On hyperparameter optimization of machine learning algorithms: Theory and practice
Machine learning algorithms have been used widely in various applications and areas. To fit a machine learning model into different problems, its hyper-parameters must be tuned. Selecting the best hyper-parameter configuration for machine learning models has a direct impact on the model’s performanc...
Saved in:
Published in | Neurocomputing (Amsterdam) Vol. 415; pp. 295 - 316 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
20.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Machine learning algorithms have been used widely in various applications and areas. To fit a machine learning model into different problems, its hyper-parameters must be tuned. Selecting the best hyper-parameter configuration for machine learning models has a direct impact on the model’s performance. It often requires deep knowledge of machine learning algorithms and appropriate hyper-parameter optimization techniques. Although several automatic optimization techniques exist, they have different strengths and drawbacks when applied to different types of problems. In this paper, optimizing the hyper-parameters of common machine learning models is studied. We introduce several state-of-the-art optimization techniques and discuss how to apply them to machine learning algorithms. Many available libraries and frameworks developed for hyper-parameter optimization problems are provided, and some open challenges of hyper-parameter optimization research are also discussed in this paper. Moreover, experiments are conducted on benchmark datasets to compare the performance of different optimization methods and provide practical examples of hyper-parameter optimization. This survey paper will help industrial users, data analysts, and researchers to better develop machine learning models by identifying the proper hyper-parameter configurations effectively. |
---|---|
AbstractList | Machine learning algorithms have been used widely in various applications and areas. To fit a machine learning model into different problems, its hyper-parameters must be tuned. Selecting the best hyper-parameter configuration for machine learning models has a direct impact on the model’s performance. It often requires deep knowledge of machine learning algorithms and appropriate hyper-parameter optimization techniques. Although several automatic optimization techniques exist, they have different strengths and drawbacks when applied to different types of problems. In this paper, optimizing the hyper-parameters of common machine learning models is studied. We introduce several state-of-the-art optimization techniques and discuss how to apply them to machine learning algorithms. Many available libraries and frameworks developed for hyper-parameter optimization problems are provided, and some open challenges of hyper-parameter optimization research are also discussed in this paper. Moreover, experiments are conducted on benchmark datasets to compare the performance of different optimization methods and provide practical examples of hyper-parameter optimization. This survey paper will help industrial users, data analysts, and researchers to better develop machine learning models by identifying the proper hyper-parameter configurations effectively. |
Author | Yang, Li Shami, Abdallah |
Author_xml | – sequence: 1 givenname: Li surname: Yang fullname: Yang, Li email: lyang339@uwo.ca – sequence: 2 givenname: Abdallah surname: Shami fullname: Shami, Abdallah email: abdallah.shami@uwo.ca |
BookMark | eNqFkMtKAzEYhYNUsFbfwEVeYMYkc00XghRvUChIXYd_kn86KZ1kyEShPr2tdeVCV2f1Hc75LsnEeYeE3HCWcsbL223q8F37PhVMsJRVKSv5GZnyuhJJLepyQqZMiiIRGRcX5HIct4zxigs5Ja8rR7v9gGGAAD1GDNQP0fb2E6L1jvqW9qA765DuEIKzbkNht_HBxq4f53TdoQ97Cs7QIYCOVuMVOW9hN-L1T87I2-PDevGcLFdPL4v7ZaKzSsQEGim1kE0uDZS6ZgWKouRNzk0mSwDGJGBhsOJZY7TM8pzVheZoWol5LnmWzcj81KuDH8eArdI2fq-OAexOcaaOdtRWneyoox3FKnWwc4DzX_AQbA9h_x92d8LwcOzDYlCjtug0GhtQR2W8_bvgC_TdhOY |
CitedBy_id | crossref_primary_10_1007_s11227_024_06716_3 crossref_primary_10_1016_j_oceaneng_2022_112595 crossref_primary_10_1109_TMTT_2022_3218024 crossref_primary_10_1016_j_mtcomm_2024_109391 crossref_primary_10_1109_JIOT_2023_3253813 crossref_primary_10_1109_TCNS_2024_3395723 crossref_primary_10_1109_ACCESS_2024_3410675 crossref_primary_10_1016_j_asoc_2022_109724 crossref_primary_10_1111_exsy_13539 crossref_primary_10_1109_IOTM_0001_2100012 crossref_primary_10_3390_electronics13234775 crossref_primary_10_1088_2634_4505_acef57 crossref_primary_10_1016_j_atech_2025_100851 crossref_primary_10_1016_j_ifset_2024_103773 crossref_primary_10_1007_s11709_024_1025_y crossref_primary_10_1371_journal_pone_0289195 crossref_primary_10_1186_s13059_023_03138_x crossref_primary_10_3390_rs14153694 crossref_primary_10_1155_2022_1940375 crossref_primary_10_1007_s11831_022_09786_9 crossref_primary_10_1111_1556_4029_15473 crossref_primary_10_1007_s10589_024_00633_0 crossref_primary_10_1016_j_ymssp_2022_109976 crossref_primary_10_3390_diagnostics13223439 crossref_primary_10_1515_jisys_2024_0077 crossref_primary_10_1016_j_isci_2022_105853 crossref_primary_10_3389_fcell_2023_1164757 crossref_primary_10_17341_gazimmfd_1023147 crossref_primary_10_1016_j_gsf_2023_101541 crossref_primary_10_1111_ejss_13204 crossref_primary_10_1002_cjce_25358 crossref_primary_10_1080_19401493_2024_2399053 crossref_primary_10_1016_j_conbuildmat_2024_139398 crossref_primary_10_1007_s12257_024_00174_7 crossref_primary_10_1016_j_heliyon_2024_e35778 crossref_primary_10_32604_jai_2023_045617 crossref_primary_10_18267_j_aip_226 crossref_primary_10_3390_info15060326 crossref_primary_10_1111_jfr3_12947 crossref_primary_10_3390_app132413157 crossref_primary_10_1049_tje2_12292 crossref_primary_10_3390_s23115243 crossref_primary_10_1016_j_asoc_2024_111362 crossref_primary_10_1016_j_ceramint_2022_06_156 crossref_primary_10_1016_j_engappai_2025_110075 crossref_primary_10_1109_ACCESS_2025_3529622 crossref_primary_10_1007_s11831_023_10005_2 crossref_primary_10_32604_cmc_2023_046478 crossref_primary_10_3390_jcs9030103 crossref_primary_10_1016_j_ijdrr_2023_104109 crossref_primary_10_1016_j_esr_2024_101436 crossref_primary_10_1016_j_inffus_2024_102914 crossref_primary_10_1049_cmu2_12735 crossref_primary_10_3390_w15132349 crossref_primary_10_38016_jista_1566965 crossref_primary_10_1016_j_neuroimage_2023_120253 crossref_primary_10_1111_mice_13387 crossref_primary_10_1371_journal_pone_0303566 crossref_primary_10_3390_su14094909 crossref_primary_10_1007_s11269_024_03940_7 crossref_primary_10_1021_acs_energyfuels_3c04930 crossref_primary_10_1007_s11042_024_18156_5 crossref_primary_10_1080_10106049_2022_2082550 crossref_primary_10_1109_ACCESS_2024_3429073 crossref_primary_10_1007_s43995_024_00094_w crossref_primary_10_1002_mp_16299 crossref_primary_10_1016_j_engappai_2024_107877 crossref_primary_10_3390_electronics11213513 crossref_primary_10_1016_j_apenergy_2022_120096 crossref_primary_10_1016_j_bspc_2023_104894 crossref_primary_10_1103_PhysRevE_111_035303 crossref_primary_10_1038_s41598_024_82838_1 crossref_primary_10_1080_02286203_2024_2371682 crossref_primary_10_3390_w14010026 crossref_primary_10_1016_j_measurement_2024_115540 crossref_primary_10_1007_s44196_024_00653_y crossref_primary_10_3390_electronics11111775 crossref_primary_10_35940_ijies_E4124_11060624 crossref_primary_10_1155_2022_2123662 crossref_primary_10_1162_opmi_a_00126 crossref_primary_10_2322_tjsass_67_1 crossref_primary_10_1109_ACCESS_2021_3138976 crossref_primary_10_1016_j_cej_2023_144826 crossref_primary_10_1016_j_jweia_2025_106047 crossref_primary_10_3390_plants14050653 crossref_primary_10_1186_s40537_024_01020_6 crossref_primary_10_1016_j_engappai_2024_107869 crossref_primary_10_3390_app14072950 crossref_primary_10_46300_9106_2022_16_134 crossref_primary_10_1109_ACCESS_2024_3443145 crossref_primary_10_11648_j_ajist_20240802_12 crossref_primary_10_1016_j_conbuildmat_2023_133540 crossref_primary_10_1109_ACCESS_2021_3134138 crossref_primary_10_1016_j_ribaf_2022_101846 crossref_primary_10_31127_tuje_1624366 crossref_primary_10_31801_cfsuasmas_899206 crossref_primary_10_1016_j_heliyon_2024_e32495 crossref_primary_10_1016_j_chaos_2023_113927 crossref_primary_10_1541_ieejsmas_145_33 crossref_primary_10_3390_molecules26237254 crossref_primary_10_1016_j_pnsc_2024_07_024 crossref_primary_10_1109_ACCESS_2024_3456630 crossref_primary_10_1016_j_tbs_2023_100640 crossref_primary_10_1007_s10853_023_08901_w crossref_primary_10_1007_s10462_024_10829_9 crossref_primary_10_1007_s10115_024_02111_9 crossref_primary_10_3390_en16114271 crossref_primary_10_1016_j_engappai_2024_108901 crossref_primary_10_1109_TAI_2023_3322394 crossref_primary_10_1109_ACCESS_2020_3042834 crossref_primary_10_1111_iwj_14556 crossref_primary_10_1016_j_simpa_2022_100383 crossref_primary_10_1016_j_asoc_2024_112652 crossref_primary_10_3390_ani14213082 crossref_primary_10_1007_s13201_024_02301_4 crossref_primary_10_1016_j_jmrt_2024_06_076 crossref_primary_10_1016_j_nima_2024_169232 crossref_primary_10_1002_mop_33691 crossref_primary_10_1007_s10586_023_04001_1 crossref_primary_10_1016_j_ijft_2024_100849 crossref_primary_10_1007_s10950_023_10168_2 crossref_primary_10_1021_acs_jproteome_4c00204 crossref_primary_10_1061__ASCE_CF_1943_5509_0001664 crossref_primary_10_3390_app14219766 crossref_primary_10_1016_j_jksuci_2023_101740 crossref_primary_10_1007_s10712_024_09853_9 crossref_primary_10_1007_s12597_024_00746_4 crossref_primary_10_1088_2057_1976_adbdd3 crossref_primary_10_1061_JPCFEV_CFENG_4323 crossref_primary_10_3390_electronics12071663 crossref_primary_10_1007_s44196_024_00633_2 crossref_primary_10_1016_j_measurement_2024_114895 crossref_primary_10_1109_TCAD_2023_3305934 crossref_primary_10_1109_ACCESS_2025_3538566 crossref_primary_10_1002_wwp2_12255 crossref_primary_10_3390_fire8040121 crossref_primary_10_1007_s00466_024_02490_4 crossref_primary_10_1021_acs_jctc_2c00702 crossref_primary_10_1002_mma_10346 crossref_primary_10_1016_j_istruc_2023_06_022 crossref_primary_10_3390_a17120588 crossref_primary_10_3390_s24041310 crossref_primary_10_4236_jcc_2024_123010 crossref_primary_10_1016_j_indcrop_2023_116750 crossref_primary_10_1016_j_ins_2022_08_091 crossref_primary_10_3390_technologies11040087 crossref_primary_10_3389_fnins_2024_1333712 crossref_primary_10_1016_j_ins_2024_121824 crossref_primary_10_1007_s00603_024_04287_6 crossref_primary_10_1007_s41660_023_00367_2 crossref_primary_10_3390_sym15010140 crossref_primary_10_7232_JKIIE_2024_50_6_418 crossref_primary_10_1016_j_jconhyd_2021_103844 crossref_primary_10_1109_TCOMM_2022_3187150 crossref_primary_10_1007_s00521_024_09681_3 crossref_primary_10_3390_cells12222645 crossref_primary_10_1016_j_gsd_2024_101403 crossref_primary_10_1016_j_pce_2022_103229 crossref_primary_10_1016_j_neucom_2021_12_086 crossref_primary_10_1371_journal_pone_0284951 crossref_primary_10_1016_j_compchemeng_2023_108556 crossref_primary_10_1016_j_engappai_2025_110043 crossref_primary_10_1016_j_iot_2024_101164 crossref_primary_10_1109_ACCESS_2023_3312046 crossref_primary_10_1016_j_engappai_2023_106671 crossref_primary_10_3390_electronics12204289 crossref_primary_10_1063_5_0238444 crossref_primary_10_1016_j_knosys_2025_113351 crossref_primary_10_1016_j_pnucene_2025_105722 crossref_primary_10_3390_s22093506 crossref_primary_10_1016_j_engstruct_2021_112808 crossref_primary_10_1109_ACCESS_2022_3166525 crossref_primary_10_1016_j_jobe_2022_105570 crossref_primary_10_3846_ntcs_2024_21574 crossref_primary_10_1109_TPWRS_2024_3437651 crossref_primary_10_5194_gmd_16_1925_2023 crossref_primary_10_1145_3637066 crossref_primary_10_1016_j_envsoft_2024_106264 crossref_primary_10_1016_j_ijmecsci_2024_109108 crossref_primary_10_1016_j_jobe_2025_111893 crossref_primary_10_1111_ffe_14410 crossref_primary_10_1016_j_autcon_2021_103653 crossref_primary_10_1177_02670836241308470 crossref_primary_10_1016_j_aej_2025_03_022 crossref_primary_10_1021_acs_iecr_4c00075 crossref_primary_10_1186_s40537_024_00956_z crossref_primary_10_1109_ACCESS_2023_3235953 crossref_primary_10_1007_s12243_021_00884_6 crossref_primary_10_1115_1_4053824 crossref_primary_10_1007_s10489_023_04820_0 crossref_primary_10_1016_j_biortech_2024_130361 crossref_primary_10_1016_j_asr_2024_03_014 crossref_primary_10_1016_j_energy_2023_129988 crossref_primary_10_1109_JSEN_2024_3476918 crossref_primary_10_1016_j_compbiolchem_2021_107619 crossref_primary_10_1109_ACCESS_2023_3340719 crossref_primary_10_1002_ett_4443 crossref_primary_10_1021_acs_iecr_2c04583 crossref_primary_10_1155_2021_7231126 crossref_primary_10_1016_j_comptc_2024_114599 crossref_primary_10_1016_j_aichem_2024_100073 crossref_primary_10_3390_diagnostics13122107 crossref_primary_10_1111_exsy_13379 crossref_primary_10_1016_j_neucom_2023_126516 crossref_primary_10_3390_informatics11010006 crossref_primary_10_3390_land13091427 crossref_primary_10_1080_10106049_2024_2432866 crossref_primary_10_1021_acs_analchem_2c00370 crossref_primary_10_3390_app122412606 crossref_primary_10_1007_s11053_024_10372_y crossref_primary_10_1038_s41598_024_62959_3 crossref_primary_10_3390_atmos14060953 crossref_primary_10_1002_int_22700 crossref_primary_10_1016_j_conbuildmat_2025_140256 crossref_primary_10_1016_j_tra_2021_10_001 crossref_primary_10_1109_TNSM_2023_3278937 crossref_primary_10_1007_s11740_022_01130_1 crossref_primary_10_1109_JSTARS_2024_3382580 crossref_primary_10_1109_TCSI_2021_3102303 crossref_primary_10_1177_03635465231189201 crossref_primary_10_3389_fbinf_2024_1457619 crossref_primary_10_1016_j_bspc_2024_107155 crossref_primary_10_1177_09544070231158240 crossref_primary_10_3846_jcem_2024_21356 crossref_primary_10_3390_math12020295 crossref_primary_10_1007_s00477_025_02911_7 crossref_primary_10_56124_encriptar_v6i11_0001 crossref_primary_10_1016_j_jece_2024_113011 crossref_primary_10_1016_j_nima_2023_168694 crossref_primary_10_3389_fpls_2025_1498913 crossref_primary_10_3390_ijerph20065059 crossref_primary_10_3390_app13031912 crossref_primary_10_1016_j_corsci_2022_110500 crossref_primary_10_3390_en15093242 crossref_primary_10_1007_s00366_023_01809_8 crossref_primary_10_1109_TPEL_2023_3328438 crossref_primary_10_3390_w16233515 crossref_primary_10_1080_10242422_2022_2030317 crossref_primary_10_1016_j_segan_2023_101160 crossref_primary_10_1186_s12874_023_02056_7 crossref_primary_10_1016_j_epsr_2024_111119 crossref_primary_10_1007_s13762_024_06308_x crossref_primary_10_1007_s00500_025_10405_5 crossref_primary_10_1016_j_compbiomed_2025_110044 crossref_primary_10_3390_math12162542 crossref_primary_10_1007_s12145_023_01120_6 crossref_primary_10_1016_j_ces_2024_121165 crossref_primary_10_1016_j_biombioe_2025_107644 crossref_primary_10_1016_j_jclepro_2024_144621 crossref_primary_10_3390_app10238494 crossref_primary_10_3389_fdata_2024_1406365 crossref_primary_10_1007_s00354_023_00215_4 crossref_primary_10_70669_ijedt_1491511 crossref_primary_10_1051_bioconf_202515707002 crossref_primary_10_3390_en18010105 crossref_primary_10_1007_s10586_023_04161_0 crossref_primary_10_23919_CSMS_2024_0019 crossref_primary_10_1007_s00521_024_10398_6 crossref_primary_10_1016_j_mfglet_2023_08_056 crossref_primary_10_1038_s41598_023_39079_5 crossref_primary_10_1080_15623599_2024_2304392 crossref_primary_10_3390_su14031729 crossref_primary_10_1002_csc2_20836 crossref_primary_10_3390_knowledge4040029 crossref_primary_10_1016_j_gee_2024_01_007 crossref_primary_10_3390_su17030827 crossref_primary_10_1016_j_jclepro_2024_144612 crossref_primary_10_1016_j_engappai_2023_106873 crossref_primary_10_1016_j_eswa_2022_119162 crossref_primary_10_1093_glycob_cwad033 crossref_primary_10_1109_TETCI_2024_3369331 crossref_primary_10_1016_j_knosys_2021_107835 crossref_primary_10_1016_j_advwatres_2023_104569 crossref_primary_10_1007_s44268_023_00019_x crossref_primary_10_1007_s11042_024_18890_w crossref_primary_10_3390_app15020501 crossref_primary_10_1016_j_jobe_2023_106081 crossref_primary_10_1016_j_mfglet_2024_09_156 crossref_primary_10_1016_j_est_2024_110560 crossref_primary_10_1016_j_jksuci_2023_101737 crossref_primary_10_1016_j_osnem_2023_100273 crossref_primary_10_1016_j_est_2023_109037 crossref_primary_10_1016_j_measurement_2021_110660 crossref_primary_10_3390_agronomy14020254 crossref_primary_10_1177_20552076251314097 crossref_primary_10_1039_D2NA00608A crossref_primary_10_1177_03611981241287196 crossref_primary_10_1109_JSEN_2021_3072404 crossref_primary_10_1007_s00603_024_04012_3 crossref_primary_10_3390_w14223647 crossref_primary_10_29137_umagd_1468766 crossref_primary_10_1080_01431161_2023_2217982 crossref_primary_10_1117_1_NPh_11_2_025001 crossref_primary_10_3390_jcm13154337 crossref_primary_10_1080_08982112_2024_2374888 crossref_primary_10_1002_eom2_12194 crossref_primary_10_1038_s41598_025_85371_x crossref_primary_10_1007_s11783_024_1780_y crossref_primary_10_1109_TDSC_2023_3234561 crossref_primary_10_1016_j_jhydrol_2024_132549 crossref_primary_10_1007_s42979_023_02544_z crossref_primary_10_1016_j_aap_2024_107740 crossref_primary_10_3390_w15010059 crossref_primary_10_1016_j_buildenv_2023_110276 crossref_primary_10_1016_j_ymssp_2023_110888 crossref_primary_10_3390_polym16010115 crossref_primary_10_1016_j_energy_2025_135396 crossref_primary_10_1002_biot_202100239 crossref_primary_10_1016_j_knosys_2023_110580 crossref_primary_10_1016_j_eswa_2023_122682 crossref_primary_10_1007_s11042_023_15995_6 crossref_primary_10_3233_JIFS_219376 crossref_primary_10_1109_TRO_2023_3344033 crossref_primary_10_1016_j_jocs_2021_101517 crossref_primary_10_3390_s25010068 crossref_primary_10_1088_2632_2153_acb316 crossref_primary_10_1016_j_compag_2022_107540 crossref_primary_10_3389_fphys_2023_1281506 crossref_primary_10_1007_s00170_024_13351_y crossref_primary_10_1016_j_atech_2024_100543 crossref_primary_10_1016_j_engappai_2023_107700 crossref_primary_10_1061_JPEODX_PVENG_1382 crossref_primary_10_1080_08839514_2022_2071406 crossref_primary_10_1016_j_iot_2023_101012 crossref_primary_10_1016_j_compbiomed_2023_106722 crossref_primary_10_3390_aerospace12020106 crossref_primary_10_1007_s00466_022_02238_y crossref_primary_10_1039_D2SM00431C crossref_primary_10_1186_s12884_025_07303_x crossref_primary_10_3390_w13233390 crossref_primary_10_1016_j_chemosphere_2024_142697 crossref_primary_10_1016_j_iswa_2022_200100 crossref_primary_10_3390_analytics3010003 crossref_primary_10_1016_j_procs_2023_01_216 crossref_primary_10_1016_j_aap_2023_107235 crossref_primary_10_3390_w16162216 crossref_primary_10_1016_j_jag_2024_104158 crossref_primary_10_1016_j_energy_2024_130638 crossref_primary_10_1063_5_0197688 crossref_primary_10_1016_j_envpol_2024_123386 crossref_primary_10_1049_itr2_12551 crossref_primary_10_15446_dyna_v92n235_115909 crossref_primary_10_3390_info14040210 crossref_primary_10_1007_s10869_024_09997_w crossref_primary_10_7717_peerj_cs_606 crossref_primary_10_1016_j_cherd_2022_08_041 crossref_primary_10_1016_j_ecoinf_2023_102141 crossref_primary_10_1016_j_eswa_2023_120244 crossref_primary_10_31436_iiumej_v26i1_3379 crossref_primary_10_1016_j_camwa_2025_01_014 crossref_primary_10_1016_j_engappai_2022_105687 crossref_primary_10_48084_etasr_8863 crossref_primary_10_1007_s11063_021_10606_7 crossref_primary_10_1109_ACCESS_2025_3543776 crossref_primary_10_1177_13272314241295925 crossref_primary_10_1016_j_compgeo_2023_105707 crossref_primary_10_1016_j_cageo_2024_105768 crossref_primary_10_3390_s22134964 crossref_primary_10_1007_s41939_025_00808_0 crossref_primary_10_1093_bioinformatics_btad577 crossref_primary_10_1016_j_scienta_2023_112651 crossref_primary_10_1109_ACCESS_2025_3544625 crossref_primary_10_3758_s13428_024_02474_5 crossref_primary_10_1016_j_jlp_2025_105594 crossref_primary_10_1016_j_microc_2024_111981 crossref_primary_10_2139_ssrn_4010487 crossref_primary_10_3390_s23156843 crossref_primary_10_1016_j_procir_2023_06_074 crossref_primary_10_1002_jtr_2812 crossref_primary_10_1007_s13349_024_00825_6 crossref_primary_10_2166_hydro_2023_006 crossref_primary_10_1016_j_advengsoft_2025_103883 crossref_primary_10_1016_j_ijhydene_2025_02_342 crossref_primary_10_1109_JOE_2022_3180764 crossref_primary_10_1007_s10489_023_04598_1 crossref_primary_10_1080_15567036_2023_2223154 crossref_primary_10_1080_00223131_2024_2449451 crossref_primary_10_1007_s10586_024_04376_9 crossref_primary_10_1016_j_ifacol_2024_12_027 crossref_primary_10_3934_DSFE crossref_primary_10_1016_j_jhydrol_2024_132228 crossref_primary_10_1016_j_engfracmech_2024_110204 crossref_primary_10_1049_itr2_12461 crossref_primary_10_5937_bnsr15_54993 crossref_primary_10_1016_j_rsase_2024_101154 crossref_primary_10_3390_su151712836 crossref_primary_10_1016_j_ins_2024_121693 crossref_primary_10_1016_j_foodres_2023_113105 crossref_primary_10_7554_eLife_72819 crossref_primary_10_1155_2021_6662932 crossref_primary_10_1007_s42243_024_01179_5 crossref_primary_10_1016_j_conbuildmat_2024_135114 crossref_primary_10_3390_buildings13092215 crossref_primary_10_1145_3579829 crossref_primary_10_1016_j_engappai_2022_105786 crossref_primary_10_1111_coin_12689 crossref_primary_10_1016_j_ijpe_2023_109099 crossref_primary_10_3390_a16050256 crossref_primary_10_1016_j_engappai_2024_109228 crossref_primary_10_1109_ACCESS_2024_3403457 crossref_primary_10_3390_info16010060 crossref_primary_10_1007_s10706_023_02535_0 crossref_primary_10_1109_JIOT_2024_3429338 crossref_primary_10_1111_1748_8583_12426 crossref_primary_10_3390_app14135909 crossref_primary_10_1016_j_asoc_2022_109285 crossref_primary_10_3390_ijgi11020130 crossref_primary_10_1109_JSTARS_2024_3372138 crossref_primary_10_1007_s12065_022_00764_5 crossref_primary_10_1007_s11440_023_01871_y crossref_primary_10_3390_agronomy13041003 crossref_primary_10_3390_su15010522 crossref_primary_10_1007_s10651_024_00642_6 crossref_primary_10_1080_00405000_2023_2269760 crossref_primary_10_1016_j_cma_2023_116155 crossref_primary_10_3390_appliedmath5010008 crossref_primary_10_1016_j_scitotenv_2022_153311 crossref_primary_10_1016_j_measurement_2023_112465 crossref_primary_10_1016_j_scs_2022_104034 crossref_primary_10_1016_j_icheatmasstransfer_2024_108537 crossref_primary_10_1007_s13369_024_08935_5 crossref_primary_10_1016_j_crmeth_2023_100547 crossref_primary_10_1016_j_engstruct_2024_118404 crossref_primary_10_1109_TNSM_2024_3447532 crossref_primary_10_1016_j_ndteint_2023_102969 crossref_primary_10_1016_j_rineng_2025_104307 crossref_primary_10_1038_s41598_024_83666_z crossref_primary_10_2139_ssrn_4136053 crossref_primary_10_3390_computers13070168 crossref_primary_10_3389_fmats_2024_1377941 crossref_primary_10_1080_1206212X_2025_2452849 crossref_primary_10_3390_ma16124366 crossref_primary_10_1038_s41598_025_92253_9 crossref_primary_10_1109_OJVT_2024_3457499 crossref_primary_10_1016_j_epsr_2021_107569 crossref_primary_10_1016_j_knosys_2024_112706 crossref_primary_10_1016_j_infrared_2023_104692 crossref_primary_10_1007_s13349_022_00596_y crossref_primary_10_55213_kmujens_1418280 crossref_primary_10_1016_j_eswa_2024_125923 crossref_primary_10_1111_1475_679X_12590 crossref_primary_10_1016_j_cageo_2024_105723 crossref_primary_10_1061__ASCE_SC_1943_5576_0000683 crossref_primary_10_1515_revce_2023_0021 crossref_primary_10_1016_j_buildenv_2025_112620 crossref_primary_10_3390_pr13030877 crossref_primary_10_1016_j_fub_2025_100046 crossref_primary_10_1002_hyp_15309 crossref_primary_10_1016_j_ecoinf_2024_102887 crossref_primary_10_1016_j_mlwa_2024_100539 crossref_primary_10_1016_j_uclim_2024_101962 crossref_primary_10_61453_jods_v2023no56 crossref_primary_10_1016_j_ymssp_2023_110676 crossref_primary_10_1016_j_rineng_2025_104323 crossref_primary_10_1109_COMST_2023_3273121 crossref_primary_10_1007_s11425_023_2293_3 crossref_primary_10_1016_j_ijepes_2023_109695 crossref_primary_10_1038_s41598_024_64594_4 crossref_primary_10_1016_j_matdes_2024_113443 crossref_primary_10_1016_j_resourpol_2023_103994 crossref_primary_10_1080_15481603_2022_2153447 crossref_primary_10_1016_j_energy_2024_131221 crossref_primary_10_3390_rs14215425 crossref_primary_10_1177_03019233241265806 crossref_primary_10_3390_biomimetics8030278 crossref_primary_10_14778_3538598_3538604 crossref_primary_10_3390_app14166868 crossref_primary_10_3390_rs16234365 crossref_primary_10_1038_s41597_024_03483_x crossref_primary_10_1109_ACCESS_2024_3484668 crossref_primary_10_1007_s42107_023_00799_8 crossref_primary_10_1080_19475683_2024_2304203 crossref_primary_10_1016_j_apr_2023_101739 crossref_primary_10_1016_j_wace_2023_100595 crossref_primary_10_3390_coatings15030325 crossref_primary_10_3390_info14110621 crossref_primary_10_1016_j_ecmx_2024_100772 crossref_primary_10_1109_JIOT_2021_3107581 crossref_primary_10_1007_s12553_024_00916_w crossref_primary_10_1371_journal_pone_0296494 crossref_primary_10_3390_math12142280 crossref_primary_10_1109_ACCESS_2024_3450894 crossref_primary_10_1177_03611981231196152 crossref_primary_10_1039_D4RA01257G crossref_primary_10_1038_s41598_022_22057_8 crossref_primary_10_1016_j_fuel_2023_129670 crossref_primary_10_1016_j_ejrh_2024_102118 crossref_primary_10_1111_gcb_17548 crossref_primary_10_1007_s10489_024_06206_2 crossref_primary_10_3390_s22072497 crossref_primary_10_1016_j_radphyschem_2022_110444 crossref_primary_10_1016_j_asr_2024_08_048 crossref_primary_10_3390_diagnostics12112879 crossref_primary_10_1093_jbmr_zjae025 crossref_primary_10_1007_s40747_024_01400_8 crossref_primary_10_1016_j_ecoinf_2024_102868 crossref_primary_10_1016_j_apenergy_2024_123423 crossref_primary_10_1016_j_uclim_2022_101357 crossref_primary_10_1038_s41598_024_73932_5 crossref_primary_10_1186_s43065_024_00094_z crossref_primary_10_3390_app13158589 crossref_primary_10_1016_j_compgeo_2024_106155 crossref_primary_10_1186_s43065_023_00086_5 crossref_primary_10_1016_j_ins_2024_121266 crossref_primary_10_3390_s23135862 crossref_primary_10_1016_j_jmat_2024_07_006 crossref_primary_10_1080_1064119X_2022_2057261 crossref_primary_10_3390_diagnostics14222504 crossref_primary_10_3390_app122010283 crossref_primary_10_3390_app13179906 crossref_primary_10_1016_j_geoen_2024_212899 crossref_primary_10_1016_j_cej_2023_144362 crossref_primary_10_1016_j_eswa_2023_121294 crossref_primary_10_1016_j_jclepro_2023_139233 crossref_primary_10_1007_s42107_024_00994_1 crossref_primary_10_24193_subbi_2024_1_02 crossref_primary_10_3390_rs14163912 crossref_primary_10_1002_int_22611 crossref_primary_10_1007_s12539_024_00656_5 crossref_primary_10_1109_ACCESS_2025_3544699 crossref_primary_10_1016_j_cstp_2023_101009 crossref_primary_10_1016_j_csbj_2024_02_003 crossref_primary_10_1016_j_jgsce_2024_205365 crossref_primary_10_3390_math12193006 crossref_primary_10_1007_s11004_023_10116_3 crossref_primary_10_1007_s41062_025_01894_2 crossref_primary_10_3390_batteries10090324 crossref_primary_10_1007_s00500_024_10350_9 crossref_primary_10_1016_j_wasman_2022_01_012 crossref_primary_10_1016_j_csite_2024_104124 crossref_primary_10_1016_j_epsr_2022_109065 crossref_primary_10_1016_j_aej_2023_11_047 crossref_primary_10_1016_j_rineng_2024_103125 crossref_primary_10_3390_molecules30030650 crossref_primary_10_3390_app13148531 crossref_primary_10_3390_rs17010085 crossref_primary_10_3233_JIFS_233813 crossref_primary_10_1016_j_comnet_2024_110294 crossref_primary_10_1007_s11030_021_10238_y crossref_primary_10_1016_j_agsy_2024_103886 crossref_primary_10_1016_j_engappai_2024_108120 crossref_primary_10_1016_j_chemosphere_2024_142859 crossref_primary_10_1063_5_0146634 crossref_primary_10_1177_14680874241292695 crossref_primary_10_1371_journal_pone_0311242 crossref_primary_10_1038_s41598_023_44166_8 crossref_primary_10_1016_j_rineng_2024_102908 crossref_primary_10_9758_cpn_24_1165 crossref_primary_10_38124_ijisrt_IJISRT24OCT497 crossref_primary_10_1016_j_bspc_2023_105121 crossref_primary_10_1109_TGRS_2023_3270892 crossref_primary_10_1016_j_compeleceng_2024_109878 crossref_primary_10_3390_s24185975 crossref_primary_10_32604_jbd_2023_041319 crossref_primary_10_3390_rs15184450 crossref_primary_10_1007_s10515_021_00319_5 crossref_primary_10_3934_mbe_2024275 crossref_primary_10_3390_polym17050660 crossref_primary_10_1007_s00170_024_13228_0 crossref_primary_10_1039_D4YA00313F crossref_primary_10_2139_ssrn_4018990 crossref_primary_10_1016_j_chroma_2023_464467 crossref_primary_10_4108_eetismla_4094 crossref_primary_10_1016_j_biortech_2025_132434 crossref_primary_10_1155_2021_8834713 crossref_primary_10_1007_s10462_020_09948_w crossref_primary_10_1029_2023GC011037 crossref_primary_10_1109_ACCESS_2024_3441108 crossref_primary_10_1016_j_carres_2025_109453 crossref_primary_10_1016_j_ascom_2024_100857 crossref_primary_10_3390_s23010005 crossref_primary_10_1016_j_oceaneng_2023_116167 crossref_primary_10_1007_s11053_024_10358_w crossref_primary_10_1016_j_mechmachtheory_2023_105521 crossref_primary_10_1116_6_0003434 crossref_primary_10_1016_j_iot_2023_100882 crossref_primary_10_1016_j_simpat_2023_102811 crossref_primary_10_3390_informatics8040079 crossref_primary_10_1002_hfm_20927 crossref_primary_10_1016_j_scitotenv_2025_178411 crossref_primary_10_1080_10589759_2024_2375567 crossref_primary_10_18596_jotcsa_1473948 crossref_primary_10_1016_j_eswa_2022_118658 crossref_primary_10_1016_j_jss_2024_112159 crossref_primary_10_3390_s24041197 crossref_primary_10_1039_D4RA00710G crossref_primary_10_1080_27660400_2022_2080483 crossref_primary_10_3390_agronomy14102434 crossref_primary_10_1109_JAS_2024_124335 crossref_primary_10_1016_j_aej_2024_09_084 crossref_primary_10_1016_j_cad_2023_103520 crossref_primary_10_1007_s40098_024_00949_y crossref_primary_10_1109_ACCESS_2025_3539746 crossref_primary_10_1109_ACCESS_2024_3523415 crossref_primary_10_1007_s11356_024_33987_3 crossref_primary_10_3390_smartcities6050114 crossref_primary_10_1096_fj_202300245R crossref_primary_10_1016_j_asoc_2024_112282 crossref_primary_10_1177_14759217231174369 crossref_primary_10_1186_s12871_024_02840_y crossref_primary_10_1016_j_trc_2024_104607 crossref_primary_10_3390_en15155475 crossref_primary_10_1016_j_ijpharm_2024_124888 crossref_primary_10_1016_j_bej_2022_108764 crossref_primary_10_1155_2023_1675867 crossref_primary_10_1109_TCYB_2024_3443396 crossref_primary_10_1016_j_fbp_2023_11_004 crossref_primary_10_1016_j_neucom_2025_129455 crossref_primary_10_1109_TPDS_2021_3133868 crossref_primary_10_1016_j_ins_2024_120500 crossref_primary_10_1049_cit2_12335 crossref_primary_10_1016_j_eswa_2024_123350 crossref_primary_10_1016_j_jafr_2024_101605 crossref_primary_10_3390_fi14050153 crossref_primary_10_1007_s11356_023_30452_5 crossref_primary_10_1016_j_corsci_2024_112100 crossref_primary_10_1002_lrh2_10478 crossref_primary_10_1007_s11356_022_23022_8 crossref_primary_10_1016_j_cie_2024_110103 crossref_primary_10_1007_s13198_024_02535_0 crossref_primary_10_1016_j_ress_2024_110199 crossref_primary_10_1007_s10845_023_02225_x crossref_primary_10_1109_ACCESS_2023_3312997 crossref_primary_10_1038_s41598_025_87794_y crossref_primary_10_1159_000539787 crossref_primary_10_1016_j_ijbiomac_2024_138045 crossref_primary_10_1016_j_ijmedinf_2024_105700 crossref_primary_10_1016_j_compbiomed_2021_104606 crossref_primary_10_1016_j_memsci_2024_123105 crossref_primary_10_1088_2053_1591_ad8ca2 crossref_primary_10_1016_j_mtcomm_2024_108804 crossref_primary_10_1186_s13040_024_00387_9 crossref_primary_10_1177_1748006X241279480 crossref_primary_10_1109_TIM_2024_3470020 crossref_primary_10_1016_j_apenergy_2023_121765 crossref_primary_10_1016_j_engappai_2024_109894 crossref_primary_10_2196_50890 crossref_primary_10_1016_j_neucom_2025_129686 crossref_primary_10_3390_math11183813 crossref_primary_10_3390_polym15193962 crossref_primary_10_1109_TSG_2021_3093515 crossref_primary_10_1016_j_jbiotec_2023_10_005 crossref_primary_10_1016_j_eswa_2023_122198 crossref_primary_10_1016_j_jpse_2021_09_007 crossref_primary_10_1371_journal_pone_0292047 crossref_primary_10_1016_j_cscm_2024_e03543 crossref_primary_10_1093_bib_bbae683 crossref_primary_10_2478_remav_2025_0001 crossref_primary_10_1186_s11671_024_04155_w crossref_primary_10_3390_rs15123095 crossref_primary_10_1109_ACCESS_2024_3512543 crossref_primary_10_1007_s10661_024_13447_8 crossref_primary_10_1007_s11424_022_1039_2 crossref_primary_10_1016_j_cherd_2024_12_040 crossref_primary_10_1109_ACCESS_2021_3079182 crossref_primary_10_1061_JCCEE5_CPENG_5512 crossref_primary_10_1002_pen_26546 crossref_primary_10_1038_s41598_023_41353_5 crossref_primary_10_1007_s00521_024_10260_9 crossref_primary_10_1080_15481603_2022_2152304 crossref_primary_10_1002_asi_24996 crossref_primary_10_1038_s43856_023_00397_4 crossref_primary_10_1038_s41467_022_35108_5 crossref_primary_10_3390_electronics11152417 crossref_primary_10_1007_s10515_023_00402_z crossref_primary_10_1061_JTEPBS_TEENG_7577 crossref_primary_10_3390_app15042067 crossref_primary_10_1364_OE_549712 crossref_primary_10_3390_jmse10081158 crossref_primary_10_1021_acsomega_5c00075 crossref_primary_10_12677_aam_2025_142085 crossref_primary_10_1016_j_egyai_2023_100319 crossref_primary_10_1111_tgis_70028 crossref_primary_10_1109_TNSE_2024_3391613 crossref_primary_10_1142_S0219622021500425 crossref_primary_10_1016_j_uclim_2023_101485 crossref_primary_10_1016_j_jclepro_2022_131815 crossref_primary_10_1109_ACCESS_2024_3388299 crossref_primary_10_1016_j_mtcomm_2023_107837 crossref_primary_10_3390_ma17030602 crossref_primary_10_1016_j_measurement_2024_114935 crossref_primary_10_1155_2022_7611670 crossref_primary_10_1038_s41524_022_00819_2 crossref_primary_10_1016_j_eti_2024_103793 crossref_primary_10_1016_j_compag_2023_108250 crossref_primary_10_1016_j_engstruct_2023_116359 crossref_primary_10_1002_ett_4827 crossref_primary_10_1016_j_jobe_2025_112372 crossref_primary_10_1038_s41598_024_62641_8 crossref_primary_10_1007_s00477_024_02776_2 crossref_primary_10_1007_s10115_024_02202_7 crossref_primary_10_3390_batteries9050264 crossref_primary_10_1016_j_egyai_2023_100310 crossref_primary_10_1016_j_ijhydene_2024_04_283 crossref_primary_10_3390_s22186826 crossref_primary_10_1109_JBHI_2023_3304369 crossref_primary_10_1007_s41062_024_01466_w crossref_primary_10_2139_ssrn_4352028 crossref_primary_10_29109_gujsc_1517800 crossref_primary_10_1038_s41598_024_81132_4 crossref_primary_10_1371_journal_pone_0308015 crossref_primary_10_3390_app11209580 crossref_primary_10_1016_j_energy_2022_124152 crossref_primary_10_1016_j_molliq_2024_126327 crossref_primary_10_1371_journal_pcbi_1009928 crossref_primary_10_1109_ACCESS_2021_3132684 crossref_primary_10_3390_electronics13091659 crossref_primary_10_1016_j_biortech_2022_128547 crossref_primary_10_1016_j_actatropica_2024_107225 crossref_primary_10_3390_app14146196 crossref_primary_10_32604_iasc_2023_036871 crossref_primary_10_1007_s00500_021_06403_y crossref_primary_10_1016_j_imu_2024_101448 crossref_primary_10_1016_j_knosys_2024_111490 crossref_primary_10_1016_j_jgsce_2025_205602 crossref_primary_10_1016_j_nanoen_2023_108656 crossref_primary_10_1142_S021987702450055X crossref_primary_10_1016_j_neucom_2024_128483 crossref_primary_10_3390_a15100349 crossref_primary_10_1016_j_geoen_2024_213554 crossref_primary_10_3389_fspor_2022_1054783 crossref_primary_10_1016_j_triboint_2024_109965 crossref_primary_10_1145_3691629 crossref_primary_10_1002_rse2_357 crossref_primary_10_1016_j_engstruct_2023_117225 crossref_primary_10_1016_j_eswa_2025_126718 crossref_primary_10_2139_ssrn_4146989 crossref_primary_10_29109_gujsc_1489959 crossref_primary_10_1109_TIA_2024_3351619 crossref_primary_10_1051_e3sconf_202449901017 crossref_primary_10_1371_journal_pone_0275714 crossref_primary_10_1016_j_ensm_2025_104054 crossref_primary_10_1016_j_prime_2024_100453 crossref_primary_10_1109_TMM_2022_3187607 crossref_primary_10_1016_j_procs_2024_01_080 crossref_primary_10_1063_5_0204164 crossref_primary_10_1002_oca_2845 crossref_primary_10_1016_j_istruc_2024_106774 crossref_primary_10_1007_s00521_025_11121_9 crossref_primary_10_1016_j_rineng_2025_104123 crossref_primary_10_1007_s44196_022_00070_z crossref_primary_10_1007_s10722_024_02042_y crossref_primary_10_1109_ACCESS_2023_3294282 crossref_primary_10_48130_fia_0025_0007 crossref_primary_10_1002_tee_24243 crossref_primary_10_1016_j_enbuild_2022_112098 crossref_primary_10_1080_17499518_2023_2251128 crossref_primary_10_1016_j_ins_2023_01_119 crossref_primary_10_1038_s41598_025_86274_7 crossref_primary_10_1177_03611981231170128 crossref_primary_10_2196_59882 crossref_primary_10_3390_w16101365 crossref_primary_10_1016_j_chemosphere_2024_142597 crossref_primary_10_1109_TNNLS_2023_3251999 crossref_primary_10_1007_s40899_024_01064_9 crossref_primary_10_3390_electronics13234652 crossref_primary_10_1016_j_asoc_2022_109848 crossref_primary_10_1016_j_istruc_2023_05_136 crossref_primary_10_1016_j_bspc_2023_105644 crossref_primary_10_3390_sym17010103 crossref_primary_10_1080_13632469_2024_2400194 crossref_primary_10_1007_s13369_024_09061_y crossref_primary_10_1007_s00170_024_14688_0 crossref_primary_10_1016_j_chemosphere_2022_137689 crossref_primary_10_1016_j_eclinm_2025_103069 crossref_primary_10_1016_j_scitotenv_2024_170909 crossref_primary_10_2139_ssrn_4170657 crossref_primary_10_2139_ssrn_4170656 crossref_primary_10_1007_s00521_022_07423_x crossref_primary_10_1016_j_buildenv_2023_110595 crossref_primary_10_1016_j_tsep_2024_102882 crossref_primary_10_1016_j_dajour_2024_100516 crossref_primary_10_1016_j_rse_2022_113220 crossref_primary_10_1016_j_swevo_2024_101755 crossref_primary_10_1007_s11219_023_09623_7 crossref_primary_10_1177_14759217241309075 crossref_primary_10_1016_j_autcon_2024_105793 crossref_primary_10_1109_TAP_2021_3111299 crossref_primary_10_1016_j_jweia_2024_105834 crossref_primary_10_1016_j_dyepig_2025_112693 crossref_primary_10_1016_j_scs_2021_103254 crossref_primary_10_3390_min12121621 crossref_primary_10_1016_j_compag_2023_107929 crossref_primary_10_3390_app14010341 crossref_primary_10_1051_metal_2022032 crossref_primary_10_1088_1742_6596_2394_1_012008 crossref_primary_10_23939_mmc2023_02_511 crossref_primary_10_1002_adfm_202401887 crossref_primary_10_1016_j_infrared_2024_105584 crossref_primary_10_1109_OJVT_2024_3431449 crossref_primary_10_3233_JIFS_232268 crossref_primary_10_3390_batteries9020114 crossref_primary_10_1088_1742_6596_2394_1_012010 crossref_primary_10_1063_5_0205472 crossref_primary_10_3390_s24113601 crossref_primary_10_1007_s11750_024_00683_x crossref_primary_10_1007_s12559_022_10070_y crossref_primary_10_3390_s24041230 crossref_primary_10_1016_j_compchemeng_2022_108107 crossref_primary_10_1016_j_compchemeng_2024_108900 crossref_primary_10_1109_TIM_2022_3198477 crossref_primary_10_1016_j_ins_2023_119987 crossref_primary_10_1109_ACCESS_2023_3295500 crossref_primary_10_1007_s10462_024_11101_w crossref_primary_10_1016_j_asej_2024_103130 crossref_primary_10_1038_s41598_022_26138_6 crossref_primary_10_1007_s10064_022_02708_w crossref_primary_10_1016_j_engappai_2024_108842 crossref_primary_10_1007_s00521_021_06824_8 crossref_primary_10_1007_s11135_025_02056_3 crossref_primary_10_1016_j_measurement_2022_111779 crossref_primary_10_1038_s41598_023_29681_y crossref_primary_10_1080_15481603_2024_2393489 crossref_primary_10_1016_j_cmpb_2022_107088 crossref_primary_10_1016_j_agrformet_2024_110263 crossref_primary_10_3389_fmicb_2024_1516667 crossref_primary_10_3390_su152316245 crossref_primary_10_1016_j_biombioe_2023_106993 crossref_primary_10_3390_ma15124270 crossref_primary_10_1007_s10661_024_12700_4 crossref_primary_10_1093_ageing_afae201 crossref_primary_10_1016_j_applthermaleng_2023_122155 crossref_primary_10_1016_j_cscee_2024_100750 crossref_primary_10_1016_j_cie_2023_109352 crossref_primary_10_1190_geo2022_0231_1 crossref_primary_10_1109_TTE_2023_3346874 crossref_primary_10_1016_j_neucom_2023_126808 crossref_primary_10_3389_fendo_2022_959546 crossref_primary_10_1016_j_future_2024_107499 crossref_primary_10_1007_s41870_022_00996_9 crossref_primary_10_1080_19942060_2024_2364745 crossref_primary_10_1177_25152459231202677 crossref_primary_10_1021_acs_jpcc_4c00028 crossref_primary_10_1186_s44167_024_00045_9 crossref_primary_10_1016_j_oceaneng_2024_117013 crossref_primary_10_1103_PhysRevResearch_6_L022033 crossref_primary_10_1016_j_ijmedinf_2025_105845 crossref_primary_10_1088_1402_4896_ad3515 crossref_primary_10_1021_acs_iecr_4c03264 crossref_primary_10_1002_adem_202402486 crossref_primary_10_1016_j_fuel_2023_128604 crossref_primary_10_1007_s10346_022_01923_6 crossref_primary_10_1007_s10207_024_00834_y crossref_primary_10_1007_s10618_024_01059_2 crossref_primary_10_1145_3533378 crossref_primary_10_1016_j_compchemeng_2024_108928 crossref_primary_10_1016_j_jclepro_2023_138842 crossref_primary_10_1016_j_jhydrol_2023_129307 crossref_primary_10_52601_bpr_2021_210019 crossref_primary_10_1002_pc_28238 crossref_primary_10_1016_j_enconman_2025_119544 crossref_primary_10_1016_j_apenergy_2024_125171 crossref_primary_10_1515_rams_2024_0014 crossref_primary_10_1016_j_ejmp_2021_02_006 crossref_primary_10_1109_ACCESS_2024_3518923 crossref_primary_10_1109_ACCESS_2021_3124633 crossref_primary_10_1016_j_jhydrol_2023_130363 crossref_primary_10_1109_JBHI_2022_3196697 crossref_primary_10_3390_app13127169 crossref_primary_10_1016_j_ribaf_2024_102575 crossref_primary_10_1007_s00521_024_10422_9 crossref_primary_10_4271_10_08_02_0016 crossref_primary_10_1080_08839514_2022_2058165 crossref_primary_10_1109_ACCESS_2024_3387016 crossref_primary_10_52756_ijerr_2024_v43spl_004 crossref_primary_10_1016_j_procs_2024_05_007 crossref_primary_10_1021_acs_jpcc_4c02459 crossref_primary_10_3389_fnhum_2024_1201574 crossref_primary_10_1016_j_cej_2024_149661 crossref_primary_10_1016_j_conbuildmat_2022_128843 crossref_primary_10_3390_app12010089 crossref_primary_10_3389_fpls_2022_821365 crossref_primary_10_1016_j_atmosenv_2024_120350 crossref_primary_10_1088_1402_4896_ad619a crossref_primary_10_1109_TNSM_2024_3376631 crossref_primary_10_1016_j_knosys_2022_109570 crossref_primary_10_3390_rs16163011 crossref_primary_10_1088_2057_1976_ad9c7e crossref_primary_10_1088_1361_6560_ace754 crossref_primary_10_3389_fonc_2022_1017911 crossref_primary_10_1007_s44227_024_00039_8 crossref_primary_10_3390_a17060234 crossref_primary_10_1007_s11069_024_06481_9 crossref_primary_10_1007_s13198_024_02495_5 crossref_primary_10_1007_s13762_023_04763_6 crossref_primary_10_1038_s41598_024_72307_0 crossref_primary_10_32604_csse_2023_033003 crossref_primary_10_32604_iasc_2024_059429 crossref_primary_10_1016_j_jece_2025_116064 crossref_primary_10_32604_iasc_2024_043091 crossref_primary_10_1016_j_advengsoft_2024_103856 crossref_primary_10_1061_JWRMD5_WRENG_6665 crossref_primary_10_3390_diagnostics13182953 crossref_primary_10_1007_s12665_025_12140_4 crossref_primary_10_1016_j_jenvman_2024_122724 crossref_primary_10_1109_ACCESS_2025_3536034 crossref_primary_10_1016_j_jobe_2024_111248 crossref_primary_10_7717_peerj_18405 crossref_primary_10_1016_j_matpr_2021_02_486 crossref_primary_10_1016_j_engstruct_2025_119854 crossref_primary_10_1016_j_iot_2024_101280 crossref_primary_10_1021_acs_chemmater_2c01333 crossref_primary_10_7717_peerj_17793 crossref_primary_10_1007_s00521_024_10444_3 crossref_primary_10_1007_s11668_022_01463_0 crossref_primary_10_1007_s42107_023_00739_6 crossref_primary_10_1007_s12273_023_1045_x crossref_primary_10_1016_j_vehcom_2022_100470 crossref_primary_10_1007_s42967_024_00433_7 crossref_primary_10_1016_j_cesys_2024_100188 crossref_primary_10_3934_DSFE_2024020 crossref_primary_10_3389_frwa_2023_1028922 crossref_primary_10_1007_s10706_023_02737_6 crossref_primary_10_32604_cmc_2023_041970 crossref_primary_10_1155_2024_6628110 crossref_primary_10_1016_j_compchemeng_2024_108954 crossref_primary_10_1016_j_mtcomm_2024_110006 crossref_primary_10_1109_JIOT_2023_3324392 crossref_primary_10_1016_j_oceaneng_2022_111155 crossref_primary_10_1038_s41598_024_57278_6 crossref_primary_10_1016_j_jenvman_2023_118177 crossref_primary_10_1109_TPWRS_2024_3367183 crossref_primary_10_3390_make4020015 crossref_primary_10_1007_s11227_023_05385_y crossref_primary_10_1111_exsy_12792 crossref_primary_10_3390_land14040678 crossref_primary_10_1007_s11042_023_16407_5 crossref_primary_10_1016_j_chemosphere_2023_140936 crossref_primary_10_1021_acsestwater_3c00020 crossref_primary_10_1145_3696110 crossref_primary_10_1007_s12530_024_09621_5 crossref_primary_10_1016_j_ress_2024_109974 crossref_primary_10_1016_j_jwpe_2024_106914 crossref_primary_10_1016_j_bar_2025_101563 crossref_primary_10_3390_s23094399 crossref_primary_10_1016_j_asoc_2023_110705 crossref_primary_10_1007_s10994_024_06544_9 crossref_primary_10_1016_j_advmem_2023_100072 crossref_primary_10_1016_j_oceaneng_2023_115862 crossref_primary_10_3390_computers13010002 crossref_primary_10_1109_TNSM_2024_3407017 crossref_primary_10_3390_su16051789 crossref_primary_10_1016_j_simpa_2023_100503 crossref_primary_10_1007_s11071_021_06504_1 crossref_primary_10_1002_srin_202300887 crossref_primary_10_3390_batteries10100367 crossref_primary_10_18618_REP_e202455 crossref_primary_10_3390_app14124991 crossref_primary_10_1007_s10666_023_09920_2 crossref_primary_10_1038_s41598_024_74990_5 crossref_primary_10_1016_j_eswa_2024_126160 crossref_primary_10_1021_acs_energyfuels_3c05092 crossref_primary_10_1016_j_geoen_2023_212564 crossref_primary_10_3390_s25030823 crossref_primary_10_1029_2023MS004097 crossref_primary_10_1080_01431161_2023_2208709 crossref_primary_10_3390_en15228707 crossref_primary_10_3847_1538_3881_acbd4b crossref_primary_10_3390_app14062609 crossref_primary_10_4271_12_07_02_0015 crossref_primary_10_1016_j_jenvman_2023_118756 crossref_primary_10_1016_j_simpa_2022_100459 crossref_primary_10_1016_j_mfglet_2024_09_017 crossref_primary_10_1021_acspolymersau_2c00037 crossref_primary_10_3390_a14020042 crossref_primary_10_3389_fmats_2024_1445547 crossref_primary_10_3390_app13137622 crossref_primary_10_1002_aepp_13448 crossref_primary_10_1520_JTE20220594 crossref_primary_10_1177_00187208231177574 crossref_primary_10_1016_j_cscee_2024_100902 crossref_primary_10_1016_j_ecoinf_2024_102595 crossref_primary_10_1016_j_future_2024_02_024 crossref_primary_10_1007_s11071_023_08919_4 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125441 crossref_primary_10_1021_acs_est_3c01259 crossref_primary_10_1038_s41576_023_00679_6 crossref_primary_10_7746_jkros_2024_19_4_381 crossref_primary_10_1007_s10479_022_04759_4 crossref_primary_10_1155_2022_8347235 crossref_primary_10_1007_s10489_021_02679_7 crossref_primary_10_3390_en17122840 crossref_primary_10_1109_TPWRS_2023_3281498 crossref_primary_10_1177_03611981241278354 crossref_primary_10_1016_j_ecoinf_2023_102067 crossref_primary_10_2478_ijssis_2024_0024 crossref_primary_10_1007_s10109_024_00451_2 crossref_primary_10_1371_journal_pone_0312124 crossref_primary_10_1016_j_geoen_2023_212303 crossref_primary_10_3390_s22166206 crossref_primary_10_4316_AECE_2022_04006 crossref_primary_10_1109_TKDE_2023_3266893 crossref_primary_10_1038_s41538_024_00310_w crossref_primary_10_3390_jne5030015 crossref_primary_10_1016_j_ndteint_2022_102657 crossref_primary_10_1016_j_engappai_2022_105366 crossref_primary_10_1007_s11633_023_1435_7 crossref_primary_10_1177_00034894241253376 crossref_primary_10_1177_20552076241272739 crossref_primary_10_2351_7_0001367 crossref_primary_10_1093_bioinformatics_btab236 crossref_primary_10_3390_rs16142595 crossref_primary_10_1016_j_autcon_2022_104714 crossref_primary_10_1016_j_aap_2024_107696 crossref_primary_10_1021_acs_jpcc_4c03379 crossref_primary_10_1109_TGRS_2024_3500000 crossref_primary_10_1016_j_cscm_2023_e02836 crossref_primary_10_3389_fneur_2023_1106612 crossref_primary_10_1016_j_ijhydene_2025_03_089 crossref_primary_10_1109_LCOMM_2023_3235722 crossref_primary_10_1155_2022_8482022 crossref_primary_10_1016_j_compchemeng_2023_108228 crossref_primary_10_3389_ffgc_2024_1420533 crossref_primary_10_1016_j_envc_2025_101113 crossref_primary_10_1016_j_jpse_2024_100244 crossref_primary_10_1109_ACCESS_2025_3532326 crossref_primary_10_1016_j_jelechem_2024_118812 crossref_primary_10_1109_ACCESS_2023_3247448 crossref_primary_10_1016_j_agwat_2025_109384 crossref_primary_10_1080_10106049_2023_2243884 crossref_primary_10_1371_journal_pone_0308718 crossref_primary_10_1080_19393555_2024_2362813 crossref_primary_10_1177_23998083241254573 crossref_primary_10_1016_j_engappai_2023_106720 crossref_primary_10_2139_ssrn_4125018 crossref_primary_10_1016_j_eja_2024_127422 crossref_primary_10_3390_s24196384 crossref_primary_10_1007_s13218_022_00763_9 crossref_primary_10_1109_ACCESS_2022_3233775 crossref_primary_10_1109_JMMCT_2024_3509773 crossref_primary_10_1016_j_ceramint_2025_01_252 crossref_primary_10_3390_math10050787 crossref_primary_10_1007_s42484_024_00180_1 crossref_primary_10_3934_mbe_2023660 crossref_primary_10_1007_s42107_023_00698_y crossref_primary_10_1109_IOTM_001_2300285 crossref_primary_10_1016_j_cemconcomp_2023_105090 crossref_primary_10_1142_S0218001424520074 crossref_primary_10_3389_fpls_2025_1539068 crossref_primary_10_1016_j_ipm_2023_103578 crossref_primary_10_1002_dac_5768 crossref_primary_10_1016_j_bar_2024_101457 crossref_primary_10_1016_j_molliq_2023_122456 crossref_primary_10_3390_electronics11071033 crossref_primary_10_1016_j_engappai_2023_106732 crossref_primary_10_3390_rs14236017 crossref_primary_10_1109_JIOT_2021_3084796 crossref_primary_10_3390_electronics14061128 crossref_primary_10_1177_13694332241267901 crossref_primary_10_1007_s11192_022_04567_4 crossref_primary_10_1016_j_tust_2023_105243 crossref_primary_10_3390_systems13030209 crossref_primary_10_1016_j_geoen_2023_212518 crossref_primary_10_1109_ACCESS_2025_3531659 crossref_primary_10_1007_s11663_024_03092_4 crossref_primary_10_1016_j_geoen_2023_211427 crossref_primary_10_1016_j_soildyn_2021_107130 crossref_primary_10_1061_NHREFO_NHENG_1976 crossref_primary_10_1016_j_cscm_2023_e01928 crossref_primary_10_1109_TNNLS_2022_3190331 crossref_primary_10_1016_j_measurement_2023_113196 crossref_primary_10_3390_info14100539 crossref_primary_10_1016_j_jafrearsci_2024_105431 crossref_primary_10_1016_j_sciaf_2024_e02171 crossref_primary_10_3390_info15100647 crossref_primary_10_1016_j_jes_2025_02_041 crossref_primary_10_1016_j_rser_2023_113891 crossref_primary_10_3390_su131810239 crossref_primary_10_1016_j_coche_2024_101034 crossref_primary_10_1109_ACCESS_2021_3078432 crossref_primary_10_3390_math12162467 crossref_primary_10_1016_j_eswa_2024_123953 crossref_primary_10_3390_electronics11101640 crossref_primary_10_1016_j_simpa_2022_100446 crossref_primary_10_1016_j_applthermaleng_2024_123769 crossref_primary_10_3390_w16162335 crossref_primary_10_1016_j_jhazmat_2023_133196 crossref_primary_10_1016_j_trd_2024_104407 crossref_primary_10_1088_2632_2153_abd614 crossref_primary_10_1007_s10596_023_10248_9 crossref_primary_10_1016_j_isatra_2024_11_001 crossref_primary_10_3390_en16207094 crossref_primary_10_1007_s42979_024_02902_5 crossref_primary_10_1016_j_artmed_2025_103074 crossref_primary_10_1080_19479832_2021_2019133 crossref_primary_10_1007_s12667_024_00656_w crossref_primary_10_1109_ACCESS_2024_3495708 crossref_primary_10_1007_s11042_023_17273_x crossref_primary_10_1109_ACCESS_2024_3388529 crossref_primary_10_1155_2022_9443955 crossref_primary_10_1080_0013791X_2024_2328526 crossref_primary_10_1016_j_autcon_2025_106008 crossref_primary_10_1109_TNSM_2021_3100308 crossref_primary_10_1038_s41598_023_28510_6 crossref_primary_10_3390_f15050800 crossref_primary_10_1007_s10462_023_10415_5 crossref_primary_10_1016_j_istruc_2025_108329 crossref_primary_10_3390_buildings13122914 crossref_primary_10_1088_1361_6501_ad060f crossref_primary_10_1109_TIFS_2024_3396390 crossref_primary_10_1515_rams_2024_0081 crossref_primary_10_1016_j_acags_2024_100198 crossref_primary_10_1016_j_wsee_2024_09_004 crossref_primary_10_1007_s42729_024_01705_0 crossref_primary_10_1111_ffe_14379 crossref_primary_10_1007_s10725_024_01128_y crossref_primary_10_1007_s11042_024_19360_z crossref_primary_10_59681_2175_4411_v16_iEspecial_2024_1333 crossref_primary_10_1016_j_jcom_2023_100202 crossref_primary_10_1103_PhysRevResearch_5_033127 crossref_primary_10_3390_s21030849 crossref_primary_10_1007_s10898_024_01443_8 crossref_primary_10_3390_info15030124 crossref_primary_10_1007_s13580_023_00559_2 crossref_primary_10_1016_j_enconman_2023_117440 crossref_primary_10_1016_j_marpetgeo_2024_107010 crossref_primary_10_3390_s22155858 crossref_primary_10_1007_s11227_023_05729_8 crossref_primary_10_3233_IDA_230653 crossref_primary_10_1016_j_ijhydene_2024_09_054 crossref_primary_10_3390_su15097179 crossref_primary_10_1093_iti_liad004 crossref_primary_10_1016_j_heliyon_2024_e40568 crossref_primary_10_3390_min12101207 crossref_primary_10_1063_5_0245473 crossref_primary_10_3390_ma15155369 crossref_primary_10_3390_math11061335 crossref_primary_10_1016_j_jhazmat_2024_134666 crossref_primary_10_1021_acs_jctc_4c00474 crossref_primary_10_1061_JMCEE7_MTENG_17222 crossref_primary_10_1080_19648189_2024_2335343 crossref_primary_10_1007_s11069_025_07109_2 crossref_primary_10_3390_logistics8040123 crossref_primary_10_3390_pr11123325 crossref_primary_10_1039_D4CP04214J crossref_primary_10_1057_s41599_024_03160_9 crossref_primary_10_1093_micmic_ozac050 crossref_primary_10_3390_app14062347 crossref_primary_10_1007_s00521_024_10187_1 crossref_primary_10_1007_s10726_025_09920_5 crossref_primary_10_1016_j_est_2023_108579 crossref_primary_10_1016_j_micron_2023_103581 crossref_primary_10_1016_j_mtcomm_2025_112055 crossref_primary_10_1109_ACCESS_2024_3482179 crossref_primary_10_1038_s41598_021_90624_6 crossref_primary_10_1016_j_ress_2024_110496 crossref_primary_10_1007_s11042_023_14429_7 crossref_primary_10_56748_ejse_24661 crossref_primary_10_1109_ACCESS_2023_3277625 crossref_primary_10_3390_rs17010140 crossref_primary_10_1109_TSM_2023_3240033 crossref_primary_10_1016_j_jenvman_2024_123309 crossref_primary_10_1016_j_trd_2023_103889 crossref_primary_10_1108_IJSI_06_2023_0054 crossref_primary_10_1109_ACCESS_2021_3063523 crossref_primary_10_1016_j_aei_2024_102644 crossref_primary_10_1145_3617181 crossref_primary_10_1039_D4RA02159B crossref_primary_10_3390_en17010074 crossref_primary_10_1190_geo2023_0657_1 crossref_primary_10_1002_widm_1484 crossref_primary_10_1016_j_trc_2025_105027 crossref_primary_10_1177_00220345221089251 crossref_primary_10_1016_j_mtcomm_2024_109830 crossref_primary_10_1108_IJHMA_11_2022_0172 crossref_primary_10_1007_s43253_024_00114_4 crossref_primary_10_1016_j_rse_2024_114321 crossref_primary_10_1016_j_neunet_2024_106665 crossref_primary_10_1016_j_rineng_2024_102182 crossref_primary_10_1016_j_knosys_2024_111729 crossref_primary_10_1016_j_conengprac_2025_106263 crossref_primary_10_1007_s43069_023_00224_5 crossref_primary_10_1145_3610536 crossref_primary_10_4018_JCIT_356504 crossref_primary_10_1109_ACCESS_2022_3196920 crossref_primary_10_1007_s11440_022_01777_1 crossref_primary_10_1016_j_ecoinf_2024_102510 crossref_primary_10_3390_risks12090139 crossref_primary_10_3390_atmos13101672 crossref_primary_10_1016_j_cej_2024_153274 crossref_primary_10_11627_jksie_2024_47_2_001 crossref_primary_10_61435_ijred_2024_59998 crossref_primary_10_1080_02640414_2024_2404783 crossref_primary_10_1016_j_mtcomm_2024_108758 crossref_primary_10_1016_j_mtcomm_2024_109847 crossref_primary_10_1007_s00202_024_02281_3 crossref_primary_10_3389_fresc_2025_1469797 crossref_primary_10_3390_pr11020349 crossref_primary_10_1016_j_tsep_2025_103236 crossref_primary_10_3390_diagnostics13122098 crossref_primary_10_1109_ACCESS_2023_3266983 crossref_primary_10_1109_ACCESS_2024_3420707 crossref_primary_10_1109_JIOT_2024_3492801 crossref_primary_10_3390_info15040187 crossref_primary_10_1016_j_engappai_2025_110403 crossref_primary_10_15575_join_v7i2_858 crossref_primary_10_1016_j_measurement_2023_112592 crossref_primary_10_1016_j_jpowsour_2025_236432 crossref_primary_10_1109_ACCESS_2022_3193643 crossref_primary_10_3390_en17102290 crossref_primary_10_1007_s10462_022_10359_2 crossref_primary_10_3390_agronomy12010197 crossref_primary_10_3846_jcem_2023_19226 crossref_primary_10_1021_acs_iecr_2c02638 crossref_primary_10_1016_j_jfoodeng_2023_111883 crossref_primary_10_1089_dia_2023_0531 crossref_primary_10_1007_s11368_024_03914_7 crossref_primary_10_1109_OJITS_2024_3405797 crossref_primary_10_1016_j_iswcr_2023_09_005 crossref_primary_10_3390_risks12020025 crossref_primary_10_3390_math13010017 crossref_primary_10_1016_j_asoc_2023_110466 crossref_primary_10_1016_j_istruc_2024_106850 crossref_primary_10_1016_j_nxmate_2023_100025 crossref_primary_10_1016_j_seppur_2023_123682 crossref_primary_10_1016_j_ecolind_2025_113233 crossref_primary_10_1016_j_eswa_2025_127287 crossref_primary_10_1016_j_catena_2023_107008 crossref_primary_10_1007_s10796_023_10431_4 crossref_primary_10_1061_JHYEFF_HEENG_6227 crossref_primary_10_1109_ACCESS_2024_3354173 crossref_primary_10_1016_j_watres_2024_122591 crossref_primary_10_1109_TAI_2023_3262503 crossref_primary_10_1007_s11053_023_10289_y crossref_primary_10_1016_j_tust_2023_105532 crossref_primary_10_1016_j_eswa_2024_125832 crossref_primary_10_3390_electronics12040871 crossref_primary_10_1021_acsestwater_4c00219 crossref_primary_10_1007_s13278_024_01250_9 crossref_primary_10_3390_machines12040220 crossref_primary_10_1016_j_oooo_2025_01_002 crossref_primary_10_3390_systems12110480 crossref_primary_10_1080_17477778_2023_2219401 crossref_primary_10_1088_1755_1315_1458_1_012019 crossref_primary_10_52756_ijerr_2024_v45spl_009 crossref_primary_10_1145_3646549 crossref_primary_10_1016_j_oceaneng_2024_118945 crossref_primary_10_2139_ssrn_4839465 crossref_primary_10_1177_03611981241257512 crossref_primary_10_3390_app122412525 crossref_primary_10_1007_s11172_023_3811_2 crossref_primary_10_1016_j_future_2024_107636 crossref_primary_10_1016_j_measurement_2023_113221 crossref_primary_10_1155_2022_8534739 crossref_primary_10_1007_s00521_024_10350_8 crossref_primary_10_3390_atmos13111887 crossref_primary_10_1016_j_agwat_2024_108718 crossref_primary_10_1016_j_ecoinf_2024_102500 crossref_primary_10_1093_nargab_lqae011 crossref_primary_10_1016_j_cose_2023_103138 crossref_primary_10_3390_rs13040648 crossref_primary_10_3390_rs13224694 crossref_primary_10_1016_j_bspc_2024_106266 crossref_primary_10_1016_j_applthermaleng_2024_122926 crossref_primary_10_1016_j_jenvman_2025_124738 crossref_primary_10_1080_08839514_2022_2145632 crossref_primary_10_51477_mejs_1427004 crossref_primary_10_37394_232018_2024_12_33 crossref_primary_10_1007_s10489_022_04238_0 crossref_primary_10_1109_JIOT_2022_3212056 crossref_primary_10_3233_JIFS_231775 crossref_primary_10_1109_ACCESS_2025_3543475 crossref_primary_10_1007_s42417_021_00286_x crossref_primary_10_1155_2024_6162232 crossref_primary_10_1109_TAI_2024_3375260 crossref_primary_10_3390_s22249927 crossref_primary_10_1038_s41598_024_64386_w crossref_primary_10_1016_j_ejco_2021_100012 crossref_primary_10_3389_fnins_2024_1391465 crossref_primary_10_1016_j_future_2024_107600 crossref_primary_10_1016_j_scitotenv_2024_174973 crossref_primary_10_25046_aj070619 crossref_primary_10_1016_j_scs_2023_104472 crossref_primary_10_1109_TPDS_2024_3468892 crossref_primary_10_1109_ACCESS_2024_3440502 crossref_primary_10_1016_j_pmatsci_2022_101043 crossref_primary_10_1007_s00034_023_02551_8 crossref_primary_10_1016_j_foodchem_2025_143555 crossref_primary_10_1016_j_envsoft_2024_105956 crossref_primary_10_1016_j_trgeo_2024_101202 crossref_primary_10_1002_jbio_202400426 crossref_primary_10_1111_1750_3841_17421 crossref_primary_10_3390_rs16193668 crossref_primary_10_1007_s10614_024_10801_3 crossref_primary_10_1016_j_compchemeng_2022_107946 crossref_primary_10_1016_j_heliyon_2023_e18148 crossref_primary_10_1080_08839514_2021_2001178 crossref_primary_10_1109_ACCESS_2021_3067949 crossref_primary_10_3390_app13063945 crossref_primary_10_1007_s00500_024_09840_7 crossref_primary_10_1016_j_fraope_2024_100136 crossref_primary_10_1016_j_jenvman_2024_121189 crossref_primary_10_1109_TITS_2022_3174626 crossref_primary_10_1016_j_irfa_2024_103239 crossref_primary_10_1038_s41598_023_32027_3 crossref_primary_10_1109_ACCESS_2024_3424276 crossref_primary_10_1021_acs_jpcc_4c08353 crossref_primary_10_1007_s12065_024_00950_7 crossref_primary_10_1109_ACCESS_2024_3516198 crossref_primary_10_1016_j_scs_2023_104480 crossref_primary_10_1177_09713557221136273 crossref_primary_10_1051_e3sconf_202561201002 crossref_primary_10_3390_ma14071687 crossref_primary_10_37394_232018_2024_12_10 crossref_primary_10_3390_math9161976 crossref_primary_10_1016_j_egyr_2022_02_220 crossref_primary_10_1016_j_ymssp_2024_111984 crossref_primary_10_1007_s12145_024_01472_7 crossref_primary_10_1016_j_neunet_2023_11_043 crossref_primary_10_1007_s40735_025_00945_6 crossref_primary_10_1038_s41598_024_60478_9 crossref_primary_10_3390_molecules28010208 crossref_primary_10_3390_electronics14010120 crossref_primary_10_1145_3638285 crossref_primary_10_29137_umagd_1298404 crossref_primary_10_1016_j_csbj_2025_01_020 crossref_primary_10_1016_j_uncres_2025_100145 crossref_primary_10_1109_TLT_2023_3246589 crossref_primary_10_1177_03611981241236180 crossref_primary_10_1016_j_compbiomed_2024_108944 crossref_primary_10_3233_HIS_240005 crossref_primary_10_1109_ACCESS_2020_3041822 crossref_primary_10_1111_mice_13322 crossref_primary_10_1109_ACCESS_2024_3437192 crossref_primary_10_1186_s12868_023_00819_y crossref_primary_10_3390_machines12070471 crossref_primary_10_3390_automation5030019 crossref_primary_10_3390_su16167064 crossref_primary_10_3390_app14104223 crossref_primary_10_4018_IJeC_351248 crossref_primary_10_1007_s11356_023_28285_3 crossref_primary_10_1007_s10515_021_00297_8 crossref_primary_10_1016_j_neucom_2022_06_002 crossref_primary_10_1038_s41598_025_92082_w crossref_primary_10_1186_s13321_024_00920_2 crossref_primary_10_1007_s11783_023_1676_2 crossref_primary_10_1016_j_apenergy_2024_122669 crossref_primary_10_1016_j_jss_2023_111914 crossref_primary_10_1002_int_23012 crossref_primary_10_3390_rs16152712 crossref_primary_10_1021_acs_iecr_3c01110 crossref_primary_10_3390_app12168271 crossref_primary_10_1016_j_jhydrol_2023_129962 crossref_primary_10_1055_a_1993_2371 crossref_primary_10_3390_app132011583 crossref_primary_10_1016_j_engappai_2024_109987 crossref_primary_10_1016_j_conengprac_2024_106118 crossref_primary_10_3389_fnbot_2024_1406658 crossref_primary_10_1109_JLT_2024_3429490 crossref_primary_10_1016_j_cemconcomp_2025_105957 crossref_primary_10_1016_j_jobe_2025_112448 crossref_primary_10_1680_jtran_22_00065 crossref_primary_10_3390_fintech3010012 crossref_primary_10_1016_j_rineng_2025_104265 crossref_primary_10_1016_j_energy_2022_125304 crossref_primary_10_3390_ijerph20010107 crossref_primary_10_1016_j_egyai_2023_100230 crossref_primary_10_3390_economies12080194 crossref_primary_10_1093_gji_ggaf004 crossref_primary_10_1016_j_engappai_2023_107076 crossref_primary_10_1016_j_oceaneng_2024_119849 crossref_primary_10_32604_cmc_2022_020523 crossref_primary_10_1186_s12942_023_00343_6 crossref_primary_10_1080_17538947_2025_2468414 crossref_primary_10_2139_ssrn_4180768 crossref_primary_10_1016_j_buildenv_2025_112593 crossref_primary_10_1007_s10489_023_04595_4 crossref_primary_10_1371_journal_pone_0296545 crossref_primary_10_1016_j_mlwa_2023_100505 crossref_primary_10_1016_j_cej_2024_157476 crossref_primary_10_1016_j_compbiomed_2024_108727 crossref_primary_10_3390_mi14020265 crossref_primary_10_3389_fceng_2021_665415 crossref_primary_10_1016_j_coastaleng_2023_104291 crossref_primary_10_1016_j_jocs_2023_102205 crossref_primary_10_4271_03_17_07_0051 crossref_primary_10_1016_j_procs_2023_10_423 crossref_primary_10_3390_app142311025 crossref_primary_10_1016_j_tust_2023_105508 crossref_primary_10_1021_acsestwater_4c00040 crossref_primary_10_1016_j_device_2023_100011 crossref_primary_10_1016_j_apenergy_2024_124829 crossref_primary_10_3390_fi15100332 crossref_primary_10_3390_ijgi12120488 crossref_primary_10_1007_s00477_024_02788_y crossref_primary_10_1038_s41598_024_65255_2 crossref_primary_10_1007_s40747_024_01670_2 crossref_primary_10_1515_rams_2025_0097 crossref_primary_10_1007_s00158_024_03850_7 crossref_primary_10_3390_rs16050828 crossref_primary_10_3390_pharmaceutics14081530 crossref_primary_10_1007_s11063_024_11578_0 crossref_primary_10_3390_jrfm16040216 crossref_primary_10_1016_j_enbuild_2023_113321 crossref_primary_10_1109_TTE_2022_3192285 crossref_primary_10_1016_j_snb_2024_137194 crossref_primary_10_3390_agronomy14040645 crossref_primary_10_1016_j_psep_2025_106854 crossref_primary_10_1016_j_engappai_2024_109531 crossref_primary_10_1016_j_gete_2023_100506 crossref_primary_10_3390_rs15245722 crossref_primary_10_1007_s11042_023_15771_6 crossref_primary_10_1103_PhysRevResearch_6_013115 crossref_primary_10_1109_ACCESS_2024_3418884 crossref_primary_10_1016_j_scs_2023_104898 crossref_primary_10_11648_j_ajtas_20241305_13 crossref_primary_10_1021_acsomega_4c02157 crossref_primary_10_31185_wjcm_107 crossref_primary_10_3390_fi16070239 crossref_primary_10_1016_j_asoc_2024_111292 crossref_primary_10_1016_j_fochx_2024_101507 crossref_primary_10_3847_1538_4365_ad8b2a crossref_primary_10_1016_j_engappai_2024_108628 crossref_primary_10_1016_j_cja_2024_09_014 crossref_primary_10_3390_w15193413 crossref_primary_10_1002_jnm_3268 crossref_primary_10_3390_ijerph191912709 crossref_primary_10_1016_j_icte_2024_09_003 crossref_primary_10_1109_ACCESS_2024_3439572 crossref_primary_10_1016_j_jallcom_2022_163828 crossref_primary_10_1007_s00521_023_09121_8 crossref_primary_10_1016_j_geoen_2024_213216 crossref_primary_10_1061__ASCE_CO_1943_7862_0002385 crossref_primary_10_1016_j_asr_2023_07_007 crossref_primary_10_1016_j_compag_2024_108643 crossref_primary_10_1108_HFF_07_2023_0361 crossref_primary_10_1109_JSTARS_2024_3402114 crossref_primary_10_3390_coatings14050647 crossref_primary_10_3103_S0005105525700128 crossref_primary_10_1016_j_ecolind_2024_112983 crossref_primary_10_3390_rs17010105 crossref_primary_10_1109_TNNLS_2023_3329466 crossref_primary_10_1016_j_jafr_2025_101840 crossref_primary_10_1016_j_geoen_2023_212086 crossref_primary_10_1016_j_jnca_2024_104034 crossref_primary_10_1016_j_cag_2023_10_016 crossref_primary_10_12813_kieae_2024_24_5_045 crossref_primary_10_1109_TNSM_2020_3014929 crossref_primary_10_3390_app142210230 crossref_primary_10_1038_s41524_023_01088_3 crossref_primary_10_2196_50117 crossref_primary_10_1007_s00466_023_02427_3 crossref_primary_10_1016_j_insmatheco_2024_10_002 crossref_primary_10_1016_j_surfcoat_2025_132029 crossref_primary_10_1016_j_cscm_2023_e02459 crossref_primary_10_1016_j_egyr_2024_04_039 crossref_primary_10_1109_ACCESS_2024_3473028 crossref_primary_10_1016_j_cep_2022_109248 crossref_primary_10_1016_j_engappai_2023_106149 crossref_primary_10_1016_j_nut_2023_112093 crossref_primary_10_1007_s13198_023_01993_2 crossref_primary_10_1007_s11356_023_25596_3 crossref_primary_10_1016_j_engstruct_2024_118722 crossref_primary_10_1016_j_icte_2025_02_008 crossref_primary_10_1109_TTE_2024_3468887 crossref_primary_10_1016_j_jclepro_2025_144666 crossref_primary_10_1016_j_knosys_2021_107221 crossref_primary_10_3390_e26010078 crossref_primary_10_1109_ACCESS_2024_3408894 crossref_primary_10_1007_s11082_022_03985_1 crossref_primary_10_1016_j_jmsy_2024_10_013 crossref_primary_10_3390_rs14010144 crossref_primary_10_1007_s13202_025_01976_y crossref_primary_10_1038_s41598_024_53352_1 crossref_primary_10_1007_s10803_022_05641_9 crossref_primary_10_1016_j_procs_2024_08_013 crossref_primary_10_1109_ICJECE_2021_3072008 crossref_primary_10_1007_s00414_023_03127_6 crossref_primary_10_1109_ACCESS_2022_3191669 crossref_primary_10_1007_s42488_021_00060_4 crossref_primary_10_1364_JOCN_500706 crossref_primary_10_1016_j_enbuild_2024_114516 crossref_primary_10_1016_j_psep_2024_11_099 crossref_primary_10_1109_TIA_2024_3444733 crossref_primary_10_1016_j_scienta_2024_113241 crossref_primary_10_1016_j_oceaneng_2024_117211 crossref_primary_10_1038_s41598_024_69281_y crossref_primary_10_1007_s00500_022_07571_1 crossref_primary_10_1016_j_algal_2024_103812 crossref_primary_10_1080_15435075_2024_2439924 crossref_primary_10_46604_aiti_2022_9227 crossref_primary_10_1016_j_jss_2024_112058 crossref_primary_10_1016_j_mtcomm_2023_106402 crossref_primary_10_1109_ACCESS_2023_3347502 crossref_primary_10_1016_j_frl_2023_104306 crossref_primary_10_1109_ACCESS_2024_3482192 crossref_primary_10_3390_en16052343 crossref_primary_10_3390_macromol3010007 crossref_primary_10_3390_s24113582 crossref_primary_10_1038_s41598_023_28639_4 |
Cites_doi | 10.1109/CEC.2014.6900618 10.1088/1749-4699/8/1/014008 10.1109/TSMC.1985.6313426 10.1109/79.543975 10.1111/j.2517-6161.1996.tb02080.x 10.1016/j.patcog.2005.06.013 10.1016/j.eswa.2017.11.028 10.1080/0952813X.2013.782347 10.1145/2806777.2806945 10.1109/ICADIWT.2014.6814687 10.1109/GLOCOM.2018.8647679 10.1109/ISEASP.2017.7976988 10.1016/j.is.2018.01.003 10.1007/978-3-540-74958-5_35 10.1109/21.97458 10.1007/978-3-540-31856-9_4 10.1016/j.knosys.2020.105992 10.1016/j.eswa.2017.02.017 10.1109/ACCESS.2018.2884225 10.1162/089976698300017007 10.1109/GLOCOM.2018.8647714 10.1109/ICCNC.2019.8685636 10.1049/iet-its.2018.5127 10.1007/978-3-030-05318-5_8 10.1147/JRD.2017.2709578 10.1162/089976600300015187 10.1007/BFb0040810 10.1186/s13321-017-0226-y 10.1109/GLOBECOM38437.2019.9013892 10.1080/08923647.2020.1696140 10.1109/JSEN.2005.858926 10.1080/00401706.1970.10488635 10.1609/aaai.v31i1.10647 10.14778/3007263.3007279 10.1155/2019/6278908 10.1007/s10618-005-0361-3 10.1016/j.proeng.2017.09.615 10.1007/s10044-007-0100-z 10.1109/ICDM.2017.137 10.1137/090771806 10.1007/s10489-020-01776-3 10.1016/j.camwa.2006.07.013 10.1142/S0129065704001899 10.21105/joss.00034 10.1109/CCECE47787.2020.9255697 10.1145/3071178.3071208 10.1061/(ASCE)CO.1943-7862.0001548 10.1007/978-3-7908-2604-3_16 10.1126/science.aaa8415 10.1561/2200000050 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.neucom.2020.07.061 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-8286 |
EndPage | 316 |
ExternalDocumentID | 10_1016_j_neucom_2020_07_061 S0925231220311693 |
GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- RIG SBC SEW SSH WUQ XPP |
ID | FETCH-LOGICAL-c372t-ab99c29b49da6c805e2561b41d396aa009ae5de713bdc9344085c1edf9e449133 |
IEDL.DBID | .~1 |
ISSN | 0925-2312 |
IngestDate | Tue Jul 01 01:46:52 EDT 2025 Thu Apr 24 22:52:48 EDT 2025 Fri Feb 23 02:46:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Grid search Hyper-parameter optimization Bayesian optimization Genetic algorithm Particle swarm optimization Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-ab99c29b49da6c805e2561b41d396aa009ae5de713bdc9344085c1edf9e449133 |
PageCount | 22 |
ParticipantIDs | crossref_citationtrail_10_1016_j_neucom_2020_07_061 crossref_primary_10_1016_j_neucom_2020_07_061 elsevier_sciencedirect_doi_10_1016_j_neucom_2020_07_061 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-20 |
PublicationDateYYYYMMDD | 2020-11-20 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | Neurocomputing (Amsterdam) |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Gambella, Ghaddar, Naoum-Sawaya (b0125) 2019 Hosmer, Lemeshow (b0190) 2013; 34 Gambella, Ghaddar, Naoum-Sawaya (b0165) 2019 T. Chen, C.Guestrin, XGBoost: a scalable tree boosting system, arXiv preprint arXiv:1603.02754, (2016). http://arxiv.org/abs/1603.02754. Zuo, Zhang, Wang (b0205) 2008; 11 Di Francescomarino, Dumas, Federici, Ghidini, Maggi, Rizzi, Simonetto (b0330) 2018; 74 (b0030) 2019 V. Narayanan, I. Arora, A. Bhatia, Fast and accurate sentiment classification using an enhanced naíve Bayes model, arXiv preprint arXiv:1305.6143, (2013). https://arxiv.org/abs/1305.6143. Bubeck (b0110) 2015; 8 Ding, He (b0340) 2004; 3056 Rasoul, David (b0260) 1991; 21 Moubayed, Injadat, Shami, Lutfiyya (b0335) 2020; 34 Ozaki, Yano, Onishi (b0315) 2017; 9 F. Chollet, Keras, 2015. https://github.com/fchollet/keras. Halko, Martinsson, Tropp (b0375) 2011; 53 Zhou, Wang, Li (b0365) 2012; 9 M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, et al., TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, arXiv preprint arXiv:1603.04467, (2016). https://arxiv.org/abs1603.04467. Brahim-Belhouari, Bermak, Shi, Chan (b0350) 2005; 5 Moubayed, Aqeeli, Shami (bib634) 2020 Domhan, Springenberg, Hutter (b0310) 2015- (2015) M. Injadat, F. Salo, A.B. Nassif, A. Essex, A. Shami, Bayesian optimization with machine learning algorithms towards anomaly detection, 2018 IEEE Glob. Commun. Conf. (2018) 1–6. https://doi.org/10.1109/glocom.2018.8647714. Autonomio Talos [Computer software], 2019. http://github.com/autonomio/talos. O.S. Soliman, A.S. Mahmoud, A classification system for remote sensing satellite images using support vector machine with non-linear kernel functions, 2012 8th Int. Conf. Informatics Syst. INFOS 2012. (2012) BIO-181-BIO-187. J. Rapin, O. Teytaud, Nevergrad – a gradient-free optimization platform, 2018. https://GitHub.com/FacebookResearch/Nevergrad. Boehm, Surve, Tatikonda (b0625) 2016; 9 Bergstra, Komer, Eliasmith, Yamins, Cox (b0530) 2015; 8 N. Hansen, A. Auger, O. Mersmann, T. Tusar, D. Brockhoff, COCO: A Platform for Comparing Continuous Optimizers in a Black-Box Setting, arXiv preprint arXiv:1603.08785, (2016). https://arxiv.org/abs1603.08785. Fortin, De Rainville, Gardner, Parizeau, Gagńe (b0585) 2012; 13 J.N. Sulzmann, J. Fürnkranz, E. Hüllermeier, On pairwise naive bayes classifiers, Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 4701 LNAI (2007) 371-381. https://doi.org/10.1007/978-3-540-74958-5_35 Diaz, Fokoue-Nkoutche, Nannicini, Samulowitz (b0120) 2017; 61 I. Dewancker, M. McCourt, S. Clark, Bayesian Optimization Primer, (2015). URL: https://sigopt.com/static/pdf/SigOpt Bayesian Optimization Primer.pdf. Diaz, Fokoue-Nkoutche, Nannicini, Samulowitz (b0025) 2017; 61 Kramer (b0145) 2016 Caruana, Niculescu-Mizil (b0140) 2006; 148 J. Grandgirard, D. Poinsot, L. Krespi, J.P. Nénon, A.M. Cortesero, Osprey: Hyperparameter Optimization for Machine Learning, 103 (2002) 239–248. https://doi.org/10.21105/joss.00034. Injadat, Moubayed, Nassif, Shami (bib637) 2020 Zhang, Jin, Yang, Hauptmann (b0220) 2003; 2 Bradley, Hax (b0105) 1977 B. Shahriari, A. Bouchard-Côté, N. de Freitas, Unbounded Bayesian optimization via regularization, Proc. Artif. Intell. Statist., (2016) 1168–1176. Moon (b0345) 1996; 13 Han, Liu, Fan (b0325) 2018; 95 Q. Yao, et al., Taking Human out of Learning Applications: A Survey on Automated Machine Learning, arXiv preprint arXiv:1810.13306, (2018). http://arxiv.org/abs/1810.13306. Bishop (b0605) 1995 Seeger (b0425) 2004; 14 L. Bottou, Large-scale machine learning with stochastic gradient descent, in: Proceedings of the COMPSTAT, Springer, 2010, pp. 177–186. Yang, Shami (bib638) 2020 Melkumova, Shatskikh (b0180) 2017; 201 Franceschi, Donini, Frasconi, Pontil (b0580) 2017 Kibriya, Frank, Pfahringer, Holmes (b0245) 2004; 3339 B. Kazimipour, X. Li, A.K. Qin, A Review of Population Initialization Techniques for Evolutionary Algorithms, 2014 IEEE Congr. Evol. Comput. (2014) 2585–2592. https://doi.org/10.1109/CEC.2014.6900618. Yang (bib632) 2018 C.M. Bishop, Pattern Recognition and Machine Learning, 2006, Springer, ISBN: 978-0-387-31073-2. Cazzaniga, Nobile, Besozzi (b0520) 2015 Martinez-Cantin (b0525) 2015; 15 S. Abreu, Automated Architecture Design for Deep Neural Networks, arXiv preprint arXiv:1908.10714, (2019). http://arxiv.org/abs/1908.10714 Itano, De Abreu De, Sousa (b0475) 2018 Lorenzo, Nalepa, Kawulok, Ramos, Paster (b0095) 2017 Loog (b0380) 2006; 2 J. Nocedal, S. Wright, Numerical Optimization, 2006, Springer-Verlag, ISBN: 978-0-387-40065-5. Yang, Moubayed, Hamieh, Shami (b0270) 2019 Eggensperger, Feurer, Hutter, Bergstra, Snoek, Hoos, Leyton-Brown (b0070) 2013 Komer, Bergstra, Eliasmith (b0535) 2014 D. Maclaurin, D. Duvenaud, R.P. Adams, Gradient-based Hyperparameter Optimization through Reversible Learning, arXiv preprint arXiv:1502.03492, (2015). http://arxiv.org/abs/1502.03492 M. Pumperla, Hyperas, 2019. http://maxpumperla.com/hyperas/. Luo (b0050) 2016; 5 Yang, Muresan, Al-Dweik, Hadjileontiadis (b0215) 2018; 6 Kuhn, Johnson (b0020) 2013 Rahnamayan, Tizhoosh, Salama (b0485) 2007; 53 Ogutu, Schulz-Streeck, Piepho (b0195) 2012; 6 Yang, Amari (b0410) 1998; 10 Hensman, Fusi, Lawrence (b0440) 2013 Z. Y., K. G., Hierarchical clustering algorithms for document dataset, Data Min. Knowl. Discov. 10 (2005) 141–168. K. Arjunan, C.N. Modi, An enhanced intrusion detection framework for securing network layer of cloud computing, ISEA Asia Secur. Priv. Conf. 2017, ISEASP 2017. (2017) 1–10. doi: 10.1109/ISEASP.2017.7976988. Krizhevsky, Sutskever, Hinton (b0610) 2012; 25 Pedregosa (b0150) 2011; 12 S. Sun, Z. Cao, H. Zhu, J. Zhao, A Survey of Optimization Methods from a Machine Learning Perspective, arXiv preprint arXiv:1906.06821, (2019). https://arxiv.org/abs/1906.06821. Cawley, Talbot (b0620) 2010; 11 Hutter, Hoos, Leyton-Brown (b0430) 2011; 5 Yan, He, Chen (b0500) 2017; 32 S. Lessmann, R. Stahlbock, S.F. Crone, Optimizing hyperparameters of support vector machines by genetic algorithms, Proc. 2005 Int. Conf. Artif. Intell. ICAI’05. 1 (2005) 74–80. Decastro-García, Muñoz Castañeda, Escudero García, Carriegos (b0035) 2019 (2019). Jordan, Mitchell (b0005) 2015; 349 Knudde, van der Herten, Dhaene, Couckuyt (b0555) 2017 S. Sanders, C. Giraud-Carrier, Informing the use of hyperparameter optimization through metalearning, Proc. – IEEE Int. Conf. Data Mining, ICDM. 2017-Novem (2017) 1051–1056. https://doi.org/10.1109/ICDM.2017.137 Keller, Gray (b0200) 1985; SMC-15 Wang, Wu, Wang, Dong, Yu, Chen (b0510) 2009; 2009 J. Shlens, A Tutorial on Principal Component Analysis, arXiv preprint arXiv:1404.1100, (2014). https://arxiv.org/abs1404.1100 I. Ilievski, T. Akhtar, J. Feng, C.A. Shoemaker, Efficient hyperparameter optimization of deep learning algorithms using deterministic RBF surrogates, 31st AAAI Conf. Artif. Intell. AAAI 2017, 2017, pp. 822–829 Injadat, Moubayed, Nassif, Shami (b0600) 2020; 200 Tibshirani (b0185) 1996; 58 R.S. Olson, J.H. Moore, TPOT: a tree-based pipeline optimization tool for automating machine learning, Auto Mach. Learn. (2019) 151–160. https://doi.org/10.1007/978-3-030-05318-5_8 Zhang, Xu, Huang, Chen (b0455) 2016- (2016) Bergstra, Bardenet, Bengio, Kégl (b0060) 2011 Y. Shi, R.C. Eberhart, Parameter Selection in Particle Swarm Optimization, Evolutionary Programming VII, Springer, 1998, pp. 591–600. M.-A. Zöller, M.F. Huber, Benchmark and Survey of Automated Machine Learning Frameworks, arXiv preprint arXiv:1904.12054, (2019). https://arxiv.org/abs/1904.12054 Cheng, Huang, Hutomo (b0505) 2018; 144 W. Yin, K. Kann, M. Yu, H. Schütze, Comparative Study of CNN and RNN for Natural Language Processing, arXiv preprint arXiv:1702.01923, (2017). https://arxiv.org/abs1702.01923. Li, Jamieson, DeSalvo, Rostamizadeh, Talwalkar (b0080) 2012; 18 Moubayed, Injadat, Shami, Lutfiyya (bib631) 2018 Lobo, Goldberg, Pelikan (b0490) 2000 Meng, Bradley, Yavuz (b0630) 2016; 17 K. Khan, S.U. Rehman, K. Aziz, S. Fong, S. Sarasvady, A. Vishwa, DBSCAN: Past, present and future, 5th Int. Conf. Appl. Digit. Inf. Web Technol. ICADIWT 2014, 2014, pp. 232–238. https://doi.org/10.1109/ICADIWT.2014.6814687. R.E. Shawi, M. Maher, S. Sakr, Automated machine learning: State-of-the-art and open challenges, arXiv preprint arXiv:1906.02287, (2019). http://arxiv.org/abs/1906.02287 Soon, Khaw, Chuah, Kanesan (b0320) 2018; 12 J. Snoek, H. Larochelle, R. Adams, Practical Bayesian optimization of machine learning algorithms, Adv. Neural Inf. Process. Syst. 4 (2012) 2951–2959. Dietterich (b0295) 1857; 2000 Bengio (b0405) 2000; 12 Hazan, Klivans, Yuan (b0420) 2017 Claesen, De Moor (b0445) 2015 Claesen, Simm, Popovic, Moreau, De Moor (b0395) 2014 Smola, Vapnik (b0210) 1997; 9 Sparks, Talwalkar, Haas, Franklin, Jordan, Kraska (b0130) 2015 Falkner, Klein, Hutter (b0465) 2018 Manias, Jammal, Hawilo, Shami, Heidari, Larabi, Brunner (b0265) 2019 Gogna, Tayal (b0470) 2013; 25 J.D.M. Rennie, L. Shih, J. Teevan, D.R. Karger Tackling the poor assumptions of Naive Bayes text classifiers, Proc. Twent. Int. Conf. Mach. Learn. ICML (2003), 616–623. Tim Head, MechCoder, Gilles Louppe, et al., scikitoptimize/scikit-optimize: v0.5.2, 2018. doi: 10.5281/zenodo.1207017. James, Yoshua (b0065) 2012; 13 L. Hertel, P. Sadowski, J. Collado, P. Baldi, Sherpa: hyperparameter optimization for machine learning models, Conf. Neural Inf. Process. Syst., 2018. Hoerl, Kennard (b0175) 1970; 12 M. Lindauer, K. Eggensperger, M. Feurer, S. Falkner, A. Biedenkapp, and F. Hutter, Smac v3: Algorithm configuration in python, 2017. https://github.com/automl/SMAC3. O.S. Steinholtz, A Comparative Study of Black-box Optimization Algorithms for Tuning of Hyper-parameters in Deep Neural Networks, M.S. thesis, Dept. Elect. Eng., Luleå Univ. Technol., 2018 Koutsoukas, Monaghan, Li, Huan (b0305) 2017; 9 Rish (b0230) 2001 Xia, Liu, Li, Liu (b0290) 2017; 78 Howland, Wang, Park (b0385) 2006; 39 Eggensperger, Hutter, Hoos, Leyton-Brown (b0075) 2015; 2 J. Wang, J. Xu, and X. Wang, Combination of Hyperband and Bayesian Optimization for Hype Kramer (10.1016/j.neucom.2020.07.061_b0145) 2016 10.1016/j.neucom.2020.07.061_b0285 10.1016/j.neucom.2020.07.061_b0560 10.1016/j.neucom.2020.07.061_b0045 10.1016/j.neucom.2020.07.061_b0280 10.1016/j.neucom.2020.07.061_b0160 10.1016/j.neucom.2020.07.061_b0040 Bradley (10.1016/j.neucom.2020.07.061_b0105) 1977 Hensman (10.1016/j.neucom.2020.07.061_b0440) 2013 10.1016/j.neucom.2020.07.061_b0565 Rasoul (10.1016/j.neucom.2020.07.061_b0260) 1991; 21 Tibshirani (10.1016/j.neucom.2020.07.061_b0185) 1996; 58 Koutsoukas (10.1016/j.neucom.2020.07.061_b0305) 2017; 9 Di Francescomarino (10.1016/j.neucom.2020.07.061_b0330) 2018; 74 Zhang (10.1016/j.neucom.2020.07.061_b0220) 2003; 2 Knudde (10.1016/j.neucom.2020.07.061_b0555) 2017 Manias (10.1016/j.neucom.2020.07.061_b0265) 2019 Cazzaniga (10.1016/j.neucom.2020.07.061_b0520) 2015 Luo (10.1016/j.neucom.2020.07.061_b0050) 2016; 5 10.1016/j.neucom.2020.07.061_b0275 Bergstra (10.1016/j.neucom.2020.07.061_b0530) 2015; 8 10.1016/j.neucom.2020.07.061_b0550 10.1016/j.neucom.2020.07.061_b0155 Ding (10.1016/j.neucom.2020.07.061_b0340) 2004; 3056 10.1016/j.neucom.2020.07.061_b0390 Melkumova (10.1016/j.neucom.2020.07.061_b0180) 2017; 201 10.1016/j.neucom.2020.07.061_b0435 Lorenzo (10.1016/j.neucom.2020.07.061_b0095) 2017 James (10.1016/j.neucom.2020.07.061_b0065) 2012; 13 Eggensperger (10.1016/j.neucom.2020.07.061_b0070) 2013 Zuo (10.1016/j.neucom.2020.07.061_b0205) 2008; 11 Yang (10.1016/j.neucom.2020.07.061_b0410) 1998; 10 Claesen (10.1016/j.neucom.2020.07.061_b0395) 2014 Claesen (10.1016/j.neucom.2020.07.061_b0445) 2015 Zhou (10.1016/j.neucom.2020.07.061_b0365) 2012; 9 Dietterich (10.1016/j.neucom.2020.07.061_b0295) 1857; 2000 Salo (10.1016/j.neucom.2020.07.061_bib633) 2019 10.1016/j.neucom.2020.07.061_b0100 Zhang (10.1016/j.neucom.2020.07.061_b0455) 2016 Bishop (10.1016/j.neucom.2020.07.061_b0605) 1995 Diaz (10.1016/j.neucom.2020.07.061_b0025) 2017; 61 Yang (10.1016/j.neucom.2020.07.061_bib632) 2018 10.1016/j.neucom.2020.07.061_b0225 Loog (10.1016/j.neucom.2020.07.061_b0380) 2006; 2 Rish (10.1016/j.neucom.2020.07.061_b0230) 2001 Bubeck (10.1016/j.neucom.2020.07.061_b0110) 2015; 8 Yang (10.1016/j.neucom.2020.07.061_b0270) 2019 Rahnamayan (10.1016/j.neucom.2020.07.061_b0485) 2007; 53 Bergstra (10.1016/j.neucom.2020.07.061_b0060) 2011 Sparks (10.1016/j.neucom.2020.07.061_b0130) 2015 Han (10.1016/j.neucom.2020.07.061_b0325) 2018; 95 Moubayed (10.1016/j.neucom.2020.07.061_b0335) 2020; 34 Cheng (10.1016/j.neucom.2020.07.061_b0505) 2018; 144 10.1016/j.neucom.2020.07.061_b0570 10.1016/j.neucom.2020.07.061_b0450 10.1016/j.neucom.2020.07.061_b0055 (10.1016/j.neucom.2020.07.061_b0030) 2019 Yang (10.1016/j.neucom.2020.07.061_bib638) 2020 10.1016/j.neucom.2020.07.061_b0170 Bustamante (10.1016/j.neucom.2020.07.061_b0240) 2006 Howland (10.1016/j.neucom.2020.07.061_b0385) 2006; 39 Seeger (10.1016/j.neucom.2020.07.061_b0425) 2004; 14 Eggensperger (10.1016/j.neucom.2020.07.061_b0075) 2015; 2 Smola (10.1016/j.neucom.2020.07.061_b0210) 1997; 9 10.1016/j.neucom.2020.07.061_b0575 Hosmer (10.1016/j.neucom.2020.07.061_b0190) 2013; 34 Domhan (10.1016/j.neucom.2020.07.061_b0310) 2015 Moon (10.1016/j.neucom.2020.07.061_b0345) 1996; 13 Moubayed (10.1016/j.neucom.2020.07.061_bib631) 2018 Wang (10.1016/j.neucom.2020.07.061_b0510) 2009; 2009 10.1016/j.neucom.2020.07.061_b0615 Injadat (10.1016/j.neucom.2020.07.061_b0600) 2020; 200 Yang (10.1016/j.neucom.2020.07.061_b0215) 2018; 6 Gambella (10.1016/j.neucom.2020.07.061_b0125) 2019 Karnin (10.1016/j.neucom.2020.07.061_b0460) 2013 Hoerl (10.1016/j.neucom.2020.07.061_b0175) 1970; 12 Hazan (10.1016/j.neucom.2020.07.061_b0420) 2017 Meng (10.1016/j.neucom.2020.07.061_b0630) 2016; 17 10.1016/j.neucom.2020.07.061_b0480 Cawley (10.1016/j.neucom.2020.07.061_b0620) 2010; 11 10.1016/j.neucom.2020.07.061_b0085 10.1016/j.neucom.2020.07.061_b0360 Caruana (10.1016/j.neucom.2020.07.061_b0140) 2006; 148 10.1016/j.neucom.2020.07.061_b0400 Pedregosa (10.1016/j.neucom.2020.07.061_b0150) 2011; 12 Xia (10.1016/j.neucom.2020.07.061_b0290) 2017; 78 Martinez-Cantin (10.1016/j.neucom.2020.07.061_b0525) 2015; 15 Li (10.1016/j.neucom.2020.07.061_b0080) 2012; 18 Injadat (10.1016/j.neucom.2020.07.061_bib637) 2020 Diaz (10.1016/j.neucom.2020.07.061_b0120) 2017; 61 Kibriya (10.1016/j.neucom.2020.07.061_b0245) 2004; 3339 10.1016/j.neucom.2020.07.061_b0595 10.1016/j.neucom.2020.07.061_b0590 Ogutu (10.1016/j.neucom.2020.07.061_b0195) 2012; 6 Halko (10.1016/j.neucom.2020.07.061_b0375) 2011; 53 Krizhevsky (10.1016/j.neucom.2020.07.061_b0610) 2012; 25 10.1016/j.neucom.2020.07.061_b0515 10.1016/j.neucom.2020.07.061_b0355 10.1016/j.neucom.2020.07.061_b0235 Soon (10.1016/j.neucom.2020.07.061_b0320) 2018; 12 10.1016/j.neucom.2020.07.061_b0115 Jordan (10.1016/j.neucom.2020.07.061_b0005) 2015; 349 Gambella (10.1016/j.neucom.2020.07.061_b0165) 2019 Fortin (10.1016/j.neucom.2020.07.061_b0585) 2012; 13 Lobo (10.1016/j.neucom.2020.07.061_b0490) 2000 Itano (10.1016/j.neucom.2020.07.061_b0475) 2018 Keller (10.1016/j.neucom.2020.07.061_b0200) 1985; SMC-15 Decastro-García (10.1016/j.neucom.2020.07.061_b0035) 2019 10.1016/j.neucom.2020.07.061_b0540 Yan (10.1016/j.neucom.2020.07.061_b0500) 2017; 32 10.1016/j.neucom.2020.07.061_b0545 10.1016/j.neucom.2020.07.061_b0300 Brahim-Belhouari (10.1016/j.neucom.2020.07.061_b0350) 2005; 5 Franceschi (10.1016/j.neucom.2020.07.061_b0580) 2017 10.1016/j.neucom.2020.07.061_b0090 Moubayed (10.1016/j.neucom.2020.07.061_bib634) 2020 10.1016/j.neucom.2020.07.061_b0010 Ozaki (10.1016/j.neucom.2020.07.061_b0315) 2017; 9 Gogna (10.1016/j.neucom.2020.07.061_b0470) 2013; 25 10.1016/j.neucom.2020.07.061_b0495 Hutter (10.1016/j.neucom.2020.07.061_b0430) 2011; 5 Falkner (10.1016/j.neucom.2020.07.061_b0465) 2018 10.1016/j.neucom.2020.07.061_b0370 10.1016/j.neucom.2020.07.061_b0250 Kuhn (10.1016/j.neucom.2020.07.061_b0020) 2013 10.1016/j.neucom.2020.07.061_b0415 Boehm (10.1016/j.neucom.2020.07.061_b0625) 2016; 9 10.1016/j.neucom.2020.07.061_b0255 10.1016/j.neucom.2020.07.061_b0135 10.1016/j.neucom.2020.07.061_b0015 Komer (10.1016/j.neucom.2020.07.061_b0535) 2014 Bengio (10.1016/j.neucom.2020.07.061_b0405) 2000; 12 |
References_xml | – volume: 8 year: 2015 ident: b0530 article-title: Hyperopt: a Python library for model selection and hyperparameter optimization publication-title: Comput. Sci. Discov. – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: b0185 article-title: Regression shrinkage and selection via the Lasso publication-title: J. R. Stat. Soc. Ser. B – start-page: 481 year: 2017 end-page: 488 ident: b0095 article-title: Particle swarm optimization for hyper-parameter selection in deep neural networks publication-title: Proc. ACM Int. Conf. Genet. Evol. Comput. – reference: S. Sanders, C. Giraud-Carrier, Informing the use of hyperparameter optimization through metalearning, Proc. – IEEE Int. Conf. Data Mining, ICDM. 2017-Novem (2017) 1051–1056. https://doi.org/10.1109/ICDM.2017.137 – reference: Autonomio Talos [Computer software], 2019. http://github.com/autonomio/talos. – reference: B. Kazimipour, X. Li, A.K. Qin, A Review of Population Initialization Techniques for Evolutionary Algorithms, 2014 IEEE Congr. Evol. Comput. (2014) 2585–2592. https://doi.org/10.1109/CEC.2014.6900618. – start-page: 34 year: 2014 end-page: 40 ident: b0535 article-title: Hyperopt-sklearn: automatic hyperparameter configuration for scikit-learn publication-title: Proc. ICML Workshop AutoML – start-page: 1 year: 2013 end-page: 5 ident: b0070 article-title: Towards an empirical foundation for assessing Bayesian optimization of hyperparameters publication-title: BayesOpt Work – reference: I. Ilievski, T. Akhtar, J. Feng, C.A. Shoemaker, Efficient hyperparameter optimization of deep learning algorithms using deterministic RBF surrogates, 31st AAAI Conf. Artif. Intell. AAAI 2017, 2017, pp. 822–829 – reference: S. Lessmann, R. Stahlbock, S.F. Crone, Optimizing hyperparameters of support vector machines by genetic algorithms, Proc. 2005 Int. Conf. Artif. Intell. ICAI’05. 1 (2005) 74–80. – volume: 5 start-page: 507 year: 2011 end-page: 523 ident: b0430 article-title: Sequential model-based optimization for general algorithm configuration publication-title: Proc. LION – reference: Z. Y., K. G., Hierarchical clustering algorithms for document dataset, Data Min. Knowl. Discov. 10 (2005) 141–168. – year: 2020 ident: bib637 article-title: Multi-split optimized bagging ensemble model selection for multi-class educational data mining publication-title: Springer’s Appl. Intell. – reference: J.N. Sulzmann, J. Fürnkranz, E. Hüllermeier, On pairwise naive bayes classifiers, Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 4701 LNAI (2007) 371-381. https://doi.org/10.1007/978-3-540-74958-5_35 – volume: 53 start-page: 217 year: 2011 end-page: 288 ident: b0375 article-title: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions publication-title: SIAM Rev. – reference: J. Wang, J. Xu, and X. Wang, Combination of Hyperband and Bayesian Optimization for Hyperparameter Optimization in Deep Learning, arXiv preprint arXiv:1801.01596, (2018). https://arxiv.org/abs1801.01596. – year: 2019 ident: b0030 publication-title: Automatic Machine Learning: Methods, Systems, Challenges – volume: 2 start-page: 888 year: 2003 end-page: 895 ident: b0220 article-title: Modified logistic regression: an approximation to SVM and its applications in large-scale text categorization publication-title: Proceedings Twent. Int. Conf. Mach. Learn. – reference: N. Hansen, A. Auger, O. Mersmann, T. Tusar, D. Brockhoff, COCO: A Platform for Comparing Continuous Optimizers in a Black-Box Setting, arXiv preprint arXiv:1603.08785, (2016). https://arxiv.org/abs1603.08785. – year: 2013 ident: b0440 article-title: Gaussian processes for big data, arXiv preprint arXiv:1309.6835 – start-page: 45 year: 2016 end-page: 53 ident: b0145 article-title: Scikit-Learn, in Machine Learning for Evolution Strategies – reference: L. Bottou, Large-scale machine learning with stochastic gradient descent, in: Proceedings of the COMPSTAT, Springer, 2010, pp. 177–186. – start-page: 1 year: 2015 end-page: 8 ident: b0520 article-title: The impact of particles initialization in PSO: parameter estimation as a case in point publication-title: 2015 IEEE Conf. Comput. Intell. Bioinforma. Comput. Biol. CIBCB 2015 – volume: 34 start-page: 358 year: 2013 end-page: 359 ident: b0190 article-title: Applied logistic regression publication-title: Technometrics – year: 2015 ident: b0445 article-title: Hyperparameter Search in Machine Learning, arXiv preprint arXiv:1502.02127 – volume: 8 start-page: 231 year: 2015 end-page: 357 ident: b0110 article-title: Convex optimization: algorithms and complexity publication-title: Found. Trends Mach. Learn. – reference: B. Shahriari, A. Bouchard-Côté, N. de Freitas, Unbounded Bayesian optimization via regularization, Proc. Artif. Intell. Statist., (2016) 1168–1176. – reference: D. Maclaurin, D. Duvenaud, R.P. Adams, Gradient-based Hyperparameter Optimization through Reversible Learning, arXiv preprint arXiv:1502.03492, (2015). http://arxiv.org/abs/1502.03492 – year: 2013 ident: b0020 article-title: Applied Predictive Modeling – reference: R.E. Shawi, M. Maher, S. Sakr, Automated machine learning: State-of-the-art and open challenges, arXiv preprint arXiv:1906.02287, (2019). http://arxiv.org/abs/1906.02287 – reference: O.S. Steinholtz, A Comparative Study of Black-box Optimization Algorithms for Tuning of Hyper-parameters in Deep Neural Networks, M.S. thesis, Dept. Elect. Eng., Luleå Univ. Technol., 2018 – volume: 12 start-page: 69 year: 1970 end-page: 82 ident: b0175 article-title: Ridge regression: applications to nonorthogonal problems publication-title: Technometrics – volume: 6 year: 2012 ident: b0195 article-title: Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions publication-title: BMC Proc. BioMed Cent. – volume: 9 year: 2017 ident: b0315 article-title: Effective hyperparameter optimization using Nelder-Mead method in deep learning publication-title: IPSJ Trans. Comput. Vis. Appl. – start-page: 237 year: 2006 end-page: 247 ident: b0240 article-title: Comparing fuzzy Naive Bayes and Gaussian Naive Bayes for decision making in RoboCup 3D publication-title: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) – year: 2019 (2019). ident: b0035 article-title: Effect of the sampling of a dataset in the hyperparameter optimization phase over the efficiency of a machine learning algorithm publication-title: Complexity – volume: 2 start-page: 387 year: 2006 end-page: 390 ident: b0380 article-title: Conditional linear discriminant analysis publication-title: Proc. – Int. Conf. Pattern Recognit. – volume: 10 start-page: 2137 year: 1998 end-page: 2157 ident: b0410 article-title: Complexity issues in natural gradient descent method for training multilayer perceptrons publication-title: Neural Comput. – volume: 61 start-page: 1 year: 2017 end-page: 20 ident: b0120 article-title: An effective algorithm for hyperparameter optimization of neural networks publication-title: IBM J. Res. Dev. – reference: K. Khan, S.U. Rehman, K. Aziz, S. Fong, S. Sarasvady, A. Vishwa, DBSCAN: Past, present and future, 5th Int. Conf. Appl. Digit. Inf. Web Technol. ICADIWT 2014, 2014, pp. 232–238. https://doi.org/10.1109/ICADIWT.2014.6814687. – volume: 39 start-page: 277 year: 2006 end-page: 287 ident: b0385 article-title: Solving the small sample size problem in face recognition using generalized discriminant analysis publication-title: Pattern Recognit. – reference: S. Sun, Z. Cao, H. Zhu, J. Zhao, A Survey of Optimization Methods from a Machine Learning Perspective, arXiv preprint arXiv:1906.06821, (2019). https://arxiv.org/abs/1906.06821. – start-page: 2275 year: 2013 end-page: 2283 ident: b0460 article-title: Almost optimal exploration in multi-armed bandits publication-title: 30th Int. Conf. Mach. Learn. ICML 2013 – start-page: 1 year: 2019 end-page: 40 ident: b0165 publication-title: Optimization Models for Machine Learning: A Survey – reference: J. Shlens, A Tutorial on Principal Component Analysis, arXiv preprint arXiv:1404.1100, (2014). https://arxiv.org/abs1404.1100 – reference: S. Abreu, Automated Architecture Design for Deep Neural Networks, arXiv preprint arXiv:1908.10714, (2019). http://arxiv.org/abs/1908.10714 – reference: J. Snoek, H. Larochelle, R. Adams, Practical Bayesian optimization of machine learning algorithms, Adv. Neural Inf. Process. Syst. 4 (2012) 2951–2959. – reference: V. Narayanan, I. Arora, A. Bhatia, Fast and accurate sentiment classification using an enhanced naíve Bayes model, arXiv preprint arXiv:1305.6143, (2013). https://arxiv.org/abs/1305.6143. – volume: 78 start-page: 225 year: 2017 end-page: 241 ident: b0290 article-title: A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring publication-title: Expert Syst. Appl. – volume: 34 start-page: 1 year: 2020 end-page: 20 ident: b0335 article-title: Student engagement level in e-learning environment: clustering using K-means publication-title: Am. J. Distance Educ. – volume: 15 start-page: 3735 year: 2015 end-page: 3739 ident: b0525 article-title: BayesOpt: a Bayesian optimization library for nonlinear optimization, experimental design and bandits publication-title: J. Mach. Learn. Res. – year: 2020 ident: bib634 article-title: Ensemble-based feature selection and classification model for DNS typo-squatting detection publication-title: 2020 IEEE Can. Conf. Electr. Comput. Eng. – volume: 2 start-page: 1114 year: 2015 end-page: 1120 ident: b0075 article-title: Efficient benchmarking of hyperparameter optimizers via surrogates publication-title: Proc. Natl. Conf. Artif. Intell. – start-page: 670 year: 2016- (2016) end-page: 674 ident: b0455 article-title: A new optimal sampling rule for multi-fidelity optimization via ordinal transformation publication-title: IEEE Int. Conf. Autom. Sci. Eng. – reference: J. Rapin, O. Teytaud, Nevergrad – a gradient-free optimization platform, 2018. https://GitHub.com/FacebookResearch/Nevergrad. – volume: 9 start-page: 1967 year: 2012 end-page: 1973 ident: b0365 article-title: Research on adaptive parameters determination in DBSCAN algorithm publication-title: J. Inf. Comput. Sci. – start-page: 151 year: 2000 end-page: 158 ident: b0490 article-title: Time complexity of genetic algorithms on exponentially scaled problems publication-title: Proc. Genet. Evol. Comput. Conf. – reference: F. Chollet, Keras, 2015. https://github.com/fchollet/keras. – year: 1995 ident: b0605 article-title: Neural Networks for Pattern Recognition – volume: 25 start-page: 1097 year: 2012 end-page: 1105 ident: b0610 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – reference: L. Hertel, P. Sadowski, J. Collado, P. Baldi, Sherpa: hyperparameter optimization for machine learning models, Conf. Neural Inf. Process. Syst., 2018. – volume: 5 start-page: 1 year: 2016 end-page: 16 ident: b0050 article-title: A review of automatic selection methods for machine learning algorithms and hyper-parameter values publication-title: Netw. Model. Anal. Heal. Inf. Bioinf. – volume: 11 start-page: 2079 year: 2010 end-page: 2107 ident: b0620 article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation publication-title: J. Mach. Learn. Res. – volume: 2009 start-page: 332 year: 2009 end-page: 336 ident: b0510 article-title: A new population initialization method based on space transformation search, 5th Int publication-title: Conf. Nat. Comput. ICNC – reference: J. Nocedal, S. Wright, Numerical Optimization, 2006, Springer-Verlag, ISBN: 978-0-387-40065-5. – year: 2014 ident: b0395 publication-title: Easy Hyperparameter Search Using Optunity, arXiv preprint arXiv:1412.1114 – volume: 14 start-page: 69 year: 2004 end-page: 106 ident: b0425 article-title: Gaussian processes for machine learning publication-title: Int. J. Neural Syst. – start-page: 368 year: 2015 end-page: 380 ident: b0130 article-title: Automating model search for large scale machine learning publication-title: Proc. 6th ACM Symp. Cloud Comput. – volume: 12 start-page: 1889 year: 2000 end-page: 1900 ident: b0405 article-title: Gradient-based optimization of hyperparameters publication-title: Neural Comput. – volume: 13 start-page: 281 year: 2012 end-page: 305 ident: b0065 article-title: Random search for hyper-parameter optimization publication-title: J. Mach. Learn. Res. – reference: K. Arjunan, C.N. Modi, An enhanced intrusion detection framework for securing network layer of cloud computing, ISEA Asia Secur. Priv. Conf. 2017, ISEASP 2017. (2017) 1–10. doi: 10.1109/ISEASP.2017.7976988. – year: 2020 ident: bib638 publication-title: Hyperparameter Optimization of Machine Learning Algorithms – reference: M.-A. Zöller, M.F. Huber, Benchmark and Survey of Automated Machine Learning Frameworks, arXiv preprint arXiv:1904.12054, (2019). https://arxiv.org/abs/1904.12054 – volume: 148 start-page: 161 year: 2006 end-page: 168 ident: b0140 article-title: An empirical comparison of supervised learning algorithms publication-title: ACM Int. Conf. Proc. Ser. – start-page: 2323 year: 2018 end-page: 2341 ident: b0465 article-title: BOHB: robust and efficient hyperparameter optimization at scale publication-title: 35th Int. Conf. Mach. Learn. ICML 2018 – year: 2018 ident: bib632 publication-title: Comprehensive visibility indicator algorithm for adaptable speed limit control in intelligent transportation systems – reference: O.S. Soliman, A.S. Mahmoud, A classification system for remote sensing satellite images using support vector machine with non-linear kernel functions, 2012 8th Int. Conf. Informatics Syst. INFOS 2012. (2012) BIO-181-BIO-187. – volume: 12 start-page: 939 year: 2018 end-page: 946 ident: b0320 article-title: Hyper-parameters optimisation of deep CNN architecture for vehicle logo recognition publication-title: IET Intell. Transp. Syst. – reference: M. Injadat, F. Salo, A.B. Nassif, A. Essex, A. Shami, Bayesian optimization with machine learning algorithms towards anomaly detection, 2018 IEEE Glob. Commun. Conf. (2018) 1–6. https://doi.org/10.1109/glocom.2018.8647714. – volume: 144 start-page: 1 year: 2018 end-page: 7 ident: b0505 article-title: Multiobjective dynamic-guiding PSO for optimizing work shift schedules publication-title: J. Constr. Eng. Manag. – year: 2019 ident: b0125 article-title: Optimization Models for Machine Learning: A Survey, arXiv preprint arXiv:1901.05331 – volume: SMC-15 start-page: 580 year: 1985 end-page: 585 ident: b0200 article-title: A fuzzy K-nearest neighbor algorithm publication-title: IEEE Trans. Syst. Man Cybern. – start-page: 41 year: 2001 end-page: 46 ident: b0230 article-title: An empirical study of the naive Bayes classifier publication-title: IJCAI 2001 Work Empir. Methods Artif. Intell. – year: 2019 ident: b0270 article-title: Tree-based intelligent intrusion detection system in internet of vehicles publication-title: 2019 IEEE Glob. Commun. Conf. GLOBECOM 2019 – Proc. – reference: R.S. Olson, J.H. Moore, TPOT: a tree-based pipeline optimization tool for automating machine learning, Auto Mach. Learn. (2019) 151–160. https://doi.org/10.1007/978-3-030-05318-5_8 – volume: 9 start-page: 155 year: 1997 end-page: 161 ident: b0210 article-title: Support vector regression machines publication-title: Adv. Neural Inf. Process. Syst. – year: 1977 ident: b0105 article-title: Applied Mathematical Programming – volume: 2000 start-page: 1 year: 1857 end-page: 15 ident: b0295 article-title: Ensemble methods in machine learning publication-title: Mult. Classif. Syst. – start-page: 12 year: 2019 end-page: 17 ident: b0265 article-title: Machine learning for performance-aware virtual network function placement publication-title: 2019 IEEE Glob. Commun. Conf. GLOBECOM 2019 – Proc. – volume: 5 start-page: 1433 year: 2005 end-page: 1444 ident: b0350 article-title: Fast and Robust gas identification system using an integrated gas sensor technology and Gaussian mixture models publication-title: IEEE Sens. J. – volume: 61 start-page: 1 year: 2017 end-page: 20 ident: b0025 article-title: An effective algorithm for hyperparameter optimization of neural networks publication-title: IBM J. Res. Dev. – reference: T. Chen, C.Guestrin, XGBoost: a scalable tree boosting system, arXiv preprint arXiv:1603.02754, (2016). http://arxiv.org/abs/1603.02754. – volume: 74 start-page: 67 year: 2018 end-page: 83 ident: b0330 article-title: Genetic algorithms for hyperparameter optimization in predictive business process monitoring publication-title: Inf. Syst. – volume: 13 start-page: 2171 year: 2012 end-page: 2175 ident: b0585 article-title: DEAP: evolutionary algorithms made easy publication-title: J. Mach. Learn. Res. – reference: J. Grandgirard, D. Poinsot, L. Krespi, J.P. Nénon, A.M. Cortesero, Osprey: Hyperparameter Optimization for Machine Learning, 103 (2002) 239–248. https://doi.org/10.21105/joss.00034. – volume: 95 start-page: 43 year: 2018 end-page: 56 ident: b0325 article-title: A new image classification method using CNN transfer learning and web data augmentation publication-title: Expert Syst. Appl. – year: 2017 ident: b0555 publication-title: GPflowOpt: A Bayesian Optimization Library using TensorFlow, arXiv preprint arXiv:1711.03845 – reference: Tim Head, MechCoder, Gilles Louppe, et al., scikitoptimize/scikit-optimize: v0.5.2, 2018. doi: 10.5281/zenodo.1207017. – volume: 3056 start-page: 414 year: 2004 end-page: 418 ident: b0340 article-title: Cluster structure of K-means clustering via principal component analysis publication-title: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) – start-page: 2546 year: 2011 end-page: 2554 ident: b0060 article-title: Algorithms for hyper-parameter optimization publication-title: Proc. Adv. Neural Inf. Process. Syst. – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: b0150 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – reference: I. Dewancker, M. McCourt, S. Clark, Bayesian Optimization Primer, (2015). URL: https://sigopt.com/static/pdf/SigOpt Bayesian Optimization Primer.pdf. – volume: 21 start-page: 660 year: 1991 end-page: 674 ident: b0260 article-title: A survey of decision tree classifier methodology publication-title: IEEE Trans. Syst. Man. Cybern. – year: 2017 ident: b0420 article-title: Hyperparameter optimization: a spectral approach, arXiv preprint arXiv:1706.00764 – volume: 349 start-page: 255 year: 2015 end-page: 260 ident: b0005 article-title: Machine learning: trends, perspectives, and prospects publication-title: Science – volume: 25 start-page: 503 year: 2013 end-page: 526 ident: b0470 article-title: Metaheuristics: review and application publication-title: J. Exp. Theor. Artif. Intell. – volume: 11 start-page: 247 year: 2008 end-page: 257 ident: b0205 article-title: On kernel difference-weighted k-nearest neighbor classification publication-title: Pattern Anal. Appl. – volume: 6 start-page: 76728 year: 2018 end-page: 76740 ident: b0215 article-title: Image-based visibility estimation algorithm for intelligent transportation systems publication-title: IEEE Access – volume: 9 start-page: 1425 year: 2016 end-page: 1436 ident: b0625 article-title: SystemML: declarative machine learning on spark publication-title: Proc. VLDB Endow. – reference: M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, et al., TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, arXiv preprint arXiv:1603.04467, (2016). https://arxiv.org/abs1603.04467. – volume: 32 start-page: 340 year: 2017 end-page: 355 ident: b0500 publication-title: A Novel Hardware/ Software Partitioning Method Based on Position Disturbed Particle Swarm Optimization with Invasive Weed Optimization – start-page: 276 year: 2019 end-page: 281 ident: bib633 article-title: Clustering enabled classification using ensemble feature selection for intrusion detection publication-title: 2019 Int. Conf. Comput. Netw. Commun. ICNC – volume: 13 start-page: 47 year: 1996 end-page: 60 ident: b0345 article-title: The expectation-maximization algorithm publication-title: IEEE Signal Process. Mag. – volume: 17 start-page: 1235 year: 2016 end-page: 1241 ident: b0630 article-title: Mllib: machine learning in apache spark publication-title: J. Mach. Learn. Res. – reference: C.M. Bishop, Pattern Recognition and Machine Learning, 2006, Springer, ISBN: 978-0-387-31073-2. – volume: 18 start-page: 1 year: 2012 end-page: 52 ident: b0080 article-title: Hyperband: a novel bandit-based approach to hyperparameter optimization publication-title: J. Mach. Learn. Res. – reference: Q. Yao, et al., Taking Human out of Learning Applications: A Survey on Automated Machine Learning, arXiv preprint arXiv:1810.13306, (2018). http://arxiv.org/abs/1810.13306. – reference: M. Lindauer, K. Eggensperger, M. Feurer, S. Falkner, A. Biedenkapp, and F. Hutter, Smac v3: Algorithm configuration in python, 2017. https://github.com/automl/SMAC3. – reference: W. Yin, K. Kann, M. Yu, H. Schütze, Comparative Study of CNN and RNN for Natural Language Processing, arXiv preprint arXiv:1702.01923, (2017). https://arxiv.org/abs1702.01923. – volume: 201 start-page: 746 year: 2017 end-page: 755 ident: b0180 article-title: Comparing ridge and LASSO estimators for data analysis publication-title: Procedia Eng. – year: 2018 ident: bib631 article-title: DNS typo-squatting domain detection: a data analytics & machine learning based approach publication-title: 2018 IEEE Glob. Commun. Conf. GLOBECOM. – start-page: 1 year: 2018 end-page: 8 ident: b0475 article-title: Extending MLP ANN hyper-parameters Optimization by using Genetic Algorithm publication-title: Proc. Int. Jt. Conf. Neural Networks – reference: Y. Shi, R.C. Eberhart, Parameter Selection in Particle Swarm Optimization, Evolutionary Programming VII, Springer, 1998, pp. 591–600. – start-page: 1165 year: 2017 end-page: 1173 ident: b0580 article-title: Forward and reverse gradient-based hyperparameter optimization, 34th Int publication-title: Conf. Mach. Learn. ICML 2017 – volume: 3339 start-page: 488 year: 2004 end-page: 499 ident: b0245 article-title: Multinomial naive bayes for text categorization revisited publication-title: Lect. Notes Artif. Intell. (Subseries Lect. Notes Comput. Sci.) – start-page: 3460 year: 2015- (2015) end-page: 3468 ident: b0310 article-title: Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves publication-title: IJCAI Int. Jt. Conf. Artif. Intell. – volume: 200 start-page: 105992 year: 2020 ident: b0600 article-title: Systematic ensemble model selection approach for educational data mining publication-title: Knowl.-Based Syst. – reference: J.D.M. Rennie, L. Shih, J. Teevan, D.R. Karger Tackling the poor assumptions of Naive Bayes text classifiers, Proc. Twent. Int. Conf. Mach. Learn. ICML (2003), 616–623. – reference: M. Pumperla, Hyperas, 2019. http://maxpumperla.com/hyperas/. – volume: 9 start-page: 1 year: 2017 end-page: 13 ident: b0305 article-title: Deep-learning: Investigating deep neural networks hyper-parameters and comparison of performance to shallow methods for modeling bioactivity data publication-title: J. Cheminf. – volume: 53 start-page: 1605 year: 2007 end-page: 1614 ident: b0485 article-title: A novel population initialization method for accelerating evolutionary algorithms publication-title: Comput. Math. Appl. – reference: C. Witt, Worst-case and average-case approximations by simple randomized search heuristics, in: Proceedings of the 22nd Annual Symposium on Theoretical Aspects of Computer Science, STACS’05, Stuttgart, Germany, 2005, pp. 44-56. – start-page: 670 year: 2016 ident: 10.1016/j.neucom.2020.07.061_b0455 article-title: A new optimal sampling rule for multi-fidelity optimization via ordinal transformation publication-title: IEEE Int. Conf. Autom. Sci. Eng. – ident: 10.1016/j.neucom.2020.07.061_b0480 doi: 10.1109/CEC.2014.6900618 – volume: 8 year: 2015 ident: 10.1016/j.neucom.2020.07.061_b0530 article-title: Hyperopt: a Python library for model selection and hyperparameter optimization publication-title: Comput. Sci. Discov. doi: 10.1088/1749-4699/8/1/014008 – ident: 10.1016/j.neucom.2020.07.061_b0540 – volume: SMC-15 start-page: 580 year: 1985 ident: 10.1016/j.neucom.2020.07.061_b0200 article-title: A fuzzy K-nearest neighbor algorithm publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1985.6313426 – volume: 13 start-page: 47 issue: 6 year: 1996 ident: 10.1016/j.neucom.2020.07.061_b0345 article-title: The expectation-maximization algorithm publication-title: IEEE Signal Process. Mag. doi: 10.1109/79.543975 – ident: 10.1016/j.neucom.2020.07.061_b0560 – year: 2019 ident: 10.1016/j.neucom.2020.07.061_b0030 – volume: 5 start-page: 1 year: 2016 ident: 10.1016/j.neucom.2020.07.061_b0050 article-title: A review of automatic selection methods for machine learning algorithms and hyper-parameter values publication-title: Netw. Model. Anal. Heal. Inf. Bioinf. – year: 2013 ident: 10.1016/j.neucom.2020.07.061_b0440 – year: 2018 ident: 10.1016/j.neucom.2020.07.061_bib632 – start-page: 12 year: 2019 ident: 10.1016/j.neucom.2020.07.061_b0265 article-title: Machine learning for performance-aware virtual network function placement publication-title: 2019 IEEE Glob. Commun. Conf. GLOBECOM 2019 – Proc. – volume: 2 start-page: 1114 year: 2015 ident: 10.1016/j.neucom.2020.07.061_b0075 article-title: Efficient benchmarking of hyperparameter optimizers via surrogates publication-title: Proc. Natl. Conf. Artif. Intell. – start-page: 3460 year: 2015 ident: 10.1016/j.neucom.2020.07.061_b0310 article-title: Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves publication-title: IJCAI Int. Jt. Conf. Artif. Intell. – volume: 11 start-page: 2079 year: 2010 ident: 10.1016/j.neucom.2020.07.061_b0620 article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation publication-title: J. Mach. Learn. Res. – volume: 58 start-page: 267 year: 1996 ident: 10.1016/j.neucom.2020.07.061_b0185 article-title: Regression shrinkage and selection via the Lasso publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 39 start-page: 277 year: 2006 ident: 10.1016/j.neucom.2020.07.061_b0385 article-title: Solving the small sample size problem in face recognition using generalized discriminant analysis publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2005.06.013 – ident: 10.1016/j.neucom.2020.07.061_b0595 – ident: 10.1016/j.neucom.2020.07.061_b0085 – volume: 95 start-page: 43 year: 2018 ident: 10.1016/j.neucom.2020.07.061_b0325 article-title: A new image classification method using CNN transfer learning and web data augmentation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.11.028 – volume: 13 start-page: 281 issue: 1 year: 2012 ident: 10.1016/j.neucom.2020.07.061_b0065 article-title: Random search for hyper-parameter optimization publication-title: J. Mach. Learn. Res. – year: 2015 ident: 10.1016/j.neucom.2020.07.061_b0445 – volume: 25 start-page: 503 year: 2013 ident: 10.1016/j.neucom.2020.07.061_b0470 article-title: Metaheuristics: review and application publication-title: J. Exp. Theor. Artif. Intell. doi: 10.1080/0952813X.2013.782347 – start-page: 368 year: 2015 ident: 10.1016/j.neucom.2020.07.061_b0130 article-title: Automating model search for large scale machine learning publication-title: Proc. 6th ACM Symp. Cloud Comput. doi: 10.1145/2806777.2806945 – ident: 10.1016/j.neucom.2020.07.061_b0360 doi: 10.1109/ICADIWT.2014.6814687 – year: 2018 ident: 10.1016/j.neucom.2020.07.061_bib631 article-title: DNS typo-squatting domain detection: a data analytics & machine learning based approach publication-title: 2018 IEEE Glob. Commun. Conf. GLOBECOM. doi: 10.1109/GLOCOM.2018.8647679 – ident: 10.1016/j.neucom.2020.07.061_b0285 doi: 10.1109/ISEASP.2017.7976988 – volume: 74 start-page: 67 year: 2018 ident: 10.1016/j.neucom.2020.07.061_b0330 article-title: Genetic algorithms for hyperparameter optimization in predictive business process monitoring publication-title: Inf. Syst. doi: 10.1016/j.is.2018.01.003 – volume: 3339 start-page: 488 year: 2004 ident: 10.1016/j.neucom.2020.07.061_b0245 article-title: Multinomial naive bayes for text categorization revisited publication-title: Lect. Notes Artif. Intell. (Subseries Lect. Notes Comput. Sci.) – ident: 10.1016/j.neucom.2020.07.061_b0015 – start-page: 237 year: 2006 ident: 10.1016/j.neucom.2020.07.061_b0240 article-title: Comparing fuzzy Naive Bayes and Gaussian Naive Bayes for decision making in RoboCup 3D publication-title: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) – volume: 13 start-page: 2171 year: 2012 ident: 10.1016/j.neucom.2020.07.061_b0585 article-title: DEAP: evolutionary algorithms made easy publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.neucom.2020.07.061_b0235 doi: 10.1007/978-3-540-74958-5_35 – volume: 2000 start-page: 1 year: 1857 ident: 10.1016/j.neucom.2020.07.061_b0295 article-title: Ensemble methods in machine learning publication-title: Mult. Classif. Syst. – volume: 21 start-page: 660 year: 1991 ident: 10.1016/j.neucom.2020.07.061_b0260 article-title: A survey of decision tree classifier methodology publication-title: IEEE Trans. Syst. Man. Cybern. doi: 10.1109/21.97458 – ident: 10.1016/j.neucom.2020.07.061_b0225 – ident: 10.1016/j.neucom.2020.07.061_b0250 – start-page: 1 year: 2015 ident: 10.1016/j.neucom.2020.07.061_b0520 article-title: The impact of particles initialization in PSO: parameter estimation as a case in point publication-title: 2015 IEEE Conf. Comput. Intell. Bioinforma. Comput. Biol. CIBCB 2015 – ident: 10.1016/j.neucom.2020.07.061_b0055 – year: 2019 ident: 10.1016/j.neucom.2020.07.061_b0125 – start-page: 45 year: 2016 ident: 10.1016/j.neucom.2020.07.061_b0145 – ident: 10.1016/j.neucom.2020.07.061_b0565 – ident: 10.1016/j.neucom.2020.07.061_b0400 doi: 10.1007/978-3-540-31856-9_4 – ident: 10.1016/j.neucom.2020.07.061_b0135 – volume: 32 start-page: 340 year: 2017 ident: 10.1016/j.neucom.2020.07.061_b0500 publication-title: A Novel Hardware/ Software Partitioning Method Based on Position Disturbed Particle Swarm Optimization with Invasive Weed Optimization – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.neucom.2020.07.061_b0150 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – start-page: 34 year: 2014 ident: 10.1016/j.neucom.2020.07.061_b0535 article-title: Hyperopt-sklearn: automatic hyperparameter configuration for scikit-learn publication-title: Proc. ICML Workshop AutoML – volume: 6 year: 2012 ident: 10.1016/j.neucom.2020.07.061_b0195 article-title: Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions publication-title: BMC Proc. BioMed Cent. – start-page: 1165 issue: 70 year: 2017 ident: 10.1016/j.neucom.2020.07.061_b0580 article-title: Forward and reverse gradient-based hyperparameter optimization, 34th Int publication-title: Conf. Mach. Learn. ICML 2017 – volume: 200 start-page: 105992 year: 2020 ident: 10.1016/j.neucom.2020.07.061_b0600 article-title: Systematic ensemble model selection approach for educational data mining publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105992 – year: 1995 ident: 10.1016/j.neucom.2020.07.061_b0605 – volume: 2 start-page: 387 year: 2006 ident: 10.1016/j.neucom.2020.07.061_b0380 article-title: Conditional linear discriminant analysis publication-title: Proc. – Int. Conf. Pattern Recognit. – ident: 10.1016/j.neucom.2020.07.061_b0010 – volume: 78 start-page: 225 year: 2017 ident: 10.1016/j.neucom.2020.07.061_b0290 article-title: A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.02.017 – volume: 6 start-page: 76728 year: 2018 ident: 10.1016/j.neucom.2020.07.061_b0215 article-title: Image-based visibility estimation algorithm for intelligent transportation systems publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2884225 – volume: 10 start-page: 2137 issue: 8 year: 1998 ident: 10.1016/j.neucom.2020.07.061_b0410 article-title: Complexity issues in natural gradient descent method for training multilayer perceptrons publication-title: Neural Comput. doi: 10.1162/089976698300017007 – ident: 10.1016/j.neucom.2020.07.061_b0415 – ident: 10.1016/j.neucom.2020.07.061_b0280 doi: 10.1109/GLOCOM.2018.8647714 – start-page: 1 year: 2018 ident: 10.1016/j.neucom.2020.07.061_b0475 article-title: Extending MLP ANN hyper-parameters Optimization by using Genetic Algorithm publication-title: Proc. Int. Jt. Conf. Neural Networks – volume: 18 start-page: 1 year: 2012 ident: 10.1016/j.neucom.2020.07.061_b0080 article-title: Hyperband: a novel bandit-based approach to hyperparameter optimization publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.neucom.2020.07.061_b0115 – ident: 10.1016/j.neucom.2020.07.061_b0545 – start-page: 276 year: 2019 ident: 10.1016/j.neucom.2020.07.061_bib633 article-title: Clustering enabled classification using ensemble feature selection for intrusion detection publication-title: 2019 Int. Conf. Comput. Netw. Commun. ICNC doi: 10.1109/ICCNC.2019.8685636 – volume: 12 start-page: 939 year: 2018 ident: 10.1016/j.neucom.2020.07.061_b0320 article-title: Hyper-parameters optimisation of deep CNN architecture for vehicle logo recognition publication-title: IET Intell. Transp. Syst. doi: 10.1049/iet-its.2018.5127 – ident: 10.1016/j.neucom.2020.07.061_b0590 doi: 10.1007/978-3-030-05318-5_8 – volume: 25 start-page: 1097 year: 2012 ident: 10.1016/j.neucom.2020.07.061_b0610 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 9 start-page: 1967 year: 2012 ident: 10.1016/j.neucom.2020.07.061_b0365 article-title: Research on adaptive parameters determination in DBSCAN algorithm publication-title: J. Inf. Comput. Sci. – ident: 10.1016/j.neucom.2020.07.061_b0160 – start-page: 1 year: 2013 ident: 10.1016/j.neucom.2020.07.061_b0070 article-title: Towards an empirical foundation for assessing Bayesian optimization of hyperparameters publication-title: BayesOpt Work – volume: 61 start-page: 1 year: 2017 ident: 10.1016/j.neucom.2020.07.061_b0120 article-title: An effective algorithm for hyperparameter optimization of neural networks publication-title: IBM J. Res. Dev. doi: 10.1147/JRD.2017.2709578 – volume: 12 start-page: 1889 issue: 8 year: 2000 ident: 10.1016/j.neucom.2020.07.061_b0405 article-title: Gradient-based optimization of hyperparameters publication-title: Neural Comput. doi: 10.1162/089976600300015187 – ident: 10.1016/j.neucom.2020.07.061_b0495 doi: 10.1007/BFb0040810 – ident: 10.1016/j.neucom.2020.07.061_b0435 – ident: 10.1016/j.neucom.2020.07.061_b0040 – ident: 10.1016/j.neucom.2020.07.061_b0615 – volume: 3056 start-page: 414 year: 2004 ident: 10.1016/j.neucom.2020.07.061_b0340 article-title: Cluster structure of K-means clustering via principal component analysis publication-title: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) – ident: 10.1016/j.neucom.2020.07.061_b0100 – ident: 10.1016/j.neucom.2020.07.061_b0255 – volume: 9 start-page: 1 year: 2017 ident: 10.1016/j.neucom.2020.07.061_b0305 article-title: Deep-learning: Investigating deep neural networks hyper-parameters and comparison of performance to shallow methods for modeling bioactivity data publication-title: J. Cheminf. doi: 10.1186/s13321-017-0226-y – start-page: 151 year: 2000 ident: 10.1016/j.neucom.2020.07.061_b0490 article-title: Time complexity of genetic algorithms on exponentially scaled problems publication-title: Proc. Genet. Evol. Comput. Conf. – ident: 10.1016/j.neucom.2020.07.061_b0515 – volume: 34 start-page: 358 issue: 1 year: 2013 ident: 10.1016/j.neucom.2020.07.061_b0190 article-title: Applied logistic regression publication-title: Technometrics – ident: 10.1016/j.neucom.2020.07.061_b0570 – year: 2019 ident: 10.1016/j.neucom.2020.07.061_b0270 article-title: Tree-based intelligent intrusion detection system in internet of vehicles publication-title: 2019 IEEE Glob. Commun. Conf. GLOBECOM 2019 – Proc. doi: 10.1109/GLOBECOM38437.2019.9013892 – year: 1977 ident: 10.1016/j.neucom.2020.07.061_b0105 – volume: 34 start-page: 1 year: 2020 ident: 10.1016/j.neucom.2020.07.061_b0335 article-title: Student engagement level in e-learning environment: clustering using K-means publication-title: Am. J. Distance Educ. doi: 10.1080/08923647.2020.1696140 – ident: 10.1016/j.neucom.2020.07.061_b0300 – volume: 5 start-page: 1433 year: 2005 ident: 10.1016/j.neucom.2020.07.061_b0350 article-title: Fast and Robust gas identification system using an integrated gas sensor technology and Gaussian mixture models publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2005.858926 – ident: 10.1016/j.neucom.2020.07.061_b0370 – ident: 10.1016/j.neucom.2020.07.061_b0155 – volume: 12 start-page: 69 year: 1970 ident: 10.1016/j.neucom.2020.07.061_b0175 article-title: Ridge regression: applications to nonorthogonal problems publication-title: Technometrics doi: 10.1080/00401706.1970.10488635 – ident: 10.1016/j.neucom.2020.07.061_b0390 doi: 10.1609/aaai.v31i1.10647 – start-page: 2546 year: 2011 ident: 10.1016/j.neucom.2020.07.061_b0060 article-title: Algorithms for hyper-parameter optimization publication-title: Proc. Adv. Neural Inf. Process. Syst. – volume: 9 start-page: 155 year: 1997 ident: 10.1016/j.neucom.2020.07.061_b0210 article-title: Support vector regression machines publication-title: Adv. Neural Inf. Process. Syst. – volume: 61 start-page: 1 year: 2017 ident: 10.1016/j.neucom.2020.07.061_b0025 article-title: An effective algorithm for hyperparameter optimization of neural networks publication-title: IBM J. Res. Dev. doi: 10.1147/JRD.2017.2709578 – year: 2013 ident: 10.1016/j.neucom.2020.07.061_b0020 – volume: 9 start-page: 1425 year: 2016 ident: 10.1016/j.neucom.2020.07.061_b0625 article-title: SystemML: declarative machine learning on spark publication-title: Proc. VLDB Endow. doi: 10.14778/3007263.3007279 – year: 2019 ident: 10.1016/j.neucom.2020.07.061_b0035 article-title: Effect of the sampling of a dataset in the hyperparameter optimization phase over the efficiency of a machine learning algorithm publication-title: Complexity doi: 10.1155/2019/6278908 – ident: 10.1016/j.neucom.2020.07.061_b0550 – year: 2020 ident: 10.1016/j.neucom.2020.07.061_bib638 publication-title: Hyperparameter Optimization of Machine Learning Algorithms – year: 2014 ident: 10.1016/j.neucom.2020.07.061_b0395 publication-title: Easy Hyperparameter Search Using Optunity, arXiv preprint arXiv:1412.1114 – ident: 10.1016/j.neucom.2020.07.061_b0355 doi: 10.1007/s10618-005-0361-3 – year: 2017 ident: 10.1016/j.neucom.2020.07.061_b0420 – start-page: 1 year: 2019 ident: 10.1016/j.neucom.2020.07.061_b0165 publication-title: Optimization Models for Machine Learning: A Survey – year: 2017 ident: 10.1016/j.neucom.2020.07.061_b0555 publication-title: GPflowOpt: A Bayesian Optimization Library using TensorFlow, arXiv preprint arXiv:1711.03845 – volume: 201 start-page: 746 year: 2017 ident: 10.1016/j.neucom.2020.07.061_b0180 article-title: Comparing ridge and LASSO estimators for data analysis publication-title: Procedia Eng. doi: 10.1016/j.proeng.2017.09.615 – ident: 10.1016/j.neucom.2020.07.061_b0170 – volume: 11 start-page: 247 year: 2008 ident: 10.1016/j.neucom.2020.07.061_b0205 article-title: On kernel difference-weighted k-nearest neighbor classification publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-007-0100-z – ident: 10.1016/j.neucom.2020.07.061_b0045 – start-page: 2275 issue: 28 year: 2013 ident: 10.1016/j.neucom.2020.07.061_b0460 article-title: Almost optimal exploration in multi-armed bandits publication-title: 30th Int. Conf. Mach. Learn. ICML 2013 – volume: 2009 start-page: 332 issue: 5 year: 2009 ident: 10.1016/j.neucom.2020.07.061_b0510 article-title: A new population initialization method based on space transformation search, 5th Int publication-title: Conf. Nat. Comput. ICNC – ident: 10.1016/j.neucom.2020.07.061_b0090 – ident: 10.1016/j.neucom.2020.07.061_b0275 doi: 10.1109/ICDM.2017.137 – volume: 9 year: 2017 ident: 10.1016/j.neucom.2020.07.061_b0315 article-title: Effective hyperparameter optimization using Nelder-Mead method in deep learning publication-title: IPSJ Trans. Comput. Vis. Appl. – volume: 53 start-page: 217 issue: 2 year: 2011 ident: 10.1016/j.neucom.2020.07.061_b0375 article-title: Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions publication-title: SIAM Rev. doi: 10.1137/090771806 – volume: 15 start-page: 3735 year: 2015 ident: 10.1016/j.neucom.2020.07.061_b0525 article-title: BayesOpt: a Bayesian optimization library for nonlinear optimization, experimental design and bandits publication-title: J. Mach. Learn. Res. – volume: 5 start-page: 507 year: 2011 ident: 10.1016/j.neucom.2020.07.061_b0430 article-title: Sequential model-based optimization for general algorithm configuration publication-title: Proc. LION – year: 2020 ident: 10.1016/j.neucom.2020.07.061_bib637 article-title: Multi-split optimized bagging ensemble model selection for multi-class educational data mining publication-title: Springer’s Appl. Intell. doi: 10.1007/s10489-020-01776-3 – start-page: 2323 issue: 4 year: 2018 ident: 10.1016/j.neucom.2020.07.061_b0465 article-title: BOHB: robust and efficient hyperparameter optimization at scale publication-title: 35th Int. Conf. Mach. Learn. ICML 2018 – volume: 53 start-page: 1605 year: 2007 ident: 10.1016/j.neucom.2020.07.061_b0485 article-title: A novel population initialization method for accelerating evolutionary algorithms publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2006.07.013 – volume: 14 start-page: 69 year: 2004 ident: 10.1016/j.neucom.2020.07.061_b0425 article-title: Gaussian processes for machine learning publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065704001899 – volume: 148 start-page: 161 year: 2006 ident: 10.1016/j.neucom.2020.07.061_b0140 article-title: An empirical comparison of supervised learning algorithms publication-title: ACM Int. Conf. Proc. Ser. – volume: 2 start-page: 888 year: 2003 ident: 10.1016/j.neucom.2020.07.061_b0220 article-title: Modified logistic regression: an approximation to SVM and its applications in large-scale text categorization publication-title: Proceedings Twent. Int. Conf. Mach. Learn. – ident: 10.1016/j.neucom.2020.07.061_b0575 doi: 10.21105/joss.00034 – year: 2020 ident: 10.1016/j.neucom.2020.07.061_bib634 article-title: Ensemble-based feature selection and classification model for DNS typo-squatting detection publication-title: 2020 IEEE Can. Conf. Electr. Comput. Eng. doi: 10.1109/CCECE47787.2020.9255697 – start-page: 481 year: 2017 ident: 10.1016/j.neucom.2020.07.061_b0095 article-title: Particle swarm optimization for hyper-parameter selection in deep neural networks publication-title: Proc. ACM Int. Conf. Genet. Evol. Comput. doi: 10.1145/3071178.3071208 – start-page: 41 year: 2001 ident: 10.1016/j.neucom.2020.07.061_b0230 article-title: An empirical study of the naive Bayes classifier publication-title: IJCAI 2001 Work Empir. Methods Artif. Intell. – volume: 144 start-page: 1 year: 2018 ident: 10.1016/j.neucom.2020.07.061_b0505 article-title: Multiobjective dynamic-guiding PSO for optimizing work shift schedules publication-title: J. Constr. Eng. Manag. doi: 10.1061/(ASCE)CO.1943-7862.0001548 – volume: 17 start-page: 1235 issue: 1 year: 2016 ident: 10.1016/j.neucom.2020.07.061_b0630 article-title: Mllib: machine learning in apache spark publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.neucom.2020.07.061_b0450 doi: 10.1007/978-3-7908-2604-3_16 – volume: 349 start-page: 255 year: 2015 ident: 10.1016/j.neucom.2020.07.061_b0005 article-title: Machine learning: trends, perspectives, and prospects publication-title: Science doi: 10.1126/science.aaa8415 – volume: 8 start-page: 231 year: 2015 ident: 10.1016/j.neucom.2020.07.061_b0110 article-title: Convex optimization: algorithms and complexity publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000050 |
SSID | ssj0017129 |
Score | 2.7268941 |
Snippet | Machine learning algorithms have been used widely in various applications and areas. To fit a machine learning model into different problems, its... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 295 |
SubjectTerms | Bayesian optimization Genetic algorithm Grid search Hyper-parameter optimization Machine learning Particle swarm optimization |
Title | On hyperparameter optimization of machine learning algorithms: Theory and practice |
URI | https://dx.doi.org/10.1016/j.neucom.2020.07.061 |
Volume | 415 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FL158i_VRcvAau8k-460US1WsoBZ6W7J5tJV2W-r26m93spstCqLgcZcMLJPJZGb5vm8QutKhgtQrGGEiMSRQRpFMxpwwJaQvJYuNsP87HgdRfxjcj8JRA3VrLoyFVbrcX-X0Mlu7N23nzfZyOm2_eJxBF0UZg7i0kiKWwR7ENsqvPzYwDxpTVuntsZDY1TV9rsR45XptMSMMaqZSwjOiP19PX66c3j7adbUi7lSfc4AaOj9Ee_UcBuyO5RF6fsrxBPrJldXxnlt8C15AJpg7iiVeGDwvMZMauyERYyxm48VqWkzm7ze44udjkStck6aO0bB3-9rtEzcrgUg_ZgURGeeS8SzgSkQy8UINtQzNAqp8HgkBlZSAbdHQkmZKct_OmQ4l1cpwHQQcGtUTtJUvcn2KsEkk9DBKmgjubyq8JOOBgU2kiQkjGSZN5NcuSqUTErfzLGZpjRh7SyvHptaxqRen4NgmIhurZSWk8cf6uPZ--i0gUsj1v1qe_dvyHO3YJ0s1ZN4F2ipWa30JNUeRtcqgaqHtzt1Df_AJ5T3ZXg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JSgQxEA2iB724i7s56DFOJ71G8CAujDu4gLeYzqIjTs8wMyJe_Cl_0Ep3WhREQfDa3YFOpXhVFV69QmjdxBqgVzLCZGZJpK0muUo5YVqqUCmWWunuO07PkuZ1dHQT3wyht7oXxtEqPfZXmF6itX_S8NZsdFutxmXAGVRRlDHwSycp4pmVx-blGeq2_vbhHhzyBmMH-1e7TeJHCxAVpmxAZM65YjyPuJaJyoLYQOineUR1yBMpIfGQsAsDFVyuFQ_dWOZYUaMtN1HEqbsFBdwfiQAu3NiEzdcPXglNKasE_lhM3O_V_XolqawwT46kwiBJKzVDE_p9PPwU4w4m0bhPTvFOtf8pNGSKaTRRD37AHgdm0MV5ge-hgO054fC2I9TgDkBP2_d04o7F7ZKkabCfSnGH5eNdp9ca3Lf7W7gSBMCy0Lju0ppF1_9iwTk0XHQKM4-wzRQUTVrZBBIGKoMs55EFr6GZjRMVZwsorE0klFcudwM0HkVNUXsQlWGFM6wIUgGGXUDkY1W3Uu745fu0tr744oECgsuPKxf_vHINjTavTk_EyeHZ8RIac29cnyMLltHwoPdkViDhGeSrpYNhdPvfHv0OvMwU1w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+hyperparameter+optimization+of+machine+learning+algorithms%3A+Theory+and+practice&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Yang%2C+Li&rft.au=Shami%2C+Abdallah&rft.date=2020-11-20&rft.issn=0925-2312&rft.volume=415&rft.spage=295&rft.epage=316&rft_id=info:doi/10.1016%2Fj.neucom.2020.07.061&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2020_07_061 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |