Classification of multi-class motor imagery with a novel hierarchical SVM algorithm for brain–computer interfaces
Pattern classification algorithm is the crucial step in developing brain–computer interface (BCI) applications. In this paper, a hierarchical support vector machine (HSVM) algorithm is proposed to address an EEG-based four-class motor imagery classification task. Wavelet packet transform is employed...
Saved in:
Published in | Medical & biological engineering & computing Vol. 55; no. 10; pp. 1809 - 1818 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pattern classification algorithm is the crucial step in developing brain–computer interface (BCI) applications. In this paper, a hierarchical support vector machine (HSVM) algorithm is proposed to address an EEG-based four-class motor imagery classification task. Wavelet packet transform is employed to decompose raw EEG signals. Thereafter, EEG signals with effective frequency sub-bands are grouped and reconstructed. EEG feature vectors are extracted from the reconstructed EEG signals with one versus the rest common spatial patterns (OVR-CSP) and one versus one common spatial patterns (OVO-CSP). Then, a two-layer HSVM algorithm is designed for the classification of these EEG feature vectors, where “OVO” classifiers are used in the first layer and “OVR” in the second layer. A public dataset (BCI Competition IV-II-a)is employed to validate the proposed method. Fivefold cross-validation results demonstrate that the average accuracy of classification in the first layer and the second layer is 67.5 ± 17.7% and 60.3 ± 14.7%, respectively. The average accuracy of the classification is 64.4 ± 16.7% overall. These results show that the proposed method is effective for four-class motor imagery classification. |
---|---|
AbstractList | Pattern classification algorithm is the crucial step in developing brain-computer interface (BCI) applications. In this paper, a hierarchical support vector machine (HSVM) algorithm is proposed to address an EEG-based four-class motor imagery classification task. Wavelet packet transform is employed to decompose raw EEG signals. Thereafter, EEG signals with effective frequency sub-bands are grouped and reconstructed. EEG feature vectors are extracted from the reconstructed EEG signals with one versus the rest common spatial patterns (OVR-CSP) and one versus one common spatial patterns (OVO-CSP). Then, a two-layer HSVM algorithm is designed for the classification of these EEG feature vectors, where "OVO" classifiers are used in the first layer and "OVR" in the second layer. A public dataset (BCI Competition IV-II-a)is employed to validate the proposed method. Fivefold cross-validation results demonstrate that the average accuracy of classification in the first layer and the second layer is 67.5 ± 17.7% and 60.3 ± 14.7%, respectively. The average accuracy of the classification is 64.4 ± 16.7% overall. These results show that the proposed method is effective for four-class motor imagery classification. Pattern classification algorithm is the crucial step in developing brain–computer interface (BCI) applications. In this paper, a hierarchical support vector machine (HSVM) algorithm is proposed to address an EEG-based four-class motor imagery classification task. Wavelet packet transform is employed to decompose raw EEG signals. Thereafter, EEG signals with effective frequency sub-bands are grouped and reconstructed. EEG feature vectors are extracted from the reconstructed EEG signals with one versus the rest common spatial patterns (OVR-CSP) and one versus one common spatial patterns (OVO-CSP). Then, a two-layer HSVM algorithm is designed for the classification of these EEG feature vectors, where “OVO” classifiers are used in the first layer and “OVR” in the second layer. A public dataset (BCI Competition IV-II-a)is employed to validate the proposed method. Fivefold cross-validation results demonstrate that the average accuracy of classification in the first layer and the second layer is 67.5 ± 17.7% and 60.3 ± 14.7%, respectively. The average accuracy of the classification is 64.4 ± 16.7% overall. These results show that the proposed method is effective for four-class motor imagery classification. Pattern classification algorithm is the crucial step in developing brain-computer interface (BCI) applications. In this paper, a hierarchical support vector machine (HSVM) algorithm is proposed to address an EEG-based four-class motor imagery classification task. Wavelet packet transform is employed to decompose raw EEG signals. Thereafter, EEG signals with effective frequency sub-bands are grouped and reconstructed. EEG feature vectors are extracted from the reconstructed EEG signals with one versus the rest common spatial patterns (OVR-CSP) and one versus one common spatial patterns (OVO-CSP). Then, a two-layer HSVM algorithm is designed for the classification of these EEG feature vectors, where "OVO" classifiers are used in the first layer and "OVR" in the second layer. A public dataset (BCI Competition IV-II-a)is employed to validate the proposed method. Fivefold cross-validation results demonstrate that the average accuracy of classification in the first layer and the second layer is 67.5 ± 17.7% and 60.3 ± 14.7%, respectively. The average accuracy of the classification is 64.4 ± 16.7% overall. These results show that the proposed method is effective for four-class motor imagery classification.Pattern classification algorithm is the crucial step in developing brain-computer interface (BCI) applications. In this paper, a hierarchical support vector machine (HSVM) algorithm is proposed to address an EEG-based four-class motor imagery classification task. Wavelet packet transform is employed to decompose raw EEG signals. Thereafter, EEG signals with effective frequency sub-bands are grouped and reconstructed. EEG feature vectors are extracted from the reconstructed EEG signals with one versus the rest common spatial patterns (OVR-CSP) and one versus one common spatial patterns (OVO-CSP). Then, a two-layer HSVM algorithm is designed for the classification of these EEG feature vectors, where "OVO" classifiers are used in the first layer and "OVR" in the second layer. A public dataset (BCI Competition IV-II-a)is employed to validate the proposed method. Fivefold cross-validation results demonstrate that the average accuracy of classification in the first layer and the second layer is 67.5 ± 17.7% and 60.3 ± 14.7%, respectively. The average accuracy of the classification is 64.4 ± 16.7% overall. These results show that the proposed method is effective for four-class motor imagery classification. |
Author | Belkacem, Abdelkader Nasreddine Du, Shengzhi Dong, Enzeng Li, Liting Chen, Chao Li, Changhai |
Author_xml | – sequence: 1 givenname: Enzeng surname: Dong fullname: Dong, Enzeng organization: Key Laboratory of Complex System Control Theory and Application, Tianjin University of Technology – sequence: 2 givenname: Changhai surname: Li fullname: Li, Changhai organization: Key Laboratory of Complex System Control Theory and Application, Tianjin University of Technology – sequence: 3 givenname: Liting surname: Li fullname: Li, Liting organization: Key Laboratory of Complex System Control Theory and Application, Tianjin University of Technology – sequence: 4 givenname: Shengzhi surname: Du fullname: Du, Shengzhi organization: Department of Mechanical Engineering, Tshwane University of Technology – sequence: 5 givenname: Abdelkader Nasreddine surname: Belkacem fullname: Belkacem, Abdelkader Nasreddine organization: Endowed Research Department of Clinical Neuroengineering, Global Center for Medical Engineering and Informatics, Osaka University – sequence: 6 givenname: Chao surname: Chen fullname: Chen, Chao email: cccovb@hotmail.com organization: Key Laboratory of Complex System Control Theory and Application, Tianjin University of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28238175$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc2OFSEQhYkZ49wZfQA3hsSNm1aKpht6aW78S8a48GdLaLqYy4SGK3RrZuc7-IY-iVzvaMwkuoBK4DtVlXPOyElMEQl5COwpMCafFYAOZMPqgR6gEXfIBqSAhgkhTsiGgWD1F9QpOSvlijEOHRf3yClXvFUguw0p22BK8c5bs_gUaXJ0XsPiG3t4p3NaUqZ-NpeYr-lXv-yooTF9wUB3HrPJdleVgb7_9JaacJlyJWbqqmbMxscf377bNO_XBWuTWG9nLJb75K4zoeCDm3pOPr588WH7url49-rN9vlFY1vJl8a0PQ4TGLSyn1DIXrVT5xzyaRhZ67iZkHMcDR8RmRpUJ0QLkzRDx5mDvm3PyZNj331On1csi559sRiCiZjWokFJ3ineDVDRx7fQq7TmWLfTMIjqtaqlUo9uqHWccdL7XJ3J1_q3nRWAI2BzKiWj-4MA04fI9DEyXSPTh8j0oam8pbF--RXGUi0M_1Xyo7LUKbEm9NfS_xT9BELoq_0 |
CitedBy_id | crossref_primary_10_1007_s11517_021_02396_w crossref_primary_10_1109_TNSRE_2023_3294815 crossref_primary_10_1007_s11571_022_09919_7 crossref_primary_10_1016_j_bspc_2022_104114 crossref_primary_10_1016_j_bspc_2024_107149 crossref_primary_10_3390_s23115051 crossref_primary_10_1016_j_bspc_2020_101991 crossref_primary_10_1007_s11571_020_09608_3 crossref_primary_10_1155_2022_3987494 crossref_primary_10_1166_jmihi_2021_3348 crossref_primary_10_1166_jmihi_2021_3422 crossref_primary_10_1007_s11571_021_09779_7 crossref_primary_10_1007_s00521_022_07861_7 crossref_primary_10_1109_TNSRE_2021_3051958 crossref_primary_10_1109_ACCESS_2024_3459866 crossref_primary_10_1155_2020_4930972 crossref_primary_10_1007_s00500_024_09695_y crossref_primary_10_3390_s17112576 crossref_primary_10_1007_s11517_021_02449_0 crossref_primary_10_54856_jiswa_202205203 crossref_primary_10_1016_j_bspc_2021_102993 crossref_primary_10_1371_journal_pone_0198786 crossref_primary_10_1109_TNSRE_2022_3173724 crossref_primary_10_1016_j_compbiomed_2022_105299 crossref_primary_10_3390_mi14050976 crossref_primary_10_3390_neurosci5020012 crossref_primary_10_1007_s11517_018_1883_3 crossref_primary_10_1109_ACCESS_2018_2868178 crossref_primary_10_1016_j_asoc_2022_109685 crossref_primary_10_1109_JBHI_2018_2832538 crossref_primary_10_1007_s40846_020_00596_7 crossref_primary_10_1155_2020_4137283 crossref_primary_10_1016_j_bspc_2022_104252 crossref_primary_10_1109_TNSRE_2018_2837003 crossref_primary_10_1016_j_cmpb_2020_105464 crossref_primary_10_1109_TITS_2023_3348517 crossref_primary_10_4266_acc_2023_01382 crossref_primary_10_1007_s10489_022_04226_4 crossref_primary_10_1016_j_dsp_2022_103816 crossref_primary_10_1088_1741_2552_abce70 crossref_primary_10_3389_fnins_2020_00692 crossref_primary_10_1016_j_jneumeth_2018_12_004 crossref_primary_10_1038_s41598_019_45605_1 crossref_primary_10_1088_1741_2552_abe39b crossref_primary_10_1109_JLT_2023_3250827 crossref_primary_10_1162_neco_a_01223 crossref_primary_10_1155_2020_6968713 crossref_primary_10_1142_S0192415X22500045 crossref_primary_10_1109_ACCESS_2018_2789428 crossref_primary_10_1186_s12859_021_04091_x crossref_primary_10_1109_JSEN_2024_3403875 crossref_primary_10_1155_2019_5068283 crossref_primary_10_1155_2021_4073739 crossref_primary_10_1371_journal_pone_0276133 crossref_primary_10_3389_fnhum_2020_580105 crossref_primary_10_1016_j_neucom_2024_128577 crossref_primary_10_1080_2326263X_2020_1782124 crossref_primary_10_3390_brainsci15020124 crossref_primary_10_1155_2019_1672940 crossref_primary_10_1371_journal_pone_0218181 crossref_primary_10_1109_TETCI_2022_3147225 crossref_primary_10_1016_j_compbiomed_2019_05_024 crossref_primary_10_3390_cryst11020210 crossref_primary_10_1016_j_dib_2024_110181 |
Cites_doi | 10.1142/S0129065715500306 10.1109/LSP.2009.2022557 10.1109/TBME.2010.2082539 10.1016/j.clinph.2008.06.001 10.1016/0013-4694(91)90040-B 10.1016/0013-4694(91)90163-X 10.1016/j.patrec.2007.01.002 10.1371/journal.pone.0131547 10.1016/j.neunet.2014.05.012 10.1016/j.jneumeth.2007.07.017 10.1073/pnas.0403504101 10.1088/1741-2560/7/2/026003 10.1109/TBME.2008.2009768 10.1109/TNSRE.2005.862695 10.1109/TBME.2004.827088 10.1109/TBME.2006.889197 10.1088/1741-2560/6/4/046011 10.1007/978-1-4757-3264-1 10.1002/ima.20283 10.1109/TBME.2012.2217495 10.1109/86.895946 |
ContentType | Journal Article |
Copyright | International Federation for Medical and Biological Engineering 2017 Medical & Biological Engineering & Computing is a copyright of Springer, 2017. |
Copyright_xml | – notice: International Federation for Medical and Biological Engineering 2017 – notice: Medical & Biological Engineering & Computing is a copyright of Springer, 2017. |
DBID | AAYXX CITATION NPM 3V. 7RV 7SC 7TB 7TS 7WY 7WZ 7X7 7XB 87Z 88A 88E 88I 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8FL ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ HCIFZ JQ2 K60 K6~ K7- K9. KB0 L.- L7M LK8 L~C L~D M0C M0N M0S M1P M2P M7P M7Z NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1007/s11517-017-1611-4 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Business Premium Collection Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database ProQuest Health & Medical Collection Medical Database ProQuest Science Database Biological Science Database Biochemistry Abstracts 1 Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Business Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection Physical Education Index ProQuest Biology Journals (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest One Business (Alumni) Biochemistry Abstracts 1 ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Business Collection (Alumni Edition) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1741-0444 |
EndPage | 1818 |
ExternalDocumentID | 28238175 10_1007_s11517_017_1611_4 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Tianjin City grantid: 15JCYBJC51800 funderid: http://dx.doi.org/10.13039/501100006606 – fundername: Tianjin Higher School Science and Technology Development Fund Planning Project grantid: 20120829 – fundername: National Natural Science Foundation of China grantid: 61502340; 61172185 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 61172185 – fundername: National Natural Science Foundation of China grantid: 61502340 – fundername: Natural Science Foundation of Tianjin City grantid: 15JCYBJC51800 |
GroupedDBID | --- -4W -5B -5G -BR -EM -Y2 -~C -~X .4S .55 .86 .DC .GJ .VR 04C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 36B 3V. 4.4 406 408 40D 40E 53G 5GY 5QI 5RE 5VS 67Z 6NX 7RV 7WY 7X7 88A 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBNA ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUHS ACZOJ ADBBV ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ AXYYD AZFZN AZQEC B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBA EBD EBLON EBR EBS EBU ECS EDO EHE EIHBH EIOEI EJD EMB EMK EMOBN EPL ESBYG EST ESX EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ K1G K60 K6V K6~ K7- KDC KOV L7B LAI LK8 LLZTM M0C M0L M0N M1P M2P M43 M4Y M7P MA- MK~ ML0 ML~ N2Q N9A NAPCQ NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P P62 P9P PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS QWB R4E R89 R9I RHV RIG RNI ROL RPX RSV RXW RZK S16 S1Z S26 S27 S28 S3B SAP SBY SCLPG SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TAE TH9 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 WOW X7M YLTOR Z45 Z7R Z7U Z7X Z7Z Z82 Z83 Z87 Z88 Z8M Z8O Z8R Z8T Z8V Z8W Z91 Z92 ZGI ZL0 ZMTXR ZOVNA ZXP ~8M ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT NPM 7SC 7TB 7TS 7XB 8AL 8FD 8FK ABRTQ FR3 JQ2 K9. L.- L7M L~C L~D M7Z P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c372t-a36e9d1aec76de47683d5ffe2d9b03f2ade22eba2bee089854431d7a9520f1633 |
IEDL.DBID | U2A |
ISSN | 0140-0118 1741-0444 |
IngestDate | Fri Jul 11 09:55:01 EDT 2025 Fri Jul 25 19:11:22 EDT 2025 Wed Feb 19 02:41:36 EST 2025 Thu Apr 24 23:06:13 EDT 2025 Tue Jul 01 02:58:28 EDT 2025 Fri Feb 21 02:31:44 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Motor imagery Electroencephalography (EEG) Common spatial pattern Hierarchical support vector machine (HSVM) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-a36e9d1aec76de47683d5ffe2d9b03f2ade22eba2bee089854431d7a9520f1633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 28238175 |
PQID | 1940078194 |
PQPubID | 54161 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1872582591 proquest_journals_1940078194 pubmed_primary_28238175 crossref_primary_10_1007_s11517_017_1611_4 crossref_citationtrail_10_1007_s11517_017_1611_4 springer_journals_10_1007_s11517_017_1611_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20171000 2017-10-00 2017-Oct 20171001 |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: 20171000 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: United States – name: Heidelberg |
PublicationTitle | Medical & biological engineering & computing |
PublicationTitleAbbrev | Med Biol Eng Comput |
PublicationTitleAlternate | Med Biol Eng Comput |
PublicationYear | 2017 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | KangHNamYChoiSComposite common spatial pattern for subject to subject transferIEEE Signal Process Lett200916868368610.1109/LSP.2009.2022557 SalvarisMSepulvedaFVisual modifications on the p300 speller BCI paradigmJ Neural Eng2009640460111:STN:280:DC%2BD1MvpvV2lug%3D%3D10.1088/1741-2560/6/4/04601119602731 TangermannMKrauledatMGrzeskaKSagebaumMVidaurreCBlankertzBPlaying pinball with non-invasive BCIAdv Neural Inf Process Syst20082116411648 Grosse-WentrupMLiefholdCGramannKBussMBeamforming in non-invasive brain–computer interfacesIEEE Trans Biomed Eng20095641209121910.1109/TBME.2008.200976819423426 BrunnerCNaeemMLeebRGraimannBPfurtschellerGSpatial filtering and selection of optimized components in four class motor imagery data using independent components analysisPattern Recogn Lett200728895796410.1016/j.patrec.2007.01.002 GalanFNuttinMLewEFerrezPWVanackerGPhilipsJMillanJDRA brain-actuated wheelchair: asynchronous and non-invasive brain–computer interfaces for continuous control of robotsClin Neurophysiol20081199215921691:STN:280:DC%2BD1cvot1Slug%3D%3D10.1016/j.clinph.2008.06.00118621580 MartensSLeivaJA generative model approach for decoding in the visual event-related potential-based brain–computer interface spellerJ Neural Eng2010721393140210.1088/1741-2560/7/2/026003 RamoserHMuller-GerkingJPfurtschellerGOptimal spatial filtering of single trial EEG during imagined hand movementIEEE Trans Rehabil Eng20108444144610.1109/86.895946 HadjidimitriouSKHadjileontiadisLJToward an EEG-based recognition of music liking using time-frequency analysisIEEE Trans Biomed Eng201259123498351010.1109/TBME.2012.221749523033323 SukHILeeSWSubject and class specific frequency bands selection for multiclass motor imagery classificationInt J Imaging Syst Technol201121212313010.1002/ima.20283 WolpawJRMcFarlandDJControl of a two-dimensional movement signal by a noninvasive brain-computer interface in humansProc Natl Acad Sci USA20041015117849178541:CAS:528:DC%2BD2MXjtVSmtA%3D%3D10.1073/pnas.040350410115585584535103 VapnikVNThe nature of statistical learning theory2000BerlinSpringer10.1007/978-1-4757-3264-1 Ang KK, Chin ZY, Zhang H, Guan C (2008) Filter bank common spatial pattern (FBCSP) in brain–computer interface. In: IEEE international joint conference on neural networks, Hong Kong, China, pp 2390–2397 LinZZhangCWuWGaoXFrequency recognition based on canonical correlation analysis for SSVEP-based BCIsIEEE Trans Biomed Eng20075461172117610.1109/TBME.2006.88919717549911 PfurtschellerGNeuperCBirbaumerNVaadiaERiehleAHuman brain-computer interfaceMotor cortex in voluntary movements: a distributed system for distributed functions, Methods and New Frontiers in Neuroscience2005Boca RatonCRC Press367401 KrusienskiDJSellersEWMcFarlandDJVaughanTMWolpawJRTowardenhanced p300 speller performanceJ Neurosci Methods2008167115211:STN:280:DC%2BD2sjhs1ansQ%3D%3D10.1016/j.jneumeth.2007.07.01717822777 Brunner C, Leeb R, Muller-Putz GR, Schlogl A, Pfurtscheller G (2008) BCI competition 2008-graz data set A, Institute for Knowledge Discovery (Laboratory of Brain–Computer Interfaces), Graz University of Technology WolpawJRMcfarlandDJNeatGWFornerisCAAn EEG-based brain-computer interface for cursor controlElectroencephalogr Clin Neurophysiol19917832522591:STN:280:DyaK3M7pvF2ktg%3D%3D10.1016/0013-4694(91)90040-B1707798 KolesZJThe quantitative extraction and topographic mapping of the abnormal components in the clinical EEGElectroencephalogr Clin Neurophysiol19917964404471:STN:280:DyaK38%2FptValtw%3D%3D10.1016/0013-4694(91)90163-X1721571 ZhangDHuangBLiSWuWAn idle-state detection algorithm for SSVEP-based brain-computer interfaces using a maximum evoked response spatial filterInt J Neural Syst2015257155003010.1142/S012906571550030626246229 KangHChoiSBayesian common spatial patterns for multi-subject EEG classificationNeural Netw2014579395010.1016/j.neunet.2014.05.01224927041 DornhegeGBlankertzBCurioGMullerK-RBoosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigmsIEEE Trans Biomed Eng2004516993100210.1109/TBME.2004.82708815188870 FukumaRYanagisawaTYorifujiSKatoRYokoiHClosed-loop control of a neuroprosthetic hand by magnetoencephalographic signalsPLoS ONE2015107e013154710.1371/journal.pone.0131547261348454489903 ChangC-CLinC-JLIBSVM: a library for support vector machinesProc IEEE Int Conf Neural Netw201123127 LotteFGuanCRegularizing common spatial patterns to improve BCI designs: unified theory and new algorithmsIEEE Trans Biomed Eng201158235536210.1109/TBME.2010.208253920889426 ThulasidasMGuanCWuJRobust classification of EEG signal for brain–computer interfaceIEEE Trans Neural Syst Rehabil Eng2006141242910.1109/TNSRE.2005.86269516562628 H Kang (1611_CR11) 2009; 16 G Pfurtscheller (1611_CR17) 2005 C-C Chang (1611_CR4) 2011; 2 SK Hadjidimitriou (1611_CR9) 2012; 59 JR Wolpaw (1611_CR24) 2004; 101 1611_CR3 F Lotte (1611_CR15) 2011; 58 M Tangermann (1611_CR21) 2008; 21 G Dornhege (1611_CR5) 2004; 51 1611_CR1 HI Suk (1611_CR20) 2011; 21 H Kang (1611_CR10) 2014; 57 F Galan (1611_CR7) 2008; 119 M Grosse-Wentrup (1611_CR8) 2009; 56 H Ramoser (1611_CR18) 2010; 8 D Zhang (1611_CR26) 2015; 25 VN Vapnik (1611_CR23) 2000 R Fukuma (1611_CR6) 2015; 10 M Thulasidas (1611_CR22) 2006; 14 M Salvaris (1611_CR19) 2009; 6 Z Lin (1611_CR14) 2007; 54 JR Wolpaw (1611_CR25) 1991; 78 ZJ Koles (1611_CR12) 1991; 79 C Brunner (1611_CR2) 2007; 28 S Martens (1611_CR16) 2010; 7 DJ Krusienski (1611_CR13) 2008; 167 1721571 - Electroencephalogr Clin Neurophysiol. 1991 Dec;79(6):440-7 20168003 - J Neural Eng. 2010 Apr;7(2):26003 26246229 - Int J Neural Syst. 2015 Nov;25(7):1550030 24927041 - Neural Netw. 2014 Sep;57:39-50 17549911 - IEEE Trans Biomed Eng. 2007 Jun;54(6 Pt 2):1172-6 23033323 - IEEE Trans Biomed Eng. 2012 Dec;59(12):3498-510 19602731 - J Neural Eng. 2009 Aug;6(4):046011 15188870 - IEEE Trans Biomed Eng. 2004 Jun;51(6):993-1002 11204034 - IEEE Trans Rehabil Eng. 2000 Dec;8(4):441-6 16562628 - IEEE Trans Neural Syst Rehabil Eng. 2006 Mar;14(1):24-9 26134845 - PLoS One. 2015 Jul 02;10(7):e0131547 19423426 - IEEE Trans Biomed Eng. 2009 Apr;56(4):1209-19 17822777 - J Neurosci Methods. 2008 Jan 15;167(1):15-21 15585584 - Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17849-54 1707798 - Electroencephalogr Clin Neurophysiol. 1991 Mar;78(3):252-9 18621580 - Clin Neurophysiol. 2008 Sep;119(9):2159-69 20889426 - IEEE Trans Biomed Eng. 2011 Feb;58(2):355-62 |
References_xml | – reference: SukHILeeSWSubject and class specific frequency bands selection for multiclass motor imagery classificationInt J Imaging Syst Technol201121212313010.1002/ima.20283 – reference: ZhangDHuangBLiSWuWAn idle-state detection algorithm for SSVEP-based brain-computer interfaces using a maximum evoked response spatial filterInt J Neural Syst2015257155003010.1142/S012906571550030626246229 – reference: Brunner C, Leeb R, Muller-Putz GR, Schlogl A, Pfurtscheller G (2008) BCI competition 2008-graz data set A, Institute for Knowledge Discovery (Laboratory of Brain–Computer Interfaces), Graz University of Technology – reference: PfurtschellerGNeuperCBirbaumerNVaadiaERiehleAHuman brain-computer interfaceMotor cortex in voluntary movements: a distributed system for distributed functions, Methods and New Frontiers in Neuroscience2005Boca RatonCRC Press367401 – reference: WolpawJRMcfarlandDJNeatGWFornerisCAAn EEG-based brain-computer interface for cursor controlElectroencephalogr Clin Neurophysiol19917832522591:STN:280:DyaK3M7pvF2ktg%3D%3D10.1016/0013-4694(91)90040-B1707798 – reference: KolesZJThe quantitative extraction and topographic mapping of the abnormal components in the clinical EEGElectroencephalogr Clin Neurophysiol19917964404471:STN:280:DyaK38%2FptValtw%3D%3D10.1016/0013-4694(91)90163-X1721571 – reference: RamoserHMuller-GerkingJPfurtschellerGOptimal spatial filtering of single trial EEG during imagined hand movementIEEE Trans Rehabil Eng20108444144610.1109/86.895946 – reference: VapnikVNThe nature of statistical learning theory2000BerlinSpringer10.1007/978-1-4757-3264-1 – reference: KangHNamYChoiSComposite common spatial pattern for subject to subject transferIEEE Signal Process Lett200916868368610.1109/LSP.2009.2022557 – reference: TangermannMKrauledatMGrzeskaKSagebaumMVidaurreCBlankertzBPlaying pinball with non-invasive BCIAdv Neural Inf Process Syst20082116411648 – reference: WolpawJRMcFarlandDJControl of a two-dimensional movement signal by a noninvasive brain-computer interface in humansProc Natl Acad Sci USA20041015117849178541:CAS:528:DC%2BD2MXjtVSmtA%3D%3D10.1073/pnas.040350410115585584535103 – reference: Ang KK, Chin ZY, Zhang H, Guan C (2008) Filter bank common spatial pattern (FBCSP) in brain–computer interface. In: IEEE international joint conference on neural networks, Hong Kong, China, pp 2390–2397 – reference: DornhegeGBlankertzBCurioGMullerK-RBoosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigmsIEEE Trans Biomed Eng2004516993100210.1109/TBME.2004.82708815188870 – reference: KangHChoiSBayesian common spatial patterns for multi-subject EEG classificationNeural Netw2014579395010.1016/j.neunet.2014.05.01224927041 – reference: BrunnerCNaeemMLeebRGraimannBPfurtschellerGSpatial filtering and selection of optimized components in four class motor imagery data using independent components analysisPattern Recogn Lett200728895796410.1016/j.patrec.2007.01.002 – reference: ChangC-CLinC-JLIBSVM: a library for support vector machinesProc IEEE Int Conf Neural Netw201123127 – reference: LotteFGuanCRegularizing common spatial patterns to improve BCI designs: unified theory and new algorithmsIEEE Trans Biomed Eng201158235536210.1109/TBME.2010.208253920889426 – reference: ThulasidasMGuanCWuJRobust classification of EEG signal for brain–computer interfaceIEEE Trans Neural Syst Rehabil Eng2006141242910.1109/TNSRE.2005.86269516562628 – reference: FukumaRYanagisawaTYorifujiSKatoRYokoiHClosed-loop control of a neuroprosthetic hand by magnetoencephalographic signalsPLoS ONE2015107e013154710.1371/journal.pone.0131547261348454489903 – reference: HadjidimitriouSKHadjileontiadisLJToward an EEG-based recognition of music liking using time-frequency analysisIEEE Trans Biomed Eng201259123498351010.1109/TBME.2012.221749523033323 – reference: MartensSLeivaJA generative model approach for decoding in the visual event-related potential-based brain–computer interface spellerJ Neural Eng2010721393140210.1088/1741-2560/7/2/026003 – reference: LinZZhangCWuWGaoXFrequency recognition based on canonical correlation analysis for SSVEP-based BCIsIEEE Trans Biomed Eng20075461172117610.1109/TBME.2006.88919717549911 – reference: Grosse-WentrupMLiefholdCGramannKBussMBeamforming in non-invasive brain–computer interfacesIEEE Trans Biomed Eng20095641209121910.1109/TBME.2008.200976819423426 – reference: GalanFNuttinMLewEFerrezPWVanackerGPhilipsJMillanJDRA brain-actuated wheelchair: asynchronous and non-invasive brain–computer interfaces for continuous control of robotsClin Neurophysiol20081199215921691:STN:280:DC%2BD1cvot1Slug%3D%3D10.1016/j.clinph.2008.06.00118621580 – reference: SalvarisMSepulvedaFVisual modifications on the p300 speller BCI paradigmJ Neural Eng2009640460111:STN:280:DC%2BD1MvpvV2lug%3D%3D10.1088/1741-2560/6/4/04601119602731 – reference: KrusienskiDJSellersEWMcFarlandDJVaughanTMWolpawJRTowardenhanced p300 speller performanceJ Neurosci Methods2008167115211:STN:280:DC%2BD2sjhs1ansQ%3D%3D10.1016/j.jneumeth.2007.07.01717822777 – volume: 25 start-page: 1550030 issue: 7 year: 2015 ident: 1611_CR26 publication-title: Int J Neural Syst doi: 10.1142/S0129065715500306 – volume: 16 start-page: 683 issue: 8 year: 2009 ident: 1611_CR11 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2009.2022557 – start-page: 367 volume-title: Motor cortex in voluntary movements: a distributed system for distributed functions, Methods and New Frontiers in Neuroscience year: 2005 ident: 1611_CR17 – volume: 58 start-page: 355 issue: 2 year: 2011 ident: 1611_CR15 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2010.2082539 – volume: 2 start-page: 1 issue: 3 year: 2011 ident: 1611_CR4 publication-title: Proc IEEE Int Conf Neural Netw – volume: 119 start-page: 2159 issue: 9 year: 2008 ident: 1611_CR7 publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2008.06.001 – volume: 78 start-page: 252 issue: 3 year: 1991 ident: 1611_CR25 publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(91)90040-B – volume: 79 start-page: 440 issue: 6 year: 1991 ident: 1611_CR12 publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(91)90163-X – volume: 28 start-page: 957 issue: 8 year: 2007 ident: 1611_CR2 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2007.01.002 – volume: 10 start-page: e0131547 issue: 7 year: 2015 ident: 1611_CR6 publication-title: PLoS ONE doi: 10.1371/journal.pone.0131547 – ident: 1611_CR3 – ident: 1611_CR1 – volume: 57 start-page: 39 issue: 9 year: 2014 ident: 1611_CR10 publication-title: Neural Netw doi: 10.1016/j.neunet.2014.05.012 – volume: 167 start-page: 15 issue: 1 year: 2008 ident: 1611_CR13 publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2007.07.017 – volume: 101 start-page: 17849 issue: 51 year: 2004 ident: 1611_CR24 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0403504101 – volume: 7 start-page: 1393 issue: 2 year: 2010 ident: 1611_CR16 publication-title: J Neural Eng doi: 10.1088/1741-2560/7/2/026003 – volume: 56 start-page: 1209 issue: 4 year: 2009 ident: 1611_CR8 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2008.2009768 – volume: 14 start-page: 24 issue: 1 year: 2006 ident: 1611_CR22 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2005.862695 – volume: 51 start-page: 993 issue: 6 year: 2004 ident: 1611_CR5 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2004.827088 – volume: 54 start-page: 1172 issue: 6 year: 2007 ident: 1611_CR14 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2006.889197 – volume: 6 start-page: 046011 issue: 4 year: 2009 ident: 1611_CR19 publication-title: J Neural Eng doi: 10.1088/1741-2560/6/4/046011 – volume: 21 start-page: 1641 year: 2008 ident: 1611_CR21 publication-title: Adv Neural Inf Process Syst – volume-title: The nature of statistical learning theory year: 2000 ident: 1611_CR23 doi: 10.1007/978-1-4757-3264-1 – volume: 21 start-page: 123 issue: 2 year: 2011 ident: 1611_CR20 publication-title: Int J Imaging Syst Technol doi: 10.1002/ima.20283 – volume: 59 start-page: 3498 issue: 12 year: 2012 ident: 1611_CR9 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2012.2217495 – volume: 8 start-page: 441 issue: 4 year: 2010 ident: 1611_CR18 publication-title: IEEE Trans Rehabil Eng doi: 10.1109/86.895946 – reference: 1707798 - Electroencephalogr Clin Neurophysiol. 1991 Mar;78(3):252-9 – reference: 17822777 - J Neurosci Methods. 2008 Jan 15;167(1):15-21 – reference: 26134845 - PLoS One. 2015 Jul 02;10(7):e0131547 – reference: 19602731 - J Neural Eng. 2009 Aug;6(4):046011 – reference: 20889426 - IEEE Trans Biomed Eng. 2011 Feb;58(2):355-62 – reference: 1721571 - Electroencephalogr Clin Neurophysiol. 1991 Dec;79(6):440-7 – reference: 16562628 - IEEE Trans Neural Syst Rehabil Eng. 2006 Mar;14(1):24-9 – reference: 15188870 - IEEE Trans Biomed Eng. 2004 Jun;51(6):993-1002 – reference: 20168003 - J Neural Eng. 2010 Apr;7(2):26003 – reference: 24927041 - Neural Netw. 2014 Sep;57:39-50 – reference: 11204034 - IEEE Trans Rehabil Eng. 2000 Dec;8(4):441-6 – reference: 15585584 - Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17849-54 – reference: 17549911 - IEEE Trans Biomed Eng. 2007 Jun;54(6 Pt 2):1172-6 – reference: 18621580 - Clin Neurophysiol. 2008 Sep;119(9):2159-69 – reference: 23033323 - IEEE Trans Biomed Eng. 2012 Dec;59(12):3498-510 – reference: 26246229 - Int J Neural Syst. 2015 Nov;25(7):1550030 – reference: 19423426 - IEEE Trans Biomed Eng. 2009 Apr;56(4):1209-19 |
SSID | ssj0021524 |
Score | 2.4688122 |
Snippet | Pattern classification algorithm is the crucial step in developing brain–computer interface (BCI) applications. In this paper, a hierarchical support vector... Pattern classification algorithm is the crucial step in developing brain-computer interface (BCI) applications. In this paper, a hierarchical support vector... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1809 |
SubjectTerms | Algorithms Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Brain Classification Competition Computer Applications EEG Electroencephalography Emulation Feature extraction Human Physiology Image classification Imaging Interfaces Mental task performance Original Article Radiology Support vector machines Wavelet analysis |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LbtQwFL2iRULdVAX6SB_ISKyorCaO81pVCLWqkIYNFM0usuMbqDRN2pkpErv-Q_-QL-FejzMDqug2TyfHzj32vTkH4J2zpaFATiON2LDUqCpZaaukwjxuU6Nt5SU2Rp_zi0v9aZyNw4LbLJRVDt9E_6F2fcNr5CeJd_Cm-KVPb24lu0ZxdjVYaKzBc5Yu45KuYryacFFs0ssSRmLSQ1bT_zpHoY6LLgtJnIemUf_GpUdk81Gi1Mef8y3YDMRRfFgg_RKeYfcKXoxCavw1zLy9JRf--Hct-lb4YkHZ8HZBiPRTcXXNkhW_BK--CiO6_idOBLth-3wCwSW-fBsJM_lOTz7_cS2I0QrLJhK_7x-a4P8gWGFi2nIp1zZcnp99_Xghg6OCbNJCzaVJc6xcYrApcoeaphqpy9oWlatsnLbKOFQKrVEWMS6rksXxEleYKlNxS8wt3YH1ru9wD4RyaZ6jzTiNqFM0pXZ547Ql-tUkWGIE8fA-6ybIjbPrxaReCSUzBDVBUDMEtY7g_fKUm4XWxlMHHw4g1WHYzepVJ4ng7XI3DRjOgpgO-zs6piwUtTqrkgh2F-Au70bzT1YszCI4HtD-6-L_a8r-0005gA3l-xl3wkNYn0_v8IiYzNy-8d31DwL07y4 priority: 102 providerName: ProQuest |
Title | Classification of multi-class motor imagery with a novel hierarchical SVM algorithm for brain–computer interfaces |
URI | https://link.springer.com/article/10.1007/s11517-017-1611-4 https://www.ncbi.nlm.nih.gov/pubmed/28238175 https://www.proquest.com/docview/1940078194 https://www.proquest.com/docview/1872582591 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwED-xTUK8IGBsdJTKk_Y0FKlxnH-PBdpNsE6IUVSeIju-TEhtgtpuEm98B74hn4Q7N0mHxibxEkux41j-2bnf5c53AEfWJJoEOe00YsOeQpl6qTLSkxj1i0Ark7oQG-Pz6HSi3k_DaX2Oe9l4uzcmSfel3hx2I-HEbpKxRyyFFJ8t2AlZdadFPJGDVssigaRav0Wiz40p819d_C2MbjHMW9ZRJ3RGT-BxzRbFYA3vU3iA5TN4OK7t4buwdDkt2dvHTbCoCuE8BL2c7wuCoVqIb3OOU_FD8C9XoUVZXeNMcApsZ0QgjMTFl7HQs8tqQS3mgmisMJw54vfPX3md9EFwWIlFwf5bz2EyGn5-e-rVaRS8PIjlytNBhKn1NeZxZFGRfhHYsChQ2tT0g0Jqi1Ki0dIg9pM04Yh4vo11SrNbEF0L9mC7rEp8AULaIIrQhGw7VAHqRNkot8oQ58p9TLAD_WY-s7yOMc6pLmbZJjoyQ5ARBBlDkKkOHLePfF8H2LivcbcBKav32jLzXW53YjZUfdhW0y5h04cusbqiNkksadRh6ndgfw1u-zZSOjlMYdiB1w3aNzq_aygH_9X6JTySbtnxmuzC9mpxha-IzaxMD7biaUzXZHTSg53Bu_HZBZcnXz8MqXwzPP_4qedW-B9D2PIu |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIgEXxD-BAkaCCygisZ2_A0IIWLa02wst6i3Y8YRW2iZldwvqjXfgPXgonoQZb5KCKnrrNXEcyzPj-ewZzwfwxNnckCMnSyM0HGqURVhoK0OJaVQro23hS2xMttLxjv6wm-yuwK_-LgynVfZrol-oXVvxGfmL2DN4k__Srw6_hswaxdHVnkJjqRYbePydtmzzl-tvSb5PpRy9234zDjtWgbBSmVyERqVYuNhglaUONcFt5ZK6RukKG6laGodSojXSIkZ5kXOBuNhlpkhkVBN6UdTvBbiolSrYovLR-2GDR75QDymThNz7KKq_qkeulZM8s5AwFm3b_vWDp8DtqcCs93eja3C1A6ri9VKzrsMKNjfg0qQLxd-EuafT5EQjL1vR1sInJ4YVPxekAe1M7B9wiYxjwae9woim_YZTwezbPn5B6iE-fpoIM_1CM73YOxCEoIVl0orfP35WHd-E4IoWs5pTx27BzrnM9W1YbdoG74KQTqUp2oTDllqhybVLK6ctwb0qxhwDiPr5LKuuvDmzbEzLk8LMLIKSRFCyCEodwLPhk8NlbY-zGq_1Qio7M5-XJ0oZwOPhNRkoR11Mg-0RtckzSaNOijiAO0vhDn-j_S5XSEwCeN5L-6_O_zeUe2cP5RFcHm9PNsvN9a2N-3BFep1jhVyD1cXsCB8QilrYh151BXw-b1v5AxiVLQs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIlVcKv4JFDASXEBWE8f5O1QIUVYtZSskKNpbsOMJRdomZXdL1RvvwNvwODwJM95kF1TRW6-J41ieGc9nz3g-gKfO5oYcOVkaoWGpURWy0FZJhWlYx0bbwpfYGO6nOwf67SgZrcCv_i4Mp1X2a6JfqF1b8Rn5ZuQZvMl_6c26S4t4vz14efxNMoMUR1p7Oo25iuzh2Slt36Zbu9sk62dKDd58fL0jO4YBWcWZmkkTp1i4yGCVpQ41Qe_YJXWNyhU2jGtlHCqF1iiLGOZFzsXiIpeZIlFhTUgmpn6vwNUsTiK2sWy03OyRX9SL9ElC8X1E1V_bIzfLCZ-ZJLxFW7h_feI5oHsuSOt93-A6rHegVbyaa9kNWMHmJqwNu7D8LZh6ak1OOvJyFm0tfKKirPi5IG1oJ-LrEZfLOBN88iuMaNrvOBbMxO1jGaQq4sOnoTDjLzTTs8MjQWhaWCaw-P3jZ9VxTwiubjGpOY3sNhxcylzfgdWmbfAeCOXiNEWbcAhTx2hy7dLKaUvQr4owxwDCfj7Lqit1zowb43JZpJlFUJIIShZBqQN4vvjkeF7n46LGG72Qys7kp-VSQQN4snhNxsoRGNNge0Jt8kzRqJMiCuDuXLiLv9Hel6slJgG86KX9V-f_G8r9i4fyGNbISsp3u_t7D-Ca8irH-rgBq7PJCT4kQDWzj7zmCvh82abyB_VFMTg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+multi-class+motor+imagery+with+a+novel+hierarchical+SVM+algorithm+for+brain-computer+interfaces&rft.jtitle=Medical+%26+biological+engineering+%26+computing&rft.au=Dong%2C+Enzeng&rft.au=Li%2C+Changhai&rft.au=Li%2C+Liting&rft.au=Du%2C+Shengzhi&rft.date=2017-10-01&rft.issn=1741-0444&rft.eissn=1741-0444&rft.volume=55&rft.issue=10&rft.spage=1809&rft_id=info:doi/10.1007%2Fs11517-017-1611-4&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-0118&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-0118&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-0118&client=summon |