On the Increase in Network Robustness and Decrease in Network Response Ability during the Aging Process: A Systems Biology Approach via Microarray Data

Aging, an extremely complex and system-level process, has attracted much attention in medical research, especially since chronic diseases are quite prevalent in the elderly population. These may be the result of both gene mutations that lead to intrinsic perturbations and environmental changes that...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ACM transactions on computational biology and bioinformatics Vol. 10; no. 2; pp. 468 - 480
Main Authors Tu, Chien-Ta, Chen, Bor-Sen
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2013
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aging, an extremely complex and system-level process, has attracted much attention in medical research, especially since chronic diseases are quite prevalent in the elderly population. These may be the result of both gene mutations that lead to intrinsic perturbations and environmental changes that may stimulate signaling in the body. Therefore, analysis of network robustness to tolerate intrinsic perturbations and network response ability of gene networks to respond to external stimuli during the aging process may provide insight into the systematic changes caused by aging. We first propose novel methods to estimate network robustness and measure network response ability of gene regulatory networks by using their corresponding microarray data in the aging process. Then, we find that an aging-related gene network is more robust to intrinsic perturbations in the elderly than the young, and therefore is less responsive to external stimuli. Finally, we find that the response abilities of individual genes, especially FOXOs, NF-κB, and p53, are significantly different in the young versus the aged subjects. These observations are consistent with experimental findings in the aged population, e.g., elevated incidence of tumorigenesis and diminished resistance to oxidative stress. The proposed method can also be used for exploring and analyzing the dynamic properties of other biological processes via corresponding microarray data to provide useful information on clinical strategy and drug target selection.
AbstractList Aging, an extremely complex and system-level process, has attracted much attention in medical research, especially since chronic diseases are quite prevalent in the elderly population. These may be the result of both gene mutations that lead to intrinsic perturbations and environmental changes that may stimulate signaling in the body. Therefore, analysis of network robustness to tolerate intrinsic perturbations and network response ability of gene networks to respond to external stimuli during the aging process may provide insight into the systematic changes caused by aging. We first propose novel methods to estimate network robustness and measure network response ability of gene regulatory networks by using their corresponding microarray data in the aging process. Then, we find that an aging-related gene network is more robust to intrinsic perturbations in the elderly than the young, and therefore is less responsive to external stimuli. Finally, we find that the response abilities of individual genes, especially FOXOs, NF-κB, and p53, are significantly different in the young versus the aged subjects. These observations are consistent with experimental findings in the aged population, e.g., elevated incidence of tumorigenesis and diminished resistance to oxidative stress. The proposed method can also be used for exploring and analyzing the dynamic properties of other biological processes via corresponding microarray data to provide useful information on clinical strategy and drug target selection.
Aging, an extremely complex and system-level process, has attracted much attention in medical research, especially since chronic diseases are quite prevalent in the elderly population. These may be the result of both gene mutations that lead to intrinsic perturbations and environmental changes that may stimulate signaling in the body. Therefore, analysis of network robustness to tolerate intrinsic perturbations and network response ability of gene networks to respond to external stimuli during the aging process may provide insight into the systematic changes caused by aging. We first propose novel methods to estimate network robustness and measure network response ability of gene regulatory networks by using their corresponding microarray data in the aging process. Then, we find that an aging-related gene network is more robust to intrinsic perturbations in the elderly than the young, and therefore is less responsive to external stimuli. Finally, we find that the response abilities of individual genes, especially FOXOs, NF-I super(o)B, and p53, are significantly different in the young versus the aged subjects. These observations are consistent with experimental findings in the aged population, e.g., elevated incidence of tumorigenesis and diminished resistance to oxidative stress. The proposed method can also be used for exploring and analyzing the dynamic properties of other biological processes via corresponding microarray data to provide useful information on clinical strategy and drug target selection.
Aging, an extremely complex and system-level process, has attracted much attention in medical research, especially since chronic diseases are quite prevalent in the elderly population. These may be the result of both gene mutations that lead to intrinsic perturbations and environmental changes that may stimulate signaling in the body. Therefore, analysis of network robustness to tolerate intrinsic perturbations and network response ability of gene networks to respond to external stimuli during the aging process may provide insight into the systematic changes caused by aging. We first propose novel methods to estimate network robustness and measure network response ability of gene regulatory networks by using their corresponding microarray data in the aging process. Then, we find that an aging-related gene network is more robust to intrinsic perturbations in the elderly than the young, and therefore is less responsive to external stimuli. Finally, we find that the response abilities of individual genes, especially FOXOs, NF-κB, and p53, are significantly different in the young versus the aged subjects. These observations are consistent with experimental findings in the aged population, e.g., elevated incidence of tumorigenesis and diminished resistance to oxidative stress. The proposed method can also be used for exploring and analyzing the dynamic properties of other biological processes via corresponding microarray data to provide useful information on clinical strategy and drug target selection.
Aging, an extremely complex and system-level process, has attracted much attention in medical research, especially since chronic diseases are quite prevalent in the elderly population. These may be the result of both gene mutations that lead to intrinsic perturbations and environmental changes that may stimulate signaling in the body. Therefore, analysis of network robustness to tolerate intrinsic perturbations and network response ability of gene networks to respond to external stimuli during the aging process may provide insight into the systematic changes caused by aging. We first propose novel methods to estimate network robustness and measure network response ability of gene regulatory networks by using their corresponding microarray data in the aging process. Then, we find that an aging-related gene network is more robust to intrinsic perturbations in the elderly than the young, and therefore is less responsive to external stimuli. Finally, we find that the response abilities of individual genes, especially FOXOs, NF-κB, and p53, are significantly different in the young versus the aged subjects. These observations are consistent with experimental findings in the aged population, e.g., elevated incidence of tumorigenesis and diminished resistance to oxidative stress. The proposed method can also be used for exploring and analyzing the dynamic properties of other biological processes via corresponding microarray data to provide useful information on clinical strategy and drug target selection.Aging, an extremely complex and system-level process, has attracted much attention in medical research, especially since chronic diseases are quite prevalent in the elderly population. These may be the result of both gene mutations that lead to intrinsic perturbations and environmental changes that may stimulate signaling in the body. Therefore, analysis of network robustness to tolerate intrinsic perturbations and network response ability of gene networks to respond to external stimuli during the aging process may provide insight into the systematic changes caused by aging. We first propose novel methods to estimate network robustness and measure network response ability of gene regulatory networks by using their corresponding microarray data in the aging process. Then, we find that an aging-related gene network is more robust to intrinsic perturbations in the elderly than the young, and therefore is less responsive to external stimuli. Finally, we find that the response abilities of individual genes, especially FOXOs, NF-κB, and p53, are significantly different in the young versus the aged subjects. These observations are consistent with experimental findings in the aged population, e.g., elevated incidence of tumorigenesis and diminished resistance to oxidative stress. The proposed method can also be used for exploring and analyzing the dynamic properties of other biological processes via corresponding microarray data to provide useful information on clinical strategy and drug target selection.
Author Chien-Ta Tu
Bor-Sen Chen
Author_xml – sequence: 1
  givenname: Chien-Ta
  surname: Tu
  fullname: Tu, Chien-Ta
– sequence: 2
  givenname: Bor-Sen
  surname: Chen
  fullname: Chen, Bor-Sen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23929870$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhS1URNuBHTskZIkNCzL4mYzZZaY8KhWKoKwjx7kzdcnYg-20yi_h7-IwLYsKJFa-tr5zdGyfY3TgvAOEnlIyp5So1xer5XLOCOVzxh-gIyplVShVioNpFrKQquSH6DjGK0KYUEQ8QoeMK6YWFTlCP88dTpeAT50JoCNg6_AnSDc-fMdffDvE5CBGrF2HT-AvCMSdd_msbm1v04i7IVi3-W1Zb6bpc_AmO7zBNf46xgTbiJfW934z4nq3C16bS3xtNf5oTd6EoEd8opN-jB6udR_hye06Q9_evb1YfSjOzt-fruqzwvCKpUIT0XKlK0E5lAswtKxIRwxbtBXtOk67tVYtNQyYLKWUopKcgxSqBN5WRAGfoZd73xzlxwAxNVsbDfS9duCH2FDBBWGSMfIfKFVccJmzzNCLe-iVH4LLF8kUk0KUnEzU81tqaLfQNbtgtzqMzd3vZIDtgfw0MQZYN8Ymnax3KWjbN5Q0UwWaqQLNVIEszaJX90R3vv_An-1xCwB_0FIscswF_wVoqbko
CODEN ITCBCY
CitedBy_id crossref_primary_10_1109_TCBB_2014_2316814
crossref_primary_10_1080_02533839_2020_1856730
crossref_primary_10_1089_ars_2017_7367
crossref_primary_10_3390_cells9081862
crossref_primary_10_1007_s10522_023_10035_0
crossref_primary_10_3390_cells2040635
crossref_primary_10_1016_j_neucom_2017_08_016
crossref_primary_10_18632_oncotarget_7388
Cites_doi 10.1089/ars.2006.8.572
10.1038/msb.2009.36
10.1126/science.1069981
10.1189/jlb.1202629
10.1111/j.1474-9728.2005.00148.x
10.1084/jem.188.1.211
10.1111/j.1474-9726.2009.00475.x
10.1038/nri887
10.1016/S0092-8674(04)00302-2
10.1016/0092-8674(89)90833-7
10.1038/sj.onc.1206048
10.1016/S0092-8674(00)81375-6
10.1101/gad.13.12.1501
10.1158/0008-5472.CAN-04-3995
10.1371/journal.pgen.0030201
10.1142/9789812701329_0010
10.1109/TAC.2003.821400
10.1006/jtbi.2001.2296
10.1016/S0014-5793(03)00315-6
10.1016/j.mad.2007.01.001
10.1038/nrc2012
10.1186/1471-2105-6-258
10.1096/fj.04-2622fje
10.1128/MCB.21.16.5299-5305.2001
10.1038/sj.cdd.4401830
10.1074/jbc.M509329200
10.1093/genetics/149.4.1665
10.1038/nrg1471
10.1073/pnas.0708043104
10.1186/1755-8794-1-46
10.1152/japplphysiol.90470.2008
10.1016/j.exger.2003.09.007
10.1074/jbc.M207509200
10.1089/152308601750100669
10.1126/science.281.5383.1680
10.1073/pnas.93.16.8318
10.1109/72.870041
10.1101/gad.9.8.935
10.1038/sj.onc.1210616
10.3181/0707-MR-196
10.4049/jimmunol.163.6.3474
10.1093/bioinformatics/bth178
10.1073/pnas.0933416100
10.1158/1541-7786.203.2.4
10.1016/j.tcb.2004.07.006
10.1016/S1525-1578(10)60455-2
10.1177/1534735409335505
10.1126/science.1089072
10.1534/genetics.106.070078
10.1038/nrc864
10.1038/nature01036
10.1101/gad.12.19.2984
10.1371/journal.pbio.0040428
10.1016/j.brainresrev.2007.12.001
10.1126/science.274.5288.784
10.1038/nrc1954
10.1146/annurev.immunol.16.1.225
10.1137/S0363012903423727
10.1006/mgme.2000.3044
10.1158/1055-9965.EPI-05-0493
10.1128/JVI.73.10.7981-7987.1999
10.1016/j.cell.2004.09.027
10.1074/jbc.C200256200
10.1016/S0092-8674(01)00524-4
10.1128/MCB.21.12.3964-3973.2001
10.1554/02-750R
10.1137/1.9781611970777
10.1016/S1535-6108(02)00086-7
10.1006/jmcc.1996.0045
10.1161/01.RES.0000269183.13937.e8
10.1126/science.274.5288.787
10.1093/bioinformatics/16.8.707
10.1073/pnas.78.11.7124
10.1128/MCB.19.8.5785
10.1242/jcs.01483
10.1016/S1535-6108(02)00068-5
10.1038/sj.onc.1208615
10.1038/ncb1101-973
10.1016/S0047-6374(02)00094-5
10.1016/j.cell.2005.08.011
10.1038/msb4100060
10.1016/j.mad.2008.06.001
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar/Apr 2013
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar/Apr 2013
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TCBB.2013.23
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Libary (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
Engineering Research Database

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1557-9964
EndPage 480
ExternalDocumentID 3047469681
23929870
10_1109_TCBB_2013_23
6482548
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
29I
4.4
53G
5GY
5VS
6IK
8US
97E
AAJGR
AAKMM
AALFJ
AARMG
AASAJ
AAWTH
AAWTV
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACM
ACPRK
ADBCU
ADL
AEBYY
AEFXT
AEJOY
AENEX
AENSD
AETIX
AFRAH
AFWIH
AFWXC
AGQYO
AGSQL
AHBIQ
AIBXA
AIKLT
AKJIK
AKQYR
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATWAV
AVWKF
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CCLIF
CS3
DU5
EBS
EJD
FEDTE
GUFHI
HGAVV
HZ~
I07
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
LHSKQ
M43
O9-
OCL
P1C
P2P
PQQKQ
RIA
RIE
RNI
RNS
ROL
RZB
TN5
XOL
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c372t-a04b39a7413e68ec1670d0c28b71dd31dfa9b1c2e25655547533e5496e3b709e3
IEDL.DBID RIE
ISSN 1545-5963
1557-9964
IngestDate Fri Jul 11 06:03:41 EDT 2025
Fri Jul 11 07:48:00 EDT 2025
Mon Jun 30 03:35:26 EDT 2025
Mon Jul 21 05:49:55 EDT 2025
Tue Jul 01 05:15:30 EDT 2025
Thu Apr 24 22:55:42 EDT 2025
Wed Aug 27 02:45:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-a04b39a7413e68ec1670d0c28b71dd31dfa9b1c2e25655547533e5496e3b709e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 23929870
PQID 1425446301
PQPubID 85499
PageCount 13
ParticipantIDs proquest_miscellaneous_1434025220
crossref_citationtrail_10_1109_TCBB_2013_23
proquest_miscellaneous_1419343541
crossref_primary_10_1109_TCBB_2013_23
pubmed_primary_23929870
proquest_journals_1425446301
ieee_primary_6482548
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-03-01
PublicationDateYYYYMMDD 2013-03-01
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE/ACM transactions on computational biology and bioinformatics
PublicationTitleAbbrev TCBB
PublicationTitleAlternate IEEE/ACM Trans Comput Biol Bioinform
PublicationYear 2013
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Ueki (ref4) 2009; 67
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref86
ref85
Johansson (ref41) 1993
ref88
ref43
ref87
Bruunsgaard (ref5) 2006; 53
ref49
ref8
ref7
ref9
ref3
ref6
ref82
ref81
ref40
ref84
ref83
ref80
ref35
ref79
ref34
ref78
ref37
Doyle (ref30) 1992
ref36
ref31
ref75
ref74
ref33
ref77
ref32
ref76
Troen (ref1) 2003; 70
ref2
ref39
ref38
ref71
ref70
ref73
ref72
Kuo (ref44) 2009
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref13
  doi: 10.1089/ars.2006.8.572
– ident: ref32
  doi: 10.1038/msb.2009.36
– ident: ref33
  doi: 10.1126/science.1069981
– ident: ref48
  doi: 10.1189/jlb.1202629
– ident: ref88
  doi: 10.1111/j.1474-9728.2005.00148.x
– ident: ref23
  doi: 10.1084/jem.188.1.211
– ident: ref3
  doi: 10.1111/j.1474-9726.2009.00475.x
– ident: ref79
  doi: 10.1038/nri887
– ident: ref49
  doi: 10.1016/S0092-8674(04)00302-2
– ident: ref14
  doi: 10.1016/0092-8674(89)90833-7
– ident: ref80
  doi: 10.1038/sj.onc.1206048
– ident: ref16
  doi: 10.1016/S0092-8674(00)81375-6
– ident: ref83
  doi: 10.1101/gad.13.12.1501
– ident: ref84
  doi: 10.1158/0008-5472.CAN-04-3995
– ident: ref36
  doi: 10.1371/journal.pgen.0030201
– ident: ref28
  doi: 10.1142/9789812701329_0010
– ident: ref45
  doi: 10.1109/TAC.2003.821400
– ident: ref63
  doi: 10.1006/jtbi.2001.2296
– ident: ref85
  doi: 10.1016/S0014-5793(03)00315-6
– ident: ref9
  doi: 10.1016/j.mad.2007.01.001
– ident: ref53
  doi: 10.1038/nrc2012
– volume: 70
  start-page: 3
  issue: 1
  year: 2003
  ident: ref1
  article-title: The Biology of Aging
  publication-title: Mount Sinai J. Medicine
– ident: ref38
  doi: 10.1186/1471-2105-6-258
– ident: ref27
  doi: 10.1096/fj.04-2622fje
– ident: ref21
  doi: 10.1128/MCB.21.16.5299-5305.2001
– ident: ref25
  doi: 10.1038/sj.cdd.4401830
– volume-title: Automatic Control Systems
  year: 2009
  ident: ref44
– ident: ref51
  doi: 10.1074/jbc.M509329200
– ident: ref34
  doi: 10.1093/genetics/149.4.1665
– ident: ref31
  doi: 10.1038/nrg1471
– ident: ref7
  doi: 10.1073/pnas.0708043104
– ident: ref40
  doi: 10.1186/1755-8794-1-46
– ident: ref75
  doi: 10.1152/japplphysiol.90470.2008
– ident: ref76
  doi: 10.1016/j.exger.2003.09.007
– ident: ref66
  doi: 10.1074/jbc.M207509200
– ident: ref74
  doi: 10.1089/152308601750100669
– ident: ref22
  doi: 10.1126/science.281.5383.1680
– ident: ref86
  doi: 10.1073/pnas.93.16.8318
– ident: ref47
  doi: 10.1109/72.870041
– ident: ref82
  doi: 10.1101/gad.9.8.935
– volume: 67
  start-page: 1315
  issue: 7
  year: 2009
  ident: ref4
  article-title: The Mechanisms Whereby Insulin/IGF-1 Signaling Regulates Aging and Longevity
  publication-title: Nippon Rinsho
– ident: ref10
  doi: 10.1038/sj.onc.1210616
– ident: ref70
  doi: 10.3181/0707-MR-196
– ident: ref77
  doi: 10.4049/jimmunol.163.6.3474
– ident: ref39
  doi: 10.1093/bioinformatics/bth178
– ident: ref42
  doi: 10.1073/pnas.0933416100
– ident: ref56
  doi: 10.1158/1541-7786.203.2.4
– ident: ref58
  doi: 10.1016/j.tcb.2004.07.006
– ident: ref37
  doi: 10.1016/S1525-1578(10)60455-2
– volume-title: System Modeling and Identification
  year: 1993
  ident: ref41
– ident: ref2
  doi: 10.1177/1534735409335505
– ident: ref35
  doi: 10.1126/science.1089072
– ident: ref64
  doi: 10.1534/genetics.106.070078
– ident: ref81
  doi: 10.1038/nrc864
– ident: ref69
  doi: 10.1038/nature01036
– ident: ref11
  doi: 10.1101/gad.12.19.2984
– ident: ref61
  doi: 10.1371/journal.pbio.0040428
– ident: ref6
  doi: 10.1016/j.brainresrev.2007.12.001
– ident: ref18
  doi: 10.1126/science.274.5288.784
– ident: ref55
  doi: 10.1038/nrc1954
– ident: ref15
  doi: 10.1146/annurev.immunol.16.1.225
– ident: ref46
  doi: 10.1137/S0363012903423727
– ident: ref87
  doi: 10.1006/mgme.2000.3044
– ident: ref26
  doi: 10.1158/1055-9965.EPI-05-0493
– ident: ref19
  doi: 10.1128/JVI.73.10.7981-7987.1999
– volume-title: Feedback Control Theory
  year: 1992
  ident: ref30
– ident: ref50
  doi: 10.1016/j.cell.2004.09.027
– ident: ref68
  doi: 10.1074/jbc.C200256200
– ident: ref59
  doi: 10.1016/S0092-8674(01)00524-4
– ident: ref20
  doi: 10.1128/MCB.21.12.3964-3973.2001
– ident: ref62
  doi: 10.1554/02-750R
– ident: ref29
  doi: 10.1137/1.9781611970777
– ident: ref67
  doi: 10.1016/S1535-6108(02)00086-7
– ident: ref72
  doi: 10.1006/jmcc.1996.0045
– ident: ref73
  doi: 10.1161/01.RES.0000269183.13937.e8
– ident: ref17
  doi: 10.1126/science.274.5288.787
– ident: ref43
  doi: 10.1093/bioinformatics/16.8.707
– ident: ref65
  doi: 10.1073/pnas.78.11.7124
– ident: ref78
  doi: 10.1128/MCB.19.8.5785
– ident: ref24
  doi: 10.1242/jcs.01483
– ident: ref52
  doi: 10.1016/S1535-6108(02)00068-5
– ident: ref54
  doi: 10.1038/sj.onc.1208615
– ident: ref57
  doi: 10.1038/ncb1101-973
– ident: ref12
  doi: 10.1016/S0047-6374(02)00094-5
– ident: ref60
  doi: 10.1016/j.cell.2005.08.011
– ident: ref8
  doi: 10.1038/msb4100060
– ident: ref71
  doi: 10.1016/j.mad.2008.06.001
– volume: 53
  start-page: 285
  issue: 3
  year: 2006
  ident: ref5
  article-title: The Clinical Impact of Systemic Low-Level Inflammation in Elderly Populations. With Special Reference to Cardiovascular Disease, Dementia and Mortality
  publication-title: Danish Medical Bull.
SSID ssj0024904
Score 2.0363915
Snippet Aging, an extremely complex and system-level process, has attracted much attention in medical research, especially since chronic diseases are quite prevalent...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 468
SubjectTerms Aging
Aging - genetics
Caloric Restriction
Diseases
Forkhead Transcription Factors
Gene regulatory network
Gene Regulatory Networks
Genes
Genes, p53
Humans
Mice
network analysis
network response ability
network robustness
NF-kappa B - genetics
Older people
Oligonucleotide Array Sequence Analysis
Organ Specificity
Proteins - analysis
Proteins - genetics
Proteins - metabolism
Robustness
Stress
Systematics
systems biology
Systems Biology - methods
Title On the Increase in Network Robustness and Decrease in Network Response Ability during the Aging Process: A Systems Biology Approach via Microarray Data
URI https://ieeexplore.ieee.org/document/6482548
https://www.ncbi.nlm.nih.gov/pubmed/23929870
https://www.proquest.com/docview/1425446301
https://www.proquest.com/docview/1419343541
https://www.proquest.com/docview/1434025220
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9VAEF7aguCLt3qJVhlBnzSnyW7OJvEtbS1FOBWkhb6FvUygVHLkNBGOf8S_68wmJ4q04lsgQ7JhZne_yX4znxBvLEEIqTGJbdK4OFMNxjbPdOxMWtqmVD7TXJy8ONUn59mni_nFlng_1cIgYiCf4Ywvw1m-X7qef5Xt64zzmWJbbFPiNtRq_e6rVwapQEYE8ZyiaiK5l_tnhwcHTOJSM8myOZIhQcHqxH_sREFa5XaUGXab4_tisRnnQDK5mvWdnbkff7Vw_N8PeSDujbATqiFOHootbB-JO4MQ5XpX_PzcAiFBoNWCSeoIly2cDgRx-LK0_XXHKyKY1sMR3mAyEG0RqkC1XcNQ_BgeWbEKEoz1CB-ggrFHOowvh2rsag7fLw0smB9oViuzhiPTmcfi_Pjj2eFJPEo2xE7lsotNkllVGoIpCnWBLtV54hMnC5un3qvUN6a0qZNISGtOSIaSJYWUompUNk9KVE_ETrts8ZmARma5xdxo7emhTVF4nxqUuaYwUonJIvFu477ajf3MWVbjax3ymqSs2e81-72WKhJvJ-tvQx-PW-x22V2TzeipSOxtIqMeJ_k1ZU3c303TEhmJ19Ntmp585mJaXPZsQwiZIGn2TxtFWTwB4SQST4eom96_CdbnN4_rhbgrgz4Hk-L2xE636vEloaTOvgrT4xd01A1l
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9RAEB5qRfTFX7UarbqCPmmuyW5uk_h2bS2n9k6QK_Qt7GYnUJScXBPh_Ef8d53Z5KJIK74FMmQ3zOzuN8k38wG8tAQhpMYotFFVhomqMLRposPSxLmtcuUSzcXJs7meniYfzsZnW_BmqIVBRE8-wxFf-n_5blm2_KlsXyecz2TX4Dqd--O4q9b63Vkv92KBjAnCMcXVQHPP9xeHBwdM41IjycI5kkFBxvrEf5xFXlzlapzpz5vjOzDbzLSjmXwZtY0dlT_-auL4v69yF273wFNMuki5B1tY34cbnRTlegd-fqoFYUFB-wXT1FGc12LeUcTF56VtLxreE4WpnTjCS0w6qi2KiSfbrkVX_ugfOWEdJNFXJLwVE9F3SRf94GLS9zUX38-NmDFD0KxWZi2OTGMewOnxu8XhNOxFG8JSpbIJTZRYlRsCKgp1hmWs08hFpcxsGjunYleZ3MalRMJaY8IylC4ppCRVo7JplKPahe16WeMjEJVMUoup0drRQ6sscy42KFNNgaQikwTweuO-ouw7mrOwxtfCZzZRXrDfC_Z7IVUArwbrb10njyvsdthdg03vqQD2NpFR9Mv8gvIm7vCmaZMM4MVwmxYo_3UxNS5btiGMTKA0-aeNojyeoHAUwMMu6obxN8H6-PJ5PYeb08XspDh5P__4BG5Jr9bBFLk92G5WLT4lzNTYZ36p_AKgexCu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Increase+in+Network+Robustness+and+Decrease+in+Network+Response+Ability+during+the+Aging+Process%3A+A+Systems+Biology+Approach+via+Microarray+Data&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Chien-Ta+Tu&rft.au=Bor-Sen+Chen&rft.date=2013-03-01&rft.pub=IEEE&rft.issn=1545-5963&rft.volume=10&rft.issue=2&rft.spage=468&rft.epage=480&rft_id=info:doi/10.1109%2FTCBB.2013.23&rft_id=info%3Apmid%2F23929870&rft.externalDocID=6482548
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon