_1016_j_egyr_2022_02_220
crossref_primary_10_1016_j_ymssp_2024_111984
crossref_primary_10_1007_s12145_024_01472_7
crossref_primary_10_1016_j_neunet_2023_11_043
crossref_primary_10_1007_s40735_025_00945_6
crossref_primary_10_1038_s41598_024_60478_9
crossref_primary_10_3390_molecules28010208
crossref_primary_10_3390_electronics14010120
crossref_primary_10_1145_3638285
crossref_primary_10_29137_umagd_1298404
crossref_primary_10_1016_j_csbj_2025_01_020
crossref_primary_10_1016_j_uncres_2025_100145
crossref_primary_10_1109_TLT_2023_3246589
crossref_primary_10_1177_03611981241236180
crossref_primary_10_1016_j_compbiomed_2024_108944
crossref_primary_10_3233_HIS_240005
crossref_primary_10_1109_ACCESS_2020_3041822
crossref_primary_10_1111_mice_13322
crossref_primary_10_1109_ACCESS_2024_3437192
crossref_primary_10_1186_s12868_023_00819_y
crossref_primary_10_3390_machines12070471
crossref_primary_10_3390_automation5030019
crossref_primary_10_3390_su16167064
crossref_primary_10_3390_app14104223
crossref_primary_10_4018_IJeC_351248
crossref_primary_10_1007_s11356_023_28285_3
crossref_primary_10_1007_s10515_021_00297_8
crossref_primary_10_1016_j_neucom_2022_06_002
crossref_primary_10_1038_s41598_025_92082_w
crossref_primary_10_1186_s13321_024_00920_2
crossref_primary_10_1007_s11783_023_1676_2
crossref_primary_10_1016_j_apenergy_2024_122669
crossref_primary_10_1016_j_jss_2023_111914
crossref_primary_10_1002_int_23012
crossref_primary_10_3390_rs16152712
crossref_primary_10_1021_acs_iecr_3c01110
crossref_primary_10_3390_app12168271
crossref_primary_10_1016_j_jhydrol_2023_129962
crossref_primary_10_1055_a_1993_2371
crossref_primary_10_3390_app132011583
crossref_primary_10_1016_j_engappai_2024_109987
crossref_primary_10_1016_j_conengprac_2024_106118
crossref_primary_10_3389_fnbot_2024_1406658
crossref_primary_10_1109_JLT_2024_3429490
crossref_primary_10_1016_j_cemconcomp_2025_105957
crossref_primary_10_1016_j_jobe_2025_112448
crossref_primary_10_1680_jtran_22_00065
crossref_primary_10_3390_fintech3010012
crossref_primary_10_1016_j_rineng_2025_104265
crossref_primary_10_1016_j_energy_2022_125304
crossref_primary_10_3390_ijerph20010107
crossref_primary_10_1016_j_egyai_2023_100230
crossref_primary_10_3390_economies12080194
crossref_primary_10_1093_gji_ggaf004
crossref_primary_10_1016_j_engappai_2023_107076
crossref_primary_10_1016_j_oceaneng_2024_119849
crossref_primary_10_32604_cmc_2022_020523
crossref_primary_10_1186_s12942_023_00343_6
crossref_primary_10_1080_17538947_2025_2468414
crossref_primary_10_2139_ssrn_4180768
crossref_primary_10_1016_j_buildenv_2025_112593
crossref_primary_10_1007_s10489_023_04595_4
crossref_primary_10_1371_journal_pone_0296545
crossref_primary_10_1016_j_mlwa_2023_100505
crossref_primary_10_1016_j_cej_2024_157476
crossref_primary_10_1016_j_compbiomed_2024_108727
crossref_primary_10_3390_mi14020265
crossref_primary_10_3389_fceng_2021_665415
crossref_primary_10_1016_j_coastaleng_2023_104291
crossref_primary_10_1016_j_jocs_2023_102205
crossref_primary_10_4271_03_17_07_0051
crossref_primary_10_1016_j_procs_2023_10_423
crossref_primary_10_3390_app142311025
crossref_primary_10_1016_j_tust_2023_105508
crossref_primary_10_1021_acsestwater_4c00040
crossref_primary_10_1016_j_device_2023_100011
crossref_primary_10_1016_j_apenergy_2024_124829
crossref_primary_10_3390_fi15100332
crossref_primary_10_3390_ijgi12120488
crossref_primary_10_1007_s00477_024_02788_y
crossref_primary_10_1038_s41598_024_65255_2
crossref_primary_10_1007_s40747_024_01670_2
crossref_primary_10_1515_rams_2025_0097
crossref_primary_10_1007_s00158_024_03850_7
crossref_primary_10_3390_rs16050828
crossref_primary_10_3390_pharmaceutics14081530
crossref_primary_10_1007_s11063_024_11578_0
crossref_primary_10_3390_jrfm16040216
crossref_primary_10_1016_j_enbuild_2023_113321
crossref_primary_10_1109_TTE_2022_3192285
crossref_primary_10_1016_j_snb_2024_137194
crossref_primary_10_3390_agronomy14040645
crossref_primary_10_1016_j_psep_2025_106854
crossref_primary_10_1016_j_engappai_2024_109531
crossref_primary_10_1016_j_gete_2023_100506
crossref_primary_10_3390_rs15245722
crossref_primary_10_1007_s11042_023_15771_6
crossref_primary_10_1103_PhysRevResearch_6_013115
crossref_primary_10_1109_ACCESS_2024_3418884
crossref_primary_10_1016_j_scs_2023_104898
crossref_primary_10_11648_j_ajtas_20241305_13
crossref_primary_10_1021_acsomega_4c02157
crossref_primary_10_31185_wjcm_107
crossref_primary_10_3390_fi16070239
crossref_primary_10_1016_j_asoc_2024_111292
crossref_primary_10_1016_j_fochx_2024_101507
crossref_primary_10_3847_1538_4365_ad8b2a
crossref_primary_10_1016_j_engappai_2024_108628
crossref_primary_10_1016_j_cja_2024_09_014
crossref_primary_10_3390_w15193413
crossref_primary_10_1002_jnm_3268
crossref_primary_10_3390_ijerph191912709
crossref_primary_10_1016_j_icte_2024_09_003
crossref_primary_10_1109_ACCESS_2024_3439572
crossref_primary_10_1016_j_jallcom_2022_163828
crossref_primary_10_1007_s00521_023_09121_8
crossref_primary_10_1016_j_geoen_2024_213216
crossref_primary_10_1061__ASCE_CO_1943_7862_0002385
crossref_primary_10_1016_j_asr_2023_07_007
crossref_primary_10_1016_j_compag_2024_108643
crossref_primary_10_1108_HFF_07_2023_0361
crossref_primary_10_1109_JSTARS_2024_3402114
crossref_primary_10_3390_coatings14050647
crossref_primary_10_3103_S0005105525700128
crossref_primary_10_1016_j_ecolind_2024_112983
crossref_primary_10_3390_rs17010105
crossref_primary_10_1109_TNNLS_2023_3329466
crossref_primary_10_1016_j_jafr_2025_101840
crossref_primary_10_1016_j_geoen_2023_212086
crossref_primary_10_1016_j_jnca_2024_104034
crossref_primary_10_1016_j_cag_2023_10_016
crossref_primary_10_12813_kieae_2024_24_5_045
crossref_primary_10_1109_TNSM_2020_3014929
crossref_primary_10_3390_app142210230
crossref_primary_10_1038_s41524_023_01088_3
crossref_primary_10_2196_50117
crossref_primary_10_1007_s00466_023_02427_3
crossref_primary_10_1016_j_insmatheco_2024_10_002
crossref_primary_10_1016_j_surfcoat_2025_132029
crossref_primary_10_1016_j_cscm_2023_e02459
crossref_primary_10_1016_j_egyr_2024_04_039
crossref_primary_10_1109_ACCESS_2024_3473028
crossref_primary_10_1016_j_cep_2022_109248
crossref_primary_10_1016_j_engappai_2023_106149
crossref_primary_10_1016_j_nut_2023_112093
crossref_primary_10_1007_s13198_023_01993_2
crossref_primary_10_1007_s11356_023_25596_3
crossref_primary_10_1016_j_engstruct_2024_118722
crossref_primary_10_1016_j_icte_2025_02_008
crossref_primary_10_1109_TTE_2024_3468887
crossref_primary_10_1016_j_jclepro_2025_144666
crossref_primary_10_1016_j_knosys_2021_107221
crossref_primary_10_3390_e26010078
crossref_primary_10_1109_ACCESS_2024_3408894
crossref_primary_10_1007_s11082_022_03985_1
crossref_primary_10_1016_j_jmsy_2024_10_013
crossref_primary_10_3390_rs14010144
crossref_primary_10_1007_s13202_025_01976_y
crossref_primary_10_1038_s41598_024_53352_1
crossref_primary_10_1007_s10803_022_05641_9
crossref_primary_10_1016_j_procs_2024_08_013
crossref_primary_10_1109_ICJECE_2021_3072008
crossref_primary_10_1007_s00414_023_03127_6
crossref_primary_10_1109_ACCESS_2022_3191669
crossref_primary_10_1007_s42488_021_00060_4
crossref_primary_10_1364_JOCN_500706
crossref_primary_10_1016_j_enbuild_2024_114516
crossref_primary_10_1016_j_psep_2024_11_099
crossref_primary_10_1109_TIA_2024_3444733
crossref_primary_10_1016_j_scienta_2024_113241
crossref_primary_10_1016_j_oceaneng_2024_117211
crossref_primary_10_1038_s41598_024_69281_y
crossref_primary_10_1007_s00500_022_07571_1
crossref_primary_10_1016_j_algal_2024_103812
crossref_primary_10_1080_15435075_2024_2439924
crossref_primary_10_46604_aiti_2022_9227
crossref_primary_10_1016_j_jss_2024_112058
crossref_primary_10_1016_j_mtcomm_2023_106402
crossref_primary_10_1109_ACCESS_2023_3347502
crossref_primary_10_1016_j_frl_2023_104306
crossref_primary_10_1109_ACCESS_2024_3482192
crossref_primary_10_3390_en16052343
crossref_primary_10_3390_macromol3010007
crossref_primary_10_3390_s24113582
crossref_primary_10_1038_s41598_023_28639_4
Cites_doi 10.1109/CEC.2014.6900618
10.1088/1749-4699/8/1/014008
10.1109/TSMC.1985.6313426
10.1109/79.543975
10.1111/j.2517-6161.1996.tb02080.x
10.1016/j.patcog.2005.06.013
10.1016/j.eswa.2017.11.028
10.1080/0952813X.2013.782347
10.1145/2806777.2806945
10.1109/ICADIWT.2014.6814687
10.1109/GLOCOM.2018.8647679
10.1109/ISEASP.2017.7976988
10.1016/j.is.2018.01.003
10.1007/978-3-540-74958-5_35
10.1109/21.97458
10.1007/978-3-540-31856-9_4
10.1016/j.knosys.2020.105992
10.1016/j.eswa.2017.02.017
10.1109/ACCESS.2018.2884225
10.1162/089976698300017007
10.1109/GLOCOM.2018.8647714
10.1109/ICCNC.2019.8685636
10.1049/iet-its.2018.5127
10.1007/978-3-030-05318-5_8
10.1147/JRD.2017.2709578
10.1162/089976600300015187
10.1007/BFb0040810
10.1186/s13321-017-0226-y
10.1109/GLOBECOM38437.2019.9013892
10.1080/08923647.2020.1696140
10.1109/JSEN.2005.858926
10.1080/00401706.1970.10488635
10.1609/aaai.v31i1.10647
10.14778/3007263.3007279
10.1155/2019/6278908
10.1007/s10618-005-0361-3
10.1016/j.proeng.2017.09.615
10.1007/s10044-007-0100-z
10.1109/ICDM.2017.137
10.1137/090771806
10.1007/s10489-020-01776-3
10.1016/j.camwa.2006.07.013
10.1142/S0129065704001899
10.21105/joss.00034
10.1109/CCECE47787.2020.9255697
10.1145/3071178.3071208
10.1061/(ASCE)CO.1943-7862.0001548
10.1007/978-3-7908-2604-3_16
10.1126/science.aaa8415
10.1561/2200000050
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2020.07.061
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 316
ExternalDocumentID 10_1016_j_neucom_2020_07_061
S0925231220311693
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SEW
SSH
WUQ
XPP
ID FETCH-LOGICAL-c372t-ab99c29b49da6c805e2561b41d396aa009ae5de713bdc9344085c1edf9e449133
IEDL.DBID .~1
ISSN 0925-2312
IngestDate Tue Jul 01 01:46:52 EDT 2025
Thu Apr 24 22:52:48 EDT 2025
Fri Feb 23 02:46:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Grid search
Hyper-parameter optimization
Bayesian optimization
Genetic algorithm
Particle swarm optimization
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-ab99c29b49da6c805e2561b41d396aa009ae5de713bdc9344085c1edf9e449133
PageCount 22
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2020_07_061
crossref_primary_10_1016_j_neucom_2020_07_061
elsevier_sciencedirect_doi_10_1016_j_neucom_2020_07_061
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-20
PublicationDateYYYYMMDD 2020-11-20
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-20
  day: 20
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gambella, Ghaddar, Naoum-Sawaya (b0125) 2019
Hosmer, Lemeshow (b0190) 2013; 34
Gambella, Ghaddar, Naoum-Sawaya (b0165) 2019
T. Chen, C.Guestrin, XGBoost: a scalable tree boosting system, arXiv preprint arXiv:1603.02754, (2016). http://arxiv.org/abs/1603.02754.
Zuo, Zhang, Wang (b0205) 2008; 11
Di Francescomarino, Dumas, Federici, Ghidini, Maggi, Rizzi, Simonetto (b0330) 2018; 74
(b0030) 2019
V. Narayanan, I. Arora, A. Bhatia, Fast and accurate sentiment classification using an enhanced naíve Bayes model, arXiv preprint arXiv:1305.6143, (2013). https://arxiv.org/abs/1305.6143.
Bubeck (b0110) 2015; 8
Ding, He (b0340) 2004; 3056
Rasoul, David (b0260) 1991; 21
Moubayed, Injadat, Shami, Lutfiyya (b0335) 2020; 34
Ozaki, Yano, Onishi (b0315) 2017; 9
F. Chollet, Keras, 2015. https://github.com/fchollet/keras.
Halko, Martinsson, Tropp (b0375) 2011; 53
Zhou, Wang, Li (b0365) 2012; 9
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, et al., TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, arXiv preprint arXiv:1603.04467, (2016). https://arxiv.org/abs1603.04467.
Brahim-Belhouari, Bermak, Shi, Chan (b0350) 2005; 5
Moubayed, Aqeeli, Shami (bib634) 2020
Domhan, Springenberg, Hutter (b0310) 2015- (2015)
M. Injadat, F. Salo, A.B. Nassif, A. Essex, A. Shami, Bayesian optimization with machine learning algorithms towards anomaly detection, 2018 IEEE Glob. Commun. Conf. (2018) 1–6. https://doi.org/10.1109/glocom.2018.8647714.
Autonomio Talos [Computer software], 2019. http://github.com/autonomio/talos.
O.S. Soliman, A.S. Mahmoud, A classification system for remote sensing satellite images using support vector machine with non-linear kernel functions, 2012 8th Int. Conf. Informatics Syst. INFOS 2012. (2012) BIO-181-BIO-187.
J. Rapin, O. Teytaud, Nevergrad – a gradient-free optimization platform, 2018. https://GitHub.com/FacebookResearch/Nevergrad.
Boehm, Surve, Tatikonda (b0625) 2016; 9
Bergstra, Komer, Eliasmith, Yamins, Cox (b0530) 2015; 8
N. Hansen, A. Auger, O. Mersmann, T. Tusar, D. Brockhoff, COCO: A Platform for Comparing Continuous Optimizers in a Black-Box Setting, arXiv preprint arXiv:1603.08785, (2016). https://arxiv.org/abs1603.08785.
Fortin, De Rainville, Gardner, Parizeau, Gagńe (b0585) 2012; 13
J.N. Sulzmann, J. Fürnkranz, E. Hüllermeier, On pairwise naive bayes classifiers, Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 4701 LNAI (2007) 371-381. https://doi.org/10.1007/978-3-540-74958-5_35
Diaz, Fokoue-Nkoutche, Nannicini, Samulowitz (b0120) 2017; 61
I. Dewancker, M. McCourt, S. Clark, Bayesian Optimization Primer, (2015). URL: https://sigopt.com/static/pdf/SigOpt Bayesian Optimization Primer.pdf.
Diaz, Fokoue-Nkoutche, Nannicini, Samulowitz (b0025) 2017; 61
Kramer (b0145) 2016
Caruana, Niculescu-Mizil (b0140) 2006; 148
J. Grandgirard, D. Poinsot, L. Krespi, J.P. Nénon, A.M. Cortesero, Osprey: Hyperparameter Optimization for Machine Learning, 103 (2002) 239–248. https://doi.org/10.21105/joss.00034.
Injadat, Moubayed, Nassif, Shami (bib637) 2020
Zhang, Jin, Yang, Hauptmann (b0220) 2003; 2
Bradley, Hax (b0105) 1977
B. Shahriari, A. Bouchard-Côté, N. de Freitas, Unbounded Bayesian optimization via regularization, Proc. Artif. Intell. Statist., (2016) 1168–1176.
Moon (b0345) 1996; 13
Han, Liu, Fan (b0325) 2018; 95
Q. Yao, et al., Taking Human out of Learning Applications: A Survey on Automated Machine Learning, arXiv preprint arXiv:1810.13306, (2018). http://arxiv.org/abs/1810.13306.
Bishop (b0605) 1995
Seeger (b0425) 2004; 14
L. Bottou, Large-scale machine learning with stochastic gradient descent, in: Proceedings of the COMPSTAT, Springer, 2010, pp. 177–186.
Yang, Shami (bib638) 2020
Melkumova, Shatskikh (b0180) 2017; 201
Franceschi, Donini, Frasconi, Pontil (b0580) 2017
Kibriya, Frank, Pfahringer, Holmes (b0245) 2004; 3339
B. Kazimipour, X. Li, A.K. Qin, A Review of Population Initialization Techniques for Evolutionary Algorithms, 2014 IEEE Congr. Evol. Comput. (2014) 2585–2592. https://doi.org/10.1109/CEC.2014.6900618.
Yang (bib632) 2018
C.M. Bishop, Pattern Recognition and Machine Learning, 2006, Springer, ISBN: 978-0-387-31073-2.
Cazzaniga, Nobile, Besozzi (b0520) 2015
Martinez-Cantin (b0525) 2015; 15
S. Abreu, Automated Architecture Design for Deep Neural Networks, arXiv preprint arXiv:1908.10714, (2019). http://arxiv.org/abs/1908.10714
Itano, De Abreu De, Sousa (b0475) 2018
Lorenzo, Nalepa, Kawulok, Ramos, Paster (b0095) 2017
Loog (b0380) 2006; 2
J. Nocedal, S. Wright, Numerical Optimization, 2006, Springer-Verlag, ISBN: 978-0-387-40065-5.
Yang, Moubayed, Hamieh, Shami (b0270) 2019
Eggensperger, Feurer, Hutter, Bergstra, Snoek, Hoos, Leyton-Brown (b0070) 2013
Komer, Bergstra, Eliasmith (b0535) 2014
D. Maclaurin, D. Duvenaud, R.P. Adams, Gradient-based Hyperparameter Optimization through Reversible Learning, arXiv preprint arXiv:1502.03492, (2015). http://arxiv.org/abs/1502.03492
M. Pumperla, Hyperas, 2019. http://maxpumperla.com/hyperas/.
Luo (b0050) 2016; 5
Yang, Muresan, Al-Dweik, Hadjileontiadis (b0215) 2018; 6
Kuhn, Johnson (b0020) 2013
Rahnamayan, Tizhoosh, Salama (b0485) 2007; 53
Ogutu, Schulz-Streeck, Piepho (b0195) 2012; 6
Yang, Amari (b0410) 1998; 10
Hensman, Fusi, Lawrence (b0440) 2013
Z. Y., K. G., Hierarchical clustering algorithms for document dataset, Data Min. Knowl. Discov. 10 (2005) 141–168.
K. Arjunan, C.N. Modi, An enhanced intrusion detection framework for securing network layer of cloud computing, ISEA Asia Secur. Priv. Conf. 2017, ISEASP 2017. (2017) 1–10. doi: 10.1109/ISEASP.2017.7976988.
Krizhevsky, Sutskever, Hinton (b0610) 2012; 25
Pedregosa (b0150) 2011; 12
S. Sun, Z. Cao, H. Zhu, J. Zhao, A Survey of Optimization Methods from a Machine Learning Perspective, arXiv preprint arXiv:1906.06821, (2019). https://arxiv.org/abs/1906.06821.
Cawley, Talbot (b0620) 2010; 11
Hutter, Hoos, Leyton-Brown (b0430) 2011; 5
Yan, He, Chen (b0500) 2017; 32
S. Lessmann, R. Stahlbock, S.F. Crone, Optimizing hyperparameters of support vector machines by genetic algorithms, Proc. 2005 Int. Conf. Artif. Intell. ICAI’05. 1 (2005) 74–80.
Decastro-García, Muñoz Castañeda, Escudero García, Carriegos (b0035) 2019 (2019).
Jordan, Mitchell (b0005) 2015; 349
Knudde, van der Herten, Dhaene, Couckuyt (b0555) 2017
S. Sanders, C. Giraud-Carrier, Informing the use of hyperparameter optimization through metalearning, Proc. – IEEE Int. Conf. Data Mining, ICDM. 2017-Novem (2017) 1051–1056. https://doi.org/10.1109/ICDM.2017.137
Keller, Gray (b0200) 1985; SMC-15
Wang, Wu, Wang, Dong, Yu, Chen (b0510) 2009; 2009
J. Shlens, A Tutorial on Principal Component Analysis, arXiv preprint arXiv:1404.1100, (2014). https://arxiv.org/abs1404.1100
I. Ilievski, T. Akhtar, J. Feng, C.A. Shoemaker, Efficient hyperparameter optimization of deep learning algorithms using deterministic RBF surrogates, 31st AAAI Conf. Artif. Intell. AAAI 2017, 2017, pp. 822–829
Injadat, Moubayed, Nassif, Shami (b0600) 2020; 200
Tibshirani (b0185) 1996; 58
R.S. Olson, J.H. Moore, TPOT: a tree-based pipeline optimization tool for automating machine learning, Auto Mach. Learn. (2019) 151–160. https://doi.org/10.1007/978-3-030-05318-5_8
Zhang, Xu, Huang, Chen (b0455) 2016- (2016)
Bergstra, Bardenet, Bengio, Kégl (b0060) 2011
Y. Shi, R.C. Eberhart, Parameter Selection in Particle Swarm Optimization, Evolutionary Programming VII, Springer, 1998, pp. 591–600.
M.-A. Zöller, M.F. Huber, Benchmark and Survey of Automated Machine Learning Frameworks, arXiv preprint arXiv:1904.12054, (2019). https://arxiv.org/abs/1904.12054
Cheng, Huang, Hutomo (b0505) 2018; 144
W. Yin, K. Kann, M. Yu, H. Schütze, Comparative Study of CNN and RNN for Natural Language Processing, arXiv preprint arXiv:1702.01923, (2017). https://arxiv.org/abs1702.01923.
Li, Jamieson, DeSalvo, Rostamizadeh, Talwalkar (b0080) 2012; 18
Moubayed, Injadat, Shami, Lutfiyya (bib631) 2018
Lobo, Goldberg, Pelikan (b0490) 2000
Meng, Bradley, Yavuz (b0630) 2016; 17
K. Khan, S.U. Rehman, K. Aziz, S. Fong, S. Sarasvady, A. Vishwa, DBSCAN: Past, present and future, 5th Int. Conf. Appl. Digit. Inf. Web Technol. ICADIWT 2014, 2014, pp. 232–238. https://doi.org/10.1109/ICADIWT.2014.6814687.
R.E. Shawi, M. Maher, S. Sakr, Automated machine learning: State-of-the-art and open challenges, arXiv preprint arXiv:1906.02287, (2019). http://arxiv.org/abs/1906.02287
Soon, Khaw, Chuah, Kanesan (b0320) 2018; 12
J. Snoek, H. Larochelle, R. Adams, Practical Bayesian optimization of machine learning algorithms, Adv. Neural Inf. Process. Syst. 4 (2012) 2951–2959.
Dietterich (b0295) 1857; 2000
Bengio (b0405) 2000; 12
Hazan, Klivans, Yuan (b0420) 2017
Claesen, De Moor (b0445) 2015
Claesen, Simm, Popovic, Moreau, De Moor (b0395) 2014
Smola, Vapnik (b0210) 1997; 9
Sparks, Talwalkar, Haas, Franklin, Jordan, Kraska (b0130) 2015
Falkner, Klein, Hutter (b0465) 2018
Manias, Jammal, Hawilo, Shami, Heidari, Larabi, Brunner (b0265) 2019
Gogna, Tayal (b0470) 2013; 25
J.D.M. Rennie, L. Shih, J. Teevan, D.R. Karger Tackling the poor assumptions of Naive Bayes text classifiers, Proc. Twent. Int. Conf. Mach. Learn. ICML (2003), 616–623.
Tim Head, MechCoder, Gilles Louppe, et al., scikitoptimize/scikit-optimize: v0.5.2, 2018. doi: 10.5281/zenodo.1207017.
James, Yoshua (b0065) 2012; 13
L. Hertel, P. Sadowski, J. Collado, P. Baldi, Sherpa: hyperparameter optimization for machine learning models, Conf. Neural Inf. Process. Syst., 2018.
Hoerl, Kennard (b0175) 1970; 12
M. Lindauer, K. Eggensperger, M. Feurer, S. Falkner, A. Biedenkapp, and F. Hutter, Smac v3: Algorithm configuration in python, 2017. https://github.com/automl/SMAC3.
O.S. Steinholtz, A Comparative Study of Black-box Optimization Algorithms for Tuning of Hyper-parameters in Deep Neural Networks, M.S. thesis, Dept. Elect. Eng., Luleå Univ. Technol., 2018
Koutsoukas, Monaghan, Li, Huan (b0305) 2017; 9
Rish (b0230) 2001
Xia, Liu, Li, Liu (b0290) 2017; 78
Howland, Wang, Park (b0385) 2006; 39
Eggensperger, Hutter, Hoos, Leyton-Brown (b0075) 2015; 2
J. Wang, J. Xu, and X. Wang, Combination of Hyperband and Bayesian Optimization for Hype
Kramer (10.1016/j.neucom.2020.07.061_b0145) 2016
10.1016/j.neucom.2020.07.061_b0285
10.1016/j.neucom.2020.07.061_b0560
10.1016/j.neucom.2020.07.061_b0045
10.1016/j.neucom.2020.07.061_b0280
10.1016/j.neucom.2020.07.061_b0160
10.1016/j.neucom.2020.07.061_b0040
Bradley (10.1016/j.neucom.2020.07.061_b0105) 1977
Hensman (10.1016/j.neucom.2020.07.061_b0440) 2013
10.1016/j.neucom.2020.07.061_b0565
Rasoul (10.1016/j.neucom.2020.07.061_b0260) 1991; 21
Tibshirani (10.1016/j.neucom.2020.07.061_b0185) 1996; 58
Koutsoukas (10.1016/j.neucom.2020.07.061_b0305) 2017; 9
Di Francescomarino (10.1016/j.neucom.2020.07.061_b0330) 2018; 74
Zhang (10.1016/j.neucom.2020.07.061_b0220) 2003; 2
Knudde (10.1016/j.neucom.2020.07.061_b0555) 2017
Manias (10.1016/j.neucom.2020.07.061_b0265) 2019
Cazzaniga (10.1016/j.neucom.2020.07.061_b0520) 2015
Luo (10.1016/j.neucom.2020.07.061_b0050) 2016; 5
10.1016/j.neucom.2020.07.061_b0275
Bergstra (10.1016/j.neucom.2020.07.061_b0530) 2015; 8
10.1016/j.neucom.2020.07.061_b0550
10.1016/j.neucom.2020.07.061_b0155
Ding (10.1016/j.neucom.2020.07.061_b0340) 2004; 3056
10.1016/j.neucom.2020.07.061_b0390
Melkumova (10.1016/j.neucom.2020.07.061_b0180) 2017; 201
10.1016/j.neucom.2020.07.061_b0435
Lorenzo (10.1016/j.neucom.2020.07.061_b0095) 2017
James (10.1016/j.neucom.2020.07.061_b0065) 2012; 13
Eggensperger (10.1016/j.neucom.2020.07.061_b0070) 2013
Zuo (10.1016/j.neucom.2020.07.061_b0205) 2008; 11
Yang (10.1016/j.neucom.2020.07.061_b0410) 1998; 10
Claesen (10.1016/j.neucom.2020.07.061_b0395) 2014
Claesen (10.1016/j.neucom.2020.07.061_b0445) 2015
Zhou (10.1016/j.neucom.2020.07.061_b0365) 2012; 9
Dietterich (10.1016/j.neucom.2020.07.061_b0295) 1857; 2000
Salo (10.1016/j.neucom.2020.07.061_bib633) 2019
10.1016/j.neucom.2020.07.061_b0100
Zhang (10.1016/j.neucom.2020.07.061_b0455) 2016
Bishop (10.1016/j.neucom.2020.07.061_b0605) 1995
Diaz (10.1016/j.neucom.2020.07.061_b0025) 2017; 61
Yang (10.1016/j.neucom.2020.07.061_bib632) 2018
10.1016/j.neucom.2020.07.061_b0225
Loog (10.1016/j.neucom.2020.07.061_b0380) 2006; 2
Rish (10.1016/j.neucom.2020.07.061_b0230) 2001
Bubeck (10.1016/j.neucom.2020.07.061_b0110) 2015; 8
Yang (10.1016/j.neucom.2020.07.061_b0270) 2019
Rahnamayan (10.1016/j.neucom.2020.07.061_b0485) 2007; 53
Bergstra (10.1016/j.neucom.2020.07.061_b0060) 2011
Sparks (10.1016/j.neucom.2020.07.061_b0130) 2015
Han (10.1016/j.neucom.2020.07.061_b0325) 2018; 95
Moubayed (10.1016/j.neucom.2020.07.061_b0335) 2020; 34
Cheng (10.1016/j.neucom.2020.07.061_b0505) 2018; 144
10.1016/j.neucom.2020.07.061_b0570
10.1016/j.neucom.2020.07.061_b0450
10.1016/j.neucom.2020.07.061_b0055
(10.1016/j.neucom.2020.07.061_b0030) 2019
Yang (10.1016/j.neucom.2020.07.061_bib638) 2020
10.1016/j.neucom.2020.07.061_b0170
Bustamante (10.1016/j.neucom.2020.07.061_b0240) 2006
Howland (10.1016/j.neucom.2020.07.061_b0385) 2006; 39
Seeger (10.1016/j.neucom.2020.07.061_b0425) 2004; 14
Eggensperger (10.1016/j.neucom.2020.07.061_b0075) 2015; 2
Smola (10.1016/j.neucom.2020.07.061_b0210) 1997; 9
10.1016/j.neucom.2020.07.061_b0575
Hosmer (10.1016/j.neucom.2020.07.061_b0190) 2013; 34
Domhan (10.1016/j.neucom.2020.07.061_b0310) 2015
Moon (10.1016/j.neucom.2020.07.061_b0345) 1996; 13
Moubayed (10.1016/j.neucom.2020.07.061_bib631) 2018
Wang (10.1016/j.neucom.2020.07.061_b0510) 2009; 2009
10.1016/j.neucom.2020.07.061_b0615
Injadat (10.1016/j.neucom.2020.07.061_b0600) 2020; 200
Yang (10.1016/j.neucom.2020.07.061_b0215) 2018; 6
Gambella (10.1016/j.neucom.2020.07.061_b0125) 2019
Karnin (10.1016/j.neucom.2020.07.061_b0460) 2013
Hoerl (10.1016/j.neucom.2020.07.061_b0175) 1970; 12
Hazan (10.1016/j.neucom.2020.07.061_b0420) 2017
Meng (10.1016/j.neucom.2020.07.061_b0630) 2016; 17
10.1016/j.neucom.2020.07.061_b0480
Cawley (10.1016/j.neucom.2020.07.061_b0620) 2010; 11
10.1016/j.neucom.2020.07.061_b0085
10.1016/j.neucom.2020.07.061_b0360
Caruana (10.1016/j.neucom.2020.07.061_b0140) 2006; 148
10.1016/j.neucom.2020.07.061_b0400
Pedregosa (10.1016/j.neucom.2020.07.061_b0150) 2011; 12
Xia (10.1016/j.neucom.2020.07.061_b0290) 2017; 78
Martinez-Cantin (10.1016/j.neucom.2020.07.061_b0525) 2015; 15
Li (10.1016/j.neucom.2020.07.061_b0080) 2012; 18
Injadat (10.1016/j.neucom.2020.07.061_bib637) 2020
Diaz (10.1016/j.neucom.2020.07.061_b0120) 2017; 61
Kibriya (10.1016/j.neucom.2020.07.061_b0245) 2004; 3339
10.1016/j.neucom.2020.07.061_b0595
10.1016/j.neucom.2020.07.061_b0590
Ogutu (10.1016/j.neucom.2020.07.061_b0195) 2012; 6
Halko (10.1016/j.neucom.2020.07.061_b0375) 2011; 53
Krizhevsky (10.1016/j.neucom.2020.07.061_b0610) 2012; 25
10.1016/j.neucom.2020.07.061_b0515
10.1016/j.neucom.2020.07.061_b0355
10.1016/j.neucom.2020.07.061_b0235
Soon (10.1016/j.neucom.2020.07.061_b0320) 2018; 12
10.1016/j.neucom.2020.07.061_b0115
Jordan (10.1016/j.neucom.2020.07.061_b0005) 2015; 349
Gambella (10.1016/j.neucom.2020.07.061_b0165) 2019
Fortin (10.1016/j.neucom.2020.07.061_b0585) 2012; 13
Lobo (10.1016/j.neucom.2020.07.061_b0490) 2000
Itano (10.1016/j.neucom.2020.07.061_b0475) 2018
Keller (10.1016/j.neucom.2020.07.061_b0200) 1985; SMC-15
Decastro-García (10.1016/j.neucom.2020.07.061_b0035) 2019
10.1016/j.neucom.2020.07.061_b0540
Yan (10.1016/j.neucom.2020.07.061_b0500) 2017; 32
10.1016/j.neucom.2020.07.061_b0545
10.1016/j.neucom.2020.07.061_b0300
Brahim-Belhouari (10.1016/j.neucom.2020.07.061_b0350) 2005; 5
Franceschi (10.1016/j.neucom.2020.07.061_b0580) 2017
10.1016/j.neucom.2020.07.061_b0090
Moubayed (10.1016/j.neucom.2020.07.061_bib634) 2020
10.1016/j.neucom.2020.07.061_b0010
Ozaki (10.1016/j.neucom.2020.07.061_b0315) 2017; 9
Gogna (10.1016/j.neucom.2020.07.061_b0470) 2013; 25
10.1016/j.neucom.2020.07.061_b0495
Hutter (10.1016/j.neucom.2020.07.061_b0430) 2011; 5
Falkner (10.1016/j.neucom.2020.07.061_b0465) 2018
10.1016/j.neucom.2020.07.061_b0370
10.1016/j.neucom.2020.07.061_b0250
Kuhn (10.1016/j.neucom.2020.07.061_b0020) 2013
10.1016/j.neucom.2020.07.061_b0415
Boehm (10.1016/j.neucom.2020.07.061_b0625) 2016; 9
10.1016/j.neucom.2020.07.061_b0255
10.1016/j.neucom.2020.07.061_b0135
10.1016/j.neucom.2020.07.061_b0015
Komer (10.1016/j.neucom.2020.07.061_b0535) 2014
Bengio (10.1016/j.neucom.2020.07.061_b0405) 2000; 12
References_xml – volume: 8
  year: 2015
  ident: b0530
  article-title: Hyperopt: a Python library for model selection and hyperparameter optimization
  publication-title: Comput. Sci. Discov.
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: b0185
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J. R. Stat. Soc. Ser. B
– start-page: 481
  year: 2017
  end-page: 488
  ident: b0095
  article-title: Particle swarm optimization for hyper-parameter selection in deep neural networks
  publication-title: Proc. ACM Int. Conf. Genet. Evol. Comput.
– reference: S. Sanders, C. Giraud-Carrier, Informing the use of hyperparameter optimization through metalearning, Proc. – IEEE Int. Conf. Data Mining, ICDM. 2017-Novem (2017) 1051–1056. https://doi.org/10.1109/ICDM.2017.137
– reference: Autonomio Talos [Computer software], 2019. http://github.com/autonomio/talos.
– reference: B. Kazimipour, X. Li, A.K. Qin, A Review of Population Initialization Techniques for Evolutionary Algorithms, 2014 IEEE Congr. Evol. Comput. (2014) 2585–2592. https://doi.org/10.1109/CEC.2014.6900618.
– start-page: 34
  year: 2014
  end-page: 40
  ident: b0535
  article-title: Hyperopt-sklearn: automatic hyperparameter configuration for scikit-learn
  publication-title: Proc. ICML Workshop AutoML
– start-page: 1
  year: 2013
  end-page: 5
  ident: b0070
  article-title: Towards an empirical foundation for assessing Bayesian optimization of hyperparameters
  publication-title: BayesOpt Work
– reference: I. Ilievski, T. Akhtar, J. Feng, C.A. Shoemaker, Efficient hyperparameter optimization of deep learning algorithms using deterministic RBF surrogates, 31st AAAI Conf. Artif. Intell. AAAI 2017, 2017, pp. 822–829
– reference: S. Lessmann, R. Stahlbock, S.F. Crone, Optimizing hyperparameters of support vector machines by genetic algorithms, Proc. 2005 Int. Conf. Artif. Intell. ICAI’05. 1 (2005) 74–80.
– volume: 5
  start-page: 507
  year: 2011
  end-page: 523
  ident: b0430
  article-title: Sequential model-based optimization for general algorithm configuration
  publication-title: Proc. LION
– reference: Z. Y., K. G., Hierarchical clustering algorithms for document dataset, Data Min. Knowl. Discov. 10 (2005) 141–168.
– year: 2020
  ident: bib637
  article-title: Multi-split optimized bagging ensemble model selection for multi-class educational data mining
  publication-title: Springer’s Appl. Intell.
– reference: J.N. Sulzmann, J. Fürnkranz, E. Hüllermeier, On pairwise naive bayes classifiers, Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 4701 LNAI (2007) 371-381. https://doi.org/10.1007/978-3-540-74958-5_35
– volume: 53
  start-page: 217
  year: 2011
  end-page: 288
  ident: b0375
  article-title: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions
  publication-title: SIAM Rev.
– reference: J. Wang, J. Xu, and X. Wang, Combination of Hyperband and Bayesian Optimization for Hyperparameter Optimization in Deep Learning, arXiv preprint arXiv:1801.01596, (2018). https://arxiv.org/abs1801.01596.
– year: 2019
  ident: b0030
  publication-title: Automatic Machine Learning: Methods, Systems, Challenges
– volume: 2
  start-page: 888
  year: 2003
  end-page: 895
  ident: b0220
  article-title: Modified logistic regression: an approximation to SVM and its applications in large-scale text categorization
  publication-title: Proceedings Twent. Int. Conf. Mach. Learn.
– reference: N. Hansen, A. Auger, O. Mersmann, T. Tusar, D. Brockhoff, COCO: A Platform for Comparing Continuous Optimizers in a Black-Box Setting, arXiv preprint arXiv:1603.08785, (2016). https://arxiv.org/abs1603.08785.
– year: 2013
  ident: b0440
  article-title: Gaussian processes for big data, arXiv preprint arXiv:1309.6835
– start-page: 45
  year: 2016
  end-page: 53
  ident: b0145
  article-title: Scikit-Learn, in Machine Learning for Evolution Strategies
– reference: L. Bottou, Large-scale machine learning with stochastic gradient descent, in: Proceedings of the COMPSTAT, Springer, 2010, pp. 177–186.
– start-page: 1
  year: 2015
  end-page: 8
  ident: b0520
  article-title: The impact of particles initialization in PSO: parameter estimation as a case in point
  publication-title: 2015 IEEE Conf. Comput. Intell. Bioinforma. Comput. Biol. CIBCB 2015
– volume: 34
  start-page: 358
  year: 2013
  end-page: 359
  ident: b0190
  article-title: Applied logistic regression
  publication-title: Technometrics
– year: 2015
  ident: b0445
  article-title: Hyperparameter Search in Machine Learning, arXiv preprint arXiv:1502.02127
– volume: 8
  start-page: 231
  year: 2015
  end-page: 357
  ident: b0110
  article-title: Convex optimization: algorithms and complexity
  publication-title: Found. Trends Mach. Learn.
– reference: B. Shahriari, A. Bouchard-Côté, N. de Freitas, Unbounded Bayesian optimization via regularization, Proc. Artif. Intell. Statist., (2016) 1168–1176.
– reference: D. Maclaurin, D. Duvenaud, R.P. Adams, Gradient-based Hyperparameter Optimization through Reversible Learning, arXiv preprint arXiv:1502.03492, (2015). http://arxiv.org/abs/1502.03492
– year: 2013
  ident: b0020
  article-title: Applied Predictive Modeling
– reference: R.E. Shawi, M. Maher, S. Sakr, Automated machine learning: State-of-the-art and open challenges, arXiv preprint arXiv:1906.02287, (2019). http://arxiv.org/abs/1906.02287
– reference: O.S. Steinholtz, A Comparative Study of Black-box Optimization Algorithms for Tuning of Hyper-parameters in Deep Neural Networks, M.S. thesis, Dept. Elect. Eng., Luleå Univ. Technol., 2018
– volume: 12
  start-page: 69
  year: 1970
  end-page: 82
  ident: b0175
  article-title: Ridge regression: applications to nonorthogonal problems
  publication-title: Technometrics
– volume: 6
  year: 2012
  ident: b0195
  article-title: Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions
  publication-title: BMC Proc. BioMed Cent.
– volume: 9
  year: 2017
  ident: b0315
  article-title: Effective hyperparameter optimization using Nelder-Mead method in deep learning
  publication-title: IPSJ Trans. Comput. Vis. Appl.
– start-page: 237
  year: 2006
  end-page: 247
  ident: b0240
  article-title: Comparing fuzzy Naive Bayes and Gaussian Naive Bayes for decision making in RoboCup 3D
  publication-title: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)
– year: 2019 (2019).
  ident: b0035
  article-title: Effect of the sampling of a dataset in the hyperparameter optimization phase over the efficiency of a machine learning algorithm
  publication-title: Complexity
– volume: 2
  start-page: 387
  year: 2006
  end-page: 390
  ident: b0380
  article-title: Conditional linear discriminant analysis
  publication-title: Proc. – Int. Conf. Pattern Recognit.
– volume: 10
  start-page: 2137
  year: 1998
  end-page: 2157
  ident: b0410
  article-title: Complexity issues in natural gradient descent method for training multilayer perceptrons
  publication-title: Neural Comput.
– volume: 61
  start-page: 1
  year: 2017
  end-page: 20
  ident: b0120
  article-title: An effective algorithm for hyperparameter optimization of neural networks
  publication-title: IBM J. Res. Dev.
– reference: K. Khan, S.U. Rehman, K. Aziz, S. Fong, S. Sarasvady, A. Vishwa, DBSCAN: Past, present and future, 5th Int. Conf. Appl. Digit. Inf. Web Technol. ICADIWT 2014, 2014, pp. 232–238. https://doi.org/10.1109/ICADIWT.2014.6814687.
– volume: 39
  start-page: 277
  year: 2006
  end-page: 287
  ident: b0385
  article-title: Solving the small sample size problem in face recognition using generalized discriminant analysis
  publication-title: Pattern Recognit.
– reference: S. Sun, Z. Cao, H. Zhu, J. Zhao, A Survey of Optimization Methods from a Machine Learning Perspective, arXiv preprint arXiv:1906.06821, (2019). https://arxiv.org/abs/1906.06821.
– start-page: 2275
  year: 2013
  end-page: 2283
  ident: b0460
  article-title: Almost optimal exploration in multi-armed bandits
  publication-title: 30th Int. Conf. Mach. Learn. ICML 2013
– start-page: 1
  year: 2019
  end-page: 40
  ident: b0165
  publication-title: Optimization Models for Machine Learning: A Survey
– reference: J. Shlens, A Tutorial on Principal Component Analysis, arXiv preprint arXiv:1404.1100, (2014). https://arxiv.org/abs1404.1100
– reference: S. Abreu, Automated Architecture Design for Deep Neural Networks, arXiv preprint arXiv:1908.10714, (2019). http://arxiv.org/abs/1908.10714
– reference: J. Snoek, H. Larochelle, R. Adams, Practical Bayesian optimization of machine learning algorithms, Adv. Neural Inf. Process. Syst. 4 (2012) 2951–2959.
– reference: V. Narayanan, I. Arora, A. Bhatia, Fast and accurate sentiment classification using an enhanced naíve Bayes model, arXiv preprint arXiv:1305.6143, (2013). https://arxiv.org/abs/1305.6143.
– volume: 78
  start-page: 225
  year: 2017
  end-page: 241
  ident: b0290
  article-title: A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring
  publication-title: Expert Syst. Appl.
– volume: 34
  start-page: 1
  year: 2020
  end-page: 20
  ident: b0335
  article-title: Student engagement level in e-learning environment: clustering using K-means
  publication-title: Am. J. Distance Educ.
– volume: 15
  start-page: 3735
  year: 2015
  end-page: 3739
  ident: b0525
  article-title: BayesOpt: a Bayesian optimization library for nonlinear optimization, experimental design and bandits
  publication-title: J. Mach. Learn. Res.
– year: 2020
  ident: bib634
  article-title: Ensemble-based feature selection and classification model for DNS typo-squatting detection
  publication-title: 2020 IEEE Can. Conf. Electr. Comput. Eng.
– volume: 2
  start-page: 1114
  year: 2015
  end-page: 1120
  ident: b0075
  article-title: Efficient benchmarking of hyperparameter optimizers via surrogates
  publication-title: Proc. Natl. Conf. Artif. Intell.
– start-page: 670
  year: 2016- (2016)
  end-page: 674
  ident: b0455
  article-title: A new optimal sampling rule for multi-fidelity optimization via ordinal transformation
  publication-title: IEEE Int. Conf. Autom. Sci. Eng.
– reference: J. Rapin, O. Teytaud, Nevergrad – a gradient-free optimization platform, 2018. https://GitHub.com/FacebookResearch/Nevergrad.
– volume: 9
  start-page: 1967
  year: 2012
  end-page: 1973
  ident: b0365
  article-title: Research on adaptive parameters determination in DBSCAN algorithm
  publication-title: J. Inf. Comput. Sci.
– start-page: 151
  year: 2000
  end-page: 158
  ident: b0490
  article-title: Time complexity of genetic algorithms on exponentially scaled problems
  publication-title: Proc. Genet. Evol. Comput. Conf.
– reference: F. Chollet, Keras, 2015. https://github.com/fchollet/keras.
– year: 1995
  ident: b0605
  article-title: Neural Networks for Pattern Recognition
– volume: 25
  start-page: 1097
  year: 2012
  end-page: 1105
  ident: b0610
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: L. Hertel, P. Sadowski, J. Collado, P. Baldi, Sherpa: hyperparameter optimization for machine learning models, Conf. Neural Inf. Process. Syst., 2018.
– volume: 5
  start-page: 1
  year: 2016
  end-page: 16
  ident: b0050
  article-title: A review of automatic selection methods for machine learning algorithms and hyper-parameter values
  publication-title: Netw. Model. Anal. Heal. Inf. Bioinf.
– volume: 11
  start-page: 2079
  year: 2010
  end-page: 2107
  ident: b0620
  article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation
  publication-title: J. Mach. Learn. Res.
– volume: 2009
  start-page: 332
  year: 2009
  end-page: 336
  ident: b0510
  article-title: A new population initialization method based on space transformation search, 5th Int
  publication-title: Conf. Nat. Comput. ICNC
– reference: J. Nocedal, S. Wright, Numerical Optimization, 2006, Springer-Verlag, ISBN: 978-0-387-40065-5.
– year: 2014
  ident: b0395
  publication-title: Easy Hyperparameter Search Using Optunity, arXiv preprint arXiv:1412.1114
– volume: 14
  start-page: 69
  year: 2004
  end-page: 106
  ident: b0425
  article-title: Gaussian processes for machine learning
  publication-title: Int. J. Neural Syst.
– start-page: 368
  year: 2015
  end-page: 380
  ident: b0130
  article-title: Automating model search for large scale machine learning
  publication-title: Proc. 6th ACM Symp. Cloud Comput.
– volume: 12
  start-page: 1889
  year: 2000
  end-page: 1900
  ident: b0405
  article-title: Gradient-based optimization of hyperparameters
  publication-title: Neural Comput.
– volume: 13
  start-page: 281
  year: 2012
  end-page: 305
  ident: b0065
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– reference: K. Arjunan, C.N. Modi, An enhanced intrusion detection framework for securing network layer of cloud computing, ISEA Asia Secur. Priv. Conf. 2017, ISEASP 2017. (2017) 1–10. doi: 10.1109/ISEASP.2017.7976988.
– year: 2020
  ident: bib638
  publication-title: Hyperparameter Optimization of Machine Learning Algorithms
– reference: M.-A. Zöller, M.F. Huber, Benchmark and Survey of Automated Machine Learning Frameworks, arXiv preprint arXiv:1904.12054, (2019). https://arxiv.org/abs/1904.12054
– volume: 148
  start-page: 161
  year: 2006
  end-page: 168
  ident: b0140
  article-title: An empirical comparison of supervised learning algorithms
  publication-title: ACM Int. Conf. Proc. Ser.
– start-page: 2323
  year: 2018
  end-page: 2341
  ident: b0465
  article-title: BOHB: robust and efficient hyperparameter optimization at scale
  publication-title: 35th Int. Conf. Mach. Learn. ICML 2018
– year: 2018
  ident: bib632
  publication-title: Comprehensive visibility indicator algorithm for adaptable speed limit control in intelligent transportation systems
– reference: O.S. Soliman, A.S. Mahmoud, A classification system for remote sensing satellite images using support vector machine with non-linear kernel functions, 2012 8th Int. Conf. Informatics Syst. INFOS 2012. (2012) BIO-181-BIO-187.
– volume: 12
  start-page: 939
  year: 2018
  end-page: 946
  ident: b0320
  article-title: Hyper-parameters optimisation of deep CNN architecture for vehicle logo recognition
  publication-title: IET Intell. Transp. Syst.
– reference: M. Injadat, F. Salo, A.B. Nassif, A. Essex, A. Shami, Bayesian optimization with machine learning algorithms towards anomaly detection, 2018 IEEE Glob. Commun. Conf. (2018) 1–6. https://doi.org/10.1109/glocom.2018.8647714.
– volume: 144
  start-page: 1
  year: 2018
  end-page: 7
  ident: b0505
  article-title: Multiobjective dynamic-guiding PSO for optimizing work shift schedules
  publication-title: J. Constr. Eng. Manag.
– year: 2019
  ident: b0125
  article-title: Optimization Models for Machine Learning: A Survey, arXiv preprint arXiv:1901.05331
– volume: SMC-15
  start-page: 580
  year: 1985
  end-page: 585
  ident: b0200
  article-title: A fuzzy K-nearest neighbor algorithm
  publication-title: IEEE Trans. Syst. Man Cybern.
– start-page: 41
  year: 2001
  end-page: 46
  ident: b0230
  article-title: An empirical study of the naive Bayes classifier
  publication-title: IJCAI 2001 Work Empir. Methods Artif. Intell.
– year: 2019
  ident: b0270
  article-title: Tree-based intelligent intrusion detection system in internet of vehicles
  publication-title: 2019 IEEE Glob. Commun. Conf. GLOBECOM 2019 – Proc.
– reference: R.S. Olson, J.H. Moore, TPOT: a tree-based pipeline optimization tool for automating machine learning, Auto Mach. Learn. (2019) 151–160. https://doi.org/10.1007/978-3-030-05318-5_8
– volume: 9
  start-page: 155
  year: 1997
  end-page: 161
  ident: b0210
  article-title: Support vector regression machines
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 1977
  ident: b0105
  article-title: Applied Mathematical Programming
– volume: 2000
  start-page: 1
  year: 1857
  end-page: 15
  ident: b0295
  article-title: Ensemble methods in machine learning
  publication-title: Mult. Classif. Syst.
– start-page: 12
  year: 2019
  end-page: 17
  ident: b0265
  article-title: Machine learning for performance-aware virtual network function placement
  publication-title: 2019 IEEE Glob. Commun. Conf. GLOBECOM 2019 – Proc.
– volume: 5
  start-page: 1433
  year: 2005
  end-page: 1444
  ident: b0350
  article-title: Fast and Robust gas identification system using an integrated gas sensor technology and Gaussian mixture models
  publication-title: IEEE Sens. J.
– volume: 61
  start-page: 1
  year: 2017
  end-page: 20
  ident: b0025
  article-title: An effective algorithm for hyperparameter optimization of neural networks
  publication-title: IBM J. Res. Dev.
– reference: T. Chen, C.Guestrin, XGBoost: a scalable tree boosting system, arXiv preprint arXiv:1603.02754, (2016). http://arxiv.org/abs/1603.02754.
– volume: 74
  start-page: 67
  year: 2018
  end-page: 83
  ident: b0330
  article-title: Genetic algorithms for hyperparameter optimization in predictive business process monitoring
  publication-title: Inf. Syst.
– volume: 13
  start-page: 2171
  year: 2012
  end-page: 2175
  ident: b0585
  article-title: DEAP: evolutionary algorithms made easy
  publication-title: J. Mach. Learn. Res.
– reference: J. Grandgirard, D. Poinsot, L. Krespi, J.P. Nénon, A.M. Cortesero, Osprey: Hyperparameter Optimization for Machine Learning, 103 (2002) 239–248. https://doi.org/10.21105/joss.00034.
– volume: 95
  start-page: 43
  year: 2018
  end-page: 56
  ident: b0325
  article-title: A new image classification method using CNN transfer learning and web data augmentation
  publication-title: Expert Syst. Appl.
– year: 2017
  ident: b0555
  publication-title: GPflowOpt: A Bayesian Optimization Library using TensorFlow, arXiv preprint arXiv:1711.03845
– reference: Tim Head, MechCoder, Gilles Louppe, et al., scikitoptimize/scikit-optimize: v0.5.2, 2018. doi: 10.5281/zenodo.1207017.
– volume: 3056
  start-page: 414
  year: 2004
  end-page: 418
  ident: b0340
  article-title: Cluster structure of K-means clustering via principal component analysis
  publication-title: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)
– start-page: 2546
  year: 2011
  end-page: 2554
  ident: b0060
  article-title: Algorithms for hyper-parameter optimization
  publication-title: Proc. Adv. Neural Inf. Process. Syst.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: b0150
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– reference: I. Dewancker, M. McCourt, S. Clark, Bayesian Optimization Primer, (2015). URL: https://sigopt.com/static/pdf/SigOpt Bayesian Optimization Primer.pdf.
– volume: 21
  start-page: 660
  year: 1991
  end-page: 674
  ident: b0260
  article-title: A survey of decision tree classifier methodology
  publication-title: IEEE Trans. Syst. Man. Cybern.
– year: 2017
  ident: b0420
  article-title: Hyperparameter optimization: a spectral approach, arXiv preprint arXiv:1706.00764
– volume: 349
  start-page: 255
  year: 2015
  end-page: 260
  ident: b0005
  article-title: Machine learning: trends, perspectives, and prospects
  publication-title: Science
– volume: 25
  start-page: 503
  year: 2013
  end-page: 526
  ident: b0470
  article-title: Metaheuristics: review and application
  publication-title: J. Exp. Theor. Artif. Intell.
– volume: 11
  start-page: 247
  year: 2008
  end-page: 257
  ident: b0205
  article-title: On kernel difference-weighted k-nearest neighbor classification
  publication-title: Pattern Anal. Appl.
– volume: 6
  start-page: 76728
  year: 2018
  end-page: 76740
  ident: b0215
  article-title: Image-based visibility estimation algorithm for intelligent transportation systems
  publication-title: IEEE Access
– volume: 9
  start-page: 1425
  year: 2016
  end-page: 1436
  ident: b0625
  article-title: SystemML: declarative machine learning on spark
  publication-title: Proc. VLDB Endow.
– reference: M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, et al., TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, arXiv preprint arXiv:1603.04467, (2016). https://arxiv.org/abs1603.04467.
– volume: 32
  start-page: 340
  year: 2017
  end-page: 355
  ident: b0500
  publication-title: A Novel Hardware/ Software Partitioning Method Based on Position Disturbed Particle Swarm Optimization with Invasive Weed Optimization
– start-page: 276
  year: 2019
  end-page: 281
  ident: bib633
  article-title: Clustering enabled classification using ensemble feature selection for intrusion detection
  publication-title: 2019 Int. Conf. Comput. Netw. Commun. ICNC
– volume: 13
  start-page: 47
  year: 1996
  end-page: 60
  ident: b0345
  article-title: The expectation-maximization algorithm
  publication-title: IEEE Signal Process. Mag.
– volume: 17
  start-page: 1235
  year: 2016
  end-page: 1241
  ident: b0630
  article-title: Mllib: machine learning in apache spark
  publication-title: J. Mach. Learn. Res.
– reference: C.M. Bishop, Pattern Recognition and Machine Learning, 2006, Springer, ISBN: 978-0-387-31073-2.
– volume: 18
  start-page: 1
  year: 2012
  end-page: 52
  ident: b0080
  article-title: Hyperband: a novel bandit-based approach to hyperparameter optimization
  publication-title: J. Mach. Learn. Res.
– reference: Q. Yao, et al., Taking Human out of Learning Applications: A Survey on Automated Machine Learning, arXiv preprint arXiv:1810.13306, (2018). http://arxiv.org/abs/1810.13306.
– reference: M. Lindauer, K. Eggensperger, M. Feurer, S. Falkner, A. Biedenkapp, and F. Hutter, Smac v3: Algorithm configuration in python, 2017. https://github.com/automl/SMAC3.
– reference: W. Yin, K. Kann, M. Yu, H. Schütze, Comparative Study of CNN and RNN for Natural Language Processing, arXiv preprint arXiv:1702.01923, (2017). https://arxiv.org/abs1702.01923.
– volume: 201
  start-page: 746
  year: 2017
  end-page: 755
  ident: b0180
  article-title: Comparing ridge and LASSO estimators for data analysis
  publication-title: Procedia Eng.
– year: 2018
  ident: bib631
  article-title: DNS typo-squatting domain detection: a data analytics & machine learning based approach
  publication-title: 2018 IEEE Glob. Commun. Conf. GLOBECOM.
– start-page: 1
  year: 2018
  end-page: 8
  ident: b0475
  article-title: Extending MLP ANN hyper-parameters Optimization by using Genetic Algorithm
  publication-title: Proc. Int. Jt. Conf. Neural Networks
– reference: Y. Shi, R.C. Eberhart, Parameter Selection in Particle Swarm Optimization, Evolutionary Programming VII, Springer, 1998, pp. 591–600.
– start-page: 1165
  year: 2017
  end-page: 1173
  ident: b0580
  article-title: Forward and reverse gradient-based hyperparameter optimization, 34th Int
  publication-title: Conf. Mach. Learn. ICML 2017
– volume: 3339
  start-page: 488
  year: 2004
  end-page: 499
  ident: b0245
  article-title: Multinomial naive bayes for text categorization revisited
  publication-title: Lect. Notes Artif. Intell. (Subseries Lect. Notes Comput. Sci.)
– start-page: 3460
  year: 2015- (2015)
  end-page: 3468
  ident: b0310
  article-title: Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves
  publication-title: IJCAI Int. Jt. Conf. Artif. Intell.
– volume: 200
  start-page: 105992
  year: 2020
  ident: b0600
  article-title: Systematic ensemble model selection approach for educational data mining
  publication-title: Knowl.-Based Syst.
– reference: J.D.M. Rennie, L. Shih, J. Teevan, D.R. Karger Tackling the poor assumptions of Naive Bayes text classifiers, Proc. Twent. Int. Conf. Mach. Learn. ICML (2003), 616–623.
– reference: M. Pumperla, Hyperas, 2019. http://maxpumperla.com/hyperas/.
– volume: 9
  start-page: 1
  year: 2017
  end-page: 13
  ident: b0305
  article-title: Deep-learning: Investigating deep neural networks hyper-parameters and comparison of performance to shallow methods for modeling bioactivity data
  publication-title: J. Cheminf.
– volume: 53
  start-page: 1605
  year: 2007
  end-page: 1614
  ident: b0485
  article-title: A novel population initialization method for accelerating evolutionary algorithms
  publication-title: Comput. Math. Appl.
– reference: C. Witt, Worst-case and average-case approximations by simple randomized search heuristics, in: Proceedings of the 22nd Annual Symposium on Theoretical Aspects of Computer Science, STACS’05, Stuttgart, Germany, 2005, pp. 44-56.
– start-page: 670
  year: 2016
  ident: 10.1016/j.neucom.2020.07.061_b0455
  article-title: A new optimal sampling rule for multi-fidelity optimization via ordinal transformation
  publication-title: IEEE Int. Conf. Autom. Sci. Eng.
– ident: 10.1016/j.neucom.2020.07.061_b0480
  doi: 10.1109/CEC.2014.6900618
– volume: 8
  year: 2015
  ident: 10.1016/j.neucom.2020.07.061_b0530
  article-title: Hyperopt: a Python library for model selection and hyperparameter optimization
  publication-title: Comput. Sci. Discov.
  doi: 10.1088/1749-4699/8/1/014008
– ident: 10.1016/j.neucom.2020.07.061_b0540
– volume: SMC-15
  start-page: 580
  year: 1985
  ident: 10.1016/j.neucom.2020.07.061_b0200
  article-title: A fuzzy K-nearest neighbor algorithm
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1985.6313426
– volume: 13
  start-page: 47
  issue: 6
  year: 1996
  ident: 10.1016/j.neucom.2020.07.061_b0345
  article-title: The expectation-maximization algorithm
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.543975
– ident: 10.1016/j.neucom.2020.07.061_b0560
– year: 2019
  ident: 10.1016/j.neucom.2020.07.061_b0030
– volume: 5
  start-page: 1
  year: 2016
  ident: 10.1016/j.neucom.2020.07.061_b0050
  article-title: A review of automatic selection methods for machine learning algorithms and hyper-parameter values
  publication-title: Netw. Model. Anal. Heal. Inf. Bioinf.
– year: 2013
  ident: 10.1016/j.neucom.2020.07.061_b0440
– year: 2018
  ident: 10.1016/j.neucom.2020.07.061_bib632
– start-page: 12
  year: 2019
  ident: 10.1016/j.neucom.2020.07.061_b0265
  article-title: Machine learning for performance-aware virtual network function placement
  publication-title: 2019 IEEE Glob. Commun. Conf. GLOBECOM 2019 – Proc.
– volume: 2
  start-page: 1114
  year: 2015
  ident: 10.1016/j.neucom.2020.07.061_b0075
  article-title: Efficient benchmarking of hyperparameter optimizers via surrogates
  publication-title: Proc. Natl. Conf. Artif. Intell.
– start-page: 3460
  year: 2015
  ident: 10.1016/j.neucom.2020.07.061_b0310
  article-title: Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves
  publication-title: IJCAI Int. Jt. Conf. Artif. Intell.
– volume: 11
  start-page: 2079
  year: 2010
  ident: 10.1016/j.neucom.2020.07.061_b0620
  article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation
  publication-title: J. Mach. Learn. Res.
– volume: 58
  start-page: 267
  year: 1996
  ident: 10.1016/j.neucom.2020.07.061_b0185
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 39
  start-page: 277
  year: 2006
  ident: 10.1016/j.neucom.2020.07.061_b0385
  article-title: Solving the small sample size problem in face recognition using generalized discriminant analysis
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2005.06.013
– ident: 10.1016/j.neucom.2020.07.061_b0595
– ident: 10.1016/j.neucom.2020.07.061_b0085
– volume: 95
  start-page: 43
  year: 2018
  ident: 10.1016/j.neucom.2020.07.061_b0325
  article-title: A new image classification method using CNN transfer learning and web data augmentation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.11.028
– volume: 13
  start-page: 281
  issue: 1
  year: 2012
  ident: 10.1016/j.neucom.2020.07.061_b0065
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– year: 2015
  ident: 10.1016/j.neucom.2020.07.061_b0445
– volume: 25
  start-page: 503
  year: 2013
  ident: 10.1016/j.neucom.2020.07.061_b0470
  article-title: Metaheuristics: review and application
  publication-title: J. Exp. Theor. Artif. Intell.
  doi: 10.1080/0952813X.2013.782347
– start-page: 368
  year: 2015
  ident: 10.1016/j.neucom.2020.07.061_b0130
  article-title: Automating model search for large scale machine learning
  publication-title: Proc. 6th ACM Symp. Cloud Comput.
  doi: 10.1145/2806777.2806945
– ident: 10.1016/j.neucom.2020.07.061_b0360
  doi: 10.1109/ICADIWT.2014.6814687
– year: 2018
  ident: 10.1016/j.neucom.2020.07.061_bib631
  article-title: DNS typo-squatting domain detection: a data analytics & machine learning based approach
  publication-title: 2018 IEEE Glob. Commun. Conf. GLOBECOM.
  doi: 10.1109/GLOCOM.2018.8647679
– ident: 10.1016/j.neucom.2020.07.061_b0285
  doi: 10.1109/ISEASP.2017.7976988
– volume: 74
  start-page: 67
  year: 2018
  ident: 10.1016/j.neucom.2020.07.061_b0330
  article-title: Genetic algorithms for hyperparameter optimization in predictive business process monitoring
  publication-title: Inf. Syst.
  doi: 10.1016/j.is.2018.01.003
– volume: 3339
  start-page: 488
  year: 2004
  ident: 10.1016/j.neucom.2020.07.061_b0245
  article-title: Multinomial naive bayes for text categorization revisited
  publication-title: Lect. Notes Artif. Intell. (Subseries Lect. Notes Comput. Sci.)
– ident: 10.1016/j.neucom.2020.07.061_b0015
– start-page: 237
  year: 2006
  ident: 10.1016/j.neucom.2020.07.061_b0240
  article-title: Comparing fuzzy Naive Bayes and Gaussian Naive Bayes for decision making in RoboCup 3D
  publication-title: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)
– volume: 13
  start-page: 2171
  year: 2012
  ident: 10.1016/j.neucom.2020.07.061_b0585
  article-title: DEAP: evolutionary algorithms made easy
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.neucom.2020.07.061_b0235
  doi: 10.1007/978-3-540-74958-5_35
– volume: 2000
  start-page: 1
  year: 1857
  ident: 10.1016/j.neucom.2020.07.061_b0295
  article-title: Ensemble methods in machine learning
  publication-title: Mult. Classif. Syst.
– volume: 21
  start-page: 660
  year: 1991
  ident: 10.1016/j.neucom.2020.07.061_b0260
  article-title: A survey of decision tree classifier methodology
  publication-title: IEEE Trans. Syst. Man. Cybern.
  doi: 10.1109/21.97458
– ident: 10.1016/j.neucom.2020.07.061_b0225
– ident: 10.1016/j.neucom.2020.07.061_b0250
– start-page: 1
  year: 2015
  ident: 10.1016/j.neucom.2020.07.061_b0520
  article-title: The impact of particles initialization in PSO: parameter estimation as a case in point
  publication-title: 2015 IEEE Conf. Comput. Intell. Bioinforma. Comput. Biol. CIBCB 2015
– ident: 10.1016/j.neucom.2020.07.061_b0055
– year: 2019
  ident: 10.1016/j.neucom.2020.07.061_b0125
– start-page: 45
  year: 2016
  ident: 10.1016/j.neucom.2020.07.061_b0145
– ident: 10.1016/j.neucom.2020.07.061_b0565
– ident: 10.1016/j.neucom.2020.07.061_b0400
  doi: 10.1007/978-3-540-31856-9_4
– ident: 10.1016/j.neucom.2020.07.061_b0135
– volume: 32
  start-page: 340
  year: 2017
  ident: 10.1016/j.neucom.2020.07.061_b0500
  publication-title: A Novel Hardware/ Software Partitioning Method Based on Position Disturbed Particle Swarm Optimization with Invasive Weed Optimization
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.neucom.2020.07.061_b0150
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– start-page: 34
  year: 2014
  ident: 10.1016/j.neucom.2020.07.061_b0535
  article-title: Hyperopt-sklearn: automatic hyperparameter configuration for scikit-learn
  publication-title: Proc. ICML Workshop AutoML
– volume: 6
  year: 2012
  ident: 10.1016/j.neucom.2020.07.061_b0195
  article-title: Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions
  publication-title: BMC Proc. BioMed Cent.
– start-page: 1165
  issue: 70
  year: 2017
  ident: 10.1016/j.neucom.2020.07.061_b0580
  article-title: Forward and reverse gradient-based hyperparameter optimization, 34th Int
  publication-title: Conf. Mach. Learn. ICML 2017
– volume: 200
  start-page: 105992
  year: 2020
  ident: 10.1016/j.neucom.2020.07.061_b0600
  article-title: Systematic ensemble model selection approach for educational data mining
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105992
– year: 1995
  ident: 10.1016/j.neucom.2020.07.061_b0605
– volume: 2
  start-page: 387
  year: 2006
  ident: 10.1016/j.neucom.2020.07.061_b0380
  article-title: Conditional linear discriminant analysis
  publication-title: Proc. – Int. Conf. Pattern Recognit.
– ident: 10.1016/j.neucom.2020.07.061_b0010
– volume: 78
  start-page: 225
  year: 2017
  ident: 10.1016/j.neucom.2020.07.061_b0290
  article-title: A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.02.017
– volume: 6
  start-page: 76728
  year: 2018
  ident: 10.1016/j.neucom.2020.07.061_b0215
  article-title: Image-based visibility estimation algorithm for intelligent transportation systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2884225
– volume: 10
  start-page: 2137
  issue: 8
  year: 1998
  ident: 10.1016/j.neucom.2020.07.061_b0410
  article-title: Complexity issues in natural gradient descent method for training multilayer perceptrons
  publication-title: Neural Comput.
  doi: 10.1162/089976698300017007
– ident: 10.1016/j.neucom.2020.07.061_b0415
– ident: 10.1016/j.neucom.2020.07.061_b0280
  doi: 10.1109/GLOCOM.2018.8647714
– start-page: 1
  year: 2018
  ident: 10.1016/j.neucom.2020.07.061_b0475
  article-title: Extending MLP ANN hyper-parameters Optimization by using Genetic Algorithm
  publication-title: Proc. Int. Jt. Conf. Neural Networks
– volume: 18
  start-page: 1
  year: 2012
  ident: 10.1016/j.neucom.2020.07.061_b0080
  article-title: Hyperband: a novel bandit-based approach to hyperparameter optimization
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.neucom.2020.07.061_b0115
– ident: 10.1016/j.neucom.2020.07.061_b0545
– start-page: 276
  year: 2019
  ident: 10.1016/j.neucom.2020.07.061_bib633
  article-title: Clustering enabled classification using ensemble feature selection for intrusion detection
  publication-title: 2019 Int. Conf. Comput. Netw. Commun. ICNC
  doi: 10.1109/ICCNC.2019.8685636
– volume: 12
  start-page: 939
  year: 2018
  ident: 10.1016/j.neucom.2020.07.061_b0320
  article-title: Hyper-parameters optimisation of deep CNN architecture for vehicle logo recognition
  publication-title: IET Intell. Transp. Syst.
  doi: 10.1049/iet-its.2018.5127
– ident: 10.1016/j.neucom.2020.07.061_b0590
  doi: 10.1007/978-3-030-05318-5_8
– volume: 25
  start-page: 1097
  year: 2012
  ident: 10.1016/j.neucom.2020.07.061_b0610
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 9
  start-page: 1967
  year: 2012
  ident: 10.1016/j.neucom.2020.07.061_b0365
  article-title: Research on adaptive parameters determination in DBSCAN algorithm
  publication-title: J. Inf. Comput. Sci.
– ident: 10.1016/j.neucom.2020.07.061_b0160
– start-page: 1
  year: 2013
  ident: 10.1016/j.neucom.2020.07.061_b0070
  article-title: Towards an empirical foundation for assessing Bayesian optimization of hyperparameters
  publication-title: BayesOpt Work
– volume: 61
  start-page: 1
  year: 2017
  ident: 10.1016/j.neucom.2020.07.061_b0120
  article-title: An effective algorithm for hyperparameter optimization of neural networks
  publication-title: IBM J. Res. Dev.
  doi: 10.1147/JRD.2017.2709578
– volume: 12
  start-page: 1889
  issue: 8
  year: 2000
  ident: 10.1016/j.neucom.2020.07.061_b0405
  article-title: Gradient-based optimization of hyperparameters
  publication-title: Neural Comput.
  doi: 10.1162/089976600300015187
– ident: 10.1016/j.neucom.2020.07.061_b0495
  doi: 10.1007/BFb0040810
– ident: 10.1016/j.neucom.2020.07.061_b0435
– ident: 10.1016/j.neucom.2020.07.061_b0040
– ident: 10.1016/j.neucom.2020.07.061_b0615
– volume: 3056
  start-page: 414
  year: 2004
  ident: 10.1016/j.neucom.2020.07.061_b0340
  article-title: Cluster structure of K-means clustering via principal component analysis
  publication-title: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)
– ident: 10.1016/j.neucom.2020.07.061_b0100
– ident: 10.1016/j.neucom.2020.07.061_b0255
– volume: 9
  start-page: 1
  year: 2017
  ident: 10.1016/j.neucom.2020.07.061_b0305
  article-title: Deep-learning: Investigating deep neural networks hyper-parameters and comparison of performance to shallow methods for modeling bioactivity data
  publication-title: J. Cheminf.
  doi: 10.1186/s13321-017-0226-y
– start-page: 151
  year: 2000
  ident: 10.1016/j.neucom.2020.07.061_b0490
  article-title: Time complexity of genetic algorithms on exponentially scaled problems
  publication-title: Proc. Genet. Evol. Comput. Conf.
– ident: 10.1016/j.neucom.2020.07.061_b0515
– volume: 34
  start-page: 358
  issue: 1
  year: 2013
  ident: 10.1016/j.neucom.2020.07.061_b0190
  article-title: Applied logistic regression
  publication-title: Technometrics
– ident: 10.1016/j.neucom.2020.07.061_b0570
– year: 2019
  ident: 10.1016/j.neucom.2020.07.061_b0270
  article-title: Tree-based intelligent intrusion detection system in internet of vehicles
  publication-title: 2019 IEEE Glob. Commun. Conf. GLOBECOM 2019 – Proc.
  doi: 10.1109/GLOBECOM38437.2019.9013892
– year: 1977
  ident: 10.1016/j.neucom.2020.07.061_b0105
– volume: 34
  start-page: 1
  year: 2020
  ident: 10.1016/j.neucom.2020.07.061_b0335
  article-title: Student engagement level in e-learning environment: clustering using K-means
  publication-title: Am. J. Distance Educ.
  doi: 10.1080/08923647.2020.1696140
– ident: 10.1016/j.neucom.2020.07.061_b0300
– volume: 5
  start-page: 1433
  year: 2005
  ident: 10.1016/j.neucom.2020.07.061_b0350
  article-title: Fast and Robust gas identification system using an integrated gas sensor technology and Gaussian mixture models
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2005.858926
– ident: 10.1016/j.neucom.2020.07.061_b0370
– ident: 10.1016/j.neucom.2020.07.061_b0155
– volume: 12
  start-page: 69
  year: 1970
  ident: 10.1016/j.neucom.2020.07.061_b0175
  article-title: Ridge regression: applications to nonorthogonal problems
  publication-title: Technometrics
  doi: 10.1080/00401706.1970.10488635
– ident: 10.1016/j.neucom.2020.07.061_b0390
  doi: 10.1609/aaai.v31i1.10647
– start-page: 2546
  year: 2011
  ident: 10.1016/j.neucom.2020.07.061_b0060
  article-title: Algorithms for hyper-parameter optimization
  publication-title: Proc. Adv. Neural Inf. Process. Syst.
– volume: 9
  start-page: 155
  year: 1997
  ident: 10.1016/j.neucom.2020.07.061_b0210
  article-title: Support vector regression machines
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 61
  start-page: 1
  year: 2017
  ident: 10.1016/j.neucom.2020.07.061_b0025
  article-title: An effective algorithm for hyperparameter optimization of neural networks
  publication-title: IBM J. Res. Dev.
  doi: 10.1147/JRD.2017.2709578
– year: 2013
  ident: 10.1016/j.neucom.2020.07.061_b0020
– volume: 9
  start-page: 1425
  year: 2016
  ident: 10.1016/j.neucom.2020.07.061_b0625
  article-title: SystemML: declarative machine learning on spark
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3007263.3007279
– year: 2019
  ident: 10.1016/j.neucom.2020.07.061_b0035
  article-title: Effect of the sampling of a dataset in the hyperparameter optimization phase over the efficiency of a machine learning algorithm
  publication-title: Complexity
  doi: 10.1155/2019/6278908
– ident: 10.1016/j.neucom.2020.07.061_b0550
– year: 2020
  ident: 10.1016/j.neucom.2020.07.061_bib638
  publication-title: Hyperparameter Optimization of Machine Learning Algorithms
– year: 2014
  ident: 10.1016/j.neucom.2020.07.061_b0395
  publication-title: Easy Hyperparameter Search Using Optunity, arXiv preprint arXiv:1412.1114
– ident: 10.1016/j.neucom.2020.07.061_b0355
  doi: 10.1007/s10618-005-0361-3
– year: 2017
  ident: 10.1016/j.neucom.2020.07.061_b0420
– start-page: 1
  year: 2019
  ident: 10.1016/j.neucom.2020.07.061_b0165
  publication-title: Optimization Models for Machine Learning: A Survey
– year: 2017
  ident: 10.1016/j.neucom.2020.07.061_b0555
  publication-title: GPflowOpt: A Bayesian Optimization Library using TensorFlow, arXiv preprint arXiv:1711.03845
– volume: 201
  start-page: 746
  year: 2017
  ident: 10.1016/j.neucom.2020.07.061_b0180
  article-title: Comparing ridge and LASSO estimators for data analysis
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2017.09.615
– ident: 10.1016/j.neucom.2020.07.061_b0170
– volume: 11
  start-page: 247
  year: 2008
  ident: 10.1016/j.neucom.2020.07.061_b0205
  article-title: On kernel difference-weighted k-nearest neighbor classification
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-007-0100-z
– ident: 10.1016/j.neucom.2020.07.061_b0045
– start-page: 2275
  issue: 28
  year: 2013
  ident: 10.1016/j.neucom.2020.07.061_b0460
  article-title: Almost optimal exploration in multi-armed bandits
  publication-title: 30th Int. Conf. Mach. Learn. ICML 2013
– volume: 2009
  start-page: 332
  issue: 5
  year: 2009
  ident: 10.1016/j.neucom.2020.07.061_b0510
  article-title: A new population initialization method based on space transformation search, 5th Int
  publication-title: Conf. Nat. Comput. ICNC
– ident: 10.1016/j.neucom.2020.07.061_b0090
– ident: 10.1016/j.neucom.2020.07.061_b0275
  doi: 10.1109/ICDM.2017.137
– volume: 9
  year: 2017
  ident: 10.1016/j.neucom.2020.07.061_b0315
  article-title: Effective hyperparameter optimization using Nelder-Mead method in deep learning
  publication-title: IPSJ Trans. Comput. Vis. Appl.
– volume: 53
  start-page: 217
  issue: 2
  year: 2011
  ident: 10.1016/j.neucom.2020.07.061_b0375
  article-title: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions
  publication-title: SIAM Rev.
  doi: 10.1137/090771806
– volume: 15
  start-page: 3735
  year: 2015
  ident: 10.1016/j.neucom.2020.07.061_b0525
  article-title: BayesOpt: a Bayesian optimization library for nonlinear optimization, experimental design and bandits
  publication-title: J. Mach. Learn. Res.
– volume: 5
  start-page: 507
  year: 2011
  ident: 10.1016/j.neucom.2020.07.061_b0430
  article-title: Sequential model-based optimization for general algorithm configuration
  publication-title: Proc. LION
– year: 2020
  ident: 10.1016/j.neucom.2020.07.061_bib637
  article-title: Multi-split optimized bagging ensemble model selection for multi-class educational data mining
  publication-title: Springer’s Appl. Intell.
  doi: 10.1007/s10489-020-01776-3
– start-page: 2323
  issue: 4
  year: 2018
  ident: 10.1016/j.neucom.2020.07.061_b0465
  article-title: BOHB: robust and efficient hyperparameter optimization at scale
  publication-title: 35th Int. Conf. Mach. Learn. ICML 2018
– volume: 53
  start-page: 1605
  year: 2007
  ident: 10.1016/j.neucom.2020.07.061_b0485
  article-title: A novel population initialization method for accelerating evolutionary algorithms
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2006.07.013
– volume: 14
  start-page: 69
  year: 2004
  ident: 10.1016/j.neucom.2020.07.061_b0425
  article-title: Gaussian processes for machine learning
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065704001899
– volume: 148
  start-page: 161
  year: 2006
  ident: 10.1016/j.neucom.2020.07.061_b0140
  article-title: An empirical comparison of supervised learning algorithms
  publication-title: ACM Int. Conf. Proc. Ser.
– volume: 2
  start-page: 888
  year: 2003
  ident: 10.1016/j.neucom.2020.07.061_b0220
  article-title: Modified logistic regression: an approximation to SVM and its applications in large-scale text categorization
  publication-title: Proceedings Twent. Int. Conf. Mach. Learn.
– ident: 10.1016/j.neucom.2020.07.061_b0575
  doi: 10.21105/joss.00034
– year: 2020
  ident: 10.1016/j.neucom.2020.07.061_bib634
  article-title: Ensemble-based feature selection and classification model for DNS typo-squatting detection
  publication-title: 2020 IEEE Can. Conf. Electr. Comput. Eng.
  doi: 10.1109/CCECE47787.2020.9255697
– start-page: 481
  year: 2017
  ident: 10.1016/j.neucom.2020.07.061_b0095
  article-title: Particle swarm optimization for hyper-parameter selection in deep neural networks
  publication-title: Proc. ACM Int. Conf. Genet. Evol. Comput.
  doi: 10.1145/3071178.3071208
– start-page: 41
  year: 2001
  ident: 10.1016/j.neucom.2020.07.061_b0230
  article-title: An empirical study of the naive Bayes classifier
  publication-title: IJCAI 2001 Work Empir. Methods Artif. Intell.
– volume: 144
  start-page: 1
  year: 2018
  ident: 10.1016/j.neucom.2020.07.061_b0505
  article-title: Multiobjective dynamic-guiding PSO for optimizing work shift schedules
  publication-title: J. Constr. Eng. Manag.
  doi: 10.1061/(ASCE)CO.1943-7862.0001548
– volume: 17
  start-page: 1235
  issue: 1
  year: 2016
  ident: 10.1016/j.neucom.2020.07.061_b0630
  article-title: Mllib: machine learning in apache spark
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.neucom.2020.07.061_b0450
  doi: 10.1007/978-3-7908-2604-3_16
– volume: 349
  start-page: 255
  year: 2015
  ident: 10.1016/j.neucom.2020.07.061_b0005
  article-title: Machine learning: trends, perspectives, and prospects
  publication-title: Science
  doi: 10.1126/science.aaa8415
– volume: 8
  start-page: 231
  year: 2015
  ident: 10.1016/j.neucom.2020.07.061_b0110
  article-title: Convex optimization: algorithms and complexity
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000050
SSID ssj0017129
Score 2.7268941
Snippet Machine learning algorithms have been used widely in various applications and areas. To fit a machine learning model into different problems, its...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 295
SubjectTerms Bayesian optimization
Genetic algorithm
Grid search
Hyper-parameter optimization
Machine learning
Particle swarm optimization
Title On hyperparameter optimization of machine learning algorithms: Theory and practice
URI https://dx.doi.org/10.1016/j.neucom.2020.07.061
Volume 415
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FL158i_VRcvAau8k-460US1WsoBZ6W7J5tJV2W-r26m93spstCqLgcZcMLJPJZGb5vm8QutKhgtQrGGEiMSRQRpFMxpwwJaQvJYuNsP87HgdRfxjcj8JRA3VrLoyFVbrcX-X0Mlu7N23nzfZyOm2_eJxBF0UZg7i0kiKWwR7ENsqvPzYwDxpTVuntsZDY1TV9rsR45XptMSMMaqZSwjOiP19PX66c3j7adbUi7lSfc4AaOj9Ee_UcBuyO5RF6fsrxBPrJldXxnlt8C15AJpg7iiVeGDwvMZMauyERYyxm48VqWkzm7ze44udjkStck6aO0bB3-9rtEzcrgUg_ZgURGeeS8SzgSkQy8UINtQzNAqp8HgkBlZSAbdHQkmZKct_OmQ4l1cpwHQQcGtUTtJUvcn2KsEkk9DBKmgjubyq8JOOBgU2kiQkjGSZN5NcuSqUTErfzLGZpjRh7SyvHptaxqRen4NgmIhurZSWk8cf6uPZ--i0gUsj1v1qe_dvyHO3YJ0s1ZN4F2ipWa30JNUeRtcqgaqHtzt1Df_AJ5T3ZXg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JSgQxEA2iB724i7s56DFOJ71G8CAujDu4gLeYzqIjTs8wMyJe_Cl_0Ep3WhREQfDa3YFOpXhVFV69QmjdxBqgVzLCZGZJpK0muUo5YVqqUCmWWunuO07PkuZ1dHQT3wyht7oXxtEqPfZXmF6itX_S8NZsdFutxmXAGVRRlDHwSycp4pmVx-blGeq2_vbhHhzyBmMH-1e7TeJHCxAVpmxAZM65YjyPuJaJyoLYQOineUR1yBMpIfGQsAsDFVyuFQ_dWOZYUaMtN1HEqbsFBdwfiQAu3NiEzdcPXglNKasE_lhM3O_V_XolqawwT46kwiBJKzVDE_p9PPwU4w4m0bhPTvFOtf8pNGSKaTRRD37AHgdm0MV5ge-hgO054fC2I9TgDkBP2_d04o7F7ZKkabCfSnGH5eNdp9ca3Lf7W7gSBMCy0Lju0ppF1_9iwTk0XHQKM4-wzRQUTVrZBBIGKoMs55EFr6GZjRMVZwsorE0klFcudwM0HkVNUXsQlWGFM6wIUgGGXUDkY1W3Uu745fu0tr744oECgsuPKxf_vHINjTavTk_EyeHZ8RIac29cnyMLltHwoPdkViDhGeSrpYNhdPvfHv0OvMwU1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+hyperparameter+optimization+of+machine+learning+algorithms%3A+Theory+and+practice&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Yang%2C+Li&rft.au=Shami%2C+Abdallah&rft.date=2020-11-20&rft.issn=0925-2312&rft.volume=415&rft.spage=295&rft.epage=316&rft_id=info:doi/10.1016%2Fj.neucom.2020.07.061&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2020_07_061
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon