Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation
•The dynamic recrystallization behavior of a typical nickel-based superalloy is investigated.•The segmented models are proposed to describe the kinetics of DRX for the studied superalloy.•The dynamically recrystallized grain size can be well characterized by a function of Z parameter. The dynamic re...
Saved in:
Published in | Materials in engineering Vol. 57; pp. 568 - 577 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The dynamic recrystallization behavior of a typical nickel-based superalloy is investigated.•The segmented models are proposed to describe the kinetics of DRX for the studied superalloy.•The dynamically recrystallized grain size can be well characterized by a function of Z parameter.
The dynamic recrystallization (DRX) behavior of a typical nickel-based superalloy is investigated by the hot compression tests. Based on the conventional DRX kinetics model, the volume fractions of DRX are firstly estimated. Results show that there is an obvious deviation between the experimental and predicted volume fractions of DRX when the forming temperature is below 980°C, which is induced by the slow dynamic recrystallization rate under low forming temperatures. Therefore, the segmented models are proposed to describe the kinetics of DRX for the studied superalloy. Comparisons between the experimental and predicted results indicate that the proposed segmented models can give an accurate and precise estimation of the volume fractions of DRX for the studied superalloy. In addition, the optical observation of the deformed microstructure confirms that the dynamically recrystallized grain size can be well characterized by a power function of Zener–Hollumon parameter. |
---|---|
AbstractList | •The dynamic recrystallization behavior of a typical nickel-based superalloy is investigated.•The segmented models are proposed to describe the kinetics of DRX for the studied superalloy.•The dynamically recrystallized grain size can be well characterized by a function of Z parameter.
The dynamic recrystallization (DRX) behavior of a typical nickel-based superalloy is investigated by the hot compression tests. Based on the conventional DRX kinetics model, the volume fractions of DRX are firstly estimated. Results show that there is an obvious deviation between the experimental and predicted volume fractions of DRX when the forming temperature is below 980°C, which is induced by the slow dynamic recrystallization rate under low forming temperatures. Therefore, the segmented models are proposed to describe the kinetics of DRX for the studied superalloy. Comparisons between the experimental and predicted results indicate that the proposed segmented models can give an accurate and precise estimation of the volume fractions of DRX for the studied superalloy. In addition, the optical observation of the deformed microstructure confirms that the dynamically recrystallized grain size can be well characterized by a power function of Zener–Hollumon parameter. |
Author | Wen, Dong-Xu Chen, Xiao-Min Zhang, Jin-Long He, Min Lin, Y.C. |
Author_xml | – sequence: 1 givenname: Xiao-Min surname: Chen fullname: Chen, Xiao-Min – sequence: 2 givenname: Y.C. surname: Lin fullname: Lin, Y.C. email: yclin@csu.edu.cn, linyongcheng@163.com – sequence: 3 givenname: Dong-Xu surname: Wen fullname: Wen, Dong-Xu – sequence: 4 givenname: Jin-Long surname: Zhang fullname: Zhang, Jin-Long – sequence: 5 givenname: Min surname: He fullname: He, Min |
BookMark | eNqFkD1PwzAQQD0UiRb4Bwz-Awm28-GEAQmVT6kSC6xYV_tCXZK4st1K4deTtkwMMN1wek93b0YmveuRkEvOUs54ebVOO4gGQyoYz1IuUibFhEyZKHmSsbI-JbMQ1oxxybmYkve7oYfOaupR-yFEaFv7BdG6ni5xBTvrPHUNBRqHjdXQ0t7qT2yTJQQ0NGw36EfEDdRsve0_6MpFarBxvjtIzslJA23Ai595Rt4e7l_nT8ni5fF5frtIdCZFTCBvUPBCoIS6yHUGDZM6zzBHhLKSaIxg467MAbGqq6JiFa-1hkojFlJidkauj17tXQgeG6VtPFwQPdhWcab2ddRaHeuofR3FhRrrjHD-C95424Ef_sNujhiOj-0sehW0xV6jsWPMqIyzfwu-AcmBiIs |
CitedBy_id | crossref_primary_10_1016_j_matdes_2015_06_093 crossref_primary_10_3390_ma12091455 crossref_primary_10_1016_j_mtcomm_2025_111995 crossref_primary_10_1016_j_surfcoat_2022_128766 crossref_primary_10_1016_S1003_6326_15_63796_7 crossref_primary_10_1016_j_jallcom_2018_06_269 crossref_primary_10_1016_j_jmapro_2024_07_045 crossref_primary_10_1016_j_mtcomm_2024_108059 crossref_primary_10_1007_s11665_024_09545_w crossref_primary_10_1002_adem_201800104 crossref_primary_10_1007_s11665_020_04619_x crossref_primary_10_1016_j_jmrt_2023_02_139 crossref_primary_10_1016_j_matchar_2018_09_036 crossref_primary_10_1080_2374068X_2015_1112153 crossref_primary_10_1134_S2075113321010305 crossref_primary_10_1016_j_dt_2017_11_002 crossref_primary_10_1016_j_msea_2014_12_016 crossref_primary_10_1016_j_jmrt_2024_03_206 crossref_primary_10_1016_j_jallcom_2016_03_186 crossref_primary_10_3139_146_111898 crossref_primary_10_1007_s42243_020_00462_5 crossref_primary_10_1016_j_msea_2016_09_088 crossref_primary_10_1061__ASCE_AS_1943_5525_0001168 crossref_primary_10_1016_j_jmrt_2023_02_141 crossref_primary_10_1007_s11661_023_07018_8 crossref_primary_10_1016_j_matdes_2015_04_004 crossref_primary_10_1002_adem_201800234 crossref_primary_10_1016_j_ast_2016_09_022 crossref_primary_10_1016_j_jallcom_2022_168628 crossref_primary_10_1007_s00170_021_08559_1 crossref_primary_10_1016_j_msea_2023_145997 crossref_primary_10_4028_www_scientific_net_MSF_993_237 crossref_primary_10_1007_s00170_018_2105_8 crossref_primary_10_1002_adem_201400223 crossref_primary_10_1016_S1875_5372_17_30172_8 crossref_primary_10_1016_j_mechmat_2019_103170 crossref_primary_10_1002_adem_202400081 crossref_primary_10_1016_j_jallcom_2017_03_240 crossref_primary_10_1016_j_mtcomm_2020_101329 crossref_primary_10_1007_s00339_016_0333_z crossref_primary_10_1016_j_jmrt_2023_09_266 crossref_primary_10_1080_14786435_2021_1961036 crossref_primary_10_1016_j_jallcom_2020_153735 crossref_primary_10_1016_j_jmrt_2023_09_028 crossref_primary_10_1016_j_matdes_2016_06_023 crossref_primary_10_1016_j_msea_2021_140894 crossref_primary_10_1007_s12540_022_01194_9 crossref_primary_10_1016_j_matchar_2024_114705 crossref_primary_10_1080_14786435_2023_2224090 crossref_primary_10_1177_09544062221076780 crossref_primary_10_3390_ma13040896 crossref_primary_10_1016_j_msea_2017_03_039 crossref_primary_10_1016_j_msea_2023_144655 crossref_primary_10_1016_S1003_6326_20_65414_0 crossref_primary_10_1016_j_jallcom_2022_165367 crossref_primary_10_1016_j_wear_2020_203208 crossref_primary_10_1016_j_jallcom_2017_11_327 crossref_primary_10_1016_j_jmrt_2020_03_107 crossref_primary_10_1016_j_jmrt_2024_12_001 crossref_primary_10_1016_j_scriptamat_2020_09_012 crossref_primary_10_1080_14786435_2021_1974113 crossref_primary_10_1016_j_triboint_2022_108070 crossref_primary_10_1016_j_msea_2019_06_016 crossref_primary_10_1016_j_jmrt_2023_04_194 crossref_primary_10_1007_s11665_022_06955_6 crossref_primary_10_1002_adem_202000098 crossref_primary_10_1016_j_rinp_2019_102426 crossref_primary_10_1515_htmp_2017_0096 crossref_primary_10_1088_2053_1591_ad33d8 crossref_primary_10_1016_j_jmrt_2022_01_121 crossref_primary_10_1016_j_matdes_2015_05_004 crossref_primary_10_1007_s12540_020_00687_9 crossref_primary_10_1051_mfreview_2023008 crossref_primary_10_1007_s11431_023_2562_9 crossref_primary_10_1016_j_matchar_2020_110486 crossref_primary_10_1016_j_msea_2016_10_058 crossref_primary_10_1007_s40195_018_0729_1 crossref_primary_10_1088_2053_1591_ad66b3 crossref_primary_10_1016_j_matchar_2024_113915 crossref_primary_10_1016_j_msea_2019_138516 crossref_primary_10_3390_met6070161 crossref_primary_10_1016_j_matchar_2015_10_007 crossref_primary_10_3390_coatings12101443 crossref_primary_10_1016_j_matdes_2014_10_020 crossref_primary_10_1016_j_jmrt_2021_05_019 crossref_primary_10_1002_adem_202400041 crossref_primary_10_1007_s11665_021_05589_4 crossref_primary_10_1016_j_matchemphys_2020_123675 crossref_primary_10_1016_j_jmrt_2023_02_100 crossref_primary_10_3390_met13101746 crossref_primary_10_1016_j_jmrt_2020_04_078 crossref_primary_10_1016_j_matchar_2022_112136 crossref_primary_10_1002_mawe_201800144 crossref_primary_10_1038_s41598_017_03770_1 crossref_primary_10_1088_1361_651X_aafc18 crossref_primary_10_1016_j_jallcom_2017_09_107 crossref_primary_10_1515_htmp_2016_0100 crossref_primary_10_1016_j_msea_2018_12_045 crossref_primary_10_1016_j_jmrt_2023_09_180 crossref_primary_10_3390_met12081281 crossref_primary_10_1007_s00170_019_04117_y crossref_primary_10_1007_s11661_018_4748_3 crossref_primary_10_1016_j_matchar_2022_112362 crossref_primary_10_1007_s40436_019_00259_0 crossref_primary_10_1016_j_matchar_2019_03_039 crossref_primary_10_1007_s11665_020_05057_5 crossref_primary_10_1088_1742_6596_2578_1_012039 crossref_primary_10_1016_j_colsurfa_2024_135188 crossref_primary_10_1016_j_matchar_2019_03_034 crossref_primary_10_1016_j_matchar_2020_110374 crossref_primary_10_1016_j_msea_2020_140326 crossref_primary_10_1016_j_jallcom_2021_160648 crossref_primary_10_1016_j_jallcom_2024_174224 crossref_primary_10_1007_s00170_017_1333_7 crossref_primary_10_1007_s11661_019_05620_3 crossref_primary_10_1016_j_jmrt_2024_11_124 crossref_primary_10_1016_j_jmrt_2024_11_123 crossref_primary_10_1016_j_matchar_2024_113803 crossref_primary_10_1016_j_proeng_2017_10_1108 crossref_primary_10_1080_2374068X_2020_1822056 crossref_primary_10_1007_s00339_019_2741_3 crossref_primary_10_3390_ma11071233 crossref_primary_10_1016_j_jmrt_2022_03_177 crossref_primary_10_1016_j_matdes_2014_09_062 crossref_primary_10_3390_ma14010111 crossref_primary_10_1016_j_jmrt_2023_12_019 crossref_primary_10_1016_j_msea_2023_144846 crossref_primary_10_1016_j_jallcom_2017_11_299 crossref_primary_10_1016_j_jmrt_2022_06_141 crossref_primary_10_1088_2053_1591_ab28d7 crossref_primary_10_1016_j_ijrmhm_2024_106776 crossref_primary_10_1002_adem_202301618 crossref_primary_10_1016_j_msea_2015_07_007 crossref_primary_10_1016_j_commatsci_2017_10_007 crossref_primary_10_1016_j_matdes_2015_06_123 crossref_primary_10_1016_S1003_6326_17_60082_7 crossref_primary_10_1016_j_jmrt_2023_12_001 crossref_primary_10_1007_s11665_015_1634_7 crossref_primary_10_1016_j_msea_2014_12_092 crossref_primary_10_1088_1361_651X_aa7f1d crossref_primary_10_3390_met12010090 crossref_primary_10_1007_s00170_023_12260_w crossref_primary_10_1007_s00170_022_09325_7 crossref_primary_10_1007_s42243_023_01160_8 crossref_primary_10_1016_j_msea_2022_143499 crossref_primary_10_1007_s12540_023_01482_y crossref_primary_10_1007_s11665_015_1756_y crossref_primary_10_1016_j_commatsci_2018_09_055 crossref_primary_10_1007_s11665_016_1967_x crossref_primary_10_1016_j_jallcom_2022_165755 crossref_primary_10_1016_j_jmrt_2022_06_044 crossref_primary_10_1520_MPC20190110 crossref_primary_10_1016_j_jmatprotec_2020_116879 crossref_primary_10_1007_s11665_022_07347_6 crossref_primary_10_1007_s11665_021_06561_y crossref_primary_10_1016_j_matchar_2023_113034 crossref_primary_10_1557_jmr_2016_159 crossref_primary_10_1016_j_jallcom_2014_12_270 crossref_primary_10_1016_j_msea_2018_01_109 crossref_primary_10_1007_s11661_019_05380_0 crossref_primary_10_3390_ma14092216 crossref_primary_10_1007_s12289_019_01486_3 crossref_primary_10_1016_j_jmrt_2023_03_206 crossref_primary_10_1016_j_jmrt_2023_03_204 crossref_primary_10_3390_ma17091965 crossref_primary_10_1016_j_jallcom_2017_01_356 crossref_primary_10_1016_j_matdes_2021_110195 crossref_primary_10_1016_j_intermet_2023_108116 crossref_primary_10_1016_j_jma_2021_08_027 crossref_primary_10_3390_ma15010007 crossref_primary_10_1016_j_msea_2021_141095 crossref_primary_10_1016_j_msea_2021_142062 crossref_primary_10_1016_j_optlastec_2023_110301 crossref_primary_10_1016_j_matchar_2023_113246 crossref_primary_10_1007_s11665_018_3707_x crossref_primary_10_1016_j_vacuum_2017_11_021 crossref_primary_10_1007_s40195_022_01393_8 crossref_primary_10_1080_14786435_2023_2246019 crossref_primary_10_3139_146_111965 crossref_primary_10_1016_j_matchar_2020_110529 crossref_primary_10_1007_s10853_020_04849_3 crossref_primary_10_1080_09603409_2020_1718332 crossref_primary_10_1016_j_jmrt_2020_02_059 crossref_primary_10_1016_j_jmrt_2023_07_150 crossref_primary_10_1016_j_matchar_2020_110766 crossref_primary_10_1016_j_promfg_2020_08_058 crossref_primary_10_1007_s11666_024_01910_4 crossref_primary_10_1016_j_matpr_2022_04_400 crossref_primary_10_1016_j_commatsci_2017_05_009 crossref_primary_10_1016_j_msea_2014_07_050 crossref_primary_10_1016_j_jmapro_2023_05_010 crossref_primary_10_1016_j_matdes_2014_05_011 crossref_primary_10_1016_j_matdes_2014_06_063 crossref_primary_10_1016_j_matdes_2014_06_064 crossref_primary_10_1016_j_jmrt_2023_05_257 crossref_primary_10_1080_14786435_2018_1493236 crossref_primary_10_1016_j_apm_2019_07_023 crossref_primary_10_1177_0954408917727214 crossref_primary_10_1007_s11661_018_5005_5 crossref_primary_10_1007_s11665_022_06869_3 crossref_primary_10_1016_j_jmapro_2023_07_079 crossref_primary_10_1007_s12540_023_01428_4 crossref_primary_10_1007_s40799_024_00747_4 crossref_primary_10_1515_htmp_2014_0231 crossref_primary_10_3390_cryst15020148 crossref_primary_10_1016_j_jmrt_2020_01_020 crossref_primary_10_1515_htmp_2022_0242 crossref_primary_10_1007_s11665_022_07229_x crossref_primary_10_1002_adem_201700960 crossref_primary_10_1016_j_matdes_2014_12_020 crossref_primary_10_1016_j_matdes_2016_09_007 crossref_primary_10_1016_j_jallcom_2015_07_213 crossref_primary_10_1002_adem_202100493 crossref_primary_10_1016_j_matdes_2015_08_035 crossref_primary_10_3390_met12091496 crossref_primary_10_1007_s11665_019_04488_z crossref_primary_10_1016_j_pnsc_2018_04_009 crossref_primary_10_3390_ma15010146 crossref_primary_10_1002_adem_202100015 crossref_primary_10_1016_j_jmrt_2023_04_204 crossref_primary_10_1007_s12598_025_03241_x crossref_primary_10_3390_ma16217056 crossref_primary_10_1007_s00170_017_0680_8 crossref_primary_10_1007_s10853_022_07192_x crossref_primary_10_1016_j_jallcom_2016_03_093 crossref_primary_10_1016_j_mtcomm_2022_104605 crossref_primary_10_1016_j_mtcomm_2024_109418 crossref_primary_10_1007_s11665_014_1310_3 crossref_primary_10_1016_j_jallcom_2017_03_029 crossref_primary_10_1002_adem_202101113 crossref_primary_10_1016_j_jmrt_2020_02_069 crossref_primary_10_1016_j_jallcom_2014_08_187 crossref_primary_10_1016_j_msea_2025_148103 crossref_primary_10_1557_jmr_2016_325 crossref_primary_10_1016_j_jmrt_2024_02_093 crossref_primary_10_1016_j_jallcom_2014_11_056 crossref_primary_10_1007_s11665_020_05291_x crossref_primary_10_3390_ma16051927 crossref_primary_10_1016_j_jmst_2023_06_040 crossref_primary_10_3390_ma11060972 crossref_primary_10_1016_j_matdes_2019_107584 crossref_primary_10_1016_j_jma_2014_11_007 crossref_primary_10_1016_j_msea_2020_139925 crossref_primary_10_1016_j_vacuum_2017_04_030 crossref_primary_10_1007_s00170_016_8360_7 crossref_primary_10_1016_j_jmrt_2023_07_196 crossref_primary_10_1016_j_matdes_2016_04_076 crossref_primary_10_1016_j_msea_2016_03_119 crossref_primary_10_1016_j_mtcomm_2022_103855 crossref_primary_10_1002_adem_201900892 crossref_primary_10_1016_j_matdes_2015_10_082 crossref_primary_10_1520_JTE20230310 crossref_primary_10_1007_s11665_016_2412_x crossref_primary_10_1016_j_jallcom_2015_04_008 crossref_primary_10_1016_j_mtcomm_2024_109958 crossref_primary_10_1016_j_msea_2019_138153 crossref_primary_10_1557_jmr_2017_259 crossref_primary_10_1016_j_matchar_2024_114359 crossref_primary_10_1016_j_jallcom_2018_02_039 crossref_primary_10_3390_met11010036 crossref_primary_10_3390_ma17112715 crossref_primary_10_3390_met11121939 crossref_primary_10_1016_j_vacuum_2018_06_059 crossref_primary_10_1016_j_jmst_2024_08_031 crossref_primary_10_1007_s11665_022_07210_8 crossref_primary_10_1016_j_mechmat_2024_105002 crossref_primary_10_1002_adem_202100571 crossref_primary_10_1557_jmr_2016_81 crossref_primary_10_1007_s11665_023_07955_w crossref_primary_10_1016_j_jallcom_2019_05_094 crossref_primary_10_2139_ssrn_4184172 crossref_primary_10_1016_j_matdes_2015_01_009 crossref_primary_10_1016_j_jallcom_2015_04_111 crossref_primary_10_1080_02670836_2022_2125201 crossref_primary_10_1016_j_intermet_2020_106921 crossref_primary_10_1007_s11665_016_2104_6 crossref_primary_10_1007_s12598_021_01932_9 crossref_primary_10_1007_s00339_016_0404_1 crossref_primary_10_1016_j_jmrt_2019_05_018 crossref_primary_10_1016_j_cja_2018_07_013 crossref_primary_10_1088_2053_1591_ab1a19 crossref_primary_10_1016_j_commatsci_2018_03_016 crossref_primary_10_1007_s43452_022_00452_2 crossref_primary_10_1016_j_vacuum_2021_110176 crossref_primary_10_1080_02670836_2022_2154934 crossref_primary_10_1002_adem_201900426 crossref_primary_10_1016_j_cja_2023_10_016 crossref_primary_10_1134_S0031918X21130159 crossref_primary_10_1007_s40195_023_01524_9 crossref_primary_10_1016_j_vacuum_2022_111799 crossref_primary_10_1016_j_jmst_2019_04_018 crossref_primary_10_1016_S1875_5372_18_30240_6 crossref_primary_10_1088_1757_899X_493_1_012065 crossref_primary_10_1016_j_msea_2016_03_133 crossref_primary_10_1016_j_jmatprotec_2018_06_039 crossref_primary_10_1007_s12540_023_01446_2 crossref_primary_10_1007_s11665_024_10023_6 crossref_primary_10_1016_j_jmrt_2022_04_060 crossref_primary_10_1016_j_commatsci_2016_05_016 crossref_primary_10_1016_j_commatsci_2019_05_015 crossref_primary_10_1016_j_matlet_2021_130837 crossref_primary_10_1016_j_jallcom_2023_169132 crossref_primary_10_1080_09500839_2020_1774933 crossref_primary_10_3390_met10060828 crossref_primary_10_1016_j_jallcom_2020_156507 crossref_primary_10_1016_j_jmrt_2023_06_195 crossref_primary_10_1051_mfreview_2017005 crossref_primary_10_1016_j_msea_2024_147123 crossref_primary_10_1016_j_msea_2022_142996 crossref_primary_10_1007_s00521_016_2635_7 crossref_primary_10_1016_j_mtcomm_2023_107674 crossref_primary_10_1080_02670836_2022_2081775 crossref_primary_10_1016_j_matdes_2014_08_045 crossref_primary_10_1007_s12540_019_00265_8 crossref_primary_10_1038_s41598_025_86348_6 crossref_primary_10_1155_2021_2809145 crossref_primary_10_1520_MPC20190004 crossref_primary_10_1007_s11665_015_1828_z crossref_primary_10_1007_s11665_016_2302_2 crossref_primary_10_1016_j_matchar_2017_10_023 crossref_primary_10_1016_j_vacuum_2019_06_013 crossref_primary_10_1016_j_matchar_2023_113061 crossref_primary_10_1007_s12613_019_1768_y crossref_primary_10_1016_j_msea_2014_10_031 crossref_primary_10_1007_s12540_017_6538_7 crossref_primary_10_1007_s11665_020_04798_7 crossref_primary_10_1016_j_pnsc_2015_01_007 crossref_primary_10_3390_ma14102478 crossref_primary_10_1016_j_jmatprotec_2024_118699 crossref_primary_10_1177_02670836251318581 crossref_primary_10_3390_cryst10040303 crossref_primary_10_1557_jmr_2015_78 crossref_primary_10_1016_j_ijfatigue_2019_105373 crossref_primary_10_1080_02670836_2022_2069332 crossref_primary_10_1016_j_jallcom_2019_152773 crossref_primary_10_3390_met9101127 crossref_primary_10_1007_s11665_017_2547_4 crossref_primary_10_1088_2631_8695_ad3149 crossref_primary_10_1007_s11665_019_04238_1 crossref_primary_10_1080_02670836_2017_1407566 crossref_primary_10_1007_s11665_018_3447_y crossref_primary_10_1016_j_jallcom_2019_05_054 crossref_primary_10_1016_j_jmst_2024_01_071 crossref_primary_10_3390_nano9040658 crossref_primary_10_1016_j_matpr_2022_06_425 crossref_primary_10_1016_j_jallcom_2020_154590 crossref_primary_10_1016_j_matchar_2024_114459 crossref_primary_10_3390_met12091407 crossref_primary_10_1515_htmp_2014_0173 crossref_primary_10_3390_met8100846 crossref_primary_10_1007_s13632_023_00926_6 crossref_primary_10_1016_j_matchar_2018_04_056 crossref_primary_10_1002_srin_202200358 crossref_primary_10_1002_adem_201901445 crossref_primary_10_1016_j_matchar_2020_110285 crossref_primary_10_1016_j_matdes_2017_06_004 crossref_primary_10_1016_j_jallcom_2019_152562 crossref_primary_10_1016_j_matchar_2022_112108 crossref_primary_10_1016_j_procir_2019_04_150 crossref_primary_10_1088_2053_1591_ab30ae crossref_primary_10_1007_s12666_021_02329_z crossref_primary_10_1002_adem_202200250 crossref_primary_10_1016_j_matdes_2015_12_077 crossref_primary_10_1590_1980_5373_mr_2024_0337 crossref_primary_10_1007_s40195_017_0613_4 crossref_primary_10_1016_j_mtcomm_2021_102861 crossref_primary_10_1016_j_jallcom_2021_159488 crossref_primary_10_1016_j_mechmat_2019_103218 crossref_primary_10_1016_j_vacuum_2016_12_022 crossref_primary_10_1115_1_4067326 crossref_primary_10_1016_j_matchar_2018_11_023 crossref_primary_10_1016_j_jmrt_2023_02_074 crossref_primary_10_1007_s00339_016_0129_1 crossref_primary_10_1016_j_ijthermalsci_2021_106914 crossref_primary_10_1007_s11661_018_4652_x crossref_primary_10_1016_j_mtcomm_2022_104199 crossref_primary_10_1016_j_mtcomm_2023_106574 crossref_primary_10_1016_j_msea_2017_07_023 crossref_primary_10_1016_S1003_6326_20_65248_7 crossref_primary_10_1088_1757_899X_130_1_012017 crossref_primary_10_1016_j_jallcom_2018_08_010 crossref_primary_10_1016_j_jallcom_2019_153301 crossref_primary_10_1016_j_msea_2016_07_070 crossref_primary_10_1007_s11665_015_1705_9 crossref_primary_10_1007_s12540_018_0093_8 crossref_primary_10_1016_j_jallcom_2015_03_144 crossref_primary_10_1016_j_jallcom_2023_170837 crossref_primary_10_1016_j_jmrt_2021_07_102 crossref_primary_10_1016_j_intermet_2021_107344 crossref_primary_10_1016_j_promfg_2018_07_230 crossref_primary_10_3390_met12020223 crossref_primary_10_1016_j_intermet_2022_107524 crossref_primary_10_1088_2053_1591_aac35d crossref_primary_10_1016_j_msea_2024_146500 crossref_primary_10_3390_ma17092015 crossref_primary_10_1007_s11665_017_2701_z crossref_primary_10_1016_j_jmrt_2024_03_131 crossref_primary_10_1016_j_msea_2020_139051 crossref_primary_10_2139_ssrn_4062797 crossref_primary_10_1016_j_ijfatigue_2024_108727 crossref_primary_10_1515_htmp_2021_0010 crossref_primary_10_1016_j_matchar_2022_112429 crossref_primary_10_1016_j_msea_2018_12_102 crossref_primary_10_1002_adem_201900558 crossref_primary_10_1007_s11665_021_05780_7 crossref_primary_10_1016_j_jmrt_2024_04_069 crossref_primary_10_1016_j_matdes_2015_03_001 crossref_primary_10_1016_j_vacuum_2017_09_041 crossref_primary_10_1016_j_jallcom_2023_170533 crossref_primary_10_1016_j_jmrt_2022_09_047 crossref_primary_10_1016_j_rinp_2018_12_046 crossref_primary_10_1115_1_4037660 crossref_primary_10_1007_s11665_021_05957_0 crossref_primary_10_1016_j_jallcom_2017_07_027 crossref_primary_10_1016_j_vacuum_2017_01_028 crossref_primary_10_1007_s11665_021_05660_0 crossref_primary_10_1016_j_matdes_2014_02_041 crossref_primary_10_1520_MPC20190095 crossref_primary_10_1007_s11665_015_1473_6 crossref_primary_10_1016_j_matdes_2016_05_013 crossref_primary_10_1007_s11595_022_2503_5 crossref_primary_10_1007_s11665_022_07267_5 crossref_primary_10_1007_s11665_018_3527_z crossref_primary_10_1016_j_matdes_2019_108122 crossref_primary_10_1007_s11665_015_1617_8 crossref_primary_10_1007_s00339_016_0248_8 crossref_primary_10_1007_s11665_021_06327_6 crossref_primary_10_1016_j_matdes_2018_09_048 crossref_primary_10_1016_j_jallcom_2018_09_263 crossref_primary_10_1002_srin_201700565 crossref_primary_10_1016_j_rinp_2019_102593 crossref_primary_10_3390_met14111245 crossref_primary_10_1007_s11665_020_05258_y crossref_primary_10_1134_S1063778816130068 crossref_primary_10_1016_j_jmrt_2020_10_101 crossref_primary_10_1016_j_jallcom_2017_09_067 crossref_primary_10_3390_ma17030732 crossref_primary_10_1134_S0031918X21140155 crossref_primary_10_1007_s11661_018_4707_z crossref_primary_10_1016_j_jallcom_2020_154988 crossref_primary_10_1016_j_matdes_2016_05_033 crossref_primary_10_3390_ma11061044 crossref_primary_10_1007_s12598_016_0761_0 crossref_primary_10_1080_01495739_2024_2428941 crossref_primary_10_1016_j_msea_2014_01_029 crossref_primary_10_1016_j_rinp_2019_102340 crossref_primary_10_1590_1980_5373_mr_2020_0264 crossref_primary_10_1016_j_matchar_2018_10_031 crossref_primary_10_3390_ma15093161 crossref_primary_10_1016_j_ijmecsci_2024_109749 crossref_primary_10_1016_j_matchar_2019_109915 crossref_primary_10_1016_j_vacuum_2018_02_034 crossref_primary_10_1016_j_vacuum_2019_04_041 crossref_primary_10_1088_2053_1591_ab89d8 crossref_primary_10_1016_j_jallcom_2025_179813 crossref_primary_10_1016_j_msea_2017_05_109 crossref_primary_10_1177_1464420720977551 crossref_primary_10_1007_s11665_024_10151_z crossref_primary_10_1016_j_jallcom_2022_164909 |
Cites_doi | 10.1016/j.msea.2011.09.032 10.1016/j.matdes.2013.10.071 10.1007/s12666-010-0006-0 10.1016/j.matdes.2010.11.048 10.1007/s12540-010-1024-5 10.1016/j.matdes.2010.05.052 10.1016/j.matdes.2010.07.040 10.1016/j.msea.2007.09.008 10.1016/j.mechrescom.2007.10.002 10.1016/j.jnucmat.2012.07.020 10.7449/2008/Superalloys_2008_855_861 10.1016/j.commatsci.2010.06.021 10.1007/s11661-010-0517-7 10.1016/j.msea.2012.06.084 10.1007/s11661-011-1015-2 10.1016/j.msea.2013.03.011 10.1016/j.msea.2011.05.081 10.1016/S1005-0302(11)60164-3 10.1007/BF02667368 10.1016/j.msea.2011.01.013 10.1016/j.msea.2012.02.035 10.1016/j.msea.2012.11.116 10.1016/j.jmatprotec.2007.11.113 10.1007/s10853-006-0483-z 10.1063/1.1707363 10.1016/j.matdes.2010.12.014 10.1016/j.msea.2013.07.083 10.1007/s10853-011-5564-y 10.1016/j.matlet.2007.11.032 10.1016/j.actamat.2009.02.033 10.1007/s11665-007-9098-z 10.1016/j.msea.2012.07.054 10.1016/j.commatsci.2011.11.031 10.1016/j.msea.2011.03.008 10.1016/j.matdes.2012.12.074 10.1016/j.matchar.2011.06.004 10.1016/S1006-706X(13)60203-4 10.1016/j.msea.2013.09.049 10.1016/j.jmatprotec.2008.05.047 10.1016/j.commatsci.2008.03.010 10.1080/14786430801989799 10.1007/s11665-013-0496-0 10.1179/030634583790421032 10.1080/10426914.2012.675535 10.1016/j.commatsci.2008.03.027 10.1016/j.msea.2011.02.051 10.1016/j.msea.2012.04.010 10.1016/j.msea.2012.01.121 10.1016/S0022-3115(00)00723-6 10.1016/j.msea.2011.03.039 10.1016/j.jnucmat.2011.05.029 10.1007/s12613-013-0820-6 10.1016/j.commatsci.2011.09.026 10.1016/j.msea.2006.02.415 10.1016/j.commatsci.2013.11.003 10.1016/j.matchar.2009.10.003 10.1016/j.matdes.2013.10.042 10.1016/j.matchar.2006.09.004 10.1007/s11595-013-0775-5 10.1016/j.commatsci.2007.08.011 10.1016/j.msea.2012.04.063 10.1016/j.msea.2011.02.090 10.2355/isijinternational.44.1581 10.1016/j.matdes.2013.05.030 10.1007/BF01605090 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd |
Copyright_xml | – notice: 2014 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.matdes.2013.12.072 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 577 |
ExternalDocumentID | 10_1016_j_matdes_2013_12_072 S0261306914000107 |
GroupedDBID | -~X 4G. 5VS 7-5 8P~ 9JN AABNK AACTN AAEDT AAEDW AAEPC AAKOC AALRI AAOAW AAQXK AAXUO ABEFU ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACNNM ACRLP ADMUD ADTZH AEBSH AECPX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR AZFZN BKOJK BLXMC EFJIC EO8 EO9 EP2 EP3 FDB FGOYB FIRID FYGXN G-2 IHE J1W M24 M41 OAUVE Q38 R2- ROL SDF SMS SPC SSM SST SSZ T5K AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU CITATION SSH |
ID | FETCH-LOGICAL-c372t-a4fe2152e7a954c3af07c43e4eea687edd20e7a64aee898580819cca8cee577e3 |
IEDL.DBID | AIKHN |
ISSN | 0261-3069 |
IngestDate | Tue Jul 01 04:23:12 EDT 2025 Thu Apr 24 22:57:46 EDT 2025 Fri Feb 23 02:25:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Grain size Nickel-based superalloy Dynamic recrystallization Microstructure |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-a4fe2152e7a954c3af07c43e4eea687edd20e7a64aee898580819cca8cee577e3 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1016_j_matdes_2013_12_072 crossref_primary_10_1016_j_matdes_2013_12_072 elsevier_sciencedirect_doi_10_1016_j_matdes_2013_12_072 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-05-01 |
PublicationDateYYYYMMDD | 2014-05-01 |
PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Materials in engineering |
PublicationYear | 2014 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zeng, Chen, Zhu, Liu (b0135) 2011; 27 Meshkat, Serajzadeh (b0060) 2013; 28 Changizian, Zarei-Hanzaki, Abedi (b0165) 2012; 558 Wu, Li, Ma (b0130) 2012; 542 Lin, Chen, Zhong (b0025) 2008; 42 Wang, Shao, Zhen, Zhang (b0325) 2011; 528 Wu, Liu, Hu, Wang, Zhang, Tao (b0300) 2011; 528 Guo, Li, Guo, Peng, Hu (b0240) 2011; 414 Kai, Liu, Hu, Li, Zhang, Tao (b0280) 2011; 32 Fan, Yang, Gao (b0035) 2011; 46 Ji, Li, Li (b0150) 2013; 586 Xu, Zhu, Tang, Sun (b0160) 2013; 28 Sarkar, Marchattiwar, Chakravartty, Kashyap (b0185) 2012; 432 Liu, Li, Luo (b0195) 2013; 574 Quan, Mao, Li, Lv, Wang, Zhou (b0190) 2012; 55 Zhang, Zhang, Cheng, Li (b0330) 2010; 61 Shankar, Bhanu Sankara Rao, Mannan (b0230) 2001; 288 Mandal, Bhaduri, Sarma (b0105) 2012; 43 Ning, Fu, Chen (b0265) 2012; 540 Haghdadi, Zarei-Hanzaki, Abedi, Sabokpa (b0215) 2012; 549 Chen, Lin, Ma (b0080) 2012; 556 Quan, Li, Chen, Wang, Zhang, Zhou (b0085) 2011; 528 Mirzaee, Keshmiri, Ebrahimi, Momeni (b0205) 2012; 551 Wang, Liu, Zuo, Chen (b0125) 2013; 47 Cotterill, Mould (b0305) 1976 Yeom, Lee, Kim, Park (b0285) 2007; 449 Liu, Liu, H, Li (b0040) 2013; 565 Ning, Yao, Lei, Guo, Fu (b0260) 2011; 62 Sellars (b0310) 1985; 35 Zener, Hollomon (b0320) 1944; 15 Lin, Deng, Jiang, Wen, Liu (b0275) 2014; 55 Lin, Chen, Wen, Chen (b0270) 2014; 83 Yin, Hua, Mao, Han, Qian, Zhang (b0115) 2014; 55 Nalawade, Sundararaman, Singh, Verma, Kishore (b0220) 2010; 63 Lin, Chen, Zhong (b0050) 2008; 44 Lin, Chen, Zhong (b0065) 2008; 205 Sun, Liu, Yang (b0015) 2011; 528 Salehi, Serajzadeh (b0055) 2012; 53 Liu, Cui, Ruan (b0170) 2011; 529 Stewart, Jonas, Montheillet (b0175) 2004; 44 Cai, Xiong, Liu, Sun, Yao (b0255) 2007; 58 Chaturvedi, Han (b0225) 1983; 17 Lin, Chen, Zhong (b0045) 2009; 209 Salehi, Serajzadeh (b0010) 2010; 49 Momeni, Kazemi, Bahrani (b0020) 2013; 20 Mandal, Sivaprasad, Dube (b0095) 2007; 16 Wang, Shao, Zhen, Zhang (b0245) 2008; 486 Chen, Cui, Chen (b0030) 2011; 528 Li, Guo, Guo, Peng, Wu (b0235) 2011; 32 Momeni, Dehghani (b0090) 2010; 16 Wen, Lin, Li, Chen, Deng, Li (b0250) 2014; 591 Huber D, Stotter C, Sommitsch C, Mitsche S, Poelt P, Buchmayr B, Stockinger M. Microstructure modeling of the dynamic recrystallization kinetic during turbine disc forging of the nickel based superalloy Allvac 718 Plus™. In: Proc 11th Int Sym Superalloys; 2008. p. 855–61. Quan, Mao, Luo, Liang, Wu, Zhou (b0200) 2013; 52 Huang D, Wu WT, Lambert D, Semiatin SL. Computer simulation of microstructure evolution during hot forging of Waspaloy and nickel alloy 718. In: Proc Microstr Model Predict Thermomech, Indianapolis, MMMS; 2001. p. 137–46. Ebrahimi, Keshmiri, Momeni, Mazinani (b0110) 2011; 528 Lin, Chen, Zhong (b0145) 2008; 43 Lin, Chen, Zhong (b0120) 2008; 35 Lin, Chen (b0005) 2011; 32 Mandal, Bhaduri, Sarma (b0070) 2011; 42 Laasraoui, Jonas (b0315) 1991; 22 Mandal, Mishra, Kumar, Samajdar, Sivaprasad, Jayakumar (b0100) 2008; 88 Huang, Langdon (b0335) 2007; 42 Lin, Chen, Zhong (b0140) 2008; 62 Li, Wu, Zhang, Li (b0210) 2013; 20 Mirzadeh, Najafizadeh (b0155) 2010; 31 Marchattiwar, Sarkar, Chakravartty, Kashyap (b0180) 2013; 22 Jonas, Quelennec, Jiang, Martin (b0075) 2009; 57 Quan (10.1016/j.matdes.2013.12.072_b0085) 2011; 528 Ning (10.1016/j.matdes.2013.12.072_b0265) 2012; 540 Kai (10.1016/j.matdes.2013.12.072_b0280) 2011; 32 Lin (10.1016/j.matdes.2013.12.072_b0065) 2008; 205 Xu (10.1016/j.matdes.2013.12.072_b0160) 2013; 28 Momeni (10.1016/j.matdes.2013.12.072_b0090) 2010; 16 Sarkar (10.1016/j.matdes.2013.12.072_b0185) 2012; 432 Meshkat (10.1016/j.matdes.2013.12.072_b0060) 2013; 28 Wang (10.1016/j.matdes.2013.12.072_b0125) 2013; 47 Lin (10.1016/j.matdes.2013.12.072_b0045) 2009; 209 Momeni (10.1016/j.matdes.2013.12.072_b0020) 2013; 20 Salehi (10.1016/j.matdes.2013.12.072_b0055) 2012; 53 Mirzadeh (10.1016/j.matdes.2013.12.072_b0155) 2010; 31 Wang (10.1016/j.matdes.2013.12.072_b0245) 2008; 486 10.1016/j.matdes.2013.12.072_b0295 Li (10.1016/j.matdes.2013.12.072_b0210) 2013; 20 Liu (10.1016/j.matdes.2013.12.072_b0040) 2013; 565 Liu (10.1016/j.matdes.2013.12.072_b0195) 2013; 574 Haghdadi (10.1016/j.matdes.2013.12.072_b0215) 2012; 549 Nalawade (10.1016/j.matdes.2013.12.072_b0220) 2010; 63 Lin (10.1016/j.matdes.2013.12.072_b0025) 2008; 42 Cai (10.1016/j.matdes.2013.12.072_b0255) 2007; 58 Yeom (10.1016/j.matdes.2013.12.072_b0285) 2007; 449 Lin (10.1016/j.matdes.2013.12.072_b0050) 2008; 44 10.1016/j.matdes.2013.12.072_b0290 Cotterill (10.1016/j.matdes.2013.12.072_b0305) 1976 Guo (10.1016/j.matdes.2013.12.072_b0240) 2011; 414 Chaturvedi (10.1016/j.matdes.2013.12.072_b0225) 1983; 17 Mirzaee (10.1016/j.matdes.2013.12.072_b0205) 2012; 551 Fan (10.1016/j.matdes.2013.12.072_b0035) 2011; 46 Wu (10.1016/j.matdes.2013.12.072_b0130) 2012; 542 Sun (10.1016/j.matdes.2013.12.072_b0015) 2011; 528 Li (10.1016/j.matdes.2013.12.072_b0235) 2011; 32 Wen (10.1016/j.matdes.2013.12.072_b0250) 2014; 591 Shankar (10.1016/j.matdes.2013.12.072_b0230) 2001; 288 Ning (10.1016/j.matdes.2013.12.072_b0260) 2011; 62 Mandal (10.1016/j.matdes.2013.12.072_b0105) 2012; 43 Lin (10.1016/j.matdes.2013.12.072_b0275) 2014; 55 Mandal (10.1016/j.matdes.2013.12.072_b0070) 2011; 42 Changizian (10.1016/j.matdes.2013.12.072_b0165) 2012; 558 Zeng (10.1016/j.matdes.2013.12.072_b0135) 2011; 27 Ebrahimi (10.1016/j.matdes.2013.12.072_b0110) 2011; 528 Liu (10.1016/j.matdes.2013.12.072_b0170) 2011; 529 Marchattiwar (10.1016/j.matdes.2013.12.072_b0180) 2013; 22 Chen (10.1016/j.matdes.2013.12.072_b0080) 2012; 556 Mandal (10.1016/j.matdes.2013.12.072_b0095) 2007; 16 Wu (10.1016/j.matdes.2013.12.072_b0300) 2011; 528 Zhang (10.1016/j.matdes.2013.12.072_b0330) 2010; 61 Salehi (10.1016/j.matdes.2013.12.072_b0010) 2010; 49 Ji (10.1016/j.matdes.2013.12.072_b0150) 2013; 586 Chen (10.1016/j.matdes.2013.12.072_b0030) 2011; 528 Lin (10.1016/j.matdes.2013.12.072_b0120) 2008; 35 Lin (10.1016/j.matdes.2013.12.072_b0005) 2011; 32 Jonas (10.1016/j.matdes.2013.12.072_b0075) 2009; 57 Laasraoui (10.1016/j.matdes.2013.12.072_b0315) 1991; 22 Zener (10.1016/j.matdes.2013.12.072_b0320) 1944; 15 Wang (10.1016/j.matdes.2013.12.072_b0325) 2011; 528 Lin (10.1016/j.matdes.2013.12.072_b0140) 2008; 62 Lin (10.1016/j.matdes.2013.12.072_b0145) 2008; 43 Sellars (10.1016/j.matdes.2013.12.072_b0310) 1985; 35 Huang (10.1016/j.matdes.2013.12.072_b0335) 2007; 42 Yin (10.1016/j.matdes.2013.12.072_b0115) 2014; 55 Mandal (10.1016/j.matdes.2013.12.072_b0100) 2008; 88 Quan (10.1016/j.matdes.2013.12.072_b0190) 2012; 55 Stewart (10.1016/j.matdes.2013.12.072_b0175) 2004; 44 Quan (10.1016/j.matdes.2013.12.072_b0200) 2013; 52 Lin (10.1016/j.matdes.2013.12.072_b0270) 2014; 83 |
References_xml | – volume: 528 start-page: 5073 year: 2011 end-page: 5080 ident: b0030 article-title: Recrystallization of 30Cr2Ni4MoV ultra-super-critical rotor steel during hot deformation. Part I: Dynamic recrystallization publication-title: Mater Sci Eng A – volume: 551 start-page: 25 year: 2012 end-page: 31 ident: b0205 article-title: Dynamic recrystallization and precipitation in low carbon low alloy steel 26NiCrMoV 14-5 publication-title: Mater Sci Eng A – volume: 32 start-page: 1872 year: 2011 end-page: 1879 ident: b0280 article-title: Hot compressive deformation behavior of a new hot isostatically pressed Ni–Cr–Co based powder metallurgy superalloy publication-title: Mater Des – volume: 556 start-page: 260 year: 2012 end-page: 266 ident: b0080 article-title: The kinetics of dynamic recrystallization of 42CrMo steel publication-title: Mater Sci Eng A – volume: 35 start-page: 142 year: 2008 end-page: 150 ident: b0120 article-title: Prediction of 42CrMo steel flow stress at high temperature and strain rate publication-title: Mech Res Commun – volume: 528 start-page: 4620 year: 2011 end-page: 4629 ident: b0300 article-title: Effect of processing parameters on hot compressive deformation behavior of a new Ni–Cr–Co based P/M superalloy publication-title: Mater Sci Eng A – volume: 432 start-page: 9 year: 2012 end-page: 15 ident: b0185 article-title: Kinetics of dynamic recrystallization in Ti-modified 15Cr–15Ni–2Mo austenitic stainless steel publication-title: J Nucl Mater – volume: 558 start-page: 44 year: 2012 end-page: 51 ident: b0165 article-title: On the recrystallization behavior of homogenized AZ81 magnesium alloy: the effect of mechanical twins and publication-title: Mater Sci Eng A – volume: 288 start-page: 222 year: 2001 end-page: 232 ident: b0230 article-title: Microstructure and mechanical properties of Inconel 625 superalloy publication-title: J Nucl Mater – volume: 58 start-page: 941 year: 2007 end-page: 946 ident: b0255 article-title: Development of processing maps for a Ni-based superalloy publication-title: Mater Charact – volume: 22 start-page: 2168 year: 2013 end-page: 2175 ident: b0180 article-title: Dynamic recrystallization during hot deformation of 304 austenitic stainless steel publication-title: J Mater Eng Perform – volume: 32 start-page: 1733 year: 2011 end-page: 1759 ident: b0005 article-title: A critical review of experimental results and constitutive descriptions for metals and alloys in hot working publication-title: Mater Des – volume: 62 start-page: 2132 year: 2008 end-page: 2135 ident: b0140 article-title: Microstructural evolution in 42CrMo steel during compression at elevated temperatures publication-title: Mater Lett – volume: 55 start-page: 949 year: 2014 end-page: 957 ident: b0275 article-title: Hot tensile deformation and fracture characteristics of a typical Ni-based superalloy at elevated temperature publication-title: Mater Des – volume: 52 start-page: 98 year: 2013 end-page: 107 ident: b0200 article-title: Constitutive modeling for the dynamic recrystallization kinetics of as-extruded 3Cr20Ni10W2 heat-resistant alloy based on stress–strain data publication-title: Mater Des – volume: 88 start-page: 883 year: 2008 end-page: 897 ident: b0100 article-title: Evolution and characterization of dynamically recrystallized microstructure in a titanium-modified austenitic stainless steel using ultrasonic and EBSD techniques publication-title: Philos Mag – volume: 28 start-page: 236 year: 2013 end-page: 241 ident: b0060 article-title: A study on non-isothermal static recrystallization during hot rolling of carbon steels publication-title: Mater Manuf Process – volume: 61 start-page: 49 year: 2010 end-page: 53 ident: b0330 article-title: Deformation characteristics of publication-title: Mater Charact – volume: 414 start-page: 440 year: 2011 end-page: 450 ident: b0240 article-title: The effect of deformation temperature on the microstructure evolution of Inconel 625 superalloy publication-title: J Nucl Mater – volume: 53 start-page: 145 year: 2012 end-page: 152 ident: b0055 article-title: Simulation of static recrystallization in non-isothermal annealing using a coupled cellular automata and finite element model publication-title: Comp Mater Sci – volume: 20 start-page: 98 year: 2013 end-page: 104 ident: b0210 article-title: Dynamic recrystallization of hot deformed 3Cr2NiMnMo steel: modeling and numerical simulation publication-title: J Iron Steel Res Int – volume: 22 start-page: 1545 year: 1991 end-page: 1558 ident: b0315 article-title: Prediction of steel flow stresses at high temperatures and strain rates publication-title: Metall Trans A – volume: 42 start-page: 421 year: 2007 end-page: 427 ident: b0335 article-title: The evolution of delta-phase in a superplastic Inconel 718 alloy publication-title: J Mater Sci – volume: 31 start-page: 4577 year: 2010 end-page: 4583 ident: b0155 article-title: The rate of dynamic recrystallization in 17-4 PH stainless steel publication-title: Mater Des – volume: 57 start-page: 2748 year: 2009 end-page: 2756 ident: b0075 article-title: The Avrami kinetics of dynamic recrystallization publication-title: Acta Mater – volume: 55 start-page: 65 year: 2012 end-page: 72 ident: b0190 article-title: A characterization for the dynamic recrystallization kinetics of as-extruded 7075 aluminum alloy based on true stress–strain curves publication-title: Comp Mater Sci – volume: 565 start-page: 126 year: 2013 end-page: 131 ident: b0040 article-title: The metadynamic recrystallization in the two-stage isothermal compression of 300M steel publication-title: Mater Sci Eng A – volume: 528 start-page: 7488 year: 2011 end-page: 7493 ident: b0110 article-title: Dynamic recrystallization behavior of a superaustenitic stainless steel containing 16%Cr and 25%Ni publication-title: Mater Sci Eng A – volume: 63 start-page: 35 year: 2010 end-page: 41 ident: b0220 article-title: Comparison of deformation induced precipitation behaviour in Alloy 718 under two microstructural conditions publication-title: Trans Indian Inst Met – volume: 43 start-page: 1117 year: 2008 end-page: 1122 ident: b0145 article-title: Numerical simulation for stress/strain distribution and microstructural evolution in 42CrMo steel during hot upsetting process publication-title: Comp Mater Sci – volume: 540 start-page: 164 year: 2012 end-page: 173 ident: b0265 article-title: Hot deformation behavior of GH4169 superalloy associated with stick publication-title: Mater Sci Eng A – volume: 486 start-page: 321 year: 2008 end-page: 332 ident: b0245 article-title: Microstructure evolution during dynamic recrystallization of hot deformed superalloy 718 publication-title: Mater Sci Eng A – volume: 83 start-page: 282 year: 2014 end-page: 289 ident: b0270 article-title: A physically-based constitutive model for the nickel-based superalloy publication-title: Comp Mater Sci – volume: 49 start-page: 773 year: 2010 end-page: 781 ident: b0010 article-title: A neural network model for prediction of static recrystallization kinetics under non-isothermal conditions publication-title: Comp Mater Sci – reference: Huang D, Wu WT, Lambert D, Semiatin SL. Computer simulation of microstructure evolution during hot forging of Waspaloy and nickel alloy 718. In: Proc Microstr Model Predict Thermomech, Indianapolis, MMMS; 2001. p. 137–46. – volume: 42 start-page: 1062 year: 2011 end-page: 1072 ident: b0070 article-title: A study on microstructural evolution and dynamic recrystallization during isothermal deformation of a Ti-modified austenitic stainless steel publication-title: Metall Mater Trans A – volume: 47 start-page: 737 year: 2013 end-page: 745 ident: b0125 article-title: Prediction of flow stress for N08028 alloy under hot working conditions publication-title: Mater Des – volume: 205 start-page: 308 year: 2008 end-page: 315 ident: b0065 article-title: Effect of temperature and strain rate on the compressive deformation behavior of 42CrMo steel publication-title: J Mater Process Technol – volume: 17 start-page: 145 year: 1983 end-page: 149 ident: b0225 article-title: Strengthening mechanisms in Inconel 718 superalloy publication-title: Met Sci – volume: 591 start-page: 183 year: 2014 end-page: 192 ident: b0250 article-title: Hot deformation behavior and processing map of a typical Ni-based superalloy publication-title: Mater Sci Eng A – volume: 46 start-page: 6018 year: 2011 end-page: 6028 ident: b0035 article-title: Deformation behavior and microstructure evolution in multistage hot working of TA15 titanium alloy: on the role of recrystallization publication-title: J Mater Sci – volume: 574 start-page: 1 year: 2013 end-page: 8 ident: b0195 article-title: The modelling of dynamic recrystallization in the isothermal compression of 300M steel publication-title: Mater Sci Eng A – volume: 528 start-page: 5112 year: 2011 end-page: 5121 ident: b0015 article-title: Microstructure evolution of different loading zones during TA15 alloy multi-cycle isothermal local forging publication-title: Mater Sci Eng A – volume: 42 start-page: 470 year: 2008 end-page: 477 ident: b0025 article-title: Constitutive modeling for elevated temperature flow behavior of 42CrMo steel publication-title: Comp Mater Sci – volume: 20 start-page: 953 year: 2013 end-page: 960 ident: b0020 article-title: Hot deformation behavior of microstructural constituents in a duplex stainless steel during high-temperature straining publication-title: Int J Min Met Mater – volume: 549 start-page: 93 year: 2012 end-page: 99 ident: b0215 article-title: The effect of thermomechanical parameters on the eutectic silicon characteristics in a non-modified cast A356 aluminum alloy publication-title: Mater Sci Eng A – volume: 44 start-page: 316 year: 2008 end-page: 321 ident: b0050 article-title: Study of static recrystallization kinetics in a low alloy steel publication-title: Comp Mater Sci – volume: 16 start-page: 843 year: 2010 end-page: 849 ident: b0090 article-title: Prediction of dynamic recrystallization kinetics and grain size for 410 martensitic stainless steel during hot deformation publication-title: Met Mater Int – reference: Huber D, Stotter C, Sommitsch C, Mitsche S, Poelt P, Buchmayr B, Stockinger M. Microstructure modeling of the dynamic recrystallization kinetic during turbine disc forging of the nickel based superalloy Allvac 718 Plus™. In: Proc 11th Int Sym Superalloys; 2008. p. 855–61. – volume: 15 start-page: 22 year: 1944 end-page: 32 ident: b0320 article-title: Effect of strain rate upon plastic flow of steel publication-title: J Appl Phys – volume: 62 start-page: 887 year: 2011 end-page: 893 ident: b0260 article-title: Hot deformation behavior of the post-cogging FGH4096 superalloy with fine equiaxed microstructure publication-title: Mater Charact – volume: 27 start-page: 913 year: 2011 end-page: 919 ident: b0135 article-title: Dynamic recrystallization behavior of a heat-resistant martensitic stainless steel 403Nb during hot deformation publication-title: J Mater Sci Technol – volume: 43 start-page: 410 year: 2012 end-page: 414 ident: b0105 article-title: Influence of state of stress on dynamic recrystallization in a titanium-modified austenitic stainless steel publication-title: Metall Mater Trans A – volume: 35 start-page: 239 year: 1985 end-page: 248 ident: b0310 article-title: The kinetics of softening processes during hot working of austenite publication-title: Czech J Phy – volume: 529 start-page: 300 year: 2011 end-page: 310 ident: b0170 article-title: A new kinetics model of dynamic recrystallization for magnesium alloy AZ31B publication-title: Mater Sci Eng A – volume: 209 start-page: 2477 year: 2009 end-page: 2482 ident: b0045 article-title: Study of metadynamic recrystallization behaviors in a low alloy steel publication-title: J Mater Process Technol – volume: 32 start-page: 696 year: 2011 end-page: 705 ident: b0235 article-title: The microstructure evolution and nucleation mechanisms of dynamic recrystallization in hot-deformed Inconel 625 superalloy publication-title: Mater Des – volume: 44 start-page: 1581 year: 2004 end-page: 1589 ident: b0175 article-title: Kinetics and critical conditions for the initiation of dynamic recrystallization in 304 stainless steel publication-title: ISIJ Int – volume: 16 start-page: 672 year: 2007 end-page: 679 ident: b0095 article-title: Modeling microstructural evolution during dynamic recrystallization of alloy D9 using artificial neural network publication-title: J Mater Eng Perform – volume: 55 start-page: 560 year: 2014 end-page: 573 ident: b0115 article-title: Microstructural modelling and simulation for GCr15 steel during elevated temperature deformation publication-title: Mater Des – volume: 586 start-page: 197 year: 2013 end-page: 203 ident: b0150 article-title: The kinetics of dynamic recrystallization of Cu–0.4Mg alloy publication-title: Mater Sci Eng A – volume: 449 start-page: 722 year: 2007 end-page: 726 ident: b0285 article-title: Finite-element analysis of microstructure evolution in the cogging of an alloy 718 ingot publication-title: Mater Sci Eng A – volume: 528 start-page: 3218 year: 2011 end-page: 3227 ident: b0325 article-title: Hot deformation behavior of delta-processed superalloy 718 publication-title: Mater Sci Eng A – volume: 528 start-page: 4643 year: 2011 end-page: 4651 ident: b0085 article-title: Dynamic recrystallization kinetics of 42CrMo steel during compression at different temperatures and strain rates publication-title: Mater Sci Eng A – year: 1976 ident: b0305 article-title: Recrystallization and grain growth in metals – volume: 542 start-page: 79 year: 2012 end-page: 87 ident: b0130 article-title: The flow behavior and constitutive equations in isothermal compression of 7050 aluminum alloy publication-title: Mater Sci Eng A – volume: 28 start-page: 819 year: 2013 end-page: 824 ident: b0160 article-title: Determination of the dynamic recrystallization kinetics model for SCM435 steel publication-title: J Wuhan Univ Technol – volume: 529 start-page: 300 year: 2011 ident: 10.1016/j.matdes.2013.12.072_b0170 article-title: A new kinetics model of dynamic recrystallization for magnesium alloy AZ31B publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2011.09.032 – volume: 55 start-page: 949 year: 2014 ident: 10.1016/j.matdes.2013.12.072_b0275 article-title: Hot tensile deformation and fracture characteristics of a typical Ni-based superalloy at elevated temperature publication-title: Mater Des doi: 10.1016/j.matdes.2013.10.071 – volume: 63 start-page: 35 year: 2010 ident: 10.1016/j.matdes.2013.12.072_b0220 article-title: Comparison of deformation induced precipitation behaviour in Alloy 718 under two microstructural conditions publication-title: Trans Indian Inst Met doi: 10.1007/s12666-010-0006-0 – volume: 32 start-page: 1733 year: 2011 ident: 10.1016/j.matdes.2013.12.072_b0005 article-title: A critical review of experimental results and constitutive descriptions for metals and alloys in hot working publication-title: Mater Des doi: 10.1016/j.matdes.2010.11.048 – volume: 16 start-page: 843 year: 2010 ident: 10.1016/j.matdes.2013.12.072_b0090 article-title: Prediction of dynamic recrystallization kinetics and grain size for 410 martensitic stainless steel during hot deformation publication-title: Met Mater Int doi: 10.1007/s12540-010-1024-5 – volume: 31 start-page: 4577 year: 2010 ident: 10.1016/j.matdes.2013.12.072_b0155 article-title: The rate of dynamic recrystallization in 17-4 PH stainless steel publication-title: Mater Des doi: 10.1016/j.matdes.2010.05.052 – volume: 32 start-page: 696 year: 2011 ident: 10.1016/j.matdes.2013.12.072_b0235 article-title: The microstructure evolution and nucleation mechanisms of dynamic recrystallization in hot-deformed Inconel 625 superalloy publication-title: Mater Des doi: 10.1016/j.matdes.2010.07.040 – volume: 486 start-page: 321 issue: 1 year: 2008 ident: 10.1016/j.matdes.2013.12.072_b0245 article-title: Microstructure evolution during dynamic recrystallization of hot deformed superalloy 718 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2007.09.008 – volume: 35 start-page: 142 year: 2008 ident: 10.1016/j.matdes.2013.12.072_b0120 article-title: Prediction of 42CrMo steel flow stress at high temperature and strain rate publication-title: Mech Res Commun doi: 10.1016/j.mechrescom.2007.10.002 – volume: 432 start-page: 9 year: 2012 ident: 10.1016/j.matdes.2013.12.072_b0185 article-title: Kinetics of dynamic recrystallization in Ti-modified 15Cr–15Ni–2Mo austenitic stainless steel publication-title: J Nucl Mater doi: 10.1016/j.jnucmat.2012.07.020 – ident: 10.1016/j.matdes.2013.12.072_b0295 doi: 10.7449/2008/Superalloys_2008_855_861 – volume: 49 start-page: 773 year: 2010 ident: 10.1016/j.matdes.2013.12.072_b0010 article-title: A neural network model for prediction of static recrystallization kinetics under non-isothermal conditions publication-title: Comp Mater Sci doi: 10.1016/j.commatsci.2010.06.021 – volume: 42 start-page: 1062 year: 2011 ident: 10.1016/j.matdes.2013.12.072_b0070 article-title: A study on microstructural evolution and dynamic recrystallization during isothermal deformation of a Ti-modified austenitic stainless steel publication-title: Metall Mater Trans A doi: 10.1007/s11661-010-0517-7 – volume: 556 start-page: 260 year: 2012 ident: 10.1016/j.matdes.2013.12.072_b0080 article-title: The kinetics of dynamic recrystallization of 42CrMo steel publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2012.06.084 – volume: 43 start-page: 410 year: 2012 ident: 10.1016/j.matdes.2013.12.072_b0105 article-title: Influence of state of stress on dynamic recrystallization in a titanium-modified austenitic stainless steel publication-title: Metall Mater Trans A doi: 10.1007/s11661-011-1015-2 – volume: 574 start-page: 1 year: 2013 ident: 10.1016/j.matdes.2013.12.072_b0195 article-title: The modelling of dynamic recrystallization in the isothermal compression of 300M steel publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2013.03.011 – volume: 528 start-page: 7488 year: 2011 ident: 10.1016/j.matdes.2013.12.072_b0110 article-title: Dynamic recrystallization behavior of a superaustenitic stainless steel containing 16%Cr and 25%Ni publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2011.05.081 – volume: 27 start-page: 913 year: 2011 ident: 10.1016/j.matdes.2013.12.072_b0135 article-title: Dynamic recrystallization behavior of a heat-resistant martensitic stainless steel 403Nb during hot deformation publication-title: J Mater Sci Technol doi: 10.1016/S1005-0302(11)60164-3 – volume: 22 start-page: 1545 year: 1991 ident: 10.1016/j.matdes.2013.12.072_b0315 article-title: Prediction of steel flow stresses at high temperatures and strain rates publication-title: Metall Trans A doi: 10.1007/BF02667368 – ident: 10.1016/j.matdes.2013.12.072_b0290 – volume: 528 start-page: 3218 year: 2011 ident: 10.1016/j.matdes.2013.12.072_b0325 article-title: Hot deformation behavior of delta-processed superalloy 718 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2011.01.013 – volume: 542 start-page: 79 year: 2012 ident: 10.1016/j.matdes.2013.12.072_b0130 article-title: The flow behavior and constitutive equations in isothermal compression of 7050 aluminum alloy publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2012.02.035 – volume: 565 start-page: 126 year: 2013 ident: 10.1016/j.matdes.2013.12.072_b0040 article-title: The metadynamic recrystallization in the two-stage isothermal compression of 300M steel publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2012.11.116 – volume: 205 start-page: 308 year: 2008 ident: 10.1016/j.matdes.2013.12.072_b0065 article-title: Effect of temperature and strain rate on the compressive deformation behavior of 42CrMo steel publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2007.11.113 – volume: 42 start-page: 421 year: 2007 ident: 10.1016/j.matdes.2013.12.072_b0335 article-title: The evolution of delta-phase in a superplastic Inconel 718 alloy publication-title: J Mater Sci doi: 10.1007/s10853-006-0483-z – volume: 15 start-page: 22 year: 1944 ident: 10.1016/j.matdes.2013.12.072_b0320 article-title: Effect of strain rate upon plastic flow of steel publication-title: J Appl Phys doi: 10.1063/1.1707363 – volume: 32 start-page: 1872 year: 2011 ident: 10.1016/j.matdes.2013.12.072_b0280 article-title: Hot compressive deformation behavior of a new hot isostatically pressed Ni–Cr–Co based powder metallurgy superalloy publication-title: Mater Des doi: 10.1016/j.matdes.2010.12.014 – volume: 586 start-page: 197 year: 2013 ident: 10.1016/j.matdes.2013.12.072_b0150 article-title: The kinetics of dynamic recrystallization of Cu–0.4Mg alloy publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2013.07.083 – volume: 46 start-page: 6018 year: 2011 ident: 10.1016/j.matdes.2013.12.072_b0035 article-title: Deformation behavior and microstructure evolution in multistage hot working of TA15 titanium alloy: on the role of recrystallization publication-title: J Mater Sci doi: 10.1007/s10853-011-5564-y – volume: 62 start-page: 2132 year: 2008 ident: 10.1016/j.matdes.2013.12.072_b0140 article-title: Microstructural evolution in 42CrMo steel during compression at elevated temperatures publication-title: Mater Lett doi: 10.1016/j.matlet.2007.11.032 – volume: 57 start-page: 2748 year: 2009 ident: 10.1016/j.matdes.2013.12.072_b0075 article-title: The Avrami kinetics of dynamic recrystallization publication-title: Acta Mater doi: 10.1016/j.actamat.2009.02.033 – volume: 16 start-page: 672 year: 2007 ident: 10.1016/j.matdes.2013.12.072_b0095 article-title: Modeling microstructural evolution during dynamic recrystallization of alloy D9 using artificial neural network publication-title: J Mater Eng Perform doi: 10.1007/s11665-007-9098-z – volume: 558 start-page: 44 year: 2012 ident: 10.1016/j.matdes.2013.12.072_b0165 article-title: On the recrystallization behavior of homogenized AZ81 magnesium alloy: the effect of mechanical twins and γ precipitates publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2012.07.054 – volume: 55 start-page: 65 year: 2012 ident: 10.1016/j.matdes.2013.12.072_b0190 article-title: A characterization for the dynamic recrystallization kinetics of as-extruded 7075 aluminum alloy based on true stress–strain curves publication-title: Comp Mater Sci doi: 10.1016/j.commatsci.2011.11.031 – volume: 528 start-page: 5073 year: 2011 ident: 10.1016/j.matdes.2013.12.072_b0030 article-title: Recrystallization of 30Cr2Ni4MoV ultra-super-critical rotor steel during hot deformation. Part I: Dynamic recrystallization publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2011.03.008 – volume: 47 start-page: 737 year: 2013 ident: 10.1016/j.matdes.2013.12.072_b0125 article-title: Prediction of flow stress for N08028 alloy under hot working conditions publication-title: Mater Des doi: 10.1016/j.matdes.2012.12.074 – volume: 62 start-page: 887 year: 2011 ident: 10.1016/j.matdes.2013.12.072_b0260 article-title: Hot deformation behavior of the post-cogging FGH4096 superalloy with fine equiaxed microstructure publication-title: Mater Charact doi: 10.1016/j.matchar.2011.06.004 – volume: 20 start-page: 98 year: 2013 ident: 10.1016/j.matdes.2013.12.072_b0210 article-title: Dynamic recrystallization of hot deformed 3Cr2NiMnMo steel: modeling and numerical simulation publication-title: J Iron Steel Res Int doi: 10.1016/S1006-706X(13)60203-4 – volume: 591 start-page: 183 year: 2014 ident: 10.1016/j.matdes.2013.12.072_b0250 article-title: Hot deformation behavior and processing map of a typical Ni-based superalloy publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2013.09.049 – volume: 209 start-page: 2477 year: 2009 ident: 10.1016/j.matdes.2013.12.072_b0045 article-title: Study of metadynamic recrystallization behaviors in a low alloy steel publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2008.05.047 – volume: 43 start-page: 1117 year: 2008 ident: 10.1016/j.matdes.2013.12.072_b0145 article-title: Numerical simulation for stress/strain distribution and microstructural evolution in 42CrMo steel during hot upsetting process publication-title: Comp Mater Sci doi: 10.1016/j.commatsci.2008.03.010 – volume: 88 start-page: 883 year: 2008 ident: 10.1016/j.matdes.2013.12.072_b0100 article-title: Evolution and characterization of dynamically recrystallized microstructure in a titanium-modified austenitic stainless steel using ultrasonic and EBSD techniques publication-title: Philos Mag doi: 10.1080/14786430801989799 – volume: 22 start-page: 2168 year: 2013 ident: 10.1016/j.matdes.2013.12.072_b0180 article-title: Dynamic recrystallization during hot deformation of 304 austenitic stainless steel publication-title: J Mater Eng Perform doi: 10.1007/s11665-013-0496-0 – volume: 17 start-page: 145 issue: 3 year: 1983 ident: 10.1016/j.matdes.2013.12.072_b0225 article-title: Strengthening mechanisms in Inconel 718 superalloy publication-title: Met Sci doi: 10.1179/030634583790421032 – volume: 28 start-page: 236 year: 2013 ident: 10.1016/j.matdes.2013.12.072_b0060 article-title: A study on non-isothermal static recrystallization during hot rolling of carbon steels publication-title: Mater Manuf Process doi: 10.1080/10426914.2012.675535 – volume: 44 start-page: 316 year: 2008 ident: 10.1016/j.matdes.2013.12.072_b0050 article-title: Study of static recrystallization kinetics in a low alloy steel publication-title: Comp Mater Sci doi: 10.1016/j.commatsci.2008.03.027 – volume: 528 start-page: 4620 year: 2011 ident: 10.1016/j.matdes.2013.12.072_b0300 article-title: Effect of processing parameters on hot compressive deformation behavior of a new Ni–Cr–Co based P/M superalloy publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2011.02.051 – volume: 549 start-page: 93 year: 2012 ident: 10.1016/j.matdes.2013.12.072_b0215 article-title: The effect of thermomechanical parameters on the eutectic silicon characteristics in a non-modified cast A356 aluminum alloy publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2012.04.010 – volume: 540 start-page: 164 year: 2012 ident: 10.1016/j.matdes.2013.12.072_b0265 article-title: Hot deformation behavior of GH4169 superalloy associated with stick δ phase dissolution during isothermal compression process publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2012.01.121 – volume: 288 start-page: 222 year: 2001 ident: 10.1016/j.matdes.2013.12.072_b0230 article-title: Microstructure and mechanical properties of Inconel 625 superalloy publication-title: J Nucl Mater doi: 10.1016/S0022-3115(00)00723-6 – volume: 528 start-page: 5112 year: 2011 ident: 10.1016/j.matdes.2013.12.072_b0015 article-title: Microstructure evolution of different loading zones during TA15 alloy multi-cycle isothermal local forging publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2011.03.039 – volume: 414 start-page: 440 year: 2011 ident: 10.1016/j.matdes.2013.12.072_b0240 article-title: The effect of deformation temperature on the microstructure evolution of Inconel 625 superalloy publication-title: J Nucl Mater doi: 10.1016/j.jnucmat.2011.05.029 – volume: 20 start-page: 953 year: 2013 ident: 10.1016/j.matdes.2013.12.072_b0020 article-title: Hot deformation behavior of microstructural constituents in a duplex stainless steel during high-temperature straining publication-title: Int J Min Met Mater doi: 10.1007/s12613-013-0820-6 – volume: 53 start-page: 145 year: 2012 ident: 10.1016/j.matdes.2013.12.072_b0055 article-title: Simulation of static recrystallization in non-isothermal annealing using a coupled cellular automata and finite element model publication-title: Comp Mater Sci doi: 10.1016/j.commatsci.2011.09.026 – volume: 449 start-page: 722 year: 2007 ident: 10.1016/j.matdes.2013.12.072_b0285 article-title: Finite-element analysis of microstructure evolution in the cogging of an alloy 718 ingot publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2006.02.415 – volume: 83 start-page: 282 year: 2014 ident: 10.1016/j.matdes.2013.12.072_b0270 article-title: A physically-based constitutive model for the nickel-based superalloy publication-title: Comp Mater Sci doi: 10.1016/j.commatsci.2013.11.003 – volume: 61 start-page: 49 year: 2010 ident: 10.1016/j.matdes.2013.12.072_b0330 article-title: Deformation characteristics of δ phase in the delta-processed Inconel 718 alloy publication-title: Mater Charact doi: 10.1016/j.matchar.2009.10.003 – volume: 55 start-page: 560 year: 2014 ident: 10.1016/j.matdes.2013.12.072_b0115 article-title: Microstructural modelling and simulation for GCr15 steel during elevated temperature deformation publication-title: Mater Des doi: 10.1016/j.matdes.2013.10.042 – volume: 58 start-page: 941 year: 2007 ident: 10.1016/j.matdes.2013.12.072_b0255 article-title: Development of processing maps for a Ni-based superalloy publication-title: Mater Charact doi: 10.1016/j.matchar.2006.09.004 – volume: 28 start-page: 819 year: 2013 ident: 10.1016/j.matdes.2013.12.072_b0160 article-title: Determination of the dynamic recrystallization kinetics model for SCM435 steel publication-title: J Wuhan Univ Technol doi: 10.1007/s11595-013-0775-5 – volume: 42 start-page: 470 year: 2008 ident: 10.1016/j.matdes.2013.12.072_b0025 article-title: Constitutive modeling for elevated temperature flow behavior of 42CrMo steel publication-title: Comp Mater Sci doi: 10.1016/j.commatsci.2007.08.011 – volume: 551 start-page: 25 year: 2012 ident: 10.1016/j.matdes.2013.12.072_b0205 article-title: Dynamic recrystallization and precipitation in low carbon low alloy steel 26NiCrMoV 14-5 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2012.04.063 – volume: 528 start-page: 4643 year: 2011 ident: 10.1016/j.matdes.2013.12.072_b0085 article-title: Dynamic recrystallization kinetics of 42CrMo steel during compression at different temperatures and strain rates publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2011.02.090 – volume: 44 start-page: 1581 year: 2004 ident: 10.1016/j.matdes.2013.12.072_b0175 article-title: Kinetics and critical conditions for the initiation of dynamic recrystallization in 304 stainless steel publication-title: ISIJ Int doi: 10.2355/isijinternational.44.1581 – volume: 52 start-page: 98 year: 2013 ident: 10.1016/j.matdes.2013.12.072_b0200 article-title: Constitutive modeling for the dynamic recrystallization kinetics of as-extruded 3Cr20Ni10W2 heat-resistant alloy based on stress–strain data publication-title: Mater Des doi: 10.1016/j.matdes.2013.05.030 – year: 1976 ident: 10.1016/j.matdes.2013.12.072_b0305 – volume: 35 start-page: 239 year: 1985 ident: 10.1016/j.matdes.2013.12.072_b0310 article-title: The kinetics of softening processes during hot working of austenite publication-title: Czech J Phy doi: 10.1007/BF01605090 |
SSID | ssj0017112 |
Score | 2.5852425 |
Snippet | •The dynamic recrystallization behavior of a typical nickel-based superalloy is investigated.•The segmented models are proposed to describe the kinetics of DRX... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 568 |
SubjectTerms | Dynamic recrystallization Grain size Microstructure Nickel-based superalloy |
Title | Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation |
URI | https://dx.doi.org/10.1016/j.matdes.2013.12.072 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NS8MwNMztogfxE-cXOXgtW5s0aY5jOqbCLjrYyZC1rzgpXZndYf_elzYdE0TBYz8etO8775OQu1CFAGmgvDhNjE0zokjxpI8SzwyPw2qiuq22mIjxlD_NwlmLDJteGFtW6XR_rdMrbe3u9Bw2e8Vi0Xuxpwd0eBUeEezJRu6RTsCUQNbuDB6fx5NtMkH6VdLThVqEajroqjIv9AsTsHO7fVbFBWXws4XasTqjI3Lo3EU6qL_omLQgPyEHO0MET8nbfb1UnuJ_rDbo7GWZ662kTQ8-XabU0HJTWIrQfIGSm3nWfiX0c13YqFS23NC6Y5G-L0uawLap8YxMRw-vw7HntiZ4MZNB6Rmegl1WC9KokMfMpH0ZcwYcwIhIQpIEfXwmuAGIVBTa1RsK6RihuQylBHZO2vkyhwtC_bl18Aw3LJJcoPT7dl6RCYQxKlIi7RLWYErHbqS43WyR6aZ27EPX-NUWv9oPNOK3S7wtVFGP1PjjfdkQQX9jDY1a_1fIy39DXpF9vOJ1ZeM1aZerNdyg91HObx13fQHx1tne |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFH9BOKgH42fEzx68LrCtXdcjQckQ5CIknGzK1kXMsi04Dvz3tltHMDGaeF3XZHvt-37v9wAeCCNSxg6zwjgSOs2oWApHXcXxrsAhKRHVdbXFxAtm-HlO5g3o170wuqzSyP5KppfS2jzpGGp28uWy86q9B2XwMuUiaM-G7kFLo1ORJrR6w1Ew2SYTqF0mPU2oxWN1B11Z5qXswkhq3G7bLeOC1PlZQ-1oncExHBlzEfWqLzqBhkxP4XAHRPAM3h6rofJI_cdqo4y9JDG9lajuwUdZjAQqNrk-EZQuFecmltZfEfpc5zoqlWQbVHUsovesQJHcNjWew2zwNO0HlpmaYIUudQpL4FjqYbWSCkZw6Iq4S0PsSiyl8Hwqo8jpqjUPCyl95hM9eoOpc_SVuiSUSvcCmmmWyktA9kIbeAIL16fYU9xva7wi4XhCMJ95cRvcmlI8NJDierJFwuvasQ9e0Zdr-nLb4Yq-bbC2u_IKUuOP92l9CPzb1eBK6v-68-rfO-9hP5i-jPl4OBldw4FawVWV4w00i9Va3ipLpFjcmZv2BT8a3MQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+recrystallization+behavior+of+a+typical+nickel-based+superalloy+during+hot+deformation&rft.jtitle=Materials+in+engineering&rft.au=Chen%2C+Xiao-Min&rft.au=Lin%2C+Y.C.&rft.au=Wen%2C+Dong-Xu&rft.au=Zhang%2C+Jin-Long&rft.date=2014-05-01&rft.issn=0261-3069&rft.volume=57&rft.spage=568&rft.epage=577&rft_id=info:doi/10.1016%2Fj.matdes.2013.12.072&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matdes_2013_12_072 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-3069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-3069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-3069&client=summon |