Experimental investigation of Cu@C core-shell nanoparticle suspensions for highly efficient solar-thermal conversion

The choice of working medium plays a pivotal role in achieving efficient solar-thermal utilization. Nanoparticle suspensions, due to their superior optical and thermal properties, emerge as promising candidates. However, their widespread use is hindered by high costs and a limited absorption bandwid...

Full description

Saved in:
Bibliographic Details
Published inRenewable energy Vol. 223; p. 120040
Main Authors Chen, Xingyu, Chen, Meijie, Sharaf, Omar Z., Chen, Wei, Zhou, Ping
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The choice of working medium plays a pivotal role in achieving efficient solar-thermal utilization. Nanoparticle suspensions, due to their superior optical and thermal properties, emerge as promising candidates. However, their widespread use is hindered by high costs and a limited absorption bandwidth. In this study, Cu@C core-shell nanoparticles (NPs) were prepared through an experimental process, employing a straightforward in situ polymerization method followed by high-temperature carbonization. Finite element calculations reveals that the solar absorption power of Cu@C NPs surpasses that of C NPs and Cu NPs by 57.2 % and 22.9 %, respectively. This enhancement is attributed to the synergistic coupling between the localized surface plasmon resonance (LSPR) of the Cu core and the robust intrinsic absorption of the C shell. Under 1-sun illumination intensity, experimental findings show that the solar-thermal conversion efficiency (η) of the Cu@C nanoparticle suspension, with a mass fraction of 100 ppm, attains approximately 93 %, tripling that of the water base-fluid (∼31 %). Moreover, both η and the temperature profile exhibit negligible variations under different solar intensities and after repeated heating and cooling cycles, indicating the exceptional stability of the suspensions. These results suggest that Cu@C nanoparticle suspensions present a dependable and efficient solution for solar-thermal applications.
AbstractList The choice of working medium plays a pivotal role in achieving efficient solar-thermal utilization. Nanoparticle suspensions, due to their superior optical and thermal properties, emerge as promising candidates. However, their widespread use is hindered by high costs and a limited absorption bandwidth. In this study, Cu@C core-shell nanoparticles (NPs) were prepared through an experimental process, employing a straightforward in situ polymerization method followed by high-temperature carbonization. Finite element calculations reveals that the solar absorption power of Cu@C NPs surpasses that of C NPs and Cu NPs by 57.2 % and 22.9 %, respectively. This enhancement is attributed to the synergistic coupling between the localized surface plasmon resonance (LSPR) of the Cu core and the robust intrinsic absorption of the C shell. Under 1-sun illumination intensity, experimental findings show that the solar-thermal conversion efficiency (η) of the Cu@C nanoparticle suspension, with a mass fraction of 100 ppm, attains approximately 93 %, tripling that of the water base-fluid (∼31 %). Moreover, both η and the temperature profile exhibit negligible variations under different solar intensities and after repeated heating and cooling cycles, indicating the exceptional stability of the suspensions. These results suggest that Cu@C nanoparticle suspensions present a dependable and efficient solution for solar-thermal applications.
ArticleNumber 120040
Author Chen, Wei
Chen, Xingyu
Zhou, Ping
Chen, Meijie
Sharaf, Omar Z.
Author_xml – sequence: 1
  givenname: Xingyu
  surname: Chen
  fullname: Chen, Xingyu
  organization: School of Energy Science and Engineering, Central South University, Changsha, China
– sequence: 2
  givenname: Meijie
  surname: Chen
  fullname: Chen, Meijie
  organization: School of Energy Science and Engineering, Central South University, Changsha, China
– sequence: 3
  givenname: Omar Z.
  orcidid: 0000-0002-8621-2527
  surname: Sharaf
  fullname: Sharaf, Omar Z.
  organization: School of Engineering and Physical Sciences, Heriot-Watt University, Dubai, United Arab Emirates
– sequence: 4
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  organization: School of Intelligent Manufacturing Ecosystem, Xi'an Jiaotong-Liverpool University, Suzhou, China
– sequence: 5
  givenname: Ping
  surname: Zhou
  fullname: Zhou, Ping
  email: zhoup@csu.edu.cn
  organization: School of Energy Science and Engineering, Central South University, Changsha, China
BookMark eNqFkM1KAzEUhYMoWH_ewEVeYGoyzSSpC1GKfyC40XVI79x0UqZJSVLRt3fquHKh3MXdnPPB-U7IYYgBCbngbMoZl5fracIw3LRmtZjymjHBDsiEazWvmNT1IZmwuWQVF5ofk5Oc14zxRisxIeXuY4vJbzAU21Mf3jEXv7LFx0Cjo4vdzYJCTFjlDvueBhvi1qbioUead3mLIQ_RTF1MtPOrrv-k6JwHPwBpjr1NVekwbQY4xIGe9vEzcuRsn_H855-St_u718Vj9fzy8LS4fa5gpupSWSnq2VIzmDe6QSGVa6WUYqnQNaik1hocb0FBC64GJZieN61umpmCRgiA2SkRIxdSzDmhM9thqk2fhjOzN2fWZjRn9ubMaG6oXf2qgS_fSkqyvv-vfD2WcRj27jGZvJcB2PqEUEwb_d-AL5svkZA
CitedBy_id crossref_primary_10_1016_j_jallcom_2024_176601
crossref_primary_10_1299_jtst_24_00236
crossref_primary_10_26599_NRE_2025_9120152
Cites_doi 10.1103/PhysRevLett.97.206806
10.1364/OE.18.005179
10.1021/jp409067h
10.1016/j.powtec.2017.08.027
10.1016/j.enconman.2019.111877
10.1038/s41560-018-0260-7
10.1016/j.energy.2023.127093
10.1007/BF01174717
10.1016/j.energy.2021.123018
10.1002/adfm.201901312
10.1016/j.renene.2022.08.065
10.1016/j.enconman.2016.09.015
10.1038/srep07597
10.1016/j.energy.2020.119254
10.1016/j.solener.2015.01.031
10.1016/j.solmat.2017.11.012
10.1016/j.physrep.2018.11.004
10.1016/j.solener.2016.08.029
10.1016/j.est.2022.104675
10.1016/j.energy.2020.118763
10.1016/j.solmat.2022.111720
10.1039/C9SC00135B
10.1016/j.renene.2019.05.133
10.1007/s10853-020-05575-6
10.1016/j.nanoen.2019.03.087
10.1021/acsanm.0c00107
10.1021/acsenergylett.9b02611
10.1126/science.1147241
10.1021/acscentsci.0c01306
10.3390/ma3094626
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.renene.2024.120040
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0682
ExternalDocumentID 10_1016_j_renene_2024_120040
S0960148124001058
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SEN
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZCA
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c372t-a6423b80c9585e467fd6664b7ef5e76888cf1dc7cdcf2c740895d85537c544cc3
IEDL.DBID .~1
ISSN 0960-1481
IngestDate Tue Jul 01 03:20:49 EDT 2025
Thu Apr 24 23:03:16 EDT 2025
Sat Apr 20 15:58:32 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Plasmonics
Direct absorption
Core-shell
Solar thermal
Cu@C nanoparticle
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-a6423b80c9585e467fd6664b7ef5e76888cf1dc7cdcf2c740895d85537c544cc3
ORCID 0000-0002-8621-2527
ParticipantIDs crossref_primary_10_1016_j_renene_2024_120040
crossref_citationtrail_10_1016_j_renene_2024_120040
elsevier_sciencedirect_doi_10_1016_j_renene_2024_120040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationTitle Renewable energy
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Suh, Ohta, Waseda (bib32) 1988; 23
Chen, He, Huang, Zhu (bib18) 2016; 127
Nagar, Sharma (bib1) 2021; 56
Li, Hong, Li, Lan, Zi (bib2) 2022; 242
Lee, Dellatore, Miller, Messersmith (bib24) 2007; 318
Sun, Wang, Wu, Wang, Wang, Sun (bib9) 2019; 29
Qi, Luo, Liu, Fan, Yan (bib15) 2019; 197
Gimeno-Furió, Martínez-Cuenca, Mondragón, Gasulla, Doñate-Buendía, Mínguez-Vega (bib22) 2020; 212
Chen, Chen, Zhou (bib26) 2022; 198
Chen, Zhou, Yan, Chen (bib14) 2021; 216
Wang, He, Chen, Hu (bib30) 2018; 179
Yang, Peng, Sun, Asgari, Oveisi, Trukhina (bib25) 2019; 10
Yao, Lu, Zhang, Chen, Lan (bib20) 2014; 4
Sani, Barison, Pagura, Mercatelli, Sansoni, Fontani (bib23) 2010; 18
Wang, He, Liu, Zhu (bib31) 2017; 321
Tao, Ni, Song, Shang, Wu, Zhu (bib21) 2018; 3
Chen, He, Zhu, Shuai, Jiang, Huang (bib27) 2015; 115
Xia, Cao, Li, Yu, Liu, Jie (bib3) 2023; 271
Maier (bib11) 2007
Chen, Xiong, Chen, Zhou (bib29) 2022; 240
Mahian, Kolsi, Amani, Estellé, Ahmadi, Kleinstreuer (bib6) 2019; 790
Li, Jiang, Huo, Ding, Huang, Jia (bib8) 2019; 60
Liu, Li, Yang (bib7) 2020; 6
Traver, Karaballi, Monfared, Daurie, Gagnon, Dasog (bib13) 2020; 3
Qin, Kim, Gonome, Lee (bib4) 2020; 145
Du, Tang (bib17) 2016; 137
Wang, Shen (bib12) 2006; 97
Pang, Zhang, Ma, Qu, Lee, Luo (bib5) 2020; 5
Jiang, Smith, Pinchuk (bib28) 2013; 117
Alrowaili, Ezzeldien, Shaaalan, Hussein, Sharafeldin (bib10) 2022; 50
Magdassi, Grouchko, Kamyshny (bib19) 2010; 3
Li (10.1016/j.renene.2024.120040_bib2) 2022; 242
Qin (10.1016/j.renene.2024.120040_bib4) 2020; 145
Magdassi (10.1016/j.renene.2024.120040_bib19) 2010; 3
Jiang (10.1016/j.renene.2024.120040_bib28) 2013; 117
Yang (10.1016/j.renene.2024.120040_bib25) 2019; 10
Wang (10.1016/j.renene.2024.120040_bib30) 2018; 179
Tao (10.1016/j.renene.2024.120040_bib21) 2018; 3
Chen (10.1016/j.renene.2024.120040_bib14) 2021; 216
Pang (10.1016/j.renene.2024.120040_bib5) 2020; 5
Li (10.1016/j.renene.2024.120040_bib8) 2019; 60
Traver (10.1016/j.renene.2024.120040_bib13) 2020; 3
Qi (10.1016/j.renene.2024.120040_bib15) 2019; 197
Gimeno-Furió (10.1016/j.renene.2024.120040_bib22) 2020; 212
Nagar (10.1016/j.renene.2024.120040_bib1) 2021; 56
Xia (10.1016/j.renene.2024.120040_bib3) 2023; 271
Du (10.1016/j.renene.2024.120040_bib17) 2016; 137
Lee (10.1016/j.renene.2024.120040_bib24) 2007; 318
Chen (10.1016/j.renene.2024.120040_bib29) 2022; 240
Wang (10.1016/j.renene.2024.120040_bib12) 2006; 97
Chen (10.1016/j.renene.2024.120040_bib27) 2015; 115
Chen (10.1016/j.renene.2024.120040_bib18) 2016; 127
Suh (10.1016/j.renene.2024.120040_bib32) 1988; 23
Maier (10.1016/j.renene.2024.120040_bib11) 2007
Liu (10.1016/j.renene.2024.120040_bib7) 2020; 6
Alrowaili (10.1016/j.renene.2024.120040_bib10) 2022; 50
Mahian (10.1016/j.renene.2024.120040_bib6) 2019; 790
Sun (10.1016/j.renene.2024.120040_bib9) 2019; 29
Yao (10.1016/j.renene.2024.120040_bib20) 2014; 4
Wang (10.1016/j.renene.2024.120040_bib31) 2017; 321
Chen (10.1016/j.renene.2024.120040_bib26) 2022; 198
Sani (10.1016/j.renene.2024.120040_bib23) 2010; 18
References_xml – year: 2007
  ident: bib11
  article-title: Plasmonics: Fundamentals and Applications
– volume: 318
  start-page: 426
  year: 2007
  end-page: 430
  ident: bib24
  article-title: Mussel-Inspired surface chemistry for multifunctional coatings
  publication-title: Science
– volume: 216
  year: 2021
  ident: bib14
  article-title: Systematically investigating solar absorption performance of plasmonic nanoparticles
  publication-title: Energy
– volume: 115
  start-page: 85
  year: 2015
  end-page: 94
  ident: bib27
  article-title: An experimental investigation on sunlight absorption characteristics of silver nanofluids
  publication-title: Sol. Energy
– volume: 127
  start-page: 293
  year: 2016
  end-page: 300
  ident: bib18
  article-title: Synthesis and solar photo-thermal conversion of Au, Ag, and Au-Ag blended plasmonic nanoparticles
  publication-title: Energy Convers. Manag.
– volume: 56
  start-page: 4941
  year: 2021
  end-page: 4966
  ident: bib1
  article-title: Modern solar systems driven by nanoparticles-based fatty acids and paraffin wax phase change materials
  publication-title: J. Mater. Sci.
– volume: 3
  start-page: 2787
  year: 2020
  end-page: 2794
  ident: bib13
  article-title: TiN, ZrN, and HfN nanoparticles on nanoporous aluminum oxide membranes for solar-driven water evaporation and desalination
  publication-title: ACS Appl. Nano Mater.
– volume: 197
  year: 2019
  ident: bib15
  article-title: Experimental study on the flow and heat transfer characteristics of nanofluids in double-tube heat exchangers based on thermal efficiency assessment
  publication-title: Energy Convers. Manag.
– volume: 23
  start-page: 757
  year: 1988
  end-page: 760
  ident: bib32
  article-title: High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction
  publication-title: J. Mater. Sci.
– volume: 18
  start-page: 5179
  year: 2010
  ident: bib23
  article-title: Carbon nanohorns-based nanofluids as direct sunlight absorbers
  publication-title: Opt Express
– volume: 212
  year: 2020
  ident: bib22
  article-title: Optical characterisation and photothermal conversion efficiency of a water-based carbon nanofluid for direct solar absorption applications
  publication-title: Energy
– volume: 137
  start-page: 393
  year: 2016
  end-page: 400
  ident: bib17
  article-title: Plasmonic nanofluids based on gold nanorods/nanoellipsoids/nanosheets for solar energy harvesting
  publication-title: Sol. Energy
– volume: 117
  start-page: 27073
  year: 2013
  end-page: 27080
  ident: bib28
  article-title: Size-dependent photothermal conversion efficiencies of plasmonically heated gold nanoparticles
  publication-title: J. Phys. Chem. C
– volume: 240
  year: 2022
  ident: bib29
  article-title: Ultra-stable carbon quantum dot nanofluids for direct absorption solar collectors
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 198
  start-page: 1307
  year: 2022
  end-page: 1317
  ident: bib26
  article-title: Solar-thermal conversion performance of heterogeneous nanofluids
  publication-title: Renew. Energy
– volume: 790
  start-page: 1
  year: 2019
  end-page: 48
  ident: bib6
  article-title: Recent advances in modeling and simulation of nanofluid flows-Part I: fundamentals and theory
  publication-title: Phys. Rep.
– volume: 5
  start-page: 437
  year: 2020
  end-page: 456
  ident: bib5
  article-title: Solar–thermal water evaporation: a review
  publication-title: ACS Energy Lett.
– volume: 3
  start-page: 1031
  year: 2018
  end-page: 1041
  ident: bib21
  article-title: Solar-driven interfacial evaporation
  publication-title: Nat. Energy
– volume: 145
  start-page: 21
  year: 2020
  end-page: 28
  ident: bib4
  article-title: Absorption characteristics of nanoparticles with sharp edges for a direct-absorption solar collector
  publication-title: Renew. Energy
– volume: 6
  start-page: 2179
  year: 2020
  end-page: 2195
  ident: bib7
  article-title: Carbon dots: a new type of carbon-based nanomaterial with wide applications
  publication-title: ACS Cent. Sci.
– volume: 271
  year: 2023
  ident: bib3
  article-title: Study on a spectral splitting photovoltaic/thermal system based on CNT/Ag mixed nanofluids
  publication-title: Energy
– volume: 4
  start-page: 7597
  year: 2014
  ident: bib20
  article-title: One-pot synthesis of core-shell Cu@SiO
  publication-title: Sci. Rep.
– volume: 29
  year: 2019
  ident: bib9
  article-title: Plasmon based double‐layer hydrogel device for a highly efficient solar vapor generation
  publication-title: Adv. Funct. Mater.
– volume: 179
  start-page: 185
  year: 2018
  end-page: 193
  ident: bib30
  article-title: ZnO-Au composite hierarchical particles dispersed oil-based nanofluids for direct absorption solar collectors
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 321
  start-page: 276
  year: 2017
  end-page: 285
  ident: bib31
  article-title: Enhanced direct steam generation via a bio-inspired solar heating method using carbon nanotube films
  publication-title: Powder Technol.
– volume: 50
  year: 2022
  ident: bib10
  article-title: Investigation of the effect of hybrid CuO-Cu/water nanofluid on the solar thermal energy storage system
  publication-title: J. Energy Storage
– volume: 242
  year: 2022
  ident: bib2
  article-title: Optimized energy distribution management in the nanofluid-assisted photovoltaic/thermal system via exergy efficiency analysis
  publication-title: Energy
– volume: 97
  year: 2006
  ident: bib12
  article-title: General properties of local plasmons in metal nanostructures
  publication-title: Phys. Rev. Lett.
– volume: 60
  start-page: 841
  year: 2019
  end-page: 849
  ident: bib8
  article-title: Scalable and robust bilayer polymer foams for highly efficient and stable solar desalination
  publication-title: Nano Energy
– volume: 10
  start-page: 4542
  year: 2019
  end-page: 4549
  ident: bib25
  article-title: A new post-synthetic polymerization strategy makes metal–organic frameworks more stable
  publication-title: Chem. Sci.
– volume: 3
  start-page: 4626
  year: 2010
  end-page: 4638
  ident: bib19
  article-title: Copper nanoparticles for printed electronics: routes towards achieving oxidation stability
  publication-title: Materials
– volume: 97
  year: 2006
  ident: 10.1016/j.renene.2024.120040_bib12
  article-title: General properties of local plasmons in metal nanostructures
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.206806
– volume: 18
  start-page: 5179
  year: 2010
  ident: 10.1016/j.renene.2024.120040_bib23
  article-title: Carbon nanohorns-based nanofluids as direct sunlight absorbers
  publication-title: Opt Express
  doi: 10.1364/OE.18.005179
– volume: 117
  start-page: 27073
  year: 2013
  ident: 10.1016/j.renene.2024.120040_bib28
  article-title: Size-dependent photothermal conversion efficiencies of plasmonically heated gold nanoparticles
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp409067h
– volume: 321
  start-page: 276
  year: 2017
  ident: 10.1016/j.renene.2024.120040_bib31
  article-title: Enhanced direct steam generation via a bio-inspired solar heating method using carbon nanotube films
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2017.08.027
– volume: 197
  year: 2019
  ident: 10.1016/j.renene.2024.120040_bib15
  article-title: Experimental study on the flow and heat transfer characteristics of nanofluids in double-tube heat exchangers based on thermal efficiency assessment
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.111877
– volume: 3
  start-page: 1031
  year: 2018
  ident: 10.1016/j.renene.2024.120040_bib21
  article-title: Solar-driven interfacial evaporation
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0260-7
– volume: 271
  year: 2023
  ident: 10.1016/j.renene.2024.120040_bib3
  article-title: Study on a spectral splitting photovoltaic/thermal system based on CNT/Ag mixed nanofluids
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127093
– volume: 23
  start-page: 757
  year: 1988
  ident: 10.1016/j.renene.2024.120040_bib32
  article-title: High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF01174717
– volume: 242
  year: 2022
  ident: 10.1016/j.renene.2024.120040_bib2
  article-title: Optimized energy distribution management in the nanofluid-assisted photovoltaic/thermal system via exergy efficiency analysis
  publication-title: Energy
  doi: 10.1016/j.energy.2021.123018
– volume: 29
  year: 2019
  ident: 10.1016/j.renene.2024.120040_bib9
  article-title: Plasmon based double‐layer hydrogel device for a highly efficient solar vapor generation
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901312
– volume: 198
  start-page: 1307
  year: 2022
  ident: 10.1016/j.renene.2024.120040_bib26
  article-title: Solar-thermal conversion performance of heterogeneous nanofluids
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2022.08.065
– volume: 127
  start-page: 293
  year: 2016
  ident: 10.1016/j.renene.2024.120040_bib18
  article-title: Synthesis and solar photo-thermal conversion of Au, Ag, and Au-Ag blended plasmonic nanoparticles
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2016.09.015
– volume: 4
  start-page: 7597
  year: 2014
  ident: 10.1016/j.renene.2024.120040_bib20
  article-title: One-pot synthesis of core-shell Cu@SiO2 nanospheres and their catalysis for hydrolytic dehydrogenation of ammonia borane and hydrazine borane
  publication-title: Sci. Rep.
  doi: 10.1038/srep07597
– volume: 216
  year: 2021
  ident: 10.1016/j.renene.2024.120040_bib14
  article-title: Systematically investigating solar absorption performance of plasmonic nanoparticles
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119254
– volume: 115
  start-page: 85
  year: 2015
  ident: 10.1016/j.renene.2024.120040_bib27
  article-title: An experimental investigation on sunlight absorption characteristics of silver nanofluids
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2015.01.031
– volume: 179
  start-page: 185
  year: 2018
  ident: 10.1016/j.renene.2024.120040_bib30
  article-title: ZnO-Au composite hierarchical particles dispersed oil-based nanofluids for direct absorption solar collectors
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2017.11.012
– volume: 790
  start-page: 1
  year: 2019
  ident: 10.1016/j.renene.2024.120040_bib6
  article-title: Recent advances in modeling and simulation of nanofluid flows-Part I: fundamentals and theory
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2018.11.004
– volume: 137
  start-page: 393
  year: 2016
  ident: 10.1016/j.renene.2024.120040_bib17
  article-title: Plasmonic nanofluids based on gold nanorods/nanoellipsoids/nanosheets for solar energy harvesting
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2016.08.029
– volume: 50
  year: 2022
  ident: 10.1016/j.renene.2024.120040_bib10
  article-title: Investigation of the effect of hybrid CuO-Cu/water nanofluid on the solar thermal energy storage system
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2022.104675
– volume: 212
  year: 2020
  ident: 10.1016/j.renene.2024.120040_bib22
  article-title: Optical characterisation and photothermal conversion efficiency of a water-based carbon nanofluid for direct solar absorption applications
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118763
– volume: 240
  year: 2022
  ident: 10.1016/j.renene.2024.120040_bib29
  article-title: Ultra-stable carbon quantum dot nanofluids for direct absorption solar collectors
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2022.111720
– year: 2007
  ident: 10.1016/j.renene.2024.120040_bib11
– volume: 10
  start-page: 4542
  year: 2019
  ident: 10.1016/j.renene.2024.120040_bib25
  article-title: A new post-synthetic polymerization strategy makes metal–organic frameworks more stable
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC00135B
– volume: 145
  start-page: 21
  year: 2020
  ident: 10.1016/j.renene.2024.120040_bib4
  article-title: Absorption characteristics of nanoparticles with sharp edges for a direct-absorption solar collector
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.05.133
– volume: 56
  start-page: 4941
  year: 2021
  ident: 10.1016/j.renene.2024.120040_bib1
  article-title: Modern solar systems driven by nanoparticles-based fatty acids and paraffin wax phase change materials
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-020-05575-6
– volume: 60
  start-page: 841
  year: 2019
  ident: 10.1016/j.renene.2024.120040_bib8
  article-title: Scalable and robust bilayer polymer foams for highly efficient and stable solar desalination
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.03.087
– volume: 3
  start-page: 2787
  year: 2020
  ident: 10.1016/j.renene.2024.120040_bib13
  article-title: TiN, ZrN, and HfN nanoparticles on nanoporous aluminum oxide membranes for solar-driven water evaporation and desalination
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.0c00107
– volume: 5
  start-page: 437
  year: 2020
  ident: 10.1016/j.renene.2024.120040_bib5
  article-title: Solar–thermal water evaporation: a review
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b02611
– volume: 318
  start-page: 426
  year: 2007
  ident: 10.1016/j.renene.2024.120040_bib24
  article-title: Mussel-Inspired surface chemistry for multifunctional coatings
  publication-title: Science
  doi: 10.1126/science.1147241
– volume: 6
  start-page: 2179
  year: 2020
  ident: 10.1016/j.renene.2024.120040_bib7
  article-title: Carbon dots: a new type of carbon-based nanomaterial with wide applications
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.0c01306
– volume: 3
  start-page: 4626
  year: 2010
  ident: 10.1016/j.renene.2024.120040_bib19
  article-title: Copper nanoparticles for printed electronics: routes towards achieving oxidation stability
  publication-title: Materials
  doi: 10.3390/ma3094626
SSID ssj0015874
Score 2.4492698
Snippet The choice of working medium plays a pivotal role in achieving efficient solar-thermal utilization. Nanoparticle suspensions, due to their superior optical and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 120040
SubjectTerms Core-shell
Cu@C nanoparticle
Direct absorption
Plasmonics
Solar thermal
Title Experimental investigation of Cu@C core-shell nanoparticle suspensions for highly efficient solar-thermal conversion
URI https://dx.doi.org/10.1016/j.renene.2024.120040
Volume 223
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD143TaP3W5ys5RKVexFC72F7GwClZoW0x68-NudyaNWEAWPG3aGMJnMfpN8-y1j18bGxkiF73dPGiGtVsIAaGG0G_cCmcSOpT-6j-PeaCLvp2raYIN6LwzRKqvaX9b0olpXV7pVNLvL2az7ROAbwbxLLEhECbThV0pNWd752NA8XBWUSsw4WdDsevtcwfEi1ciMxDI92XEpX5yfl6etJef2gO1XWJH3y9s5ZI0kO2J7WwqCx2w13FLo57Mv0YxFxhcpH6xvBpyEKkVOhE-exRk2yaU_nq_zJdHXMe84QldOysXzd54UohLokOfU9gpCiK_ovOCnFx_XTtjkdvg8GInqIAUBvvZWIsYmwzeBAyE2BwmWxtRi1yKNTlKVYL8RBJC6FjRYSD3Q0glCZQOlfA1KSgD_lDWzRZacMR4aacDT4IcGHTkQGBxoBHHGhhbcsMX8On4RVCrjdNjFPKrpZC9RGfWIoh6VUW8xsbFaliobf8zX9aOJvmVLhAvBr5bn_7a8YLs0Kvlnl6y5elsnVwhIVqZdZFyb7fTvHkbjT2ex4wk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4DMCAeIo3HljdJo1dOxsoalWeC63ULYrPiVQEaUXbgYXfzl0eUCQEEmMS-xRdzufvnM-fGbuwLrFWKhzfbWmFdFoJC6CF1X7SNjJNPEd_dO8f2r2BvBmq4RKL6r0wRKuscn-Z04tsXd1pVt5sTkaj5iOBbwTzPrEgESWYZbYqcfjSMQaN90-eh69MKcWMrQU1r_fPFSQvko3MSS2zJRs-BYz38_y0MOd0t9hmBRb5Vfk-22wpzXfYxoKE4C6bdRYk-vnoSzVjnPNxxqP5ZcRJqVJMifHJ8yTHKrm0x6fz6YT46xh4HLErJ-ni5zeeFqoSaJBPqe4VBBFf0HhBUC9W1_bYoNvpRz1RnaQgINCtmUiwygis8SDE6iDF3Jg5LFuk1WmmUiw4jIHMd6DBQdYCLT0TKmeUCjQoKQGCfbaSj_P0gPHQSgstDUFo0ZAHxuKFRhRnXejADw9ZUPsvhkpmnE67eI5rPtlTXHo9Jq_HpdcPmfjsNSllNv5or-tPE38Llxhngl97Hv275zlb6_Xv7-K764fbY7ZOT0oy2glbmb3O01NEJzN7VkTfB6wQ5Jc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+investigation+of+Cu%40C+core-shell+nanoparticle+suspensions+for+highly+efficient+solar-thermal+conversion&rft.jtitle=Renewable+energy&rft.au=Chen%2C+Xingyu&rft.au=Chen%2C+Meijie&rft.au=Sharaf%2C+Omar+Z.&rft.au=Chen%2C+Wei&rft.date=2024-03-01&rft.pub=Elsevier+Ltd&rft.issn=0960-1481&rft.eissn=1879-0682&rft.volume=223&rft_id=info:doi/10.1016%2Fj.renene.2024.120040&rft.externalDocID=S0960148124001058
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon