Classification of multi-class motor imagery with a novel hierarchical SVM algorithm for brain–computer interfaces

Pattern classification algorithm is the crucial step in developing brain–computer interface (BCI) applications. In this paper, a hierarchical support vector machine (HSVM) algorithm is proposed to address an EEG-based four-class motor imagery classification task. Wavelet packet transform is employed...

Full description

Saved in:
Bibliographic Details
Published inMedical & biological engineering & computing Vol. 55; no. 10; pp. 1809 - 1818
Main Authors Dong, Enzeng, Li, Changhai, Li, Liting, Du, Shengzhi, Belkacem, Abdelkader Nasreddine, Chen, Chao
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2017
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pattern classification algorithm is the crucial step in developing brain–computer interface (BCI) applications. In this paper, a hierarchical support vector machine (HSVM) algorithm is proposed to address an EEG-based four-class motor imagery classification task. Wavelet packet transform is employed to decompose raw EEG signals. Thereafter, EEG signals with effective frequency sub-bands are grouped and reconstructed. EEG feature vectors are extracted from the reconstructed EEG signals with one versus the rest common spatial patterns (OVR-CSP) and one versus one common spatial patterns (OVO-CSP). Then, a two-layer HSVM algorithm is designed for the classification of these EEG feature vectors, where “OVO” classifiers are used in the first layer and “OVR” in the second layer. A public dataset (BCI Competition IV-II-a)is employed to validate the proposed method. Fivefold cross-validation results demonstrate that the average accuracy of classification in the first layer and the second layer is 67.5 ± 17.7% and 60.3 ± 14.7%, respectively. The average accuracy of the classification is 64.4 ± 16.7% overall. These results show that the proposed method is effective for four-class motor imagery classification.
AbstractList Pattern classification algorithm is the crucial step in developing brain-computer interface (BCI) applications. In this paper, a hierarchical support vector machine (HSVM) algorithm is proposed to address an EEG-based four-class motor imagery classification task. Wavelet packet transform is employed to decompose raw EEG signals. Thereafter, EEG signals with effective frequency sub-bands are grouped and reconstructed. EEG feature vectors are extracted from the reconstructed EEG signals with one versus the rest common spatial patterns (OVR-CSP) and one versus one common spatial patterns (OVO-CSP). Then, a two-layer HSVM algorithm is designed for the classification of these EEG feature vectors, where "OVO" classifiers are used in the first layer and "OVR" in the second layer. A public dataset (BCI Competition IV-II-a)is employed to validate the proposed method. Fivefold cross-validation results demonstrate that the average accuracy of classification in the first layer and the second layer is 67.5 ± 17.7% and 60.3 ± 14.7%, respectively. The average accuracy of the classification is 64.4 ± 16.7% overall. These results show that the proposed method is effective for four-class motor imagery classification.
Pattern classification algorithm is the crucial step in developing brain–computer interface (BCI) applications. In this paper, a hierarchical support vector machine (HSVM) algorithm is proposed to address an EEG-based four-class motor imagery classification task. Wavelet packet transform is employed to decompose raw EEG signals. Thereafter, EEG signals with effective frequency sub-bands are grouped and reconstructed. EEG feature vectors are extracted from the reconstructed EEG signals with one versus the rest common spatial patterns (OVR-CSP) and one versus one common spatial patterns (OVO-CSP). Then, a two-layer HSVM algorithm is designed for the classification of these EEG feature vectors, where “OVO” classifiers are used in the first layer and “OVR” in the second layer. A public dataset (BCI Competition IV-II-a)is employed to validate the proposed method. Fivefold cross-validation results demonstrate that the average accuracy of classification in the first layer and the second layer is 67.5 ± 17.7% and 60.3 ± 14.7%, respectively. The average accuracy of the classification is 64.4 ± 16.7% overall. These results show that the proposed method is effective for four-class motor imagery classification.
Pattern classification algorithm is the crucial step in developing brain-computer interface (BCI) applications. In this paper, a hierarchical support vector machine (HSVM) algorithm is proposed to address an EEG-based four-class motor imagery classification task. Wavelet packet transform is employed to decompose raw EEG signals. Thereafter, EEG signals with effective frequency sub-bands are grouped and reconstructed. EEG feature vectors are extracted from the reconstructed EEG signals with one versus the rest common spatial patterns (OVR-CSP) and one versus one common spatial patterns (OVO-CSP). Then, a two-layer HSVM algorithm is designed for the classification of these EEG feature vectors, where "OVO" classifiers are used in the first layer and "OVR" in the second layer. A public dataset (BCI Competition IV-II-a)is employed to validate the proposed method. Fivefold cross-validation results demonstrate that the average accuracy of classification in the first layer and the second layer is 67.5 ± 17.7% and 60.3 ± 14.7%, respectively. The average accuracy of the classification is 64.4 ± 16.7% overall. These results show that the proposed method is effective for four-class motor imagery classification.Pattern classification algorithm is the crucial step in developing brain-computer interface (BCI) applications. In this paper, a hierarchical support vector machine (HSVM) algorithm is proposed to address an EEG-based four-class motor imagery classification task. Wavelet packet transform is employed to decompose raw EEG signals. Thereafter, EEG signals with effective frequency sub-bands are grouped and reconstructed. EEG feature vectors are extracted from the reconstructed EEG signals with one versus the rest common spatial patterns (OVR-CSP) and one versus one common spatial patterns (OVO-CSP). Then, a two-layer HSVM algorithm is designed for the classification of these EEG feature vectors, where "OVO" classifiers are used in the first layer and "OVR" in the second layer. A public dataset (BCI Competition IV-II-a)is employed to validate the proposed method. Fivefold cross-validation results demonstrate that the average accuracy of classification in the first layer and the second layer is 67.5 ± 17.7% and 60.3 ± 14.7%, respectively. The average accuracy of the classification is 64.4 ± 16.7% overall. These results show that the proposed method is effective for four-class motor imagery classification.
Author Belkacem, Abdelkader Nasreddine
Du, Shengzhi
Dong, Enzeng
Li, Liting
Chen, Chao
Li, Changhai
Author_xml – sequence: 1
  givenname: Enzeng
  surname: Dong
  fullname: Dong, Enzeng
  organization: Key Laboratory of Complex System Control Theory and Application, Tianjin University of Technology
– sequence: 2
  givenname: Changhai
  surname: Li
  fullname: Li, Changhai
  organization: Key Laboratory of Complex System Control Theory and Application, Tianjin University of Technology
– sequence: 3
  givenname: Liting
  surname: Li
  fullname: Li, Liting
  organization: Key Laboratory of Complex System Control Theory and Application, Tianjin University of Technology
– sequence: 4
  givenname: Shengzhi
  surname: Du
  fullname: Du, Shengzhi
  organization: Department of Mechanical Engineering, Tshwane University of Technology
– sequence: 5
  givenname: Abdelkader Nasreddine
  surname: Belkacem
  fullname: Belkacem, Abdelkader Nasreddine
  organization: Endowed Research Department of Clinical Neuroengineering, Global Center for Medical Engineering and Informatics, Osaka University
– sequence: 6
  givenname: Chao
  surname: Chen
  fullname: Chen, Chao
  email: cccovb@hotmail.com
  organization: Key Laboratory of Complex System Control Theory and Application, Tianjin University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28238175$$D View this record in MEDLINE/PubMed
BookMark eNp9kc2OFSEQhYkZ49wZfQA3hsSNm1aKpht6aW78S8a48GdLaLqYy4SGK3RrZuc7-IY-iVzvaMwkuoBK4DtVlXPOyElMEQl5COwpMCafFYAOZMPqgR6gEXfIBqSAhgkhTsiGgWD1F9QpOSvlijEOHRf3yClXvFUguw0p22BK8c5bs_gUaXJ0XsPiG3t4p3NaUqZ-NpeYr-lXv-yooTF9wUB3HrPJdleVgb7_9JaacJlyJWbqqmbMxscf377bNO_XBWuTWG9nLJb75K4zoeCDm3pOPr588WH7url49-rN9vlFY1vJl8a0PQ4TGLSyn1DIXrVT5xzyaRhZ67iZkHMcDR8RmRpUJ0QLkzRDx5mDvm3PyZNj331On1csi559sRiCiZjWokFJ3ineDVDRx7fQq7TmWLfTMIjqtaqlUo9uqHWccdL7XJ3J1_q3nRWAI2BzKiWj-4MA04fI9DEyXSPTh8j0oam8pbF--RXGUi0M_1Xyo7LUKbEm9NfS_xT9BELoq_0
CitedBy_id crossref_primary_10_1007_s11517_021_02396_w
crossref_primary_10_1109_TNSRE_2023_3294815
crossref_primary_10_1007_s11571_022_09919_7
crossref_primary_10_1016_j_bspc_2022_104114
crossref_primary_10_1016_j_bspc_2024_107149
crossref_primary_10_3390_s23115051
crossref_primary_10_1016_j_bspc_2020_101991
crossref_primary_10_1007_s11571_020_09608_3
crossref_primary_10_1155_2022_3987494
crossref_primary_10_1166_jmihi_2021_3348
crossref_primary_10_1166_jmihi_2021_3422
crossref_primary_10_1007_s11571_021_09779_7
crossref_primary_10_1007_s00521_022_07861_7
crossref_primary_10_1109_TNSRE_2021_3051958
crossref_primary_10_1109_ACCESS_2024_3459866
crossref_primary_10_1155_2020_4930972
crossref_primary_10_1007_s00500_024_09695_y
crossref_primary_10_3390_s17112576
crossref_primary_10_1007_s11517_021_02449_0
crossref_primary_10_54856_jiswa_202205203
crossref_primary_10_1016_j_bspc_2021_102993
crossref_primary_10_1371_journal_pone_0198786
crossref_primary_10_1109_TNSRE_2022_3173724
crossref_primary_10_1016_j_compbiomed_2022_105299
crossref_primary_10_3390_mi14050976
crossref_primary_10_3390_neurosci5020012
crossref_primary_10_1007_s11517_018_1883_3
crossref_primary_10_1109_ACCESS_2018_2868178
crossref_primary_10_1016_j_asoc_2022_109685
crossref_primary_10_1109_JBHI_2018_2832538
crossref_primary_10_1007_s40846_020_00596_7
crossref_primary_10_1155_2020_4137283
crossref_primary_10_1016_j_bspc_2022_104252
crossref_primary_10_1109_TNSRE_2018_2837003
crossref_primary_10_1016_j_cmpb_2020_105464
crossref_primary_10_1109_TITS_2023_3348517
crossref_primary_10_4266_acc_2023_01382
crossref_primary_10_1007_s10489_022_04226_4
crossref_primary_10_1016_j_dsp_2022_103816
crossref_primary_10_1088_1741_2552_abce70
crossref_primary_10_3389_fnins_2020_00692
crossref_primary_10_1016_j_jneumeth_2018_12_004
crossref_primary_10_1038_s41598_019_45605_1
crossref_primary_10_1088_1741_2552_abe39b
crossref_primary_10_1109_JLT_2023_3250827
crossref_primary_10_1162_neco_a_01223
crossref_primary_10_1155_2020_6968713
crossref_primary_10_1142_S0192415X22500045
crossref_primary_10_1109_ACCESS_2018_2789428
crossref_primary_10_1186_s12859_021_04091_x
crossref_primary_10_1109_JSEN_2024_3403875
crossref_primary_10_1155_2019_5068283
crossref_primary_10_1155_2021_4073739
crossref_primary_10_1371_journal_pone_0276133
crossref_primary_10_3389_fnhum_2020_580105
crossref_primary_10_1016_j_neucom_2024_128577
crossref_primary_10_1080_2326263X_2020_1782124
crossref_primary_10_3390_brainsci15020124
crossref_primary_10_1155_2019_1672940
crossref_primary_10_1371_journal_pone_0218181
crossref_primary_10_1109_TETCI_2022_3147225
crossref_primary_10_1016_j_compbiomed_2019_05_024
crossref_primary_10_3390_cryst11020210
crossref_primary_10_1016_j_dib_2024_110181
Cites_doi 10.1142/S0129065715500306
10.1109/LSP.2009.2022557
10.1109/TBME.2010.2082539
10.1016/j.clinph.2008.06.001
10.1016/0013-4694(91)90040-B
10.1016/0013-4694(91)90163-X
10.1016/j.patrec.2007.01.002
10.1371/journal.pone.0131547
10.1016/j.neunet.2014.05.012
10.1016/j.jneumeth.2007.07.017
10.1073/pnas.0403504101
10.1088/1741-2560/7/2/026003
10.1109/TBME.2008.2009768
10.1109/TNSRE.2005.862695
10.1109/TBME.2004.827088
10.1109/TBME.2006.889197
10.1088/1741-2560/6/4/046011
10.1007/978-1-4757-3264-1
10.1002/ima.20283
10.1109/TBME.2012.2217495
10.1109/86.895946
ContentType Journal Article
Copyright International Federation for Medical and Biological Engineering 2017
Medical & Biological Engineering & Computing is a copyright of Springer, 2017.
Copyright_xml – notice: International Federation for Medical and Biological Engineering 2017
– notice: Medical & Biological Engineering & Computing is a copyright of Springer, 2017.
DBID AAYXX
CITATION
NPM
3V.
7RV
7SC
7TB
7TS
7WY
7WZ
7X7
7XB
87Z
88A
88E
88I
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
K9.
KB0
L.-
L7M
LK8
L~C
L~D
M0C
M0N
M0S
M1P
M2P
M7P
M7Z
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1007/s11517-017-1611-4
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Business Premium Collection
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest Health & Medical Collection
Medical Database ProQuest
Science Database
Biological Science Database
Biochemistry Abstracts 1
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
Physical Education Index
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest One Business (Alumni)
Biochemistry Abstracts 1
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

ProQuest Business Collection (Alumni Edition)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1741-0444
EndPage 1818
ExternalDocumentID 28238175
10_1007_s11517_017_1611_4
Genre Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Tianjin City
  grantid: 15JCYBJC51800
  funderid: http://dx.doi.org/10.13039/501100006606
– fundername: Tianjin Higher School Science and Technology Development Fund Planning Project
  grantid: 20120829
– fundername: National Natural Science Foundation of China
  grantid: 61502340; 61172185
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 61172185
– fundername: National Natural Science Foundation of China
  grantid: 61502340
– fundername: Natural Science Foundation of Tianjin City
  grantid: 15JCYBJC51800
GroupedDBID ---
-4W
-5B
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.55
.86
.DC
.GJ
.VR
04C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
36B
3V.
4.4
406
408
40D
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
7RV
7WY
7X7
88A
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBNA
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
AXYYD
AZFZN
AZQEC
B-.
B0M
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBA
EBD
EBLON
EBR
EBS
EBU
ECS
EDO
EHE
EIHBH
EIOEI
EJD
EMB
EMK
EMOBN
EPL
ESBYG
EST
ESX
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
L7B
LAI
LK8
LLZTM
M0C
M0L
M0N
M1P
M2P
M43
M4Y
M7P
MA-
MK~
ML0
ML~
N2Q
N9A
NAPCQ
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P62
P9P
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RXW
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBY
SCLPG
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TAE
TH9
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
WOW
X7M
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z82
Z83
Z87
Z88
Z8M
Z8O
Z8R
Z8T
Z8V
Z8W
Z91
Z92
ZGI
ZL0
ZMTXR
ZOVNA
ZXP
~8M
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
NPM
7SC
7TB
7TS
7XB
8AL
8FD
8FK
ABRTQ
FR3
JQ2
K9.
L.-
L7M
L~C
L~D
M7Z
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c372t-a36e9d1aec76de47683d5ffe2d9b03f2ade22eba2bee089854431d7a9520f1633
IEDL.DBID U2A
ISSN 0140-0118
1741-0444
IngestDate Fri Jul 11 09:55:01 EDT 2025
Fri Jul 25 19:11:22 EDT 2025
Wed Feb 19 02:41:36 EST 2025
Thu Apr 24 23:06:13 EDT 2025
Tue Jul 01 02:58:28 EDT 2025
Fri Feb 21 02:31:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Motor imagery
Electroencephalography (EEG)
Common spatial pattern
Hierarchical support vector machine (HSVM)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-a36e9d1aec76de47683d5ffe2d9b03f2ade22eba2bee089854431d7a9520f1633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 28238175
PQID 1940078194
PQPubID 54161
PageCount 10
ParticipantIDs proquest_miscellaneous_1872582591
proquest_journals_1940078194
pubmed_primary_28238175
crossref_primary_10_1007_s11517_017_1611_4
crossref_citationtrail_10_1007_s11517_017_1611_4
springer_journals_10_1007_s11517_017_1611_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20171000
2017-10-00
2017-Oct
20171001
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 20171000
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: United States
– name: Heidelberg
PublicationTitle Medical & biological engineering & computing
PublicationTitleAbbrev Med Biol Eng Comput
PublicationTitleAlternate Med Biol Eng Comput
PublicationYear 2017
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References KangHNamYChoiSComposite common spatial pattern for subject to subject transferIEEE Signal Process Lett200916868368610.1109/LSP.2009.2022557
SalvarisMSepulvedaFVisual modifications on the p300 speller BCI paradigmJ Neural Eng2009640460111:STN:280:DC%2BD1MvpvV2lug%3D%3D10.1088/1741-2560/6/4/04601119602731
TangermannMKrauledatMGrzeskaKSagebaumMVidaurreCBlankertzBPlaying pinball with non-invasive BCIAdv Neural Inf Process Syst20082116411648
Grosse-WentrupMLiefholdCGramannKBussMBeamforming in non-invasive brain–computer interfacesIEEE Trans Biomed Eng20095641209121910.1109/TBME.2008.200976819423426
BrunnerCNaeemMLeebRGraimannBPfurtschellerGSpatial filtering and selection of optimized components in four class motor imagery data using independent components analysisPattern Recogn Lett200728895796410.1016/j.patrec.2007.01.002
GalanFNuttinMLewEFerrezPWVanackerGPhilipsJMillanJDRA brain-actuated wheelchair: asynchronous and non-invasive brain–computer interfaces for continuous control of robotsClin Neurophysiol20081199215921691:STN:280:DC%2BD1cvot1Slug%3D%3D10.1016/j.clinph.2008.06.00118621580
MartensSLeivaJA generative model approach for decoding in the visual event-related potential-based brain–computer interface spellerJ Neural Eng2010721393140210.1088/1741-2560/7/2/026003
RamoserHMuller-GerkingJPfurtschellerGOptimal spatial filtering of single trial EEG during imagined hand movementIEEE Trans Rehabil Eng20108444144610.1109/86.895946
HadjidimitriouSKHadjileontiadisLJToward an EEG-based recognition of music liking using time-frequency analysisIEEE Trans Biomed Eng201259123498351010.1109/TBME.2012.221749523033323
SukHILeeSWSubject and class specific frequency bands selection for multiclass motor imagery classificationInt J Imaging Syst Technol201121212313010.1002/ima.20283
WolpawJRMcFarlandDJControl of a two-dimensional movement signal by a noninvasive brain-computer interface in humansProc Natl Acad Sci USA20041015117849178541:CAS:528:DC%2BD2MXjtVSmtA%3D%3D10.1073/pnas.040350410115585584535103
VapnikVNThe nature of statistical learning theory2000BerlinSpringer10.1007/978-1-4757-3264-1
Ang KK, Chin ZY, Zhang H, Guan C (2008) Filter bank common spatial pattern (FBCSP) in brain–computer interface. In: IEEE international joint conference on neural networks, Hong Kong, China, pp 2390–2397
LinZZhangCWuWGaoXFrequency recognition based on canonical correlation analysis for SSVEP-based BCIsIEEE Trans Biomed Eng20075461172117610.1109/TBME.2006.88919717549911
PfurtschellerGNeuperCBirbaumerNVaadiaERiehleAHuman brain-computer interfaceMotor cortex in voluntary movements: a distributed system for distributed functions, Methods and New Frontiers in Neuroscience2005Boca RatonCRC Press367401
KrusienskiDJSellersEWMcFarlandDJVaughanTMWolpawJRTowardenhanced p300 speller performanceJ Neurosci Methods2008167115211:STN:280:DC%2BD2sjhs1ansQ%3D%3D10.1016/j.jneumeth.2007.07.01717822777
Brunner C, Leeb R, Muller-Putz GR, Schlogl A, Pfurtscheller G (2008) BCI competition 2008-graz data set A, Institute for Knowledge Discovery (Laboratory of Brain–Computer Interfaces), Graz University of Technology
WolpawJRMcfarlandDJNeatGWFornerisCAAn EEG-based brain-computer interface for cursor controlElectroencephalogr Clin Neurophysiol19917832522591:STN:280:DyaK3M7pvF2ktg%3D%3D10.1016/0013-4694(91)90040-B1707798
KolesZJThe quantitative extraction and topographic mapping of the abnormal components in the clinical EEGElectroencephalogr Clin Neurophysiol19917964404471:STN:280:DyaK38%2FptValtw%3D%3D10.1016/0013-4694(91)90163-X1721571
ZhangDHuangBLiSWuWAn idle-state detection algorithm for SSVEP-based brain-computer interfaces using a maximum evoked response spatial filterInt J Neural Syst2015257155003010.1142/S012906571550030626246229
KangHChoiSBayesian common spatial patterns for multi-subject EEG classificationNeural Netw2014579395010.1016/j.neunet.2014.05.01224927041
DornhegeGBlankertzBCurioGMullerK-RBoosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigmsIEEE Trans Biomed Eng2004516993100210.1109/TBME.2004.82708815188870
FukumaRYanagisawaTYorifujiSKatoRYokoiHClosed-loop control of a neuroprosthetic hand by magnetoencephalographic signalsPLoS ONE2015107e013154710.1371/journal.pone.0131547261348454489903
ChangC-CLinC-JLIBSVM: a library for support vector machinesProc IEEE Int Conf Neural Netw201123127
LotteFGuanCRegularizing common spatial patterns to improve BCI designs: unified theory and new algorithmsIEEE Trans Biomed Eng201158235536210.1109/TBME.2010.208253920889426
ThulasidasMGuanCWuJRobust classification of EEG signal for brain–computer interfaceIEEE Trans Neural Syst Rehabil Eng2006141242910.1109/TNSRE.2005.86269516562628
H Kang (1611_CR11) 2009; 16
G Pfurtscheller (1611_CR17) 2005
C-C Chang (1611_CR4) 2011; 2
SK Hadjidimitriou (1611_CR9) 2012; 59
JR Wolpaw (1611_CR24) 2004; 101
1611_CR3
F Lotte (1611_CR15) 2011; 58
M Tangermann (1611_CR21) 2008; 21
G Dornhege (1611_CR5) 2004; 51
1611_CR1
HI Suk (1611_CR20) 2011; 21
H Kang (1611_CR10) 2014; 57
F Galan (1611_CR7) 2008; 119
M Grosse-Wentrup (1611_CR8) 2009; 56
H Ramoser (1611_CR18) 2010; 8
D Zhang (1611_CR26) 2015; 25
VN Vapnik (1611_CR23) 2000
R Fukuma (1611_CR6) 2015; 10
M Thulasidas (1611_CR22) 2006; 14
M Salvaris (1611_CR19) 2009; 6
Z Lin (1611_CR14) 2007; 54
JR Wolpaw (1611_CR25) 1991; 78
ZJ Koles (1611_CR12) 1991; 79
C Brunner (1611_CR2) 2007; 28
S Martens (1611_CR16) 2010; 7
DJ Krusienski (1611_CR13) 2008; 167
1721571 - Electroencephalogr Clin Neurophysiol. 1991 Dec;79(6):440-7
20168003 - J Neural Eng. 2010 Apr;7(2):26003
26246229 - Int J Neural Syst. 2015 Nov;25(7):1550030
24927041 - Neural Netw. 2014 Sep;57:39-50
17549911 - IEEE Trans Biomed Eng. 2007 Jun;54(6 Pt 2):1172-6
23033323 - IEEE Trans Biomed Eng. 2012 Dec;59(12):3498-510
19602731 - J Neural Eng. 2009 Aug;6(4):046011
15188870 - IEEE Trans Biomed Eng. 2004 Jun;51(6):993-1002
11204034 - IEEE Trans Rehabil Eng. 2000 Dec;8(4):441-6
16562628 - IEEE Trans Neural Syst Rehabil Eng. 2006 Mar;14(1):24-9
26134845 - PLoS One. 2015 Jul 02;10(7):e0131547
19423426 - IEEE Trans Biomed Eng. 2009 Apr;56(4):1209-19
17822777 - J Neurosci Methods. 2008 Jan 15;167(1):15-21
15585584 - Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17849-54
1707798 - Electroencephalogr Clin Neurophysiol. 1991 Mar;78(3):252-9
18621580 - Clin Neurophysiol. 2008 Sep;119(9):2159-69
20889426 - IEEE Trans Biomed Eng. 2011 Feb;58(2):355-62
References_xml – reference: SukHILeeSWSubject and class specific frequency bands selection for multiclass motor imagery classificationInt J Imaging Syst Technol201121212313010.1002/ima.20283
– reference: ZhangDHuangBLiSWuWAn idle-state detection algorithm for SSVEP-based brain-computer interfaces using a maximum evoked response spatial filterInt J Neural Syst2015257155003010.1142/S012906571550030626246229
– reference: Brunner C, Leeb R, Muller-Putz GR, Schlogl A, Pfurtscheller G (2008) BCI competition 2008-graz data set A, Institute for Knowledge Discovery (Laboratory of Brain–Computer Interfaces), Graz University of Technology
– reference: PfurtschellerGNeuperCBirbaumerNVaadiaERiehleAHuman brain-computer interfaceMotor cortex in voluntary movements: a distributed system for distributed functions, Methods and New Frontiers in Neuroscience2005Boca RatonCRC Press367401
– reference: WolpawJRMcfarlandDJNeatGWFornerisCAAn EEG-based brain-computer interface for cursor controlElectroencephalogr Clin Neurophysiol19917832522591:STN:280:DyaK3M7pvF2ktg%3D%3D10.1016/0013-4694(91)90040-B1707798
– reference: KolesZJThe quantitative extraction and topographic mapping of the abnormal components in the clinical EEGElectroencephalogr Clin Neurophysiol19917964404471:STN:280:DyaK38%2FptValtw%3D%3D10.1016/0013-4694(91)90163-X1721571
– reference: RamoserHMuller-GerkingJPfurtschellerGOptimal spatial filtering of single trial EEG during imagined hand movementIEEE Trans Rehabil Eng20108444144610.1109/86.895946
– reference: VapnikVNThe nature of statistical learning theory2000BerlinSpringer10.1007/978-1-4757-3264-1
– reference: KangHNamYChoiSComposite common spatial pattern for subject to subject transferIEEE Signal Process Lett200916868368610.1109/LSP.2009.2022557
– reference: TangermannMKrauledatMGrzeskaKSagebaumMVidaurreCBlankertzBPlaying pinball with non-invasive BCIAdv Neural Inf Process Syst20082116411648
– reference: WolpawJRMcFarlandDJControl of a two-dimensional movement signal by a noninvasive brain-computer interface in humansProc Natl Acad Sci USA20041015117849178541:CAS:528:DC%2BD2MXjtVSmtA%3D%3D10.1073/pnas.040350410115585584535103
– reference: Ang KK, Chin ZY, Zhang H, Guan C (2008) Filter bank common spatial pattern (FBCSP) in brain–computer interface. In: IEEE international joint conference on neural networks, Hong Kong, China, pp 2390–2397
– reference: DornhegeGBlankertzBCurioGMullerK-RBoosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigmsIEEE Trans Biomed Eng2004516993100210.1109/TBME.2004.82708815188870
– reference: KangHChoiSBayesian common spatial patterns for multi-subject EEG classificationNeural Netw2014579395010.1016/j.neunet.2014.05.01224927041
– reference: BrunnerCNaeemMLeebRGraimannBPfurtschellerGSpatial filtering and selection of optimized components in four class motor imagery data using independent components analysisPattern Recogn Lett200728895796410.1016/j.patrec.2007.01.002
– reference: ChangC-CLinC-JLIBSVM: a library for support vector machinesProc IEEE Int Conf Neural Netw201123127
– reference: LotteFGuanCRegularizing common spatial patterns to improve BCI designs: unified theory and new algorithmsIEEE Trans Biomed Eng201158235536210.1109/TBME.2010.208253920889426
– reference: ThulasidasMGuanCWuJRobust classification of EEG signal for brain–computer interfaceIEEE Trans Neural Syst Rehabil Eng2006141242910.1109/TNSRE.2005.86269516562628
– reference: FukumaRYanagisawaTYorifujiSKatoRYokoiHClosed-loop control of a neuroprosthetic hand by magnetoencephalographic signalsPLoS ONE2015107e013154710.1371/journal.pone.0131547261348454489903
– reference: HadjidimitriouSKHadjileontiadisLJToward an EEG-based recognition of music liking using time-frequency analysisIEEE Trans Biomed Eng201259123498351010.1109/TBME.2012.221749523033323
– reference: MartensSLeivaJA generative model approach for decoding in the visual event-related potential-based brain–computer interface spellerJ Neural Eng2010721393140210.1088/1741-2560/7/2/026003
– reference: LinZZhangCWuWGaoXFrequency recognition based on canonical correlation analysis for SSVEP-based BCIsIEEE Trans Biomed Eng20075461172117610.1109/TBME.2006.88919717549911
– reference: Grosse-WentrupMLiefholdCGramannKBussMBeamforming in non-invasive brain–computer interfacesIEEE Trans Biomed Eng20095641209121910.1109/TBME.2008.200976819423426
– reference: GalanFNuttinMLewEFerrezPWVanackerGPhilipsJMillanJDRA brain-actuated wheelchair: asynchronous and non-invasive brain–computer interfaces for continuous control of robotsClin Neurophysiol20081199215921691:STN:280:DC%2BD1cvot1Slug%3D%3D10.1016/j.clinph.2008.06.00118621580
– reference: SalvarisMSepulvedaFVisual modifications on the p300 speller BCI paradigmJ Neural Eng2009640460111:STN:280:DC%2BD1MvpvV2lug%3D%3D10.1088/1741-2560/6/4/04601119602731
– reference: KrusienskiDJSellersEWMcFarlandDJVaughanTMWolpawJRTowardenhanced p300 speller performanceJ Neurosci Methods2008167115211:STN:280:DC%2BD2sjhs1ansQ%3D%3D10.1016/j.jneumeth.2007.07.01717822777
– volume: 25
  start-page: 1550030
  issue: 7
  year: 2015
  ident: 1611_CR26
  publication-title: Int J Neural Syst
  doi: 10.1142/S0129065715500306
– volume: 16
  start-page: 683
  issue: 8
  year: 2009
  ident: 1611_CR11
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2009.2022557
– start-page: 367
  volume-title: Motor cortex in voluntary movements: a distributed system for distributed functions, Methods and New Frontiers in Neuroscience
  year: 2005
  ident: 1611_CR17
– volume: 58
  start-page: 355
  issue: 2
  year: 2011
  ident: 1611_CR15
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2010.2082539
– volume: 2
  start-page: 1
  issue: 3
  year: 2011
  ident: 1611_CR4
  publication-title: Proc IEEE Int Conf Neural Netw
– volume: 119
  start-page: 2159
  issue: 9
  year: 2008
  ident: 1611_CR7
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2008.06.001
– volume: 78
  start-page: 252
  issue: 3
  year: 1991
  ident: 1611_CR25
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(91)90040-B
– volume: 79
  start-page: 440
  issue: 6
  year: 1991
  ident: 1611_CR12
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(91)90163-X
– volume: 28
  start-page: 957
  issue: 8
  year: 2007
  ident: 1611_CR2
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2007.01.002
– volume: 10
  start-page: e0131547
  issue: 7
  year: 2015
  ident: 1611_CR6
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0131547
– ident: 1611_CR3
– ident: 1611_CR1
– volume: 57
  start-page: 39
  issue: 9
  year: 2014
  ident: 1611_CR10
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2014.05.012
– volume: 167
  start-page: 15
  issue: 1
  year: 2008
  ident: 1611_CR13
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2007.07.017
– volume: 101
  start-page: 17849
  issue: 51
  year: 2004
  ident: 1611_CR24
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0403504101
– volume: 7
  start-page: 1393
  issue: 2
  year: 2010
  ident: 1611_CR16
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/7/2/026003
– volume: 56
  start-page: 1209
  issue: 4
  year: 2009
  ident: 1611_CR8
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2008.2009768
– volume: 14
  start-page: 24
  issue: 1
  year: 2006
  ident: 1611_CR22
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2005.862695
– volume: 51
  start-page: 993
  issue: 6
  year: 2004
  ident: 1611_CR5
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2004.827088
– volume: 54
  start-page: 1172
  issue: 6
  year: 2007
  ident: 1611_CR14
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2006.889197
– volume: 6
  start-page: 046011
  issue: 4
  year: 2009
  ident: 1611_CR19
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/6/4/046011
– volume: 21
  start-page: 1641
  year: 2008
  ident: 1611_CR21
  publication-title: Adv Neural Inf Process Syst
– volume-title: The nature of statistical learning theory
  year: 2000
  ident: 1611_CR23
  doi: 10.1007/978-1-4757-3264-1
– volume: 21
  start-page: 123
  issue: 2
  year: 2011
  ident: 1611_CR20
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.20283
– volume: 59
  start-page: 3498
  issue: 12
  year: 2012
  ident: 1611_CR9
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2012.2217495
– volume: 8
  start-page: 441
  issue: 4
  year: 2010
  ident: 1611_CR18
  publication-title: IEEE Trans Rehabil Eng
  doi: 10.1109/86.895946
– reference: 1707798 - Electroencephalogr Clin Neurophysiol. 1991 Mar;78(3):252-9
– reference: 17822777 - J Neurosci Methods. 2008 Jan 15;167(1):15-21
– reference: 26134845 - PLoS One. 2015 Jul 02;10(7):e0131547
– reference: 19602731 - J Neural Eng. 2009 Aug;6(4):046011
– reference: 20889426 - IEEE Trans Biomed Eng. 2011 Feb;58(2):355-62
– reference: 1721571 - Electroencephalogr Clin Neurophysiol. 1991 Dec;79(6):440-7
– reference: 16562628 - IEEE Trans Neural Syst Rehabil Eng. 2006 Mar;14(1):24-9
– reference: 15188870 - IEEE Trans Biomed Eng. 2004 Jun;51(6):993-1002
– reference: 20168003 - J Neural Eng. 2010 Apr;7(2):26003
– reference: 24927041 - Neural Netw. 2014 Sep;57:39-50
– reference: 11204034 - IEEE Trans Rehabil Eng. 2000 Dec;8(4):441-6
– reference: 15585584 - Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17849-54
– reference: 17549911 - IEEE Trans Biomed Eng. 2007 Jun;54(6 Pt 2):1172-6
– reference: 18621580 - Clin Neurophysiol. 2008 Sep;119(9):2159-69
– reference: 23033323 - IEEE Trans Biomed Eng. 2012 Dec;59(12):3498-510
– reference: 26246229 - Int J Neural Syst. 2015 Nov;25(7):1550030
– reference: 19423426 - IEEE Trans Biomed Eng. 2009 Apr;56(4):1209-19
SSID ssj0021524
Score 2.4688122
Snippet Pattern classification algorithm is the crucial step in developing brain–computer interface (BCI) applications. In this paper, a hierarchical support vector...
Pattern classification algorithm is the crucial step in developing brain-computer interface (BCI) applications. In this paper, a hierarchical support vector...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1809
SubjectTerms Algorithms
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Brain
Classification
Competition
Computer Applications
EEG
Electroencephalography
Emulation
Feature extraction
Human Physiology
Image classification
Imaging
Interfaces
Mental task performance
Original Article
Radiology
Support vector machines
Wavelet analysis
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LbtQwFL2iRULdVAX6SB_ISKyorCaO81pVCLWqkIYNFM0usuMbqDRN2pkpErv-Q_-QL-FejzMDqug2TyfHzj32vTkH4J2zpaFATiON2LDUqCpZaaukwjxuU6Nt5SU2Rp_zi0v9aZyNw4LbLJRVDt9E_6F2fcNr5CeJd_Cm-KVPb24lu0ZxdjVYaKzBc5Yu45KuYryacFFs0ssSRmLSQ1bT_zpHoY6LLgtJnIemUf_GpUdk81Gi1Mef8y3YDMRRfFgg_RKeYfcKXoxCavw1zLy9JRf--Hct-lb4YkHZ8HZBiPRTcXXNkhW_BK--CiO6_idOBLth-3wCwSW-fBsJM_lOTz7_cS2I0QrLJhK_7x-a4P8gWGFi2nIp1zZcnp99_Xghg6OCbNJCzaVJc6xcYrApcoeaphqpy9oWlatsnLbKOFQKrVEWMS6rksXxEleYKlNxS8wt3YH1ru9wD4RyaZ6jzTiNqFM0pXZ547Ql-tUkWGIE8fA-6ybIjbPrxaReCSUzBDVBUDMEtY7g_fKUm4XWxlMHHw4g1WHYzepVJ4ng7XI3DRjOgpgO-zs6piwUtTqrkgh2F-Au70bzT1YszCI4HtD-6-L_a8r-0005gA3l-xl3wkNYn0_v8IiYzNy-8d31DwL07y4
  priority: 102
  providerName: ProQuest
Title Classification of multi-class motor imagery with a novel hierarchical SVM algorithm for brain–computer interfaces
URI https://link.springer.com/article/10.1007/s11517-017-1611-4
https://www.ncbi.nlm.nih.gov/pubmed/28238175
https://www.proquest.com/docview/1940078194
https://www.proquest.com/docview/1872582591
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwED-xTUK8IGBsdJTKk_Y0FKlxnH-PBdpNsE6IUVSeIju-TEhtgtpuEm98B74hn4Q7N0mHxibxEkux41j-2bnf5c53AEfWJJoEOe00YsOeQpl6qTLSkxj1i0Ark7oQG-Pz6HSi3k_DaX2Oe9l4uzcmSfel3hx2I-HEbpKxRyyFFJ8t2AlZdadFPJGDVssigaRav0Wiz40p819d_C2MbjHMW9ZRJ3RGT-BxzRbFYA3vU3iA5TN4OK7t4buwdDkt2dvHTbCoCuE8BL2c7wuCoVqIb3OOU_FD8C9XoUVZXeNMcApsZ0QgjMTFl7HQs8tqQS3mgmisMJw54vfPX3md9EFwWIlFwf5bz2EyGn5-e-rVaRS8PIjlytNBhKn1NeZxZFGRfhHYsChQ2tT0g0Jqi1Ki0dIg9pM04Yh4vo11SrNbEF0L9mC7rEp8AULaIIrQhGw7VAHqRNkot8oQ58p9TLAD_WY-s7yOMc6pLmbZJjoyQ5ARBBlDkKkOHLePfF8H2LivcbcBKav32jLzXW53YjZUfdhW0y5h04cusbqiNkksadRh6ndgfw1u-zZSOjlMYdiB1w3aNzq_aygH_9X6JTySbtnxmuzC9mpxha-IzaxMD7biaUzXZHTSg53Bu_HZBZcnXz8MqXwzPP_4qedW-B9D2PIu
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIgEXxD-BAkaCCygisZ2_A0IIWLa02wst6i3Y8YRW2iZldwvqjXfgPXgonoQZb5KCKnrrNXEcyzPj-ewZzwfwxNnckCMnSyM0HGqURVhoK0OJaVQro23hS2xMttLxjv6wm-yuwK_-LgynVfZrol-oXVvxGfmL2DN4k__Srw6_hswaxdHVnkJjqRYbePydtmzzl-tvSb5PpRy9234zDjtWgbBSmVyERqVYuNhglaUONcFt5ZK6RukKG6laGodSojXSIkZ5kXOBuNhlpkhkVBN6UdTvBbiolSrYovLR-2GDR75QDymThNz7KKq_qkeulZM8s5AwFm3b_vWDp8DtqcCs93eja3C1A6ri9VKzrsMKNjfg0qQLxd-EuafT5EQjL1vR1sInJ4YVPxekAe1M7B9wiYxjwae9woim_YZTwezbPn5B6iE-fpoIM_1CM73YOxCEoIVl0orfP35WHd-E4IoWs5pTx27BzrnM9W1YbdoG74KQTqUp2oTDllqhybVLK6ctwb0qxhwDiPr5LKuuvDmzbEzLk8LMLIKSRFCyCEodwLPhk8NlbY-zGq_1Qio7M5-XJ0oZwOPhNRkoR11Mg-0RtckzSaNOijiAO0vhDn-j_S5XSEwCeN5L-6_O_zeUe2cP5RFcHm9PNsvN9a2N-3BFep1jhVyD1cXsCB8QilrYh151BXw-b1v5AxiVLQs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIlVcKv4JFDASXEBWE8f5O1QIUVYtZSskKNpbsOMJRdomZXdL1RvvwNvwODwJM95kF1TRW6-J41ieGc9nz3g-gKfO5oYcOVkaoWGpURWy0FZJhWlYx0bbwpfYGO6nOwf67SgZrcCv_i4Mp1X2a6JfqF1b8Rn5ZuQZvMl_6c26S4t4vz14efxNMoMUR1p7Oo25iuzh2Slt36Zbu9sk62dKDd58fL0jO4YBWcWZmkkTp1i4yGCVpQ41Qe_YJXWNyhU2jGtlHCqF1iiLGOZFzsXiIpeZIlFhTUgmpn6vwNUsTiK2sWy03OyRX9SL9ElC8X1E1V_bIzfLCZ-ZJLxFW7h_feI5oHsuSOt93-A6rHegVbyaa9kNWMHmJqwNu7D8LZh6ak1OOvJyFm0tfKKirPi5IG1oJ-LrEZfLOBN88iuMaNrvOBbMxO1jGaQq4sOnoTDjLzTTs8MjQWhaWCaw-P3jZ9VxTwiubjGpOY3sNhxcylzfgdWmbfAeCOXiNEWbcAhTx2hy7dLKaUvQr4owxwDCfj7Lqit1zowb43JZpJlFUJIIShZBqQN4vvjkeF7n46LGG72Qys7kp-VSQQN4snhNxsoRGNNge0Jt8kzRqJMiCuDuXLiLv9Hel6slJgG86KX9V-f_G8r9i4fyGNbISsp3u_t7D-Ca8irH-rgBq7PJCT4kQDWzj7zmCvh82abyB_VFMTg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+multi-class+motor+imagery+with+a+novel+hierarchical+SVM+algorithm+for+brain-computer+interfaces&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Dong%2C+Enzeng&rft.au=Li%2C+Changhai&rft.au=Li%2C+Liting&rft.au=Du%2C+Shengzhi&rft.date=2017-10-01&rft.issn=1741-0444&rft.eissn=1741-0444&rft.volume=55&rft.issue=10&rft.spage=1809&rft_id=info:doi/10.1007%2Fs11517-017-1611-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon