Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours

Checkpoint blockade therapy targeting the programmed-death ligand 1 (PD-L1) and its receptor programmed cell death 1 promotes T-cell-mediated immunosurveillance against tumours, and has been associated with marked clinical benefit in cancer patients. Antibodies against PD-L1 function by blocking PD-...

Full description

Saved in:
Bibliographic Details
Published inNature biomedical engineering Vol. 3; no. 4; pp. 306 - 317
Main Authors Yao, Han, Lan, Jiang, Li, Chushu, Shi, Hubing, Brosseau, Jean-Philippe, Wang, Huanbin, Lu, Haojie, Fang, Caiyun, Zhang, Yao, Liang, Lunxi, Zhou, Xiaolin, Wang, Chaojun, Xue, Yu, Cui, Yun, Xu, Jie
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.04.2019
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Checkpoint blockade therapy targeting the programmed-death ligand 1 (PD-L1) and its receptor programmed cell death 1 promotes T-cell-mediated immunosurveillance against tumours, and has been associated with marked clinical benefit in cancer patients. Antibodies against PD-L1 function by blocking PD-L1 on the cell surface, but intracellular storage of PD-L1 and its active redistribution to the cell membrane can minimize the therapeutic benefits, which highlights the importance of targeting PD-L1 throughout the whole cell. Here, we show that PD-L1 is palmitoylated in its cytoplasmic domain, and that this lipid modification stabilizes PD-L1 by blocking its ubiquitination, consequently suppressing PD-L1 degradation by lysosomes. We identified palmitoyltransferase ZDHHC3 (DHHC3) as the main acyltransferase required for the palmitoylation of PD-L1, and show that the inhibition of PD-L1 palmitoylation via 2-bromopalmitate, or the silencing of DHHC3, activates antitumour immunity in vitro and in mice bearing MC38 tumour cells. We also designed a competitive inhibitor of PD-L1 palmitoylation that decreases PD-L1 expression in tumour cells to enhance T-cell immunity against the tumours. These findings suggest new strategies for overcoming PD-L1-mediated immune evasion in cancer. The physiological degradation of programmed-death ligand 1 is reduced by the palmitoylation of its intracellular domain, and this process can be inhibited to promote T-cell immunity against tumours.
AbstractList Checkpoint blockade therapy targeting the programmed-death ligand 1 (PD-L1) and its receptor programmed cell death 1 promotes T-cell-mediated immunosurveillance against tumours, and has been associated with marked clinical benefit in cancer patients. Antibodies against PD-L1 function by blocking PD-L1 on the cell surface, but intracellular storage of PD-L1 and its active redistribution to the cell membrane can minimize the therapeutic benefits, which highlights the importance of targeting PD-L1 throughout the whole cell. Here, we show that PD-L1 is palmitoylated in its cytoplasmic domain, and that this lipid modification stabilizes PD-L1 by blocking its ubiquitination, consequently suppressing PD-L1 degradation by lysosomes. We identified palmitoyltransferase ZDHHC3 (DHHC3) as the main acetyltransferase required for the palmitoylation of PD-L1, and show that the inhibition of PD-L1 palmitoylation via 2-bromopalmitate, or the silencing of DHHC3, activates antitumour immunity in vitro and in mice bearing MC38 tumour cells. We also designed a competitive inhibitor of PD-L1 palmitoylation that decreases PD-L1 expression in tumour cells to enhance T-cell immunity against the tumours. These findings suggest new strategies for overcoming PD-L1-mediated immune evasion in cancer.
Checkpoint blockade therapy targeting the programmed-death ligand 1 (PD-L1) and its receptor programmed cell death 1 promotes T-cell-mediated immunosurveillance against tumours, and has been associated with marked clinical benefit in cancer patients. Antibodies against PD-L1 function by blocking PD-L1 on the cell surface, but intracellular storage of PD-L1 and its active redistribution to the cell membrane can minimize the therapeutic benefits, which highlights the importance of targeting PD-L1 throughout the whole cell. Here, we show that PD-L1 is palmitoylated in its cytoplasmic domain, and that this lipid modification stabilizes PD-L1 by blocking its ubiquitination, consequently suppressing PD-L1 degradation by lysosomes. We identified palmitoyltransferase ZDHHC3 (DHHC3) as the main acyltransferase required for the palmitoylation of PD-L1, and show that the inhibition of PD-L1 palmitoylation via 2-bromopalmitate, or the silencing of DHHC3, activates antitumour immunity in vitro and in mice bearing MC38 tumour cells. We also designed a competitive inhibitor of PD-L1 palmitoylation that decreases PD-L1 expression in tumour cells to enhance T-cell immunity against the tumours. These findings suggest new strategies for overcoming PD-L1-mediated immune evasion in cancer.The physiological degradation of programmed-death ligand 1 is reduced by the palmitoylation of its intracellular domain, and this process can be inhibited to promote T-cell immunity against tumours.
Checkpoint blockade therapy targeting the programmed-death ligand 1 (PD-L1) and its receptor programmed cell death 1 promotes T-cell-mediated immunosurveillance against tumours, and has been associated with marked clinical benefit in cancer patients. Antibodies against PD-L1 function by blocking PD-L1 on the cell surface, but intracellular storage of PD-L1 and its active redistribution to the cell membrane can minimize the therapeutic benefits, which highlights the importance of targeting PD-L1 throughout the whole cell. Here, we show that PD-L1 is palmitoylated in its cytoplasmic domain, and that this lipid modification stabilizes PD-L1 by blocking its ubiquitination, consequently suppressing PD-L1 degradation by lysosomes. We identified palmitoyltransferase ZDHHC3 (DHHC3) as the main acyltransferase required for the palmitoylation of PD-L1, and show that the inhibition of PD-L1 palmitoylation via 2-bromopalmitate, or the silencing of DHHC3, activates antitumour immunity in vitro and in mice bearing MC38 tumour cells. We also designed a competitive inhibitor of PD-L1 palmitoylation that decreases PD-L1 expression in tumour cells to enhance T-cell immunity against the tumours. These findings suggest new strategies for overcoming PD-L1-mediated immune evasion in cancer. The physiological degradation of programmed-death ligand 1 is reduced by the palmitoylation of its intracellular domain, and this process can be inhibited to promote T-cell immunity against tumours.
Checkpoint blockade therapy targeting the programmed-death ligand 1 (PD-L1) and its receptor programmed cell death 1 promotes T-cell-mediated immunosurveillance against tumours, and has been associated with marked clinical benefit in cancer patients. Antibodies against PD-L1 function by blocking PD-L1 on the cell surface, but intracellular storage of PD-L1 and its active redistribution to the cell membrane can minimize the therapeutic benefits, which highlights the importance of targeting PD-L1 throughout the whole cell. Here, we show that PD-L1 is palmitoylated in its cytoplasmic domain, and that this lipid modification stabilizes PD-L1 by blocking its ubiquitination, consequently suppressing PD-L1 degradation by lysosomes. We identified palmitoyltransferase ZDHHC3 (DHHC3) as the main acetyltransferase required for the palmitoylation of PD-L1, and show that the inhibition of PD-L1 palmitoylation via 2-bromopalmitate, or the silencing of DHHC3, activates antitumour immunity in vitro and in mice bearing MC38 tumour cells. We also designed a competitive inhibitor of PD-L1 palmitoylation that decreases PD-L1 expression in tumour cells to enhance T-cell immunity against the tumours. These findings suggest new strategies for overcoming PD-L1-mediated immune evasion in cancer.Checkpoint blockade therapy targeting the programmed-death ligand 1 (PD-L1) and its receptor programmed cell death 1 promotes T-cell-mediated immunosurveillance against tumours, and has been associated with marked clinical benefit in cancer patients. Antibodies against PD-L1 function by blocking PD-L1 on the cell surface, but intracellular storage of PD-L1 and its active redistribution to the cell membrane can minimize the therapeutic benefits, which highlights the importance of targeting PD-L1 throughout the whole cell. Here, we show that PD-L1 is palmitoylated in its cytoplasmic domain, and that this lipid modification stabilizes PD-L1 by blocking its ubiquitination, consequently suppressing PD-L1 degradation by lysosomes. We identified palmitoyltransferase ZDHHC3 (DHHC3) as the main acetyltransferase required for the palmitoylation of PD-L1, and show that the inhibition of PD-L1 palmitoylation via 2-bromopalmitate, or the silencing of DHHC3, activates antitumour immunity in vitro and in mice bearing MC38 tumour cells. We also designed a competitive inhibitor of PD-L1 palmitoylation that decreases PD-L1 expression in tumour cells to enhance T-cell immunity against the tumours. These findings suggest new strategies for overcoming PD-L1-mediated immune evasion in cancer.
Author Lan, Jiang
Fang, Caiyun
Wang, Chaojun
Yao, Han
Zhou, Xiaolin
Shi, Hubing
Xu, Jie
Wang, Huanbin
Liang, Lunxi
Xue, Yu
Cui, Yun
Lu, Haojie
Zhang, Yao
Brosseau, Jean-Philippe
Li, Chushu
Author_xml – sequence: 1
  givenname: Han
  orcidid: 0000-0002-6175-8072
  surname: Yao
  fullname: Yao, Han
  organization: State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University
– sequence: 2
  givenname: Jiang
  surname: Lan
  fullname: Lan, Jiang
  organization: Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center
– sequence: 3
  givenname: Chushu
  surname: Li
  fullname: Li, Chushu
  organization: State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University
– sequence: 4
  givenname: Hubing
  surname: Shi
  fullname: Shi, Hubing
  organization: Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center
– sequence: 5
  givenname: Jean-Philippe
  surname: Brosseau
  fullname: Brosseau, Jean-Philippe
  organization: Department of Dermatology, University of Texas Southwestern Medical Center
– sequence: 6
  givenname: Huanbin
  surname: Wang
  fullname: Wang, Huanbin
  organization: State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University
– sequence: 7
  givenname: Haojie
  surname: Lu
  fullname: Lu, Haojie
  organization: Department of Chemistry and Institutes of Biomedical Sciences, Fudan University
– sequence: 8
  givenname: Caiyun
  surname: Fang
  fullname: Fang, Caiyun
  organization: Department of Chemistry and Institutes of Biomedical Sciences, Fudan University
– sequence: 9
  givenname: Yao
  surname: Zhang
  fullname: Zhang, Yao
  organization: State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University
– sequence: 10
  givenname: Lunxi
  surname: Liang
  fullname: Liang, Lunxi
  organization: State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Department of Gastroenterology, Changsha Central Hospital
– sequence: 11
  givenname: Xiaolin
  surname: Zhou
  fullname: Zhou, Xiaolin
  organization: Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University
– sequence: 12
  givenname: Chaojun
  surname: Wang
  fullname: Wang, Chaojun
  organization: Urology Department, The First Affiliated Hospital of Zhejiang University
– sequence: 13
  givenname: Yu
  surname: Xue
  fullname: Xue, Yu
  organization: Department of Bioinformatics & Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology
– sequence: 14
  givenname: Yun
  surname: Cui
  fullname: Cui, Yun
  organization: State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University
– sequence: 15
  givenname: Jie
  orcidid: 0000-0001-9163-3898
  surname: Xu
  fullname: Xu, Jie
  email: jiexu@yahoo.com
  organization: State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30952982$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLxDAcxIMoPlY_gBcpePESzaNpmqP4hgX3sAdv4b9pukbadE3Sg9_erKsogp4Swm-GycwB2vaDtwgdU3JOCa8vYkmFoJhQhQmXAldbaJ9RIXFdVk_bP-576CjGF0IyyUslxS7a40QJpmq2j2YP_tktXHJ-Wcyu8ZQWK-h6l4a3DpIbfGH9M3hjYzHHxnZd4fp-9LYINq4GH_M7LMH5mIo09sMY4iHaaaGL9ujznKD57c386h5PH-8eri6n2HDJEgZBaUMBoBXGEClKCYpVCyKJaWXFQPEKaEMWZdU0pRCNapmpWSvzH4ApxifobGO7CsPraGPSvYvrgODtMEbNGCkrVSpVZfT0F_qSg_ocTjNeM8J5_UGdfFLjoreNXgXXQ3jTX1VlQG4AE4YYg221cemjoxTAdZoSvd5Fb3bRuW293kWvrekv5Zf5fxq20cTM-qUN36H_Fr0DUM-d1g
CitedBy_id crossref_primary_10_1016_j_autrev_2024_103579
crossref_primary_10_1126_sciadv_abq4722
crossref_primary_10_1152_ajpcell_00542_2023
crossref_primary_10_1186_s12964_020_00608_8
crossref_primary_10_1111_febs_15728
crossref_primary_10_1038_s41571_022_00601_9
crossref_primary_10_1002_advs_202206411
crossref_primary_10_3389_fphar_2020_591188
crossref_primary_10_3389_fimmu_2024_1308070
crossref_primary_10_1016_j_bbadis_2024_167577
crossref_primary_10_3389_fimmu_2023_1237964
crossref_primary_10_3389_fimmu_2024_1375589
crossref_primary_10_3389_fonc_2021_703681
crossref_primary_10_1186_s12967_023_04611_8
crossref_primary_10_1016_j_molcel_2023_09_007
crossref_primary_10_1093_bib_bbaa038
crossref_primary_10_1186_s12964_021_00769_0
crossref_primary_10_62347_RHDB8792
crossref_primary_10_1016_j_jaut_2021_102702
crossref_primary_10_1038_s42003_023_04581_z
crossref_primary_10_3390_ijms25052939
crossref_primary_10_1016_j_ejphar_2025_177351
crossref_primary_10_1016_j_talanta_2023_124972
crossref_primary_10_1038_s42003_022_03845_4
crossref_primary_10_1126_scisignal_add2282
crossref_primary_10_1016_j_cmet_2024_10_019
crossref_primary_10_3390_cancers17061001
crossref_primary_10_1007_s00018_024_05144_z
crossref_primary_10_1021_acsnano_4c01310
crossref_primary_10_1186_s12951_023_01950_y
crossref_primary_10_1002_adfm_201908961
crossref_primary_10_1021_acsnano_3c09968
crossref_primary_10_1016_j_bcp_2023_115984
crossref_primary_10_1073_pnas_2114851119
crossref_primary_10_1007_s44178_024_00100_0
crossref_primary_10_1038_s41388_020_01592_6
crossref_primary_10_1073_pnas_2216796120
crossref_primary_10_3390_ijms25147726
crossref_primary_10_1038_s41556_021_00827_2
crossref_primary_10_1016_j_ejmech_2024_116267
crossref_primary_10_1186_s12943_024_02210_9
crossref_primary_10_1101_cshperspect_a036863
crossref_primary_10_1038_s41421_022_00507_x
crossref_primary_10_12677_BP_2023_132016
crossref_primary_10_1002_anie_202410586
crossref_primary_10_1039_D4BM01469C
crossref_primary_10_1002_jcp_30122
crossref_primary_10_1126_sciadv_adg2339
crossref_primary_10_1186_s12967_024_04931_3
crossref_primary_10_1016_j_ejmech_2021_113170
crossref_primary_10_1172_JCI160456
crossref_primary_10_1038_s41417_022_00546_2
crossref_primary_10_1002_cjoc_202000515
crossref_primary_10_1007_s00210_024_03208_2
crossref_primary_10_1016_j_cclet_2023_108346
crossref_primary_10_3389_fonc_2025_1547636
crossref_primary_10_1631_jzus_B2200195
crossref_primary_10_3389_fonc_2024_1437953
crossref_primary_10_1021_acs_jmedchem_3c02143
crossref_primary_10_1021_acsnano_3c12678
crossref_primary_10_1016_j_addr_2020_10_009
crossref_primary_10_1021_acschembio_1c00405
crossref_primary_10_1038_s41420_023_01603_x
crossref_primary_10_1007_s00253_024_13058_w
crossref_primary_10_1016_j_canlet_2023_216318
crossref_primary_10_3390_antiox11050960
crossref_primary_10_1016_j_cell_2023_11_022
crossref_primary_10_1016_j_cmet_2022_09_023
crossref_primary_10_1136_jitc_2022_004695
crossref_primary_10_1002_ange_202117798
crossref_primary_10_1016_j_addr_2020_07_020
crossref_primary_10_1126_sciadv_adp8266
crossref_primary_10_1016_j_compbiolchem_2020_107362
crossref_primary_10_1039_D3MD00636K
crossref_primary_10_1016_j_jare_2024_11_010
crossref_primary_10_1038_s41588_025_02077_6
crossref_primary_10_1016_j_canlet_2024_216696
crossref_primary_10_1186_s12967_023_04257_6
crossref_primary_10_1007_s00018_023_05104_z
crossref_primary_10_1038_s41401_024_01248_1
crossref_primary_10_1038_s43018_025_00937_y
crossref_primary_10_1186_s12957_025_03752_y
crossref_primary_10_1158_0008_5472_CAN_22_2595
crossref_primary_10_1016_j_jare_2024_12_041
crossref_primary_10_1016_j_jconrel_2025_01_014
crossref_primary_10_1021_acs_chemrev_0c01108
crossref_primary_10_3389_fonc_2021_751086
crossref_primary_10_1186_s12964_020_00612_y
crossref_primary_10_1186_s40164_024_00572_w
crossref_primary_10_1002_mco2_261
crossref_primary_10_1016_j_canlet_2024_216726
crossref_primary_10_1002_adfm_202414495
crossref_primary_10_1038_s41392_022_01245_y
crossref_primary_10_1080_17568919_2024_2366146
crossref_primary_10_1021_acsnano_2c05483
crossref_primary_10_1016_j_arr_2023_101920
crossref_primary_10_1111_febs_16972
crossref_primary_10_1096_fj_202302288R
crossref_primary_10_1111_liv_16130
crossref_primary_10_1016_j_celrep_2024_114762
crossref_primary_10_1002_ange_202410586
crossref_primary_10_3390_cells12182209
crossref_primary_10_1016_j_molcel_2023_11_015
crossref_primary_10_1111_imm_13573
crossref_primary_10_1111_tpj_15191
crossref_primary_10_1002_hep4_1682
crossref_primary_10_1038_s41422_022_00766_z
crossref_primary_10_1038_s41392_024_01759_7
crossref_primary_10_1002_advs_202403520
crossref_primary_10_1007_s00018_022_04431_x
crossref_primary_10_1002_eji_202350476
crossref_primary_10_1038_s41419_024_07318_w
crossref_primary_10_1136_jitc_2022_004871
crossref_primary_10_3390_cells12131702
crossref_primary_10_1042_BST20190707
crossref_primary_10_1039_D0CB00157K
crossref_primary_10_1016_j_bbamcr_2024_119741
crossref_primary_10_1126_sciadv_ade4186
crossref_primary_10_1038_s41467_022_34346_x
crossref_primary_10_3390_cancers12113173
crossref_primary_10_1002_mog2_87
crossref_primary_10_1002_advs_202302130
crossref_primary_10_1002_smll_202107732
crossref_primary_10_1007_s11684_021_0911_0
crossref_primary_10_1007_s10555_024_10217_3
crossref_primary_10_1126_sciimmunol_adp7302
crossref_primary_10_1021_acsami_4c22466
crossref_primary_10_3390_ijms221910800
crossref_primary_10_1186_s12944_021_01593_8
crossref_primary_10_1016_j_phrs_2019_104258
crossref_primary_10_1002_ange_201914836
crossref_primary_10_1002_anie_202214053
crossref_primary_10_1016_j_drup_2024_101152
crossref_primary_10_1158_0008_5472_CAN_22_3105
crossref_primary_10_1016_j_ejmcr_2022_100041
crossref_primary_10_1002_adma_202207330
crossref_primary_10_1038_s41392_019_0053_x
crossref_primary_10_1371_journal_ppat_1012141
crossref_primary_10_1016_j_tranon_2024_101955
crossref_primary_10_1038_s41388_024_02946_0
crossref_primary_10_3389_fcell_2021_793428
crossref_primary_10_1002_smtd_202201437
crossref_primary_10_4155_fmc_2021_0192
crossref_primary_10_1016_j_cclet_2023_108536
crossref_primary_10_1021_acsnano_2c12107
crossref_primary_10_1080_08916934_2023_2289362
crossref_primary_10_3748_wjg_v28_i42_6034
crossref_primary_10_1016_j_bcp_2022_115113
crossref_primary_10_1038_s41401_024_01371_z
crossref_primary_10_1002_anie_201914836
crossref_primary_10_3389_fonc_2023_1194180
crossref_primary_10_1038_s41568_021_00431_4
crossref_primary_10_1016_j_heliyon_2023_e13490
crossref_primary_10_1002_advs_202409883
crossref_primary_10_1016_j_jnutbio_2022_109186
crossref_primary_10_1016_j_celrep_2024_114070
crossref_primary_10_1016_j_immuni_2020_09_014
crossref_primary_10_18632_aging_102646
crossref_primary_10_1186_s40164_025_00627_6
crossref_primary_10_3390_cancers16071313
crossref_primary_10_1007_s12094_021_02771_x
crossref_primary_10_1016_j_molcel_2019_09_030
crossref_primary_10_1016_j_drup_2025_101215
crossref_primary_10_1186_s12951_025_03171_x
crossref_primary_10_1186_s12935_022_02805_6
crossref_primary_10_1016_j_bbcan_2021_188663
crossref_primary_10_1002_cdt3_146
crossref_primary_10_1038_s41388_020_01491_w
crossref_primary_10_3389_fimmu_2024_1337478
crossref_primary_10_1016_j_bbadis_2024_167173
crossref_primary_10_1016_j_cmet_2024_04_018
crossref_primary_10_1007_s11427_021_2048_2
crossref_primary_10_1038_s41467_023_43650_z
crossref_primary_10_3389_fimmu_2023_1230135
crossref_primary_10_1186_s12935_023_03062_x
crossref_primary_10_3390_genes14020474
crossref_primary_10_1002_ange_202214053
crossref_primary_10_4110_in_2025_25_e11
crossref_primary_10_1016_j_bpj_2019_11_003
crossref_primary_10_1038_s41421_022_00515_x
crossref_primary_10_1038_s41423_024_01166_6
crossref_primary_10_1186_s12943_023_01883_y
crossref_primary_10_3390_molecules26010132
crossref_primary_10_3389_fonc_2020_568059
crossref_primary_10_1016_j_immuni_2020_11_010
crossref_primary_10_1038_s41388_021_01949_5
crossref_primary_10_1016_j_biopha_2022_114150
crossref_primary_10_1039_D4CC03146F
crossref_primary_10_3724_abbs_2024085
crossref_primary_10_1007_s11626_023_00755_5
crossref_primary_10_1158_2159_8290_CD_21_0362
crossref_primary_10_1155_2020_5497015
crossref_primary_10_3389_fimmu_2021_661202
crossref_primary_10_1111_jcmm_18348
crossref_primary_10_1016_j_drup_2023_101037
crossref_primary_10_3390_polym14153013
crossref_primary_10_1111_bph_17432
crossref_primary_10_1016_j_bbcan_2024_189152
crossref_primary_10_1166_sam_2023_4470
crossref_primary_10_1186_s40164_024_00515_5
crossref_primary_10_1007_s12672_023_00790_4
crossref_primary_10_1016_j_trsl_2023_09_007
crossref_primary_10_1097_CJI_0000000000000439
crossref_primary_10_1158_0008_5472_CAN_23_0966
crossref_primary_10_1111_febs_16084
crossref_primary_10_1126_sciimmunol_adn1452
crossref_primary_10_3390_cancers12113129
crossref_primary_10_1007_s00432_024_05737_y
crossref_primary_10_1038_s41419_022_05375_7
crossref_primary_10_1016_j_cellsig_2024_111039
crossref_primary_10_1002_anie_202117798
crossref_primary_10_1016_j_omtn_2022_04_030
crossref_primary_10_2147_JHC_S457682
crossref_primary_10_3724_abbs_2022011
crossref_primary_10_1016_j_nantod_2024_102186
crossref_primary_10_1002_advs_202206399
crossref_primary_10_3389_fimmu_2024_1392546
crossref_primary_10_1016_j_celrep_2022_111194
crossref_primary_10_1126_sciadv_adq7706
crossref_primary_10_1098_rsob_200411
crossref_primary_10_1016_j_canlet_2024_216861
crossref_primary_10_1126_sciadv_ado5914
crossref_primary_10_3389_fcell_2024_1413708
crossref_primary_10_3390_cells11233840
crossref_primary_10_1016_j_apsb_2020_11_005
crossref_primary_10_1007_s12274_022_5362_7
crossref_primary_10_1016_j_mcpro_2022_100193
crossref_primary_10_1038_s41467_023_42170_0
crossref_primary_10_1016_j_jphotobiol_2021_112355
crossref_primary_10_3390_nu16030396
crossref_primary_10_1038_s41392_020_00418_x
crossref_primary_10_3389_fgene_2023_1149995
crossref_primary_10_1016_j_xcrm_2023_101357
crossref_primary_10_1038_s41467_024_49105_3
crossref_primary_10_1038_s41580_024_00700_8
crossref_primary_10_1093_jmcb_mjad070
crossref_primary_10_1002_ctm2_1300
crossref_primary_10_1016_j_heliyon_2024_e28600
crossref_primary_10_1038_s41392_022_01046_3
crossref_primary_10_1002_adhm_202304284
crossref_primary_10_3389_fimmu_2019_01337
crossref_primary_10_1073_pnas_2022261118
crossref_primary_10_3390_biomedicines9111702
crossref_primary_10_4049_jimmunol_2300241
crossref_primary_10_1038_s41419_024_07073_y
crossref_primary_10_1038_s41577_023_00949_8
crossref_primary_10_1186_s40164_022_00297_8
crossref_primary_10_1016_j_addr_2020_07_013
crossref_primary_10_1002_adma_202006003
crossref_primary_10_1073_pnas_2215732120
crossref_primary_10_1128_jvi_01445_24
crossref_primary_10_4155_fmc_2021_0256
crossref_primary_10_3389_fimmu_2024_1383456
crossref_primary_10_1007_s12094_024_03835_4
crossref_primary_10_1186_s12967_023_04098_3
crossref_primary_10_1002_ange_202106195
crossref_primary_10_3390_cancers14020285
crossref_primary_10_1021_acsomega_4c09353
crossref_primary_10_3390_ijms20112823
crossref_primary_10_1186_s13045_020_01027_5
crossref_primary_10_1021_acsnano_9b07326
crossref_primary_10_1186_s13046_021_01987_7
crossref_primary_10_62347_MVRG3697
crossref_primary_10_1186_s13578_024_01227_3
crossref_primary_10_1002_mabi_202100075
crossref_primary_10_1038_s41420_024_02025_z
crossref_primary_10_1083_jcb_202108083
crossref_primary_10_1002_1878_0261_13582
crossref_primary_10_1021_acs_langmuir_4c04441
crossref_primary_10_1038_s41422_020_0343_4
crossref_primary_10_1007_s00018_020_03635_3
crossref_primary_10_1016_j_cbpa_2021_07_002
crossref_primary_10_1016_j_biopha_2024_116257
crossref_primary_10_1016_j_cmet_2024_11_012
crossref_primary_10_1016_j_bpj_2022_06_021
crossref_primary_10_1016_j_ejphar_2024_176841
crossref_primary_10_1038_s41551_019_0383_6
crossref_primary_10_1016_j_cjtee_2023_11_003
crossref_primary_10_1080_14728222_2022_2077189
crossref_primary_10_1002_cam4_6275
crossref_primary_10_1038_s41467_024_51386_7
crossref_primary_10_1038_s41467_021_25416_7
crossref_primary_10_1038_s41467_021_25662_9
crossref_primary_10_1016_j_cllc_2022_07_010
crossref_primary_10_1016_j_jbc_2025_108406
crossref_primary_10_1016_j_cclet_2020_04_015
crossref_primary_10_1136_jitc_2022_005116
crossref_primary_10_1186_s12964_023_01366_z
crossref_primary_10_1186_s13045_023_01498_2
crossref_primary_10_1021_acschembio_4c00110
crossref_primary_10_1016_j_coisb_2021_100401
crossref_primary_10_1158_0008_5472_CAN_23_2664
crossref_primary_10_1136_jitc_2021_002443
crossref_primary_10_1016_j_heliyon_2023_e19185
crossref_primary_10_1186_s13046_022_02273_w
crossref_primary_10_3389_fimmu_2020_607442
crossref_primary_10_1016_j_biopha_2023_114567
crossref_primary_10_1007_s11426_019_9588_4
crossref_primary_10_1002_advs_202303175
crossref_primary_10_3390_cancers15235503
crossref_primary_10_1038_s41375_023_02130_5
crossref_primary_10_1093_neuonc_noac157
crossref_primary_10_1038_s42003_025_07897_0
crossref_primary_10_1128_mbio_02704_24
crossref_primary_10_1016_j_bbcan_2023_188996
crossref_primary_10_34133_research_0211
crossref_primary_10_1186_s12943_021_01447_y
crossref_primary_10_1111_cas_16085
crossref_primary_10_1002_1878_0261_13308
crossref_primary_10_1016_j_jep_2024_118955
crossref_primary_10_1038_s41420_022_01286_w
crossref_primary_10_1158_2326_6066_CIR_22_0953
crossref_primary_10_1038_s41401_021_00631_6
crossref_primary_10_1002_advs_202303715
crossref_primary_10_3389_fimmu_2023_1154146
crossref_primary_10_1088_1748_605X_ab9f57
crossref_primary_10_1111_bph_16054
crossref_primary_10_1016_j_critrevonc_2024_104588
crossref_primary_10_1080_09553002_2022_2063430
crossref_primary_10_1038_s41420_024_02184_z
crossref_primary_10_1002_anie_202106195
crossref_primary_10_1038_s41587_023_02030_0
crossref_primary_10_1073_pnas_2412473122
crossref_primary_10_1007_s11684_023_1025_7
crossref_primary_10_1038_s41467_025_57099_9
crossref_primary_10_1016_j_biomaterials_2022_121841
crossref_primary_10_1111_febs_16665
crossref_primary_10_1038_s41392_021_00825_8
crossref_primary_10_1111_imm_13822
crossref_primary_10_1186_s12943_024_02023_w
crossref_primary_10_1038_s41419_020_03140_2
crossref_primary_10_1016_j_biomaterials_2024_122851
crossref_primary_10_1038_s41568_024_00666_x
crossref_primary_10_1186_s12951_021_00805_8
Cites_doi 10.1016/j.ccell.2016.02.004
10.1080/2162402X.2017.1327494
10.1038/s41388-018-0303-3
10.1038/s41589-018-0161-x
10.1042/bj3430557
10.1016/j.ccell.2015.12.002
10.1073/pnas.1606719113
10.3389/fimmu.2018.01774
10.1002/eji.201040979
10.1186/s13045-016-0341-7
10.1038/ncomms12632
10.1093/protein/gzn039
10.1016/j.chembiol.2018.03.010
10.1056/NEJMe1701182
10.1371/journal.pone.0179529
10.1002/pro.3307
10.1016/j.celrep.2017.04.031
10.1016/j.cell.2017.09.028
10.1016/j.bpj.2014.11.004
10.4161/sgtp.2.2.15245
10.1038/s41586-018-0392-8
10.1038/modpathol.2017.86
10.1038/nri.2017.108
10.1038/nrm2084
10.1038/s41551-018-0231-0
10.1126/science.aac9935
10.1056/NEJMoa1200694
10.3389/fphar.2018.00536
10.1016/j.peptides.2016.11.011
10.1073/pnas.1620498114
10.1016/j.neo.2017.02.006
10.1021/acs.jproteome.5b00979
10.1038/ni.3868
10.1016/j.ccell.2016.10.010
10.1016/j.ccell.2018.01.009
10.1080/2162402X.2015.1008824
10.1016/j.molcel.2016.04.003
10.1038/nature25015
10.1038/nchembio.1392
10.1083/jcb.201008121
10.1038/s41551-018-0236-8
10.1038/nature23643
10.1016/j.celrep.2017.05.015
10.1371/journal.pmed.1002309
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2019
The Author(s), under exclusive licence to Springer Nature Limited 2019.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2019.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FE
8FG
8FH
ABJCF
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
DOI 10.1038/s41551-019-0375-6
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Database (Proquest)
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Biological Sciences
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest Central Student

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2157-846X
EndPage 317
ExternalDocumentID 30952982
10_1038_s41551_019_0375_6
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
53G
AARCD
AAYZH
ABJCF
ABJNI
ABLJU
ACBWK
ACGFS
AFANA
AFKRA
AFSHS
AFWHJ
AHSBF
AIBTJ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ATHPR
AXYYD
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
CCPQU
EBS
EJD
FSGXE
FZEXT
HCIFZ
M7P
M7S
NFIDA
NNMJJ
O9-
ODYON
PHGZM
PHGZT
PQGLB
PTHSS
PUEGO
RNT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FE
8FG
8FH
AZQEC
DWQXO
GNUQQ
L6V
LK8
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c372t-a511d1aaaf5cc07547a926b070cf762a936a1d0b46dd455d9f2c82f7193a2923
IEDL.DBID BENPR
ISSN 2157-846X
IngestDate Fri Jul 11 01:43:27 EDT 2025
Wed Jul 16 16:16:09 EDT 2025
Thu Apr 03 07:05:05 EDT 2025
Sun Aug 31 08:57:43 EDT 2025
Thu Apr 24 22:58:56 EDT 2025
Sun Aug 31 08:58:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-a511d1aaaf5cc07547a926b070cf762a936a1d0b46dd455d9f2c82f7193a2923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6175-8072
0000-0001-9163-3898
PMID 30952982
PQID 2382033896
PQPubID 4669717
PageCount 12
ParticipantIDs proquest_miscellaneous_2204694996
proquest_journals_2382033896
pubmed_primary_30952982
crossref_citationtrail_10_1038_s41551_019_0375_6
crossref_primary_10_1038_s41551_019_0375_6
springer_journals_10_1038_s41551_019_0375_6
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature biomedical engineering
PublicationTitleAbbrev Nat Biomed Eng
PublicationTitleAlternate Nat Biomed Eng
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Tukachinsky, Petrov, Watanabe, Salic (CR29) 2016; 113
Wolfle (CR13) 2011; 41
Taguchi, Misaki (CR26) 2011; 2
Runkle (CR27) 2016; 62
Garcia-Diaz (CR33) 2017; 19
Rodell (CR4) 2018; 2
Lim (CR16) 2016; 30
Brahmer (CR1) 2012; 366
Tang (CR11) 2016; 29
Ren (CR30) 2008; 21
Takeda (CR10) 2017; 19
Li (CR22) 2018; 33
Linder, Deschenes (CR35) 2007; 8
Sonpavde (CR2) 2017; 376
Mognol (CR17) 2017; 114
Chen (CR23) 2018; 560
Takahashi, Mayers, Wang, Edwardson, Audhya (CR38) 2015; 108
Wang (CR24) 2019; 15
Stringer, Piper (CR37) 2011; 192
Sharpe, Pauken (CR5) 2018; 18
Wang (CR21) 2017; 6
Thul, Lindskog (CR32) 2018; 27
Gao, Hannoush (CR28) 2014; 10
Weng, Kao, Huang, Lee (CR31) 2017; 12
Riaz (CR34) 2017; 171
Soragni (CR41) 2016; 29
Wang (CR39) 2019; 15
Casey (CR14) 2016; 352
Horita, Law, Hong, Middleton (CR36) 2017; 19
Zerdes, Matikas, Bergh, Rassidakis, Foukakis (CR7) 2018; 37
Chen (CR25) 2017; 30
Yao, Wang, Li, Fang, Xu (CR3) 2018; 9
Zhang (CR19) 2018; 553
Bellucci (CR12) 2015; 4
Tian (CR43) 2018; 2
Wang (CR18) 2018; 9
Li (CR20) 2016; 7
Yousefi-Salakdeh, Johansson, Stromberg (CR45) 1999; 343
Burr (CR6) 2017; 549
Maj (CR8) 2017; 18
Snyder (CR9) 2017; 14
Liang (CR42) 2018; 25
Bolhassani, Jafarzade, Mardani (CR40) 2017; 87
Bi (CR15) 2016; 9
Fang (CR44) 2016; 15
H Tukachinsky (375_CR29) 2016; 113
CW Li (375_CR20) 2016; 7
G Sonpavde (375_CR2) 2017; 376
PJ Thul (375_CR32) 2018; 27
H Wang (375_CR39) 2019; 15
H Wang (375_CR24) 2019; 15
ME Linder (375_CR35) 2007; 8
R Bellucci (375_CR12) 2015; 4
Y Takeda (375_CR10) 2017; 19
XW Bi (375_CR15) 2016; 9
A Bolhassani (375_CR40) 2017; 87
JR Brahmer (375_CR1) 2012; 366
X Tian (375_CR43) 2018; 2
G Chen (375_CR23) 2018; 560
H Tang (375_CR11) 2016; 29
GP Mognol (375_CR17) 2017; 114
A Soragni (375_CR41) 2016; 29
SC Casey (375_CR14) 2016; 352
J Ren (375_CR30) 2008; 21
DK Stringer (375_CR37) 2011; 192
H Yao (375_CR3) 2018; 9
L Liang (375_CR42) 2018; 25
A Snyder (375_CR9) 2017; 14
SO Lim (375_CR16) 2016; 30
AH Sharpe (375_CR5) 2018; 18
A Garcia-Diaz (375_CR33) 2017; 19
T Maj (375_CR8) 2017; 18
M Chen (375_CR25) 2017; 30
N Riaz (375_CR34) 2017; 171
H Takahashi (375_CR38) 2015; 108
Y Wang (375_CR18) 2018; 9
X Gao (375_CR28) 2014; 10
H Horita (375_CR36) 2017; 19
ML Burr (375_CR6) 2017; 549
I Zerdes (375_CR7) 2018; 37
T Taguchi (375_CR26) 2011; 2
H Wang (375_CR21) 2017; 6
SL Weng (375_CR31) 2017; 12
CW Li (375_CR22) 2018; 33
KB Runkle (375_CR27) 2016; 62
J Zhang (375_CR19) 2018; 553
C Fang (375_CR44) 2016; 15
SJ Wolfle (375_CR13) 2011; 41
CB Rodell (375_CR4) 2018; 2
E Yousefi-Salakdeh (375_CR45) 1999; 343
30976071 - Nat Biomed Eng. 2019 May;3(5):414
30952983 - Nat Biomed Eng. 2019 Apr;3(4):255-256
References_xml – volume: 29
  start-page: 285
  year: 2016
  end-page: 296
  ident: CR11
  article-title: Facilitating T cell infiltration in tumor microenvironment overcomes resistance to PD-L1 blockade
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.02.004
– volume: 6
  start-page: e1327494
  year: 2017
  ident: CR21
  article-title: PD-L2 expression in colorectal cancer: independent prognostic effect and targetability by deglycosylation
  publication-title: OncoImmunology
  doi: 10.1080/2162402X.2017.1327494
– volume: 37
  start-page: 4639
  year: 2018
  end-page: 4661
  ident: CR7
  article-title: Genetic, transcriptional and post-translational regulation of the programmed death protein ligand 1 in cancer: biology and clinical correlations.
  publication-title: Oncogene
  doi: 10.1038/s41388-018-0303-3
– volume: 15
  start-page: 42
  year: 2019
  end-page: 50
  ident: CR24
  article-title: HIP1R targets PD-L1 to lysosomal degradation to alter T cell-mediated cytotoxicity
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-018-0161-x
– volume: 343
  start-page: 557
  year: 1999
  end-page: 562
  ident: CR45
  article-title: A method for - and -palmitoylation of peptides: synthesis of pulmonary surfactant protein-C models
  publication-title: Biochem. J.
  doi: 10.1042/bj3430557
– volume: 29
  start-page: 90
  year: 2016
  end-page: 103
  ident: CR41
  article-title: A designed inhibitor of p53 aggregation rescues p53 tumor suppression in ovarian carcinomas
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2015.12.002
– volume: 113
  start-page: E5866
  year: 2016
  end-page: E5875
  ident: CR29
  article-title: Mechanism of inhibition of the tumor suppressor Patched by Sonic Hedgehog
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1606719113
– volume: 9
  start-page: 1774
  year: 2018
  ident: CR3
  article-title: Cancer cell-intrinsic PD-1 and implications in combinatorial immunotherapy
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.01774
– volume: 41
  start-page: 413
  year: 2011
  end-page: 424
  ident: CR13
  article-title: PD-L1 expression on tolerogenic APCs is controlled by STAT-3
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201040979
– volume: 9
  start-page: 109
  year: 2016
  ident: CR15
  article-title: PD-L1 is upregulated by EBV-driven LMP1 through NF-κB pathway and correlates with poor prognosis in natural killer/T-cell lymphoma
  publication-title: J. Hematol. Oncol.
  doi: 10.1186/s13045-016-0341-7
– volume: 7
  year: 2016
  ident: CR20
  article-title: Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12632
– volume: 21
  start-page: 639
  year: 2008
  end-page: 644
  ident: CR30
  article-title: CSS-Palm 2.0: an updated software for palmitoylation sites prediction
  publication-title: Protein Eng. Des. Sel.
  doi: 10.1093/protein/gzn039
– volume: 25
  start-page: 761
  year: 2018
  end-page: 774.e5
  ident: CR42
  article-title: A designed peptide targets two types of modifications of p53 with anti-cancer activity
  publication-title: Cell Chem. Biol.
  doi: 10.1016/j.chembiol.2018.03.010
– volume: 376
  start-page: 1073
  year: 2017
  end-page: 1074
  ident: CR2
  article-title: PD-1 and PD-L1 inhibitors as salvage therapy for urothelial carcinoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMe1701182
– volume: 12
  start-page: e0179529
  year: 2017
  ident: CR31
  article-title: MDD-Palm: identification of protein -palmitoylation sites with substrate motifs based on maximal dependence decomposition
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0179529
– volume: 27
  start-page: 233
  year: 2018
  end-page: 244
  ident: CR32
  article-title: The human protein atlas: a spatial map of the human proteome
  publication-title: Protein Sci.
  doi: 10.1002/pro.3307
– volume: 19
  start-page: 1189
  year: 2017
  end-page: 1201
  ident: CR33
  article-title: Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.04.031
– volume: 171
  start-page: 934
  year: 2017
  end-page: 949 e915
  ident: CR34
  article-title: Tumor and microenvironment evolution during immunotherapy with nivolumab
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.028
– volume: 108
  start-page: 76
  year: 2015
  end-page: 84
  ident: CR38
  article-title: Hrs and STAM function synergistically to bind ubiquitin-modified cargoes in vitro
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2014.11.004
– volume: 2
  start-page: 82
  year: 2011
  end-page: 84
  ident: CR26
  article-title: Palmitoylation pilots Ras to recycling endosomes
  publication-title: Small GTPases
  doi: 10.4161/sgtp.2.2.15245
– volume: 560
  start-page: 382
  year: 2018
  end-page: 386
  ident: CR23
  article-title: Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response
  publication-title: Nature
  doi: 10.1038/s41586-018-0392-8
– volume: 30
  start-page: 1516
  year: 2017
  end-page: 1526
  ident: CR25
  article-title: Development and validation of a novel clinical fluorescence in situ hybridization assay to detect JAK2 and PD-L1 amplification: a fluorescence in situ hybridization assay for JAK2 and PD-L1 amplification
  publication-title: Mod. Pathol.
  doi: 10.1038/modpathol.2017.86
– volume: 18
  start-page: 153
  year: 2018
  end-page: 167
  ident: CR5
  article-title: The diverse functions of the PD1 inhibitory pathway
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2017.108
– volume: 8
  start-page: 74
  year: 2007
  end-page: 84
  ident: CR35
  article-title: Palmitoylation: policing protein stability and traffic
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2084
– volume: 2
  start-page: 443
  year: 2018
  end-page: 452
  ident: CR43
  article-title: Organ-specific metastases obtained by culturing colorectal cancer cells on tissue-specific decellularized scaffolds
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0231-0
– volume: 352
  start-page: 227
  year: 2016
  end-page: 231
  ident: CR14
  article-title: MYC regulates the antitumor immune response through CD47 and PD-L1
  publication-title: Science
  doi: 10.1126/science.aac9935
– volume: 366
  start-page: 2455
  year: 2012
  end-page: 2465
  ident: CR1
  article-title: Safety and activity of anti-PD-L1 antibody in patients with advanced cancer
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1200694
– volume: 9
  start-page: 536
  year: 2018
  ident: CR18
  article-title: Regulation of PD-L1: emerging routes for targeting tumor immune evasion
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2018.00536
– volume: 87
  start-page: 50
  year: 2017
  end-page: 63
  ident: CR40
  article-title: In vitro and in vivo delivery of therapeutic proteins using cell penetrating peptides
  publication-title: Peptides
  doi: 10.1016/j.peptides.2016.11.011
– volume: 114
  start-page: E2776
  year: 2017
  end-page: E2785
  ident: CR17
  article-title: Exhaustion-associated regulatory regions in CD8 tumor-infiltrating T cells
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1620498114
– volume: 19
  start-page: 346
  year: 2017
  end-page: 353
  ident: CR36
  article-title: Identifying regulatory posttranslational modifications of PD-L1: a focus on monoubiquitinaton
  publication-title: Neoplasia
  doi: 10.1016/j.neo.2017.02.006
– volume: 15
  start-page: 956
  year: 2016
  end-page: 962
  ident: CR44
  article-title: Identification of palmitoylated transitional endoplasmic reticulum ATPase by proteomic technique and pan antipalmitoylation antibody
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.5b00979
– volume: 18
  start-page: 1332
  year: 2017
  end-page: 1341
  ident: CR8
  article-title: Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3868
– volume: 30
  start-page: 925
  year: 2016
  end-page: 939
  ident: CR16
  article-title: Deubiquitination and stabilization of PD-L1 by CSN5
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.10.010
– volume: 33
  start-page: 187
  year: 2018
  end-page: 201.e10
  ident: CR22
  article-title: Eradication of triple-negative breast cancer cells by targeting glycosylated PD-L1
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2018.01.009
– volume: 4
  start-page: e1008824
  year: 2015
  ident: CR12
  article-title: Interferon-gamma-induced activation of JAK1 and JAK2 suppresses tumor cell susceptibility to NK cells through upregulation of PD-L1 expression
  publication-title: OncoImmunology
  doi: 10.1080/2162402X.2015.1008824
– volume: 62
  start-page: 385
  year: 2016
  end-page: 396
  ident: CR27
  article-title: Inhibition of DHHC20-mediated EGFR palmitoylation creates a dependence on EGFR signaling
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.04.003
– volume: 553
  start-page: 91
  year: 2018
  end-page: 95
  ident: CR19
  article-title: Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance
  publication-title: Nature
  doi: 10.1038/nature25015
– volume: 10
  start-page: 61
  year: 2014
  end-page: 68
  ident: CR28
  article-title: Single-cell imaging of Wnt palmitoylation by the acyltransferase porcupine
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1392
– volume: 192
  start-page: 229
  year: 2011
  end-page: 242
  ident: CR37
  article-title: A single ubiquitin is sufficient for cargo protein entry into MVBs in the absence of ESCRT ubiquitination
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201008121
– volume: 2
  start-page: 578
  year: 2018
  end-page: 588
  ident: CR4
  article-title: TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0236-8
– volume: 549
  start-page: 101
  year: 2017
  end-page: 105
  ident: CR6
  article-title: CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity
  publication-title: Nature
  doi: 10.1038/nature23643
– volume: 19
  start-page: 1874
  year: 2017
  end-page: 1887
  ident: CR10
  article-title: A TLR3-specific adjuvant relieves innate resistance to PD-L1 blockade without cytokine toxicity in tumor vaccine immunotherapy
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.05.015
– volume: 15
  start-page: 42
  year: 2019
  end-page: 50
  ident: CR39
  article-title: HIP1R targets PD-L1 to lysosomal degradation to alter T cell-mediated cytotoxicity.
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-018-0161-x
– volume: 14
  start-page: e1002309
  year: 2017
  ident: CR9
  article-title: Contribution of systemic and somatic factors to clinical response and resistance to PD-L1 blockade in urothelial cancer: an exploratory multi-omic analysis
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1002309
– volume: 171
  start-page: 934
  year: 2017
  ident: 375_CR34
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.028
– volume: 19
  start-page: 1874
  year: 2017
  ident: 375_CR10
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.05.015
– volume: 41
  start-page: 413
  year: 2011
  ident: 375_CR13
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201040979
– volume: 87
  start-page: 50
  year: 2017
  ident: 375_CR40
  publication-title: Peptides
  doi: 10.1016/j.peptides.2016.11.011
– volume: 25
  start-page: 761
  year: 2018
  ident: 375_CR42
  publication-title: Cell Chem. Biol.
  doi: 10.1016/j.chembiol.2018.03.010
– volume: 2
  start-page: 443
  year: 2018
  ident: 375_CR43
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0231-0
– volume: 2
  start-page: 82
  year: 2011
  ident: 375_CR26
  publication-title: Small GTPases
  doi: 10.4161/sgtp.2.2.15245
– volume: 6
  start-page: e1327494
  year: 2017
  ident: 375_CR21
  publication-title: OncoImmunology
  doi: 10.1080/2162402X.2017.1327494
– volume: 376
  start-page: 1073
  year: 2017
  ident: 375_CR2
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMe1701182
– volume: 30
  start-page: 925
  year: 2016
  ident: 375_CR16
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.10.010
– volume: 8
  start-page: 74
  year: 2007
  ident: 375_CR35
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2084
– volume: 62
  start-page: 385
  year: 2016
  ident: 375_CR27
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.04.003
– volume: 343
  start-page: 557
  year: 1999
  ident: 375_CR45
  publication-title: Biochem. J.
  doi: 10.1042/bj3430557
– volume: 2
  start-page: 578
  year: 2018
  ident: 375_CR4
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0236-8
– volume: 19
  start-page: 1189
  year: 2017
  ident: 375_CR33
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.04.031
– volume: 549
  start-page: 101
  year: 2017
  ident: 375_CR6
  publication-title: Nature
  doi: 10.1038/nature23643
– volume: 553
  start-page: 91
  year: 2018
  ident: 375_CR19
  publication-title: Nature
  doi: 10.1038/nature25015
– volume: 4
  start-page: e1008824
  year: 2015
  ident: 375_CR12
  publication-title: OncoImmunology
  doi: 10.1080/2162402X.2015.1008824
– volume: 29
  start-page: 90
  year: 2016
  ident: 375_CR41
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2015.12.002
– volume: 15
  start-page: 42
  year: 2019
  ident: 375_CR39
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-018-0161-x
– volume: 113
  start-page: E5866
  year: 2016
  ident: 375_CR29
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1606719113
– volume: 29
  start-page: 285
  year: 2016
  ident: 375_CR11
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.02.004
– volume: 9
  start-page: 109
  year: 2016
  ident: 375_CR15
  publication-title: J. Hematol. Oncol.
  doi: 10.1186/s13045-016-0341-7
– volume: 14
  start-page: e1002309
  year: 2017
  ident: 375_CR9
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1002309
– volume: 114
  start-page: E2776
  year: 2017
  ident: 375_CR17
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1620498114
– volume: 560
  start-page: 382
  year: 2018
  ident: 375_CR23
  publication-title: Nature
  doi: 10.1038/s41586-018-0392-8
– volume: 366
  start-page: 2455
  year: 2012
  ident: 375_CR1
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1200694
– volume: 27
  start-page: 233
  year: 2018
  ident: 375_CR32
  publication-title: Protein Sci.
  doi: 10.1002/pro.3307
– volume: 9
  start-page: 1774
  year: 2018
  ident: 375_CR3
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.01774
– volume: 33
  start-page: 187
  year: 2018
  ident: 375_CR22
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2018.01.009
– volume: 37
  start-page: 4639
  year: 2018
  ident: 375_CR7
  publication-title: Oncogene
  doi: 10.1038/s41388-018-0303-3
– volume: 19
  start-page: 346
  year: 2017
  ident: 375_CR36
  publication-title: Neoplasia
  doi: 10.1016/j.neo.2017.02.006
– volume: 12
  start-page: e0179529
  year: 2017
  ident: 375_CR31
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0179529
– volume: 352
  start-page: 227
  year: 2016
  ident: 375_CR14
  publication-title: Science
  doi: 10.1126/science.aac9935
– volume: 108
  start-page: 76
  year: 2015
  ident: 375_CR38
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2014.11.004
– volume: 10
  start-page: 61
  year: 2014
  ident: 375_CR28
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1392
– volume: 18
  start-page: 1332
  year: 2017
  ident: 375_CR8
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3868
– volume: 15
  start-page: 42
  year: 2019
  ident: 375_CR24
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-018-0161-x
– volume: 7
  year: 2016
  ident: 375_CR20
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12632
– volume: 192
  start-page: 229
  year: 2011
  ident: 375_CR37
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201008121
– volume: 9
  start-page: 536
  year: 2018
  ident: 375_CR18
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2018.00536
– volume: 21
  start-page: 639
  year: 2008
  ident: 375_CR30
  publication-title: Protein Eng. Des. Sel.
  doi: 10.1093/protein/gzn039
– volume: 15
  start-page: 956
  year: 2016
  ident: 375_CR44
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.5b00979
– volume: 18
  start-page: 153
  year: 2018
  ident: 375_CR5
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2017.108
– volume: 30
  start-page: 1516
  year: 2017
  ident: 375_CR25
  publication-title: Mod. Pathol.
  doi: 10.1038/modpathol.2017.86
– reference: 30976071 - Nat Biomed Eng. 2019 May;3(5):414
– reference: 30952983 - Nat Biomed Eng. 2019 Apr;3(4):255-256
SSID ssj0001934975
Score 2.5719755
Snippet Checkpoint blockade therapy targeting the programmed-death ligand 1 (PD-L1) and its receptor programmed cell death 1 promotes T-cell-mediated...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 306
SubjectTerms 45/70
45/77
45/91
631/154/555
631/250/251/1574
631/67/580
64/60
692/4017
692/4028/67/1059
82/1
82/29
96/106
96/31
96/35
96/95
Acyltransferase
Acyltransferases - metabolism
Animals
Antibodies
Apoptosis
B7-H1 Antigen - metabolism
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Cancer
Cell death
Cell Line, Tumor
Cell membranes
Cell surface
Degradation
Domains
Humans
Immune checkpoint
Immune response
Immune response (cell-mediated)
Immunity
Immunosurveillance
Intracellular
Ligands
Lipids
Lipoylation
Lymphocytes T
Lysosomes
Lysosomes - metabolism
Mice
Neoplasms - immunology
Palmitoylation
Palmitoyltransferase
PD-1 protein
PD-L1 protein
Peptides - metabolism
T-Lymphocytes - immunology
Tumors
Ubiquitination
Title Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours
URI https://link.springer.com/article/10.1038/s41551-019-0375-6
https://www.ncbi.nlm.nih.gov/pubmed/30952982
https://www.proquest.com/docview/2382033896
https://www.proquest.com/docview/2204694996
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB6VcGkPCOgrJSBX6glkkdj7sE8Vr0CrFkUolbitZv0okWATssmh_77jfSRUqFx3_dKMZ-bzzNgD8EVHSDg68lz6uAozkkjl1nMt89TFTqLFcBv553Vy9Sv6fhvfNg63skmrbHVipajt1AQf-TGZFtGn85ROvs4eeagaFaKrTQmNDdgkFaxUBzZPL65HN2svi5aRTuM2nCnVcRksaDhBax7Kv_LkX4P0DGU-i5BWhme4DVsNYmQnNYt34JUrduHNk3cE38LoW3E3ySchg5mNzvmPAZvh_QPJ6p8604254i5wt2RjHjz1bBJuhTg2rxNk6Tv-xgkBRbZYPtB85TsYDy_GZ1e8KZXAjUzFgiPhJjtARB8bQyggSlGLJCd5Np7UHWqZ4MD28yixNopjq70wSviU6IOCMN576BTTwn0EZr3wuc4HAtFFJrEqFdg31F-htISlutBvyZWZ5hnxUM3iPqvC2VJlNYUzonAWKJwlXThcdZnVb2i81LjX8iBrxKnM1szvwufVbxKEQDMs3HRJbUQ46tPGozYfat6tZpMEJIVWogtHLTPXg_93KZ9eXsoevBbVNgppPD3oLOZLt08IZZEfwIYaXh40m_EveMHjpg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqcgAOiPJqoAUjwQVkNbG9Dx-qClFCQtOqhyD1Zs36QSO1m9BNhPqj-I_M7GYTUEVvve7a69XMeOaz58XYO6MBcbSOQsWkdjPilip8FEYVWUiCAg-UjXx8kg6-629nydkG-93mwlBYZasTa0Xtp47uyPfQtMgunqdMejD7KahrFHlX2xYajVgchetfeGSr9oeHyN_3Uva_jD8PxLKrgHAqk3MBCDF8DwBi4hwaTJ2BkWmBou8iagYwKoWe7xY69V4niTdRulzGDJEOSEN1DlDj39MKDTklpve_rq90jNImS1rfqcr3KjLXdFw3gnrNivRf63cD0t5wx9ZWrv-YPVrCU_6pkactthHKJ-zhX0ULn7LTYXk-KSYULs1PD8Wox2dwcYmK4boJq-OhPCdRqvhYkFuATygFJfCrJhoXn8MPmCAq5fPFJa5XPWPju6Dgc7ZZTsuwzbiPMham6EmAoF3q80xC1-H8HJRH4NZh3ZZc1i1rllPrjAtb-85VbhsKW6SwJQrbtMM-rKbMmoIdtw3eaXlgl3u3smtJ67C3q9e464hmUIbpAsdIuldAKccxLxrerVZTiFqlyWWHfWyZuf74f3_l5e2_8obdH4yPR3Y0PDl6xR7IWqQofmiHbc6vFmEXodG8eF0LJGf2jjfAH65kHSk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inhibiting+PD-L1+palmitoylation+enhances+T-cell+immune+responses+against+tumours&rft.jtitle=Nature+biomedical+engineering&rft.au=Yao%2C+Han&rft.au=Lan%2C+Jiang&rft.au=Li%2C+Chushu&rft.au=Shi%2C+Hubing&rft.date=2019-04-01&rft.issn=2157-846X&rft.eissn=2157-846X&rft.volume=3&rft.issue=4&rft.spage=306&rft_id=info:doi/10.1038%2Fs41551-019-0375-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2157-846X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2157-846X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2157-846X&client=summon