Experimental investigation of Cu@C core-shell nanoparticle suspensions for highly efficient solar-thermal conversion
The choice of working medium plays a pivotal role in achieving efficient solar-thermal utilization. Nanoparticle suspensions, due to their superior optical and thermal properties, emerge as promising candidates. However, their widespread use is hindered by high costs and a limited absorption bandwid...
Saved in:
Published in | Renewable energy Vol. 223; p. 120040 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The choice of working medium plays a pivotal role in achieving efficient solar-thermal utilization. Nanoparticle suspensions, due to their superior optical and thermal properties, emerge as promising candidates. However, their widespread use is hindered by high costs and a limited absorption bandwidth. In this study, Cu@C core-shell nanoparticles (NPs) were prepared through an experimental process, employing a straightforward in situ polymerization method followed by high-temperature carbonization. Finite element calculations reveals that the solar absorption power of Cu@C NPs surpasses that of C NPs and Cu NPs by 57.2 % and 22.9 %, respectively. This enhancement is attributed to the synergistic coupling between the localized surface plasmon resonance (LSPR) of the Cu core and the robust intrinsic absorption of the C shell. Under 1-sun illumination intensity, experimental findings show that the solar-thermal conversion efficiency (η) of the Cu@C nanoparticle suspension, with a mass fraction of 100 ppm, attains approximately 93 %, tripling that of the water base-fluid (∼31 %). Moreover, both η and the temperature profile exhibit negligible variations under different solar intensities and after repeated heating and cooling cycles, indicating the exceptional stability of the suspensions. These results suggest that Cu@C nanoparticle suspensions present a dependable and efficient solution for solar-thermal applications. |
---|---|
AbstractList | The choice of working medium plays a pivotal role in achieving efficient solar-thermal utilization. Nanoparticle suspensions, due to their superior optical and thermal properties, emerge as promising candidates. However, their widespread use is hindered by high costs and a limited absorption bandwidth. In this study, Cu@C core-shell nanoparticles (NPs) were prepared through an experimental process, employing a straightforward in situ polymerization method followed by high-temperature carbonization. Finite element calculations reveals that the solar absorption power of Cu@C NPs surpasses that of C NPs and Cu NPs by 57.2 % and 22.9 %, respectively. This enhancement is attributed to the synergistic coupling between the localized surface plasmon resonance (LSPR) of the Cu core and the robust intrinsic absorption of the C shell. Under 1-sun illumination intensity, experimental findings show that the solar-thermal conversion efficiency (η) of the Cu@C nanoparticle suspension, with a mass fraction of 100 ppm, attains approximately 93 %, tripling that of the water base-fluid (∼31 %). Moreover, both η and the temperature profile exhibit negligible variations under different solar intensities and after repeated heating and cooling cycles, indicating the exceptional stability of the suspensions. These results suggest that Cu@C nanoparticle suspensions present a dependable and efficient solution for solar-thermal applications. |
ArticleNumber | 120040 |
Author | Chen, Wei Chen, Xingyu Zhou, Ping Chen, Meijie Sharaf, Omar Z. |
Author_xml | – sequence: 1 givenname: Xingyu surname: Chen fullname: Chen, Xingyu organization: School of Energy Science and Engineering, Central South University, Changsha, China – sequence: 2 givenname: Meijie surname: Chen fullname: Chen, Meijie organization: School of Energy Science and Engineering, Central South University, Changsha, China – sequence: 3 givenname: Omar Z. orcidid: 0000-0002-8621-2527 surname: Sharaf fullname: Sharaf, Omar Z. organization: School of Engineering and Physical Sciences, Heriot-Watt University, Dubai, United Arab Emirates – sequence: 4 givenname: Wei surname: Chen fullname: Chen, Wei organization: School of Intelligent Manufacturing Ecosystem, Xi'an Jiaotong-Liverpool University, Suzhou, China – sequence: 5 givenname: Ping surname: Zhou fullname: Zhou, Ping email: zhoup@csu.edu.cn organization: School of Energy Science and Engineering, Central South University, Changsha, China |
BookMark | eNqFkM1KAzEUhYMoWH_ewEVeYGoyzSSpC1GKfyC40XVI79x0UqZJSVLRt3fquHKh3MXdnPPB-U7IYYgBCbngbMoZl5fracIw3LRmtZjymjHBDsiEazWvmNT1IZmwuWQVF5ofk5Oc14zxRisxIeXuY4vJbzAU21Mf3jEXv7LFx0Cjo4vdzYJCTFjlDvueBhvi1qbioUead3mLIQ_RTF1MtPOrrv-k6JwHPwBpjr1NVekwbQY4xIGe9vEzcuRsn_H855-St_u718Vj9fzy8LS4fa5gpupSWSnq2VIzmDe6QSGVa6WUYqnQNaik1hocb0FBC64GJZieN61umpmCRgiA2SkRIxdSzDmhM9thqk2fhjOzN2fWZjRn9ubMaG6oXf2qgS_fSkqyvv-vfD2WcRj27jGZvJcB2PqEUEwb_d-AL5svkZA |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2024_176601 crossref_primary_10_1299_jtst_24_00236 crossref_primary_10_26599_NRE_2025_9120152 |
Cites_doi | 10.1103/PhysRevLett.97.206806 10.1364/OE.18.005179 10.1021/jp409067h 10.1016/j.powtec.2017.08.027 10.1016/j.enconman.2019.111877 10.1038/s41560-018-0260-7 10.1016/j.energy.2023.127093 10.1007/BF01174717 10.1016/j.energy.2021.123018 10.1002/adfm.201901312 10.1016/j.renene.2022.08.065 10.1016/j.enconman.2016.09.015 10.1038/srep07597 10.1016/j.energy.2020.119254 10.1016/j.solener.2015.01.031 10.1016/j.solmat.2017.11.012 10.1016/j.physrep.2018.11.004 10.1016/j.solener.2016.08.029 10.1016/j.est.2022.104675 10.1016/j.energy.2020.118763 10.1016/j.solmat.2022.111720 10.1039/C9SC00135B 10.1016/j.renene.2019.05.133 10.1007/s10853-020-05575-6 10.1016/j.nanoen.2019.03.087 10.1021/acsanm.0c00107 10.1021/acsenergylett.9b02611 10.1126/science.1147241 10.1021/acscentsci.0c01306 10.3390/ma3094626 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.renene.2024.120040 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0682 |
ExternalDocumentID | 10_1016_j_renene_2024_120040 S0960148124001058 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SEN SES SET SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ ZCA ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c372t-a6423b80c9585e467fd6664b7ef5e76888cf1dc7cdcf2c740895d85537c544cc3 |
IEDL.DBID | .~1 |
ISSN | 0960-1481 |
IngestDate | Tue Jul 01 03:20:49 EDT 2025 Thu Apr 24 23:03:16 EDT 2025 Sat Apr 20 15:58:32 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Plasmonics Direct absorption Core-shell Solar thermal Cu@C nanoparticle |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-a6423b80c9585e467fd6664b7ef5e76888cf1dc7cdcf2c740895d85537c544cc3 |
ORCID | 0000-0002-8621-2527 |
ParticipantIDs | crossref_primary_10_1016_j_renene_2024_120040 crossref_citationtrail_10_1016_j_renene_2024_120040 elsevier_sciencedirect_doi_10_1016_j_renene_2024_120040 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2024 2024-03-00 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: March 2024 |
PublicationDecade | 2020 |
PublicationTitle | Renewable energy |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Suh, Ohta, Waseda (bib32) 1988; 23 Chen, He, Huang, Zhu (bib18) 2016; 127 Nagar, Sharma (bib1) 2021; 56 Li, Hong, Li, Lan, Zi (bib2) 2022; 242 Lee, Dellatore, Miller, Messersmith (bib24) 2007; 318 Sun, Wang, Wu, Wang, Wang, Sun (bib9) 2019; 29 Qi, Luo, Liu, Fan, Yan (bib15) 2019; 197 Gimeno-Furió, Martínez-Cuenca, Mondragón, Gasulla, Doñate-Buendía, Mínguez-Vega (bib22) 2020; 212 Chen, Chen, Zhou (bib26) 2022; 198 Chen, Zhou, Yan, Chen (bib14) 2021; 216 Wang, He, Chen, Hu (bib30) 2018; 179 Yang, Peng, Sun, Asgari, Oveisi, Trukhina (bib25) 2019; 10 Yao, Lu, Zhang, Chen, Lan (bib20) 2014; 4 Sani, Barison, Pagura, Mercatelli, Sansoni, Fontani (bib23) 2010; 18 Wang, He, Liu, Zhu (bib31) 2017; 321 Tao, Ni, Song, Shang, Wu, Zhu (bib21) 2018; 3 Chen, He, Zhu, Shuai, Jiang, Huang (bib27) 2015; 115 Xia, Cao, Li, Yu, Liu, Jie (bib3) 2023; 271 Maier (bib11) 2007 Chen, Xiong, Chen, Zhou (bib29) 2022; 240 Mahian, Kolsi, Amani, Estellé, Ahmadi, Kleinstreuer (bib6) 2019; 790 Li, Jiang, Huo, Ding, Huang, Jia (bib8) 2019; 60 Liu, Li, Yang (bib7) 2020; 6 Traver, Karaballi, Monfared, Daurie, Gagnon, Dasog (bib13) 2020; 3 Qin, Kim, Gonome, Lee (bib4) 2020; 145 Du, Tang (bib17) 2016; 137 Wang, Shen (bib12) 2006; 97 Pang, Zhang, Ma, Qu, Lee, Luo (bib5) 2020; 5 Jiang, Smith, Pinchuk (bib28) 2013; 117 Alrowaili, Ezzeldien, Shaaalan, Hussein, Sharafeldin (bib10) 2022; 50 Magdassi, Grouchko, Kamyshny (bib19) 2010; 3 Li (10.1016/j.renene.2024.120040_bib2) 2022; 242 Qin (10.1016/j.renene.2024.120040_bib4) 2020; 145 Magdassi (10.1016/j.renene.2024.120040_bib19) 2010; 3 Jiang (10.1016/j.renene.2024.120040_bib28) 2013; 117 Yang (10.1016/j.renene.2024.120040_bib25) 2019; 10 Wang (10.1016/j.renene.2024.120040_bib30) 2018; 179 Tao (10.1016/j.renene.2024.120040_bib21) 2018; 3 Chen (10.1016/j.renene.2024.120040_bib14) 2021; 216 Pang (10.1016/j.renene.2024.120040_bib5) 2020; 5 Li (10.1016/j.renene.2024.120040_bib8) 2019; 60 Traver (10.1016/j.renene.2024.120040_bib13) 2020; 3 Qi (10.1016/j.renene.2024.120040_bib15) 2019; 197 Gimeno-Furió (10.1016/j.renene.2024.120040_bib22) 2020; 212 Nagar (10.1016/j.renene.2024.120040_bib1) 2021; 56 Xia (10.1016/j.renene.2024.120040_bib3) 2023; 271 Du (10.1016/j.renene.2024.120040_bib17) 2016; 137 Lee (10.1016/j.renene.2024.120040_bib24) 2007; 318 Chen (10.1016/j.renene.2024.120040_bib29) 2022; 240 Wang (10.1016/j.renene.2024.120040_bib12) 2006; 97 Chen (10.1016/j.renene.2024.120040_bib27) 2015; 115 Chen (10.1016/j.renene.2024.120040_bib18) 2016; 127 Suh (10.1016/j.renene.2024.120040_bib32) 1988; 23 Maier (10.1016/j.renene.2024.120040_bib11) 2007 Liu (10.1016/j.renene.2024.120040_bib7) 2020; 6 Alrowaili (10.1016/j.renene.2024.120040_bib10) 2022; 50 Mahian (10.1016/j.renene.2024.120040_bib6) 2019; 790 Sun (10.1016/j.renene.2024.120040_bib9) 2019; 29 Yao (10.1016/j.renene.2024.120040_bib20) 2014; 4 Wang (10.1016/j.renene.2024.120040_bib31) 2017; 321 Chen (10.1016/j.renene.2024.120040_bib26) 2022; 198 Sani (10.1016/j.renene.2024.120040_bib23) 2010; 18 |
References_xml | – year: 2007 ident: bib11 article-title: Plasmonics: Fundamentals and Applications – volume: 318 start-page: 426 year: 2007 end-page: 430 ident: bib24 article-title: Mussel-Inspired surface chemistry for multifunctional coatings publication-title: Science – volume: 216 year: 2021 ident: bib14 article-title: Systematically investigating solar absorption performance of plasmonic nanoparticles publication-title: Energy – volume: 115 start-page: 85 year: 2015 end-page: 94 ident: bib27 article-title: An experimental investigation on sunlight absorption characteristics of silver nanofluids publication-title: Sol. Energy – volume: 127 start-page: 293 year: 2016 end-page: 300 ident: bib18 article-title: Synthesis and solar photo-thermal conversion of Au, Ag, and Au-Ag blended plasmonic nanoparticles publication-title: Energy Convers. Manag. – volume: 56 start-page: 4941 year: 2021 end-page: 4966 ident: bib1 article-title: Modern solar systems driven by nanoparticles-based fatty acids and paraffin wax phase change materials publication-title: J. Mater. Sci. – volume: 3 start-page: 2787 year: 2020 end-page: 2794 ident: bib13 article-title: TiN, ZrN, and HfN nanoparticles on nanoporous aluminum oxide membranes for solar-driven water evaporation and desalination publication-title: ACS Appl. Nano Mater. – volume: 197 year: 2019 ident: bib15 article-title: Experimental study on the flow and heat transfer characteristics of nanofluids in double-tube heat exchangers based on thermal efficiency assessment publication-title: Energy Convers. Manag. – volume: 23 start-page: 757 year: 1988 end-page: 760 ident: bib32 article-title: High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction publication-title: J. Mater. Sci. – volume: 18 start-page: 5179 year: 2010 ident: bib23 article-title: Carbon nanohorns-based nanofluids as direct sunlight absorbers publication-title: Opt Express – volume: 212 year: 2020 ident: bib22 article-title: Optical characterisation and photothermal conversion efficiency of a water-based carbon nanofluid for direct solar absorption applications publication-title: Energy – volume: 137 start-page: 393 year: 2016 end-page: 400 ident: bib17 article-title: Plasmonic nanofluids based on gold nanorods/nanoellipsoids/nanosheets for solar energy harvesting publication-title: Sol. Energy – volume: 117 start-page: 27073 year: 2013 end-page: 27080 ident: bib28 article-title: Size-dependent photothermal conversion efficiencies of plasmonically heated gold nanoparticles publication-title: J. Phys. Chem. C – volume: 240 year: 2022 ident: bib29 article-title: Ultra-stable carbon quantum dot nanofluids for direct absorption solar collectors publication-title: Sol. Energy Mater. Sol. Cells – volume: 198 start-page: 1307 year: 2022 end-page: 1317 ident: bib26 article-title: Solar-thermal conversion performance of heterogeneous nanofluids publication-title: Renew. Energy – volume: 790 start-page: 1 year: 2019 end-page: 48 ident: bib6 article-title: Recent advances in modeling and simulation of nanofluid flows-Part I: fundamentals and theory publication-title: Phys. Rep. – volume: 5 start-page: 437 year: 2020 end-page: 456 ident: bib5 article-title: Solar–thermal water evaporation: a review publication-title: ACS Energy Lett. – volume: 3 start-page: 1031 year: 2018 end-page: 1041 ident: bib21 article-title: Solar-driven interfacial evaporation publication-title: Nat. Energy – volume: 145 start-page: 21 year: 2020 end-page: 28 ident: bib4 article-title: Absorption characteristics of nanoparticles with sharp edges for a direct-absorption solar collector publication-title: Renew. Energy – volume: 6 start-page: 2179 year: 2020 end-page: 2195 ident: bib7 article-title: Carbon dots: a new type of carbon-based nanomaterial with wide applications publication-title: ACS Cent. Sci. – volume: 271 year: 2023 ident: bib3 article-title: Study on a spectral splitting photovoltaic/thermal system based on CNT/Ag mixed nanofluids publication-title: Energy – volume: 4 start-page: 7597 year: 2014 ident: bib20 article-title: One-pot synthesis of core-shell Cu@SiO publication-title: Sci. Rep. – volume: 29 year: 2019 ident: bib9 article-title: Plasmon based double‐layer hydrogel device for a highly efficient solar vapor generation publication-title: Adv. Funct. Mater. – volume: 179 start-page: 185 year: 2018 end-page: 193 ident: bib30 article-title: ZnO-Au composite hierarchical particles dispersed oil-based nanofluids for direct absorption solar collectors publication-title: Sol. Energy Mater. Sol. Cells – volume: 321 start-page: 276 year: 2017 end-page: 285 ident: bib31 article-title: Enhanced direct steam generation via a bio-inspired solar heating method using carbon nanotube films publication-title: Powder Technol. – volume: 50 year: 2022 ident: bib10 article-title: Investigation of the effect of hybrid CuO-Cu/water nanofluid on the solar thermal energy storage system publication-title: J. Energy Storage – volume: 242 year: 2022 ident: bib2 article-title: Optimized energy distribution management in the nanofluid-assisted photovoltaic/thermal system via exergy efficiency analysis publication-title: Energy – volume: 97 year: 2006 ident: bib12 article-title: General properties of local plasmons in metal nanostructures publication-title: Phys. Rev. Lett. – volume: 60 start-page: 841 year: 2019 end-page: 849 ident: bib8 article-title: Scalable and robust bilayer polymer foams for highly efficient and stable solar desalination publication-title: Nano Energy – volume: 10 start-page: 4542 year: 2019 end-page: 4549 ident: bib25 article-title: A new post-synthetic polymerization strategy makes metal–organic frameworks more stable publication-title: Chem. Sci. – volume: 3 start-page: 4626 year: 2010 end-page: 4638 ident: bib19 article-title: Copper nanoparticles for printed electronics: routes towards achieving oxidation stability publication-title: Materials – volume: 97 year: 2006 ident: 10.1016/j.renene.2024.120040_bib12 article-title: General properties of local plasmons in metal nanostructures publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.206806 – volume: 18 start-page: 5179 year: 2010 ident: 10.1016/j.renene.2024.120040_bib23 article-title: Carbon nanohorns-based nanofluids as direct sunlight absorbers publication-title: Opt Express doi: 10.1364/OE.18.005179 – volume: 117 start-page: 27073 year: 2013 ident: 10.1016/j.renene.2024.120040_bib28 article-title: Size-dependent photothermal conversion efficiencies of plasmonically heated gold nanoparticles publication-title: J. Phys. Chem. C doi: 10.1021/jp409067h – volume: 321 start-page: 276 year: 2017 ident: 10.1016/j.renene.2024.120040_bib31 article-title: Enhanced direct steam generation via a bio-inspired solar heating method using carbon nanotube films publication-title: Powder Technol. doi: 10.1016/j.powtec.2017.08.027 – volume: 197 year: 2019 ident: 10.1016/j.renene.2024.120040_bib15 article-title: Experimental study on the flow and heat transfer characteristics of nanofluids in double-tube heat exchangers based on thermal efficiency assessment publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.111877 – volume: 3 start-page: 1031 year: 2018 ident: 10.1016/j.renene.2024.120040_bib21 article-title: Solar-driven interfacial evaporation publication-title: Nat. Energy doi: 10.1038/s41560-018-0260-7 – volume: 271 year: 2023 ident: 10.1016/j.renene.2024.120040_bib3 article-title: Study on a spectral splitting photovoltaic/thermal system based on CNT/Ag mixed nanofluids publication-title: Energy doi: 10.1016/j.energy.2023.127093 – volume: 23 start-page: 757 year: 1988 ident: 10.1016/j.renene.2024.120040_bib32 article-title: High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction publication-title: J. Mater. Sci. doi: 10.1007/BF01174717 – volume: 242 year: 2022 ident: 10.1016/j.renene.2024.120040_bib2 article-title: Optimized energy distribution management in the nanofluid-assisted photovoltaic/thermal system via exergy efficiency analysis publication-title: Energy doi: 10.1016/j.energy.2021.123018 – volume: 29 year: 2019 ident: 10.1016/j.renene.2024.120040_bib9 article-title: Plasmon based double‐layer hydrogel device for a highly efficient solar vapor generation publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901312 – volume: 198 start-page: 1307 year: 2022 ident: 10.1016/j.renene.2024.120040_bib26 article-title: Solar-thermal conversion performance of heterogeneous nanofluids publication-title: Renew. Energy doi: 10.1016/j.renene.2022.08.065 – volume: 127 start-page: 293 year: 2016 ident: 10.1016/j.renene.2024.120040_bib18 article-title: Synthesis and solar photo-thermal conversion of Au, Ag, and Au-Ag blended plasmonic nanoparticles publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.09.015 – volume: 4 start-page: 7597 year: 2014 ident: 10.1016/j.renene.2024.120040_bib20 article-title: One-pot synthesis of core-shell Cu@SiO2 nanospheres and their catalysis for hydrolytic dehydrogenation of ammonia borane and hydrazine borane publication-title: Sci. Rep. doi: 10.1038/srep07597 – volume: 216 year: 2021 ident: 10.1016/j.renene.2024.120040_bib14 article-title: Systematically investigating solar absorption performance of plasmonic nanoparticles publication-title: Energy doi: 10.1016/j.energy.2020.119254 – volume: 115 start-page: 85 year: 2015 ident: 10.1016/j.renene.2024.120040_bib27 article-title: An experimental investigation on sunlight absorption characteristics of silver nanofluids publication-title: Sol. Energy doi: 10.1016/j.solener.2015.01.031 – volume: 179 start-page: 185 year: 2018 ident: 10.1016/j.renene.2024.120040_bib30 article-title: ZnO-Au composite hierarchical particles dispersed oil-based nanofluids for direct absorption solar collectors publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2017.11.012 – volume: 790 start-page: 1 year: 2019 ident: 10.1016/j.renene.2024.120040_bib6 article-title: Recent advances in modeling and simulation of nanofluid flows-Part I: fundamentals and theory publication-title: Phys. Rep. doi: 10.1016/j.physrep.2018.11.004 – volume: 137 start-page: 393 year: 2016 ident: 10.1016/j.renene.2024.120040_bib17 article-title: Plasmonic nanofluids based on gold nanorods/nanoellipsoids/nanosheets for solar energy harvesting publication-title: Sol. Energy doi: 10.1016/j.solener.2016.08.029 – volume: 50 year: 2022 ident: 10.1016/j.renene.2024.120040_bib10 article-title: Investigation of the effect of hybrid CuO-Cu/water nanofluid on the solar thermal energy storage system publication-title: J. Energy Storage doi: 10.1016/j.est.2022.104675 – volume: 212 year: 2020 ident: 10.1016/j.renene.2024.120040_bib22 article-title: Optical characterisation and photothermal conversion efficiency of a water-based carbon nanofluid for direct solar absorption applications publication-title: Energy doi: 10.1016/j.energy.2020.118763 – volume: 240 year: 2022 ident: 10.1016/j.renene.2024.120040_bib29 article-title: Ultra-stable carbon quantum dot nanofluids for direct absorption solar collectors publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2022.111720 – year: 2007 ident: 10.1016/j.renene.2024.120040_bib11 – volume: 10 start-page: 4542 year: 2019 ident: 10.1016/j.renene.2024.120040_bib25 article-title: A new post-synthetic polymerization strategy makes metal–organic frameworks more stable publication-title: Chem. Sci. doi: 10.1039/C9SC00135B – volume: 145 start-page: 21 year: 2020 ident: 10.1016/j.renene.2024.120040_bib4 article-title: Absorption characteristics of nanoparticles with sharp edges for a direct-absorption solar collector publication-title: Renew. Energy doi: 10.1016/j.renene.2019.05.133 – volume: 56 start-page: 4941 year: 2021 ident: 10.1016/j.renene.2024.120040_bib1 article-title: Modern solar systems driven by nanoparticles-based fatty acids and paraffin wax phase change materials publication-title: J. Mater. Sci. doi: 10.1007/s10853-020-05575-6 – volume: 60 start-page: 841 year: 2019 ident: 10.1016/j.renene.2024.120040_bib8 article-title: Scalable and robust bilayer polymer foams for highly efficient and stable solar desalination publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.087 – volume: 3 start-page: 2787 year: 2020 ident: 10.1016/j.renene.2024.120040_bib13 article-title: TiN, ZrN, and HfN nanoparticles on nanoporous aluminum oxide membranes for solar-driven water evaporation and desalination publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.0c00107 – volume: 5 start-page: 437 year: 2020 ident: 10.1016/j.renene.2024.120040_bib5 article-title: Solar–thermal water evaporation: a review publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b02611 – volume: 318 start-page: 426 year: 2007 ident: 10.1016/j.renene.2024.120040_bib24 article-title: Mussel-Inspired surface chemistry for multifunctional coatings publication-title: Science doi: 10.1126/science.1147241 – volume: 6 start-page: 2179 year: 2020 ident: 10.1016/j.renene.2024.120040_bib7 article-title: Carbon dots: a new type of carbon-based nanomaterial with wide applications publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.0c01306 – volume: 3 start-page: 4626 year: 2010 ident: 10.1016/j.renene.2024.120040_bib19 article-title: Copper nanoparticles for printed electronics: routes towards achieving oxidation stability publication-title: Materials doi: 10.3390/ma3094626 |
SSID | ssj0015874 |
Score | 2.4492698 |
Snippet | The choice of working medium plays a pivotal role in achieving efficient solar-thermal utilization. Nanoparticle suspensions, due to their superior optical and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 120040 |
SubjectTerms | Core-shell Cu@C nanoparticle Direct absorption Plasmonics Solar thermal |
Title | Experimental investigation of Cu@C core-shell nanoparticle suspensions for highly efficient solar-thermal conversion |
URI | https://dx.doi.org/10.1016/j.renene.2024.120040 |
Volume | 223 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD143TaP3W5ys5RKVexFC72F7GwClZoW0x68-NudyaNWEAWPG3aGMJnMfpN8-y1j18bGxkiF73dPGiGtVsIAaGG0G_cCmcSOpT-6j-PeaCLvp2raYIN6LwzRKqvaX9b0olpXV7pVNLvL2az7ROAbwbxLLEhECbThV0pNWd752NA8XBWUSsw4WdDsevtcwfEi1ciMxDI92XEpX5yfl6etJef2gO1XWJH3y9s5ZI0kO2J7WwqCx2w13FLo57Mv0YxFxhcpH6xvBpyEKkVOhE-exRk2yaU_nq_zJdHXMe84QldOysXzd54UohLokOfU9gpCiK_ovOCnFx_XTtjkdvg8GInqIAUBvvZWIsYmwzeBAyE2BwmWxtRi1yKNTlKVYL8RBJC6FjRYSD3Q0glCZQOlfA1KSgD_lDWzRZacMR4aacDT4IcGHTkQGBxoBHHGhhbcsMX8On4RVCrjdNjFPKrpZC9RGfWIoh6VUW8xsbFaliobf8zX9aOJvmVLhAvBr5bn_7a8YLs0Kvlnl6y5elsnVwhIVqZdZFyb7fTvHkbjT2ex4wk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4DMCAeIo3HljdJo1dOxsoalWeC63ULYrPiVQEaUXbgYXfzl0eUCQEEmMS-xRdzufvnM-fGbuwLrFWKhzfbWmFdFoJC6CF1X7SNjJNPEd_dO8f2r2BvBmq4RKL6r0wRKuscn-Z04tsXd1pVt5sTkaj5iOBbwTzPrEgESWYZbYqcfjSMQaN90-eh69MKcWMrQU1r_fPFSQvko3MSS2zJRs-BYz38_y0MOd0t9hmBRb5Vfk-22wpzXfYxoKE4C6bdRYk-vnoSzVjnPNxxqP5ZcRJqVJMifHJ8yTHKrm0x6fz6YT46xh4HLErJ-ni5zeeFqoSaJBPqe4VBBFf0HhBUC9W1_bYoNvpRz1RnaQgINCtmUiwygis8SDE6iDF3Jg5LFuk1WmmUiw4jIHMd6DBQdYCLT0TKmeUCjQoKQGCfbaSj_P0gPHQSgstDUFo0ZAHxuKFRhRnXejADw9ZUPsvhkpmnE67eI5rPtlTXHo9Jq_HpdcPmfjsNSllNv5or-tPE38Llxhngl97Hv275zlb6_Xv7-K764fbY7ZOT0oy2glbmb3O01NEJzN7VkTfB6wQ5Jc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+investigation+of+Cu%40C+core-shell+nanoparticle+suspensions+for+highly+efficient+solar-thermal+conversion&rft.jtitle=Renewable+energy&rft.au=Chen%2C+Xingyu&rft.au=Chen%2C+Meijie&rft.au=Sharaf%2C+Omar+Z.&rft.au=Chen%2C+Wei&rft.date=2024-03-01&rft.pub=Elsevier+Ltd&rft.issn=0960-1481&rft.eissn=1879-0682&rft.volume=223&rft_id=info:doi/10.1016%2Fj.renene.2024.120040&rft.externalDocID=S0960148124001058 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon |