Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours
Checkpoint blockade therapy targeting the programmed-death ligand 1 (PD-L1) and its receptor programmed cell death 1 promotes T-cell-mediated immunosurveillance against tumours, and has been associated with marked clinical benefit in cancer patients. Antibodies against PD-L1 function by blocking PD-...
Saved in:
Published in | Nature biomedical engineering Vol. 3; no. 4; pp. 306 - 317 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.04.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Checkpoint blockade therapy targeting the programmed-death ligand 1 (PD-L1) and its receptor programmed cell death 1 promotes T-cell-mediated immunosurveillance against tumours, and has been associated with marked clinical benefit in cancer patients. Antibodies against PD-L1 function by blocking PD-L1 on the cell surface, but intracellular storage of PD-L1 and its active redistribution to the cell membrane can minimize the therapeutic benefits, which highlights the importance of targeting PD-L1 throughout the whole cell. Here, we show that PD-L1 is palmitoylated in its cytoplasmic domain, and that this lipid modification stabilizes PD-L1 by blocking its ubiquitination, consequently suppressing PD-L1 degradation by lysosomes. We identified palmitoyltransferase ZDHHC3 (DHHC3) as the main acyltransferase required for the palmitoylation of PD-L1, and show that the inhibition of PD-L1 palmitoylation via 2-bromopalmitate, or the silencing of DHHC3, activates antitumour immunity in vitro and in mice bearing MC38 tumour cells. We also designed a competitive inhibitor of PD-L1 palmitoylation that decreases PD-L1 expression in tumour cells to enhance T-cell immunity against the tumours. These findings suggest new strategies for overcoming PD-L1-mediated immune evasion in cancer.
The physiological degradation of programmed-death ligand 1 is reduced by the palmitoylation of its intracellular domain, and this process can be inhibited to promote T-cell immunity against tumours. |
---|---|
AbstractList | Checkpoint blockade therapy targeting the programmed-death ligand 1 (PD-L1) and its receptor programmed cell death 1 promotes T-cell-mediated immunosurveillance against tumours, and has been associated with marked clinical benefit in cancer patients. Antibodies against PD-L1 function by blocking PD-L1 on the cell surface, but intracellular storage of PD-L1 and its active redistribution to the cell membrane can minimize the therapeutic benefits, which highlights the importance of targeting PD-L1 throughout the whole cell. Here, we show that PD-L1 is palmitoylated in its cytoplasmic domain, and that this lipid modification stabilizes PD-L1 by blocking its ubiquitination, consequently suppressing PD-L1 degradation by lysosomes. We identified palmitoyltransferase ZDHHC3 (DHHC3) as the main acetyltransferase required for the palmitoylation of PD-L1, and show that the inhibition of PD-L1 palmitoylation via 2-bromopalmitate, or the silencing of DHHC3, activates antitumour immunity in vitro and in mice bearing MC38 tumour cells. We also designed a competitive inhibitor of PD-L1 palmitoylation that decreases PD-L1 expression in tumour cells to enhance T-cell immunity against the tumours. These findings suggest new strategies for overcoming PD-L1-mediated immune evasion in cancer. Checkpoint blockade therapy targeting the programmed-death ligand 1 (PD-L1) and its receptor programmed cell death 1 promotes T-cell-mediated immunosurveillance against tumours, and has been associated with marked clinical benefit in cancer patients. Antibodies against PD-L1 function by blocking PD-L1 on the cell surface, but intracellular storage of PD-L1 and its active redistribution to the cell membrane can minimize the therapeutic benefits, which highlights the importance of targeting PD-L1 throughout the whole cell. Here, we show that PD-L1 is palmitoylated in its cytoplasmic domain, and that this lipid modification stabilizes PD-L1 by blocking its ubiquitination, consequently suppressing PD-L1 degradation by lysosomes. We identified palmitoyltransferase ZDHHC3 (DHHC3) as the main acyltransferase required for the palmitoylation of PD-L1, and show that the inhibition of PD-L1 palmitoylation via 2-bromopalmitate, or the silencing of DHHC3, activates antitumour immunity in vitro and in mice bearing MC38 tumour cells. We also designed a competitive inhibitor of PD-L1 palmitoylation that decreases PD-L1 expression in tumour cells to enhance T-cell immunity against the tumours. These findings suggest new strategies for overcoming PD-L1-mediated immune evasion in cancer.The physiological degradation of programmed-death ligand 1 is reduced by the palmitoylation of its intracellular domain, and this process can be inhibited to promote T-cell immunity against tumours. Checkpoint blockade therapy targeting the programmed-death ligand 1 (PD-L1) and its receptor programmed cell death 1 promotes T-cell-mediated immunosurveillance against tumours, and has been associated with marked clinical benefit in cancer patients. Antibodies against PD-L1 function by blocking PD-L1 on the cell surface, but intracellular storage of PD-L1 and its active redistribution to the cell membrane can minimize the therapeutic benefits, which highlights the importance of targeting PD-L1 throughout the whole cell. Here, we show that PD-L1 is palmitoylated in its cytoplasmic domain, and that this lipid modification stabilizes PD-L1 by blocking its ubiquitination, consequently suppressing PD-L1 degradation by lysosomes. We identified palmitoyltransferase ZDHHC3 (DHHC3) as the main acyltransferase required for the palmitoylation of PD-L1, and show that the inhibition of PD-L1 palmitoylation via 2-bromopalmitate, or the silencing of DHHC3, activates antitumour immunity in vitro and in mice bearing MC38 tumour cells. We also designed a competitive inhibitor of PD-L1 palmitoylation that decreases PD-L1 expression in tumour cells to enhance T-cell immunity against the tumours. These findings suggest new strategies for overcoming PD-L1-mediated immune evasion in cancer. The physiological degradation of programmed-death ligand 1 is reduced by the palmitoylation of its intracellular domain, and this process can be inhibited to promote T-cell immunity against tumours. Checkpoint blockade therapy targeting the programmed-death ligand 1 (PD-L1) and its receptor programmed cell death 1 promotes T-cell-mediated immunosurveillance against tumours, and has been associated with marked clinical benefit in cancer patients. Antibodies against PD-L1 function by blocking PD-L1 on the cell surface, but intracellular storage of PD-L1 and its active redistribution to the cell membrane can minimize the therapeutic benefits, which highlights the importance of targeting PD-L1 throughout the whole cell. Here, we show that PD-L1 is palmitoylated in its cytoplasmic domain, and that this lipid modification stabilizes PD-L1 by blocking its ubiquitination, consequently suppressing PD-L1 degradation by lysosomes. We identified palmitoyltransferase ZDHHC3 (DHHC3) as the main acetyltransferase required for the palmitoylation of PD-L1, and show that the inhibition of PD-L1 palmitoylation via 2-bromopalmitate, or the silencing of DHHC3, activates antitumour immunity in vitro and in mice bearing MC38 tumour cells. We also designed a competitive inhibitor of PD-L1 palmitoylation that decreases PD-L1 expression in tumour cells to enhance T-cell immunity against the tumours. These findings suggest new strategies for overcoming PD-L1-mediated immune evasion in cancer.Checkpoint blockade therapy targeting the programmed-death ligand 1 (PD-L1) and its receptor programmed cell death 1 promotes T-cell-mediated immunosurveillance against tumours, and has been associated with marked clinical benefit in cancer patients. Antibodies against PD-L1 function by blocking PD-L1 on the cell surface, but intracellular storage of PD-L1 and its active redistribution to the cell membrane can minimize the therapeutic benefits, which highlights the importance of targeting PD-L1 throughout the whole cell. Here, we show that PD-L1 is palmitoylated in its cytoplasmic domain, and that this lipid modification stabilizes PD-L1 by blocking its ubiquitination, consequently suppressing PD-L1 degradation by lysosomes. We identified palmitoyltransferase ZDHHC3 (DHHC3) as the main acetyltransferase required for the palmitoylation of PD-L1, and show that the inhibition of PD-L1 palmitoylation via 2-bromopalmitate, or the silencing of DHHC3, activates antitumour immunity in vitro and in mice bearing MC38 tumour cells. We also designed a competitive inhibitor of PD-L1 palmitoylation that decreases PD-L1 expression in tumour cells to enhance T-cell immunity against the tumours. These findings suggest new strategies for overcoming PD-L1-mediated immune evasion in cancer. |
Author | Lan, Jiang Fang, Caiyun Wang, Chaojun Yao, Han Zhou, Xiaolin Shi, Hubing Xu, Jie Wang, Huanbin Liang, Lunxi Xue, Yu Cui, Yun Lu, Haojie Zhang, Yao Brosseau, Jean-Philippe Li, Chushu |
Author_xml | – sequence: 1 givenname: Han orcidid: 0000-0002-6175-8072 surname: Yao fullname: Yao, Han organization: State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University – sequence: 2 givenname: Jiang surname: Lan fullname: Lan, Jiang organization: Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center – sequence: 3 givenname: Chushu surname: Li fullname: Li, Chushu organization: State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University – sequence: 4 givenname: Hubing surname: Shi fullname: Shi, Hubing organization: Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center – sequence: 5 givenname: Jean-Philippe surname: Brosseau fullname: Brosseau, Jean-Philippe organization: Department of Dermatology, University of Texas Southwestern Medical Center – sequence: 6 givenname: Huanbin surname: Wang fullname: Wang, Huanbin organization: State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University – sequence: 7 givenname: Haojie surname: Lu fullname: Lu, Haojie organization: Department of Chemistry and Institutes of Biomedical Sciences, Fudan University – sequence: 8 givenname: Caiyun surname: Fang fullname: Fang, Caiyun organization: Department of Chemistry and Institutes of Biomedical Sciences, Fudan University – sequence: 9 givenname: Yao surname: Zhang fullname: Zhang, Yao organization: State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University – sequence: 10 givenname: Lunxi surname: Liang fullname: Liang, Lunxi organization: State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Department of Gastroenterology, Changsha Central Hospital – sequence: 11 givenname: Xiaolin surname: Zhou fullname: Zhou, Xiaolin organization: Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University – sequence: 12 givenname: Chaojun surname: Wang fullname: Wang, Chaojun organization: Urology Department, The First Affiliated Hospital of Zhejiang University – sequence: 13 givenname: Yu surname: Xue fullname: Xue, Yu organization: Department of Bioinformatics & Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology – sequence: 14 givenname: Yun surname: Cui fullname: Cui, Yun organization: State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University – sequence: 15 givenname: Jie orcidid: 0000-0001-9163-3898 surname: Xu fullname: Xu, Jie email: jiexu@yahoo.com organization: State Key Laboratory for Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30952982$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtLxDAcxIMoPlY_gBcpePESzaNpmqP4hgX3sAdv4b9pukbadE3Sg9_erKsogp4Swm-GycwB2vaDtwgdU3JOCa8vYkmFoJhQhQmXAldbaJ9RIXFdVk_bP-576CjGF0IyyUslxS7a40QJpmq2j2YP_tktXHJ-Wcyu8ZQWK-h6l4a3DpIbfGH9M3hjYzHHxnZd4fp-9LYINq4GH_M7LMH5mIo09sMY4iHaaaGL9ujznKD57c386h5PH-8eri6n2HDJEgZBaUMBoBXGEClKCYpVCyKJaWXFQPEKaEMWZdU0pRCNapmpWSvzH4ApxifobGO7CsPraGPSvYvrgODtMEbNGCkrVSpVZfT0F_qSg_ocTjNeM8J5_UGdfFLjoreNXgXXQ3jTX1VlQG4AE4YYg221cemjoxTAdZoSvd5Fb3bRuW293kWvrekv5Zf5fxq20cTM-qUN36H_Fr0DUM-d1g |
CitedBy_id | crossref_primary_10_1016_j_autrev_2024_103579 crossref_primary_10_1126_sciadv_abq4722 crossref_primary_10_1152_ajpcell_00542_2023 crossref_primary_10_1186_s12964_020_00608_8 crossref_primary_10_1111_febs_15728 crossref_primary_10_1038_s41571_022_00601_9 crossref_primary_10_1002_advs_202206411 crossref_primary_10_3389_fphar_2020_591188 crossref_primary_10_3389_fimmu_2024_1308070 crossref_primary_10_1016_j_bbadis_2024_167577 crossref_primary_10_3389_fimmu_2023_1237964 crossref_primary_10_3389_fimmu_2024_1375589 crossref_primary_10_3389_fonc_2021_703681 crossref_primary_10_1186_s12967_023_04611_8 crossref_primary_10_1016_j_molcel_2023_09_007 crossref_primary_10_1093_bib_bbaa038 crossref_primary_10_1186_s12964_021_00769_0 crossref_primary_10_62347_RHDB8792 crossref_primary_10_1016_j_jaut_2021_102702 crossref_primary_10_1038_s42003_023_04581_z crossref_primary_10_3390_ijms25052939 crossref_primary_10_1016_j_ejphar_2025_177351 crossref_primary_10_1016_j_talanta_2023_124972 crossref_primary_10_1038_s42003_022_03845_4 crossref_primary_10_1126_scisignal_add2282 crossref_primary_10_1016_j_cmet_2024_10_019 crossref_primary_10_3390_cancers17061001 crossref_primary_10_1007_s00018_024_05144_z crossref_primary_10_1021_acsnano_4c01310 crossref_primary_10_1186_s12951_023_01950_y crossref_primary_10_1002_adfm_201908961 crossref_primary_10_1021_acsnano_3c09968 crossref_primary_10_1016_j_bcp_2023_115984 crossref_primary_10_1073_pnas_2114851119 crossref_primary_10_1007_s44178_024_00100_0 crossref_primary_10_1038_s41388_020_01592_6 crossref_primary_10_1073_pnas_2216796120 crossref_primary_10_3390_ijms25147726 crossref_primary_10_1038_s41556_021_00827_2 crossref_primary_10_1016_j_ejmech_2024_116267 crossref_primary_10_1186_s12943_024_02210_9 crossref_primary_10_1101_cshperspect_a036863 crossref_primary_10_1038_s41421_022_00507_x crossref_primary_10_12677_BP_2023_132016 crossref_primary_10_1002_anie_202410586 crossref_primary_10_1039_D4BM01469C crossref_primary_10_1002_jcp_30122 crossref_primary_10_1126_sciadv_adg2339 crossref_primary_10_1186_s12967_024_04931_3 crossref_primary_10_1016_j_ejmech_2021_113170 crossref_primary_10_1172_JCI160456 crossref_primary_10_1038_s41417_022_00546_2 crossref_primary_10_1002_cjoc_202000515 crossref_primary_10_1007_s00210_024_03208_2 crossref_primary_10_1016_j_cclet_2023_108346 crossref_primary_10_3389_fonc_2025_1547636 crossref_primary_10_1631_jzus_B2200195 crossref_primary_10_3389_fonc_2024_1437953 crossref_primary_10_1021_acs_jmedchem_3c02143 crossref_primary_10_1021_acsnano_3c12678 crossref_primary_10_1016_j_addr_2020_10_009 crossref_primary_10_1021_acschembio_1c00405 crossref_primary_10_1038_s41420_023_01603_x crossref_primary_10_1007_s00253_024_13058_w crossref_primary_10_1016_j_canlet_2023_216318 crossref_primary_10_3390_antiox11050960 crossref_primary_10_1016_j_cell_2023_11_022 crossref_primary_10_1016_j_cmet_2022_09_023 crossref_primary_10_1136_jitc_2022_004695 crossref_primary_10_1002_ange_202117798 crossref_primary_10_1016_j_addr_2020_07_020 crossref_primary_10_1126_sciadv_adp8266 crossref_primary_10_1016_j_compbiolchem_2020_107362 crossref_primary_10_1039_D3MD00636K crossref_primary_10_1016_j_jare_2024_11_010 crossref_primary_10_1038_s41588_025_02077_6 crossref_primary_10_1016_j_canlet_2024_216696 crossref_primary_10_1186_s12967_023_04257_6 crossref_primary_10_1007_s00018_023_05104_z crossref_primary_10_1038_s41401_024_01248_1 crossref_primary_10_1038_s43018_025_00937_y crossref_primary_10_1186_s12957_025_03752_y crossref_primary_10_1158_0008_5472_CAN_22_2595 crossref_primary_10_1016_j_jare_2024_12_041 crossref_primary_10_1016_j_jconrel_2025_01_014 crossref_primary_10_1021_acs_chemrev_0c01108 crossref_primary_10_3389_fonc_2021_751086 crossref_primary_10_1186_s12964_020_00612_y crossref_primary_10_1186_s40164_024_00572_w crossref_primary_10_1002_mco2_261 crossref_primary_10_1016_j_canlet_2024_216726 crossref_primary_10_1002_adfm_202414495 crossref_primary_10_1038_s41392_022_01245_y crossref_primary_10_1080_17568919_2024_2366146 crossref_primary_10_1021_acsnano_2c05483 crossref_primary_10_1016_j_arr_2023_101920 crossref_primary_10_1111_febs_16972 crossref_primary_10_1096_fj_202302288R crossref_primary_10_1111_liv_16130 crossref_primary_10_1016_j_celrep_2024_114762 crossref_primary_10_1002_ange_202410586 crossref_primary_10_3390_cells12182209 crossref_primary_10_1016_j_molcel_2023_11_015 crossref_primary_10_1111_imm_13573 crossref_primary_10_1111_tpj_15191 crossref_primary_10_1002_hep4_1682 crossref_primary_10_1038_s41422_022_00766_z crossref_primary_10_1038_s41392_024_01759_7 crossref_primary_10_1002_advs_202403520 crossref_primary_10_1007_s00018_022_04431_x crossref_primary_10_1002_eji_202350476 crossref_primary_10_1038_s41419_024_07318_w crossref_primary_10_1136_jitc_2022_004871 crossref_primary_10_3390_cells12131702 crossref_primary_10_1042_BST20190707 crossref_primary_10_1039_D0CB00157K crossref_primary_10_1016_j_bbamcr_2024_119741 crossref_primary_10_1126_sciadv_ade4186 crossref_primary_10_1038_s41467_022_34346_x crossref_primary_10_3390_cancers12113173 crossref_primary_10_1002_mog2_87 crossref_primary_10_1002_advs_202302130 crossref_primary_10_1002_smll_202107732 crossref_primary_10_1007_s11684_021_0911_0 crossref_primary_10_1007_s10555_024_10217_3 crossref_primary_10_1126_sciimmunol_adp7302 crossref_primary_10_1021_acsami_4c22466 crossref_primary_10_3390_ijms221910800 crossref_primary_10_1186_s12944_021_01593_8 crossref_primary_10_1016_j_phrs_2019_104258 crossref_primary_10_1002_ange_201914836 crossref_primary_10_1002_anie_202214053 crossref_primary_10_1016_j_drup_2024_101152 crossref_primary_10_1158_0008_5472_CAN_22_3105 crossref_primary_10_1016_j_ejmcr_2022_100041 crossref_primary_10_1002_adma_202207330 crossref_primary_10_1038_s41392_019_0053_x crossref_primary_10_1371_journal_ppat_1012141 crossref_primary_10_1016_j_tranon_2024_101955 crossref_primary_10_1038_s41388_024_02946_0 crossref_primary_10_3389_fcell_2021_793428 crossref_primary_10_1002_smtd_202201437 crossref_primary_10_4155_fmc_2021_0192 crossref_primary_10_1016_j_cclet_2023_108536 crossref_primary_10_1021_acsnano_2c12107 crossref_primary_10_1080_08916934_2023_2289362 crossref_primary_10_3748_wjg_v28_i42_6034 crossref_primary_10_1016_j_bcp_2022_115113 crossref_primary_10_1038_s41401_024_01371_z crossref_primary_10_1002_anie_201914836 crossref_primary_10_3389_fonc_2023_1194180 crossref_primary_10_1038_s41568_021_00431_4 crossref_primary_10_1016_j_heliyon_2023_e13490 crossref_primary_10_1002_advs_202409883 crossref_primary_10_1016_j_jnutbio_2022_109186 crossref_primary_10_1016_j_celrep_2024_114070 crossref_primary_10_1016_j_immuni_2020_09_014 crossref_primary_10_18632_aging_102646 crossref_primary_10_1186_s40164_025_00627_6 crossref_primary_10_3390_cancers16071313 crossref_primary_10_1007_s12094_021_02771_x crossref_primary_10_1016_j_molcel_2019_09_030 crossref_primary_10_1016_j_drup_2025_101215 crossref_primary_10_1186_s12951_025_03171_x crossref_primary_10_1186_s12935_022_02805_6 crossref_primary_10_1016_j_bbcan_2021_188663 crossref_primary_10_1002_cdt3_146 crossref_primary_10_1038_s41388_020_01491_w crossref_primary_10_3389_fimmu_2024_1337478 crossref_primary_10_1016_j_bbadis_2024_167173 crossref_primary_10_1016_j_cmet_2024_04_018 crossref_primary_10_1007_s11427_021_2048_2 crossref_primary_10_1038_s41467_023_43650_z crossref_primary_10_3389_fimmu_2023_1230135 crossref_primary_10_1186_s12935_023_03062_x crossref_primary_10_3390_genes14020474 crossref_primary_10_1002_ange_202214053 crossref_primary_10_4110_in_2025_25_e11 crossref_primary_10_1016_j_bpj_2019_11_003 crossref_primary_10_1038_s41421_022_00515_x crossref_primary_10_1038_s41423_024_01166_6 crossref_primary_10_1186_s12943_023_01883_y crossref_primary_10_3390_molecules26010132 crossref_primary_10_3389_fonc_2020_568059 crossref_primary_10_1016_j_immuni_2020_11_010 crossref_primary_10_1038_s41388_021_01949_5 crossref_primary_10_1016_j_biopha_2022_114150 crossref_primary_10_1039_D4CC03146F crossref_primary_10_3724_abbs_2024085 crossref_primary_10_1007_s11626_023_00755_5 crossref_primary_10_1158_2159_8290_CD_21_0362 crossref_primary_10_1155_2020_5497015 crossref_primary_10_3389_fimmu_2021_661202 crossref_primary_10_1111_jcmm_18348 crossref_primary_10_1016_j_drup_2023_101037 crossref_primary_10_3390_polym14153013 crossref_primary_10_1111_bph_17432 crossref_primary_10_1016_j_bbcan_2024_189152 crossref_primary_10_1166_sam_2023_4470 crossref_primary_10_1186_s40164_024_00515_5 crossref_primary_10_1007_s12672_023_00790_4 crossref_primary_10_1016_j_trsl_2023_09_007 crossref_primary_10_1097_CJI_0000000000000439 crossref_primary_10_1158_0008_5472_CAN_23_0966 crossref_primary_10_1111_febs_16084 crossref_primary_10_1126_sciimmunol_adn1452 crossref_primary_10_3390_cancers12113129 crossref_primary_10_1007_s00432_024_05737_y crossref_primary_10_1038_s41419_022_05375_7 crossref_primary_10_1016_j_cellsig_2024_111039 crossref_primary_10_1002_anie_202117798 crossref_primary_10_1016_j_omtn_2022_04_030 crossref_primary_10_2147_JHC_S457682 crossref_primary_10_3724_abbs_2022011 crossref_primary_10_1016_j_nantod_2024_102186 crossref_primary_10_1002_advs_202206399 crossref_primary_10_3389_fimmu_2024_1392546 crossref_primary_10_1016_j_celrep_2022_111194 crossref_primary_10_1126_sciadv_adq7706 crossref_primary_10_1098_rsob_200411 crossref_primary_10_1016_j_canlet_2024_216861 crossref_primary_10_1126_sciadv_ado5914 crossref_primary_10_3389_fcell_2024_1413708 crossref_primary_10_3390_cells11233840 crossref_primary_10_1016_j_apsb_2020_11_005 crossref_primary_10_1007_s12274_022_5362_7 crossref_primary_10_1016_j_mcpro_2022_100193 crossref_primary_10_1038_s41467_023_42170_0 crossref_primary_10_1016_j_jphotobiol_2021_112355 crossref_primary_10_3390_nu16030396 crossref_primary_10_1038_s41392_020_00418_x crossref_primary_10_3389_fgene_2023_1149995 crossref_primary_10_1016_j_xcrm_2023_101357 crossref_primary_10_1038_s41467_024_49105_3 crossref_primary_10_1038_s41580_024_00700_8 crossref_primary_10_1093_jmcb_mjad070 crossref_primary_10_1002_ctm2_1300 crossref_primary_10_1016_j_heliyon_2024_e28600 crossref_primary_10_1038_s41392_022_01046_3 crossref_primary_10_1002_adhm_202304284 crossref_primary_10_3389_fimmu_2019_01337 crossref_primary_10_1073_pnas_2022261118 crossref_primary_10_3390_biomedicines9111702 crossref_primary_10_4049_jimmunol_2300241 crossref_primary_10_1038_s41419_024_07073_y crossref_primary_10_1038_s41577_023_00949_8 crossref_primary_10_1186_s40164_022_00297_8 crossref_primary_10_1016_j_addr_2020_07_013 crossref_primary_10_1002_adma_202006003 crossref_primary_10_1073_pnas_2215732120 crossref_primary_10_1128_jvi_01445_24 crossref_primary_10_4155_fmc_2021_0256 crossref_primary_10_3389_fimmu_2024_1383456 crossref_primary_10_1007_s12094_024_03835_4 crossref_primary_10_1186_s12967_023_04098_3 crossref_primary_10_1002_ange_202106195 crossref_primary_10_3390_cancers14020285 crossref_primary_10_1021_acsomega_4c09353 crossref_primary_10_3390_ijms20112823 crossref_primary_10_1186_s13045_020_01027_5 crossref_primary_10_1021_acsnano_9b07326 crossref_primary_10_1186_s13046_021_01987_7 crossref_primary_10_62347_MVRG3697 crossref_primary_10_1186_s13578_024_01227_3 crossref_primary_10_1002_mabi_202100075 crossref_primary_10_1038_s41420_024_02025_z crossref_primary_10_1083_jcb_202108083 crossref_primary_10_1002_1878_0261_13582 crossref_primary_10_1021_acs_langmuir_4c04441 crossref_primary_10_1038_s41422_020_0343_4 crossref_primary_10_1007_s00018_020_03635_3 crossref_primary_10_1016_j_cbpa_2021_07_002 crossref_primary_10_1016_j_biopha_2024_116257 crossref_primary_10_1016_j_cmet_2024_11_012 crossref_primary_10_1016_j_bpj_2022_06_021 crossref_primary_10_1016_j_ejphar_2024_176841 crossref_primary_10_1038_s41551_019_0383_6 crossref_primary_10_1016_j_cjtee_2023_11_003 crossref_primary_10_1080_14728222_2022_2077189 crossref_primary_10_1002_cam4_6275 crossref_primary_10_1038_s41467_024_51386_7 crossref_primary_10_1038_s41467_021_25416_7 crossref_primary_10_1038_s41467_021_25662_9 crossref_primary_10_1016_j_cllc_2022_07_010 crossref_primary_10_1016_j_jbc_2025_108406 crossref_primary_10_1016_j_cclet_2020_04_015 crossref_primary_10_1136_jitc_2022_005116 crossref_primary_10_1186_s12964_023_01366_z crossref_primary_10_1186_s13045_023_01498_2 crossref_primary_10_1021_acschembio_4c00110 crossref_primary_10_1016_j_coisb_2021_100401 crossref_primary_10_1158_0008_5472_CAN_23_2664 crossref_primary_10_1136_jitc_2021_002443 crossref_primary_10_1016_j_heliyon_2023_e19185 crossref_primary_10_1186_s13046_022_02273_w crossref_primary_10_3389_fimmu_2020_607442 crossref_primary_10_1016_j_biopha_2023_114567 crossref_primary_10_1007_s11426_019_9588_4 crossref_primary_10_1002_advs_202303175 crossref_primary_10_3390_cancers15235503 crossref_primary_10_1038_s41375_023_02130_5 crossref_primary_10_1093_neuonc_noac157 crossref_primary_10_1038_s42003_025_07897_0 crossref_primary_10_1128_mbio_02704_24 crossref_primary_10_1016_j_bbcan_2023_188996 crossref_primary_10_34133_research_0211 crossref_primary_10_1186_s12943_021_01447_y crossref_primary_10_1111_cas_16085 crossref_primary_10_1002_1878_0261_13308 crossref_primary_10_1016_j_jep_2024_118955 crossref_primary_10_1038_s41420_022_01286_w crossref_primary_10_1158_2326_6066_CIR_22_0953 crossref_primary_10_1038_s41401_021_00631_6 crossref_primary_10_1002_advs_202303715 crossref_primary_10_3389_fimmu_2023_1154146 crossref_primary_10_1088_1748_605X_ab9f57 crossref_primary_10_1111_bph_16054 crossref_primary_10_1016_j_critrevonc_2024_104588 crossref_primary_10_1080_09553002_2022_2063430 crossref_primary_10_1038_s41420_024_02184_z crossref_primary_10_1002_anie_202106195 crossref_primary_10_1038_s41587_023_02030_0 crossref_primary_10_1073_pnas_2412473122 crossref_primary_10_1007_s11684_023_1025_7 crossref_primary_10_1038_s41467_025_57099_9 crossref_primary_10_1016_j_biomaterials_2022_121841 crossref_primary_10_1111_febs_16665 crossref_primary_10_1038_s41392_021_00825_8 crossref_primary_10_1111_imm_13822 crossref_primary_10_1186_s12943_024_02023_w crossref_primary_10_1038_s41419_020_03140_2 crossref_primary_10_1016_j_biomaterials_2024_122851 crossref_primary_10_1038_s41568_024_00666_x crossref_primary_10_1186_s12951_021_00805_8 |
Cites_doi | 10.1016/j.ccell.2016.02.004 10.1080/2162402X.2017.1327494 10.1038/s41388-018-0303-3 10.1038/s41589-018-0161-x 10.1042/bj3430557 10.1016/j.ccell.2015.12.002 10.1073/pnas.1606719113 10.3389/fimmu.2018.01774 10.1002/eji.201040979 10.1186/s13045-016-0341-7 10.1038/ncomms12632 10.1093/protein/gzn039 10.1016/j.chembiol.2018.03.010 10.1056/NEJMe1701182 10.1371/journal.pone.0179529 10.1002/pro.3307 10.1016/j.celrep.2017.04.031 10.1016/j.cell.2017.09.028 10.1016/j.bpj.2014.11.004 10.4161/sgtp.2.2.15245 10.1038/s41586-018-0392-8 10.1038/modpathol.2017.86 10.1038/nri.2017.108 10.1038/nrm2084 10.1038/s41551-018-0231-0 10.1126/science.aac9935 10.1056/NEJMoa1200694 10.3389/fphar.2018.00536 10.1016/j.peptides.2016.11.011 10.1073/pnas.1620498114 10.1016/j.neo.2017.02.006 10.1021/acs.jproteome.5b00979 10.1038/ni.3868 10.1016/j.ccell.2016.10.010 10.1016/j.ccell.2018.01.009 10.1080/2162402X.2015.1008824 10.1016/j.molcel.2016.04.003 10.1038/nature25015 10.1038/nchembio.1392 10.1083/jcb.201008121 10.1038/s41551-018-0236-8 10.1038/nature23643 10.1016/j.celrep.2017.05.015 10.1371/journal.pmed.1002309 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2019 The Author(s), under exclusive licence to Springer Nature Limited 2019. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FE 8FG 8FH ABJCF AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ L6V LK8 M7P M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 |
DOI | 10.1038/s41551-019-0375-6 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database (Proquest) ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Biological Sciences Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Central Student MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2157-846X |
EndPage | 317 |
ExternalDocumentID | 30952982 10_1038_s41551_019_0375_6 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 53G AARCD AAYZH ABJCF ABJNI ABLJU ACBWK ACGFS AFANA AFKRA AFSHS AFWHJ AHSBF AIBTJ ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ATHPR AXYYD BBNVY BENPR BGLVJ BHPHI BKKNO CCPQU EBS EJD FSGXE FZEXT HCIFZ M7P M7S NFIDA NNMJJ O9- ODYON PHGZM PHGZT PQGLB PTHSS PUEGO RNT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FE 8FG 8FH AZQEC DWQXO GNUQQ L6V LK8 P62 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c372t-a511d1aaaf5cc07547a926b070cf762a936a1d0b46dd455d9f2c82f7193a2923 |
IEDL.DBID | BENPR |
ISSN | 2157-846X |
IngestDate | Fri Jul 11 01:43:27 EDT 2025 Wed Jul 16 16:16:09 EDT 2025 Thu Apr 03 07:05:05 EDT 2025 Sun Aug 31 08:57:43 EDT 2025 Thu Apr 24 22:58:56 EDT 2025 Sun Aug 31 08:58:32 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-a511d1aaaf5cc07547a926b070cf762a936a1d0b46dd455d9f2c82f7193a2923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6175-8072 0000-0001-9163-3898 |
PMID | 30952982 |
PQID | 2382033896 |
PQPubID | 4669717 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2204694996 proquest_journals_2382033896 pubmed_primary_30952982 crossref_citationtrail_10_1038_s41551_019_0375_6 crossref_primary_10_1038_s41551_019_0375_6 springer_journals_10_1038_s41551_019_0375_6 |
PublicationCentury | 2000 |
PublicationDate | 2019-04-01 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature biomedical engineering |
PublicationTitleAbbrev | Nat Biomed Eng |
PublicationTitleAlternate | Nat Biomed Eng |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Tukachinsky, Petrov, Watanabe, Salic (CR29) 2016; 113 Wolfle (CR13) 2011; 41 Taguchi, Misaki (CR26) 2011; 2 Runkle (CR27) 2016; 62 Garcia-Diaz (CR33) 2017; 19 Rodell (CR4) 2018; 2 Lim (CR16) 2016; 30 Brahmer (CR1) 2012; 366 Tang (CR11) 2016; 29 Ren (CR30) 2008; 21 Takeda (CR10) 2017; 19 Li (CR22) 2018; 33 Linder, Deschenes (CR35) 2007; 8 Sonpavde (CR2) 2017; 376 Mognol (CR17) 2017; 114 Chen (CR23) 2018; 560 Takahashi, Mayers, Wang, Edwardson, Audhya (CR38) 2015; 108 Wang (CR24) 2019; 15 Stringer, Piper (CR37) 2011; 192 Sharpe, Pauken (CR5) 2018; 18 Wang (CR21) 2017; 6 Thul, Lindskog (CR32) 2018; 27 Gao, Hannoush (CR28) 2014; 10 Weng, Kao, Huang, Lee (CR31) 2017; 12 Riaz (CR34) 2017; 171 Soragni (CR41) 2016; 29 Wang (CR39) 2019; 15 Casey (CR14) 2016; 352 Horita, Law, Hong, Middleton (CR36) 2017; 19 Zerdes, Matikas, Bergh, Rassidakis, Foukakis (CR7) 2018; 37 Chen (CR25) 2017; 30 Yao, Wang, Li, Fang, Xu (CR3) 2018; 9 Zhang (CR19) 2018; 553 Bellucci (CR12) 2015; 4 Tian (CR43) 2018; 2 Wang (CR18) 2018; 9 Li (CR20) 2016; 7 Yousefi-Salakdeh, Johansson, Stromberg (CR45) 1999; 343 Burr (CR6) 2017; 549 Maj (CR8) 2017; 18 Snyder (CR9) 2017; 14 Liang (CR42) 2018; 25 Bolhassani, Jafarzade, Mardani (CR40) 2017; 87 Bi (CR15) 2016; 9 Fang (CR44) 2016; 15 H Tukachinsky (375_CR29) 2016; 113 CW Li (375_CR20) 2016; 7 G Sonpavde (375_CR2) 2017; 376 PJ Thul (375_CR32) 2018; 27 H Wang (375_CR39) 2019; 15 H Wang (375_CR24) 2019; 15 ME Linder (375_CR35) 2007; 8 R Bellucci (375_CR12) 2015; 4 Y Takeda (375_CR10) 2017; 19 XW Bi (375_CR15) 2016; 9 A Bolhassani (375_CR40) 2017; 87 JR Brahmer (375_CR1) 2012; 366 X Tian (375_CR43) 2018; 2 G Chen (375_CR23) 2018; 560 H Tang (375_CR11) 2016; 29 GP Mognol (375_CR17) 2017; 114 A Soragni (375_CR41) 2016; 29 SC Casey (375_CR14) 2016; 352 J Ren (375_CR30) 2008; 21 DK Stringer (375_CR37) 2011; 192 H Yao (375_CR3) 2018; 9 L Liang (375_CR42) 2018; 25 A Snyder (375_CR9) 2017; 14 SO Lim (375_CR16) 2016; 30 AH Sharpe (375_CR5) 2018; 18 A Garcia-Diaz (375_CR33) 2017; 19 T Maj (375_CR8) 2017; 18 M Chen (375_CR25) 2017; 30 N Riaz (375_CR34) 2017; 171 H Takahashi (375_CR38) 2015; 108 Y Wang (375_CR18) 2018; 9 X Gao (375_CR28) 2014; 10 H Horita (375_CR36) 2017; 19 ML Burr (375_CR6) 2017; 549 I Zerdes (375_CR7) 2018; 37 T Taguchi (375_CR26) 2011; 2 H Wang (375_CR21) 2017; 6 SL Weng (375_CR31) 2017; 12 CW Li (375_CR22) 2018; 33 KB Runkle (375_CR27) 2016; 62 J Zhang (375_CR19) 2018; 553 C Fang (375_CR44) 2016; 15 SJ Wolfle (375_CR13) 2011; 41 CB Rodell (375_CR4) 2018; 2 E Yousefi-Salakdeh (375_CR45) 1999; 343 30976071 - Nat Biomed Eng. 2019 May;3(5):414 30952983 - Nat Biomed Eng. 2019 Apr;3(4):255-256 |
References_xml | – volume: 29 start-page: 285 year: 2016 end-page: 296 ident: CR11 article-title: Facilitating T cell infiltration in tumor microenvironment overcomes resistance to PD-L1 blockade publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.02.004 – volume: 6 start-page: e1327494 year: 2017 ident: CR21 article-title: PD-L2 expression in colorectal cancer: independent prognostic effect and targetability by deglycosylation publication-title: OncoImmunology doi: 10.1080/2162402X.2017.1327494 – volume: 37 start-page: 4639 year: 2018 end-page: 4661 ident: CR7 article-title: Genetic, transcriptional and post-translational regulation of the programmed death protein ligand 1 in cancer: biology and clinical correlations. publication-title: Oncogene doi: 10.1038/s41388-018-0303-3 – volume: 15 start-page: 42 year: 2019 end-page: 50 ident: CR24 article-title: HIP1R targets PD-L1 to lysosomal degradation to alter T cell-mediated cytotoxicity publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-018-0161-x – volume: 343 start-page: 557 year: 1999 end-page: 562 ident: CR45 article-title: A method for - and -palmitoylation of peptides: synthesis of pulmonary surfactant protein-C models publication-title: Biochem. J. doi: 10.1042/bj3430557 – volume: 29 start-page: 90 year: 2016 end-page: 103 ident: CR41 article-title: A designed inhibitor of p53 aggregation rescues p53 tumor suppression in ovarian carcinomas publication-title: Cancer Cell doi: 10.1016/j.ccell.2015.12.002 – volume: 113 start-page: E5866 year: 2016 end-page: E5875 ident: CR29 article-title: Mechanism of inhibition of the tumor suppressor Patched by Sonic Hedgehog publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1606719113 – volume: 9 start-page: 1774 year: 2018 ident: CR3 article-title: Cancer cell-intrinsic PD-1 and implications in combinatorial immunotherapy publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.01774 – volume: 41 start-page: 413 year: 2011 end-page: 424 ident: CR13 article-title: PD-L1 expression on tolerogenic APCs is controlled by STAT-3 publication-title: Eur. J. Immunol. doi: 10.1002/eji.201040979 – volume: 9 start-page: 109 year: 2016 ident: CR15 article-title: PD-L1 is upregulated by EBV-driven LMP1 through NF-κB pathway and correlates with poor prognosis in natural killer/T-cell lymphoma publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-016-0341-7 – volume: 7 year: 2016 ident: CR20 article-title: Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity publication-title: Nat. Commun. doi: 10.1038/ncomms12632 – volume: 21 start-page: 639 year: 2008 end-page: 644 ident: CR30 article-title: CSS-Palm 2.0: an updated software for palmitoylation sites prediction publication-title: Protein Eng. Des. Sel. doi: 10.1093/protein/gzn039 – volume: 25 start-page: 761 year: 2018 end-page: 774.e5 ident: CR42 article-title: A designed peptide targets two types of modifications of p53 with anti-cancer activity publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2018.03.010 – volume: 376 start-page: 1073 year: 2017 end-page: 1074 ident: CR2 article-title: PD-1 and PD-L1 inhibitors as salvage therapy for urothelial carcinoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMe1701182 – volume: 12 start-page: e0179529 year: 2017 ident: CR31 article-title: MDD-Palm: identification of protein -palmitoylation sites with substrate motifs based on maximal dependence decomposition publication-title: PLoS ONE doi: 10.1371/journal.pone.0179529 – volume: 27 start-page: 233 year: 2018 end-page: 244 ident: CR32 article-title: The human protein atlas: a spatial map of the human proteome publication-title: Protein Sci. doi: 10.1002/pro.3307 – volume: 19 start-page: 1189 year: 2017 end-page: 1201 ident: CR33 article-title: Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.04.031 – volume: 171 start-page: 934 year: 2017 end-page: 949 e915 ident: CR34 article-title: Tumor and microenvironment evolution during immunotherapy with nivolumab publication-title: Cell doi: 10.1016/j.cell.2017.09.028 – volume: 108 start-page: 76 year: 2015 end-page: 84 ident: CR38 article-title: Hrs and STAM function synergistically to bind ubiquitin-modified cargoes in vitro publication-title: Biophys. J. doi: 10.1016/j.bpj.2014.11.004 – volume: 2 start-page: 82 year: 2011 end-page: 84 ident: CR26 article-title: Palmitoylation pilots Ras to recycling endosomes publication-title: Small GTPases doi: 10.4161/sgtp.2.2.15245 – volume: 560 start-page: 382 year: 2018 end-page: 386 ident: CR23 article-title: Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response publication-title: Nature doi: 10.1038/s41586-018-0392-8 – volume: 30 start-page: 1516 year: 2017 end-page: 1526 ident: CR25 article-title: Development and validation of a novel clinical fluorescence in situ hybridization assay to detect JAK2 and PD-L1 amplification: a fluorescence in situ hybridization assay for JAK2 and PD-L1 amplification publication-title: Mod. Pathol. doi: 10.1038/modpathol.2017.86 – volume: 18 start-page: 153 year: 2018 end-page: 167 ident: CR5 article-title: The diverse functions of the PD1 inhibitory pathway publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2017.108 – volume: 8 start-page: 74 year: 2007 end-page: 84 ident: CR35 article-title: Palmitoylation: policing protein stability and traffic publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2084 – volume: 2 start-page: 443 year: 2018 end-page: 452 ident: CR43 article-title: Organ-specific metastases obtained by culturing colorectal cancer cells on tissue-specific decellularized scaffolds publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0231-0 – volume: 352 start-page: 227 year: 2016 end-page: 231 ident: CR14 article-title: MYC regulates the antitumor immune response through CD47 and PD-L1 publication-title: Science doi: 10.1126/science.aac9935 – volume: 366 start-page: 2455 year: 2012 end-page: 2465 ident: CR1 article-title: Safety and activity of anti-PD-L1 antibody in patients with advanced cancer publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1200694 – volume: 9 start-page: 536 year: 2018 ident: CR18 article-title: Regulation of PD-L1: emerging routes for targeting tumor immune evasion publication-title: Front. Pharmacol. doi: 10.3389/fphar.2018.00536 – volume: 87 start-page: 50 year: 2017 end-page: 63 ident: CR40 article-title: In vitro and in vivo delivery of therapeutic proteins using cell penetrating peptides publication-title: Peptides doi: 10.1016/j.peptides.2016.11.011 – volume: 114 start-page: E2776 year: 2017 end-page: E2785 ident: CR17 article-title: Exhaustion-associated regulatory regions in CD8 tumor-infiltrating T cells publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1620498114 – volume: 19 start-page: 346 year: 2017 end-page: 353 ident: CR36 article-title: Identifying regulatory posttranslational modifications of PD-L1: a focus on monoubiquitinaton publication-title: Neoplasia doi: 10.1016/j.neo.2017.02.006 – volume: 15 start-page: 956 year: 2016 end-page: 962 ident: CR44 article-title: Identification of palmitoylated transitional endoplasmic reticulum ATPase by proteomic technique and pan antipalmitoylation antibody publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.5b00979 – volume: 18 start-page: 1332 year: 2017 end-page: 1341 ident: CR8 article-title: Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor publication-title: Nat. Immunol. doi: 10.1038/ni.3868 – volume: 30 start-page: 925 year: 2016 end-page: 939 ident: CR16 article-title: Deubiquitination and stabilization of PD-L1 by CSN5 publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.10.010 – volume: 33 start-page: 187 year: 2018 end-page: 201.e10 ident: CR22 article-title: Eradication of triple-negative breast cancer cells by targeting glycosylated PD-L1 publication-title: Cancer Cell doi: 10.1016/j.ccell.2018.01.009 – volume: 4 start-page: e1008824 year: 2015 ident: CR12 article-title: Interferon-gamma-induced activation of JAK1 and JAK2 suppresses tumor cell susceptibility to NK cells through upregulation of PD-L1 expression publication-title: OncoImmunology doi: 10.1080/2162402X.2015.1008824 – volume: 62 start-page: 385 year: 2016 end-page: 396 ident: CR27 article-title: Inhibition of DHHC20-mediated EGFR palmitoylation creates a dependence on EGFR signaling publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.04.003 – volume: 553 start-page: 91 year: 2018 end-page: 95 ident: CR19 article-title: Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance publication-title: Nature doi: 10.1038/nature25015 – volume: 10 start-page: 61 year: 2014 end-page: 68 ident: CR28 article-title: Single-cell imaging of Wnt palmitoylation by the acyltransferase porcupine publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1392 – volume: 192 start-page: 229 year: 2011 end-page: 242 ident: CR37 article-title: A single ubiquitin is sufficient for cargo protein entry into MVBs in the absence of ESCRT ubiquitination publication-title: J. Cell Biol. doi: 10.1083/jcb.201008121 – volume: 2 start-page: 578 year: 2018 end-page: 588 ident: CR4 article-title: TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0236-8 – volume: 549 start-page: 101 year: 2017 end-page: 105 ident: CR6 article-title: CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity publication-title: Nature doi: 10.1038/nature23643 – volume: 19 start-page: 1874 year: 2017 end-page: 1887 ident: CR10 article-title: A TLR3-specific adjuvant relieves innate resistance to PD-L1 blockade without cytokine toxicity in tumor vaccine immunotherapy publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.05.015 – volume: 15 start-page: 42 year: 2019 end-page: 50 ident: CR39 article-title: HIP1R targets PD-L1 to lysosomal degradation to alter T cell-mediated cytotoxicity. publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-018-0161-x – volume: 14 start-page: e1002309 year: 2017 ident: CR9 article-title: Contribution of systemic and somatic factors to clinical response and resistance to PD-L1 blockade in urothelial cancer: an exploratory multi-omic analysis publication-title: PLoS Med. doi: 10.1371/journal.pmed.1002309 – volume: 171 start-page: 934 year: 2017 ident: 375_CR34 publication-title: Cell doi: 10.1016/j.cell.2017.09.028 – volume: 19 start-page: 1874 year: 2017 ident: 375_CR10 publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.05.015 – volume: 41 start-page: 413 year: 2011 ident: 375_CR13 publication-title: Eur. J. Immunol. doi: 10.1002/eji.201040979 – volume: 87 start-page: 50 year: 2017 ident: 375_CR40 publication-title: Peptides doi: 10.1016/j.peptides.2016.11.011 – volume: 25 start-page: 761 year: 2018 ident: 375_CR42 publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2018.03.010 – volume: 2 start-page: 443 year: 2018 ident: 375_CR43 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0231-0 – volume: 2 start-page: 82 year: 2011 ident: 375_CR26 publication-title: Small GTPases doi: 10.4161/sgtp.2.2.15245 – volume: 6 start-page: e1327494 year: 2017 ident: 375_CR21 publication-title: OncoImmunology doi: 10.1080/2162402X.2017.1327494 – volume: 376 start-page: 1073 year: 2017 ident: 375_CR2 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMe1701182 – volume: 30 start-page: 925 year: 2016 ident: 375_CR16 publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.10.010 – volume: 8 start-page: 74 year: 2007 ident: 375_CR35 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2084 – volume: 62 start-page: 385 year: 2016 ident: 375_CR27 publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.04.003 – volume: 343 start-page: 557 year: 1999 ident: 375_CR45 publication-title: Biochem. J. doi: 10.1042/bj3430557 – volume: 2 start-page: 578 year: 2018 ident: 375_CR4 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0236-8 – volume: 19 start-page: 1189 year: 2017 ident: 375_CR33 publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.04.031 – volume: 549 start-page: 101 year: 2017 ident: 375_CR6 publication-title: Nature doi: 10.1038/nature23643 – volume: 553 start-page: 91 year: 2018 ident: 375_CR19 publication-title: Nature doi: 10.1038/nature25015 – volume: 4 start-page: e1008824 year: 2015 ident: 375_CR12 publication-title: OncoImmunology doi: 10.1080/2162402X.2015.1008824 – volume: 29 start-page: 90 year: 2016 ident: 375_CR41 publication-title: Cancer Cell doi: 10.1016/j.ccell.2015.12.002 – volume: 15 start-page: 42 year: 2019 ident: 375_CR39 publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-018-0161-x – volume: 113 start-page: E5866 year: 2016 ident: 375_CR29 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1606719113 – volume: 29 start-page: 285 year: 2016 ident: 375_CR11 publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.02.004 – volume: 9 start-page: 109 year: 2016 ident: 375_CR15 publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-016-0341-7 – volume: 14 start-page: e1002309 year: 2017 ident: 375_CR9 publication-title: PLoS Med. doi: 10.1371/journal.pmed.1002309 – volume: 114 start-page: E2776 year: 2017 ident: 375_CR17 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1620498114 – volume: 560 start-page: 382 year: 2018 ident: 375_CR23 publication-title: Nature doi: 10.1038/s41586-018-0392-8 – volume: 366 start-page: 2455 year: 2012 ident: 375_CR1 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1200694 – volume: 27 start-page: 233 year: 2018 ident: 375_CR32 publication-title: Protein Sci. doi: 10.1002/pro.3307 – volume: 9 start-page: 1774 year: 2018 ident: 375_CR3 publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.01774 – volume: 33 start-page: 187 year: 2018 ident: 375_CR22 publication-title: Cancer Cell doi: 10.1016/j.ccell.2018.01.009 – volume: 37 start-page: 4639 year: 2018 ident: 375_CR7 publication-title: Oncogene doi: 10.1038/s41388-018-0303-3 – volume: 19 start-page: 346 year: 2017 ident: 375_CR36 publication-title: Neoplasia doi: 10.1016/j.neo.2017.02.006 – volume: 12 start-page: e0179529 year: 2017 ident: 375_CR31 publication-title: PLoS ONE doi: 10.1371/journal.pone.0179529 – volume: 352 start-page: 227 year: 2016 ident: 375_CR14 publication-title: Science doi: 10.1126/science.aac9935 – volume: 108 start-page: 76 year: 2015 ident: 375_CR38 publication-title: Biophys. J. doi: 10.1016/j.bpj.2014.11.004 – volume: 10 start-page: 61 year: 2014 ident: 375_CR28 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1392 – volume: 18 start-page: 1332 year: 2017 ident: 375_CR8 publication-title: Nat. Immunol. doi: 10.1038/ni.3868 – volume: 15 start-page: 42 year: 2019 ident: 375_CR24 publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-018-0161-x – volume: 7 year: 2016 ident: 375_CR20 publication-title: Nat. Commun. doi: 10.1038/ncomms12632 – volume: 192 start-page: 229 year: 2011 ident: 375_CR37 publication-title: J. Cell Biol. doi: 10.1083/jcb.201008121 – volume: 9 start-page: 536 year: 2018 ident: 375_CR18 publication-title: Front. Pharmacol. doi: 10.3389/fphar.2018.00536 – volume: 21 start-page: 639 year: 2008 ident: 375_CR30 publication-title: Protein Eng. Des. Sel. doi: 10.1093/protein/gzn039 – volume: 15 start-page: 956 year: 2016 ident: 375_CR44 publication-title: J. Proteome Res. doi: 10.1021/acs.jproteome.5b00979 – volume: 18 start-page: 153 year: 2018 ident: 375_CR5 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2017.108 – volume: 30 start-page: 1516 year: 2017 ident: 375_CR25 publication-title: Mod. Pathol. doi: 10.1038/modpathol.2017.86 – reference: 30976071 - Nat Biomed Eng. 2019 May;3(5):414 – reference: 30952983 - Nat Biomed Eng. 2019 Apr;3(4):255-256 |
SSID | ssj0001934975 |
Score | 2.5719755 |
Snippet | Checkpoint blockade therapy targeting the programmed-death ligand 1 (PD-L1) and its receptor programmed cell death 1 promotes T-cell-mediated... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 306 |
SubjectTerms | 45/70 45/77 45/91 631/154/555 631/250/251/1574 631/67/580 64/60 692/4017 692/4028/67/1059 82/1 82/29 96/106 96/31 96/35 96/95 Acyltransferase Acyltransferases - metabolism Animals Antibodies Apoptosis B7-H1 Antigen - metabolism Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedicine Cancer Cell death Cell Line, Tumor Cell membranes Cell surface Degradation Domains Humans Immune checkpoint Immune response Immune response (cell-mediated) Immunity Immunosurveillance Intracellular Ligands Lipids Lipoylation Lymphocytes T Lysosomes Lysosomes - metabolism Mice Neoplasms - immunology Palmitoylation Palmitoyltransferase PD-1 protein PD-L1 protein Peptides - metabolism T-Lymphocytes - immunology Tumors Ubiquitination |
Title | Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours |
URI | https://link.springer.com/article/10.1038/s41551-019-0375-6 https://www.ncbi.nlm.nih.gov/pubmed/30952982 https://www.proquest.com/docview/2382033896 https://www.proquest.com/docview/2204694996 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB6VcGkPCOgrJSBX6glkkdj7sE8Vr0CrFkUolbitZv0okWATssmh_77jfSRUqFx3_dKMZ-bzzNgD8EVHSDg68lz6uAozkkjl1nMt89TFTqLFcBv553Vy9Sv6fhvfNg63skmrbHVipajt1AQf-TGZFtGn85ROvs4eeagaFaKrTQmNDdgkFaxUBzZPL65HN2svi5aRTuM2nCnVcRksaDhBax7Kv_LkX4P0DGU-i5BWhme4DVsNYmQnNYt34JUrduHNk3cE38LoW3E3ySchg5mNzvmPAZvh_QPJ6p8604254i5wt2RjHjz1bBJuhTg2rxNk6Tv-xgkBRbZYPtB85TsYDy_GZ1e8KZXAjUzFgiPhJjtARB8bQyggSlGLJCd5Np7UHWqZ4MD28yixNopjq70wSviU6IOCMN576BTTwn0EZr3wuc4HAtFFJrEqFdg31F-htISlutBvyZWZ5hnxUM3iPqvC2VJlNYUzonAWKJwlXThcdZnVb2i81LjX8iBrxKnM1szvwufVbxKEQDMs3HRJbUQ46tPGozYfat6tZpMEJIVWogtHLTPXg_93KZ9eXsoevBbVNgppPD3oLOZLt08IZZEfwIYaXh40m_EveMHjpg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqcgAOiPJqoAUjwQVkNbG9Dx-qClFCQtOqhyD1Zs36QSO1m9BNhPqj-I_M7GYTUEVvve7a69XMeOaz58XYO6MBcbSOQsWkdjPilip8FEYVWUiCAg-UjXx8kg6-629nydkG-93mwlBYZasTa0Xtp47uyPfQtMgunqdMejD7KahrFHlX2xYajVgchetfeGSr9oeHyN_3Uva_jD8PxLKrgHAqk3MBCDF8DwBi4hwaTJ2BkWmBou8iagYwKoWe7xY69V4niTdRulzGDJEOSEN1DlDj39MKDTklpve_rq90jNImS1rfqcr3KjLXdFw3gnrNivRf63cD0t5wx9ZWrv-YPVrCU_6pkactthHKJ-zhX0ULn7LTYXk-KSYULs1PD8Wox2dwcYmK4boJq-OhPCdRqvhYkFuATygFJfCrJhoXn8MPmCAq5fPFJa5XPWPju6Dgc7ZZTsuwzbiPMham6EmAoF3q80xC1-H8HJRH4NZh3ZZc1i1rllPrjAtb-85VbhsKW6SwJQrbtMM-rKbMmoIdtw3eaXlgl3u3smtJ67C3q9e464hmUIbpAsdIuldAKccxLxrerVZTiFqlyWWHfWyZuf74f3_l5e2_8obdH4yPR3Y0PDl6xR7IWqQofmiHbc6vFmEXodG8eF0LJGf2jjfAH65kHSk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inhibiting+PD-L1+palmitoylation+enhances+T-cell+immune+responses+against+tumours&rft.jtitle=Nature+biomedical+engineering&rft.au=Yao%2C+Han&rft.au=Lan%2C+Jiang&rft.au=Li%2C+Chushu&rft.au=Shi%2C+Hubing&rft.date=2019-04-01&rft.issn=2157-846X&rft.eissn=2157-846X&rft.volume=3&rft.issue=4&rft.spage=306&rft_id=info:doi/10.1038%2Fs41551-019-0375-6&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2157-846X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2157-846X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2157-846X&client=summon |