An overview of recent multi-view clustering

With the widespread deployment of sensors and the Internet-of-Things, multi-view data has become more common and publicly available. Compared to traditional data that describes objects from single perspective, multi-view data is semantically richer, more useful, however more complex. Since tradition...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 402; pp. 148 - 161
Main Authors Fu, Lele, Lin, Pengfei, Vasilakos, Athanasios V., Wang, Shiping
Format Journal Article
LanguageEnglish
Published Elsevier B.V 18.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the widespread deployment of sensors and the Internet-of-Things, multi-view data has become more common and publicly available. Compared to traditional data that describes objects from single perspective, multi-view data is semantically richer, more useful, however more complex. Since traditional clustering algorithms cannot handle such data, multi-view clustering has become a research hotspot. In this paper, we review some of the latest multi-view clustering algorithms, which are reasonably divided into three categories. To evaluate their performance, we perform extensive experiments on seven real-world data sets. Three mainstream metrics are used, including clustering accuracy, normalized mutual information and purity. Based on the experimental results and a large number of literature reading, we also discuss existing problems in current multi-view clustering and point out possible research directions in the future. This research provides some insights for researchers in related fields and may further promote the development of multi-view clustering algorithms.
AbstractList With the widespread deployment of sensors and the Internet-of-Things, multi-view data has become more common and publicly available. Compared to traditional data that describes objects from single perspective, multi-view data is semantically richer, more useful, however more complex. Since traditional clustering algorithms cannot handle such data, multi-view clustering has become a research hotspot. In this paper, we review some of the latest multi-view clustering algorithms, which are reasonably divided into three categories. To evaluate their performance, we perform extensive experiments on seven real-world data sets. Three mainstream metrics are used, including clustering accuracy, normalized mutual information and purity. Based on the experimental results and a large number of literature reading, we also discuss existing problems in current multi-view clustering and point out possible research directions in the future. This research provides some insights for researchers in related fields and may further promote the development of multi-view clustering algorithms.
Author Fu, Lele
Vasilakos, Athanasios V.
Lin, Pengfei
Wang, Shiping
Author_xml – sequence: 1
  givenname: Lele
  surname: Fu
  fullname: Fu, Lele
  organization: College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, China
– sequence: 2
  givenname: Pengfei
  surname: Lin
  fullname: Lin, Pengfei
  organization: College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, China
– sequence: 3
  givenname: Athanasios V.
  surname: Vasilakos
  fullname: Vasilakos, Athanasios V.
  organization: College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, China
– sequence: 4
  givenname: Shiping
  orcidid: 0000-0001-5195-9682
  surname: Wang
  fullname: Wang, Shiping
  email: shipingwangphd@163.com
  organization: College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, China
BookMark eNqFkE1LAzEQhoNUsK3-Aw97l10zSdrd9SCU4hcUvOg5pMlEUraJJGnFf29qPXnQ0wwv87zwzISMfPBIyCXQBijMrzeNx50O24ZRRhvKSipOyBi6ltUd6-YjMqY9m9WMAzsjk5Q2lEILrB-Tq4Wvwh7j3uFHFWwVUaPP1XY3ZFd_h3rYpYzR-bdzcmrVkPDiZ07J6_3dy_KxXj0_PC0Xq1rzluW6t6pHAxxb4Ea1SnTGMCMocNBacbNWfM2oQJgJa8vCjZ1BOWz7rkMQlk-JOPbqGFKKaOV7dFsVPyVQeRCWG3kUlgdhSVlJRcFufmHaZZVd8DkqN_wH3x5hLGLFO8qkHXqNxpWXZGmC-7vgC0b_djk
CitedBy_id crossref_primary_10_1007_s13278_023_01061_4
crossref_primary_10_1371_journal_pone_0309206
crossref_primary_10_1016_j_ins_2022_05_091
crossref_primary_10_1007_s13042_023_01969_5
crossref_primary_10_1016_j_engappai_2024_107857
crossref_primary_10_1007_s10044_023_01167_7
crossref_primary_10_1007_s13042_021_01297_6
crossref_primary_10_1117_1_JEI_31_4_043024
crossref_primary_10_1155_2021_5526479
crossref_primary_10_1109_LGRS_2023_3273854
crossref_primary_10_1016_j_neucom_2022_06_009
crossref_primary_10_1016_j_patcog_2023_109829
crossref_primary_10_1109_LSP_2025_3527231
crossref_primary_10_1109_TMM_2022_3185886
crossref_primary_10_1016_j_jbi_2023_104406
crossref_primary_10_1007_s40747_024_01509_w
crossref_primary_10_1109_TETCI_2024_3369316
crossref_primary_10_1016_j_physa_2023_129405
crossref_primary_10_1016_j_ins_2022_07_093
crossref_primary_10_3390_s21206775
crossref_primary_10_1155_2023_5872359
crossref_primary_10_3233_JIFS_212316
crossref_primary_10_1145_3698875
crossref_primary_10_1016_j_simpa_2025_100743
crossref_primary_10_3390_e24040568
crossref_primary_10_1007_s44243_024_00047_w
crossref_primary_10_1016_j_neucom_2024_127742
crossref_primary_10_3389_fgene_2022_859462
crossref_primary_10_1016_j_neucom_2024_129240
crossref_primary_10_1007_s10462_024_10785_4
crossref_primary_10_1016_j_inffus_2023_102174
crossref_primary_10_1016_j_inffus_2024_102693
crossref_primary_10_1007_s13042_023_01981_9
crossref_primary_10_1016_j_ins_2022_11_026
crossref_primary_10_1145_3674839
crossref_primary_10_3724_SP_J_1089_2022_19522
crossref_primary_10_1016_j_psychres_2023_115265
crossref_primary_10_1007_s10489_022_03205_z
crossref_primary_10_1016_j_eswa_2022_118408
crossref_primary_10_1016_j_knosys_2025_113314
crossref_primary_10_1016_j_neucom_2024_127870
crossref_primary_10_1016_j_patcog_2024_110592
crossref_primary_10_1109_JAS_2022_105980
crossref_primary_10_1016_j_knosys_2023_111330
crossref_primary_10_1016_j_dsp_2022_103447
crossref_primary_10_1007_s11704_024_40004_w
crossref_primary_10_1016_j_patcog_2024_110888
crossref_primary_10_1109_LSP_2024_3409213
crossref_primary_10_1007_s13042_024_02105_7
crossref_primary_10_1016_j_ins_2023_118948
crossref_primary_10_1109_TAI_2023_3271964
crossref_primary_10_3390_electronics11060883
crossref_primary_10_1016_j_neucom_2023_127102
crossref_primary_10_1016_j_patcog_2021_108108
crossref_primary_10_1016_j_neucom_2025_129689
crossref_primary_10_1007_s00224_024_10174_y
crossref_primary_10_1109_TSIPN_2023_3306098
crossref_primary_10_1016_j_neucom_2022_09_087
crossref_primary_10_1109_TIP_2023_3327564
crossref_primary_10_1016_j_neunet_2023_03_013
crossref_primary_10_3390_app12105094
crossref_primary_10_5753_jbcs_2024_3483
crossref_primary_10_1016_j_knosys_2021_107567
crossref_primary_10_1016_j_neucom_2021_12_029
crossref_primary_10_1016_j_agwat_2020_106547
crossref_primary_10_1016_j_orl_2023_11_005
crossref_primary_10_1109_TSMC_2025_3537801
crossref_primary_10_1109_TII_2024_3385066
crossref_primary_10_1016_j_aei_2024_102799
crossref_primary_10_1109_TAI_2021_3139573
crossref_primary_10_1007_s41237_023_00200_7
crossref_primary_10_1007_s00530_022_00905_x
crossref_primary_10_1016_j_neucom_2024_127899
crossref_primary_10_1016_j_neunet_2022_03_009
crossref_primary_10_1016_j_patcog_2024_111140
crossref_primary_10_1109_TNNLS_2023_3274289
crossref_primary_10_1109_TMM_2024_3398295
crossref_primary_10_1016_j_dsp_2024_104879
crossref_primary_10_1007_s13042_025_02589_x
crossref_primary_10_1088_1361_6501_ad6022
crossref_primary_10_1016_j_asoc_2024_111278
crossref_primary_10_1016_j_neucom_2022_09_145
crossref_primary_10_1109_TETCI_2023_3314551
crossref_primary_10_1145_3643564
crossref_primary_10_1145_3645108
crossref_primary_10_1007_s10489_022_04385_4
crossref_primary_10_1109_TPAMI_2025_3526790
crossref_primary_10_3390_axioms11120722
crossref_primary_10_1016_j_knosys_2021_107182
crossref_primary_10_1016_j_patcog_2024_110716
crossref_primary_10_1109_TBDATA_2024_3426277
crossref_primary_10_2139_ssrn_4064479
crossref_primary_10_1145_3527449
crossref_primary_10_1109_TCSS_2023_3242145
crossref_primary_10_1109_TPAMI_2024_3386828
crossref_primary_10_1016_j_ins_2021_02_054
crossref_primary_10_1109_TNSM_2022_3197725
crossref_primary_10_1016_j_eswa_2023_121298
crossref_primary_10_1016_j_knosys_2023_111132
crossref_primary_10_3390_math11061509
crossref_primary_10_3390_sym17020161
crossref_primary_10_1016_j_inffus_2025_103012
crossref_primary_10_1016_j_knosys_2023_110424
crossref_primary_10_1016_j_neunet_2021_08_031
crossref_primary_10_1016_j_dsp_2022_103888
crossref_primary_10_1371_journal_pone_0276006
crossref_primary_10_1109_TKDE_2023_3270311
crossref_primary_10_1016_j_neucom_2023_126695
crossref_primary_10_1016_j_eswa_2023_119949
crossref_primary_10_1016_j_neunet_2023_02_016
crossref_primary_10_1007_s10994_025_06735_y
crossref_primary_10_1109_ACCESS_2025_3543099
crossref_primary_10_1016_j_neunet_2024_106287
crossref_primary_10_1109_TIP_2021_3114995
Cites_doi 10.1109/MSP.2010.939739
10.1109/TPAMI.2019.2943860
10.1109/TIP.2019.2916740
10.1016/j.inffus.2017.02.007
10.1109/TSMC.2016.2605132
10.1007/3-540-28349-8_2
10.1109/TSMCB.2009.2039566
10.1109/TIP.2015.2457339
10.1109/TIP.2011.2169274
10.1109/TPAMI.2013.57
10.1109/TKDE.2017.2701825
10.1109/TPAMI.2018.2847335
10.1016/j.neucom.2015.01.017
10.1016/j.neucom.2014.06.023
10.1109/TPAMI.2015.2417578
10.1016/j.patrec.2017.12.011
10.1109/TNANO.2019.2932271
10.1016/j.patcog.2014.08.004
10.1016/j.neucom.2018.09.001
10.1016/j.eswa.2019.112878
10.1016/j.inffus.2017.12.002
10.1016/j.knosys.2017.09.033
10.1016/j.patcog.2018.09.009
10.1016/j.patcog.2012.06.011
10.1016/j.patcog.2013.07.003
10.1109/TSMC.2019.2900344
10.1109/TPAMI.2017.2699960
10.1109/TMM.2017.2663324
10.1111/j.2517-6161.1977.tb01600.x
10.1007/s11432-016-0280-9
10.1016/j.neucom.2012.05.031
10.1007/s00521-013-1362-6
10.1016/j.neunet.2017.02.003
10.1109/34.868688
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2020.02.104
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 161
ExternalDocumentID 10_1016_j_neucom_2020_02_104
S0925231220303222
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SEW
SSH
WUQ
XPP
ID FETCH-LOGICAL-c372t-9fa9ed13e713da7a48dd2d40131cca3dba3b204e154ff2043df51da77988e14f3
IEDL.DBID .~1
ISSN 0925-2312
IngestDate Thu Apr 24 22:57:47 EDT 2025
Tue Jul 01 01:46:48 EDT 2025
Fri Feb 23 02:47:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-view clustering
Unsupervised learning
Machine learning
Graph-based clustering
Space learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-9fa9ed13e713da7a48dd2d40131cca3dba3b204e154ff2043df51da77988e14f3
ORCID 0000-0001-5195-9682
PageCount 14
ParticipantIDs crossref_primary_10_1016_j_neucom_2020_02_104
crossref_citationtrail_10_1016_j_neucom_2020_02_104
elsevier_sciencedirect_doi_10_1016_j_neucom_2020_02_104
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-18
PublicationDateYYYYMMDD 2020-08-18
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-18
  day: 18
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Houthuys, Langone, Suykens (bib0003) 2018; 44
Lang, Liu, Yu, Yan (bib0005) 2011; 21
Wang, Lei, Guo, Zhang, Shi, Li (bib0063) 2019; 88
Blaschko, Lampert (bib0040) 2008
Flammarion, Palaniappan, Bach (bib0074) 2017; 18
Yang, Shen, Huang, Shen, Li (bib0035) 2017; 29
Chen, Jian (bib0012) 2014; 143
Wang, Chen, Guo, Liu (bib0038) 2020; 140
Guo, Shi, Wang (bib0072) 2019
Fan (bib0052) 1949
Elhamifar, Vidal (bib0056) 2009
Chen, Zhu, Xing (bib0054) 2010
Zhang, Fu, Liu, Liu, Cao (bib0031) 2015
Lu, Fu, Shu (bib0067) 2014; 47
Wu, Lin, Zha (bib0079) 2019; 28
Chaudhuri, Kakade, Livescu, Sridharan (bib0039) 2009
Vidal (bib0026) 2011; 28
Gretton, Borgwardt, Rasch, Schölkopf, Smola (bib0070) 2006
Nie, Cai, Li (bib0049) 2017
Wang, Lin, Wu, Zhang, Zhang, Huang (bib0029) 2015; 24
C. Xu, D. Tao, C. Xu, A survey on multi-view learning, 2013, ArXiv: Learning.
Zhang, Shi, Cheng, Liu, Bian, Zhou, Zheng, Zeng (bib0006) 2019
He, Li, Roqueiro, Borgwardt (bib0001) 2017
Wang, Guo (bib0037) 2017; 138
Zeng, Wang, Zhang (bib0011) 2016; 59
Xia, Pan, Du, Yin (bib0044) 2014
Shen, Liu, Tsang, Shen, Sun (bib0020) 2017
Zeng, Wang, Zhang, Kim, Li, Liu (bib0009) 2019; 18
Shi, Malik (bib0065) 2000; 22
White, Zhang, Schuurmans, Yu (bib0060) 2012
Jiang, Liu, Li, Li, Lu (bib0023) 2012
Liu, Jiao, Shang (bib0066) 2013; 46
Wang, Guo (bib0025) 2017; 19
Kriegel, Kröger, Zimek (bib0027) 2012; 2
Cai, Nie, Cai, Huang (bib0042) 2013
Zhang, Liu, Shen, Shen, Shao (bib0075) 2018; 41
Wang, Zhu (bib0078) 2016; 48
Wang, Pedrycz, Zhu, Zhu (bib0028) 2015; 48
Elhamifar, Vidal (bib0061) 2013; 35
Berkhin (bib0002) 2006
Ding, Zhao, Shen, Musuvathi, Mytkowicz (bib0021) 2015
Peng, Huang, Lv, Zhu, Zhou (bib0071) 2019
Yin, Wu, He, Wang (bib0030) 2015; 156
Gao, Han, Liu, Wang (bib0034) 2013
Zhao, Xie, Xu, Sun (bib0015) 2017; 38
Jing, Hu, Wu, Chen, Liu, Yao (bib0068) 2014
Hocking, Vert, Bach, Joulin (bib0073) 2011
Mohar (bib0051) 1991
Liu, Nie, Wu, Chen (bib0050) 2013; 105
Xu, Tao, Xu (bib0064) 2015; 37
Niu, Dy, Jordan (bib0041) 2010
Cai, Nie, Huang, Kamangar (bib0004) 2011
Arthur, Vassilvitskii (bib0019) 2007
Gao, Nie, Li, Huang (bib0033) 2015
Collins, Liu, Xu, Mukherjee, Singh (bib0055) 2014
Wang, Guo, Lei, Zhang, Li (bib0053) 2017
Hu, Lin, Feng, Zhou (bib0062) 2014
Nie, Wang, Jordan, Huang (bib0048) 2016
Nie, Li, Li (bib0047) 2017
Gretton, Bousquet, Smola, Schölkopf (bib0069) 2005
Cao, Zhang, Fu, Liu, Zhang (bib0032) 2015
Liu, Liang, Liu, Shen, Yang, Xu, Lin, Cao, Yan (bib0008) 2015
Lin, Liu, Su (bib0058) 2011
Dempster, Laird, Rubin (bib0018) 1977; 39
Bickel, Scheffer (bib0016) 2004
Wang, Zhang, Song, Sebe, Shen (bib0076) 2018; 40
Tzortzis, Likas (bib0017) 2009
Xia, Tao, Mei, Zhang (bib0024) 2010; 40
Cheng, Zhao (bib0046) 2009
Gong, Pawlowski, Yang, Brandy, Bourdev, Fergus (bib0077) 2015
Kumar, Daumé (bib0045) 2011
Zhang, Hu, Fu, Zhu, Cao (bib0059) 2017
Li, Vidal (bib0057) 2015
Kanaanizquierdo, Ziyatdinov, Pereralluna (bib0007) 2018; 102
Li, Nie, Huang, Huang (bib0022) 2015
Zong, Zhang, Zhao, Yu, Zhao (bib0036) 2017; 88
Zeng, Qiu, Wang, Liu, Zhang, Li (bib0010) 2018; 320
Sun (bib0014) 2013; 23
Nie, Li, Li (bib0043) 2016
Tzortzis (10.1016/j.neucom.2020.02.104_bib0017) 2009
Liu (10.1016/j.neucom.2020.02.104_bib0066) 2013; 46
Cheng (10.1016/j.neucom.2020.02.104_bib0046) 2009
Fan (10.1016/j.neucom.2020.02.104_bib0052) 1949
Wang (10.1016/j.neucom.2020.02.104_bib0063) 2019; 88
Lu (10.1016/j.neucom.2020.02.104_bib0067) 2014; 47
Kriegel (10.1016/j.neucom.2020.02.104_bib0027) 2012; 2
Li (10.1016/j.neucom.2020.02.104_bib0057) 2015
Zhang (10.1016/j.neucom.2020.02.104_bib0075) 2018; 41
Gretton (10.1016/j.neucom.2020.02.104_bib0069) 2005
Zhang (10.1016/j.neucom.2020.02.104_bib0031) 2015
Liu (10.1016/j.neucom.2020.02.104_bib0008) 2015
Zeng (10.1016/j.neucom.2020.02.104_bib0011) 2016; 59
Yang (10.1016/j.neucom.2020.02.104_bib0035) 2017; 29
Zeng (10.1016/j.neucom.2020.02.104_bib0010) 2018; 320
Guo (10.1016/j.neucom.2020.02.104_bib0072) 2019
Cai (10.1016/j.neucom.2020.02.104_bib0042) 2013
Nie (10.1016/j.neucom.2020.02.104_bib0047) 2017
Hu (10.1016/j.neucom.2020.02.104_bib0062) 2014
Kumar (10.1016/j.neucom.2020.02.104_bib0045) 2011
Wang (10.1016/j.neucom.2020.02.104_bib0053) 2017
Gao (10.1016/j.neucom.2020.02.104_bib0034) 2013
Vidal (10.1016/j.neucom.2020.02.104_bib0026) 2011; 28
Mohar (10.1016/j.neucom.2020.02.104_bib0051) 1991
Yin (10.1016/j.neucom.2020.02.104_bib0030) 2015; 156
Collins (10.1016/j.neucom.2020.02.104_bib0055) 2014
Kanaanizquierdo (10.1016/j.neucom.2020.02.104_bib0007) 2018; 102
Elhamifar (10.1016/j.neucom.2020.02.104_bib0061) 2013; 35
Nie (10.1016/j.neucom.2020.02.104_bib0043) 2016
Peng (10.1016/j.neucom.2020.02.104_bib0071) 2019
Lang (10.1016/j.neucom.2020.02.104_bib0005) 2011; 21
Gao (10.1016/j.neucom.2020.02.104_bib0033) 2015
Houthuys (10.1016/j.neucom.2020.02.104_bib0003) 2018; 44
Wang (10.1016/j.neucom.2020.02.104_bib0076) 2018; 40
Wang (10.1016/j.neucom.2020.02.104_bib0025) 2017; 19
Wang (10.1016/j.neucom.2020.02.104_bib0028) 2015; 48
Xia (10.1016/j.neucom.2020.02.104_bib0044) 2014
Bickel (10.1016/j.neucom.2020.02.104_bib0016) 2004
Cao (10.1016/j.neucom.2020.02.104_bib0032) 2015
Nie (10.1016/j.neucom.2020.02.104_bib0049) 2017
Cai (10.1016/j.neucom.2020.02.104_bib0004) 2011
Li (10.1016/j.neucom.2020.02.104_bib0022) 2015
Shen (10.1016/j.neucom.2020.02.104_bib0020) 2017
Zhang (10.1016/j.neucom.2020.02.104_bib0059) 2017
Berkhin (10.1016/j.neucom.2020.02.104_bib0002) 2006
Wang (10.1016/j.neucom.2020.02.104_bib0038) 2020; 140
Liu (10.1016/j.neucom.2020.02.104_bib0050) 2013; 105
Chen (10.1016/j.neucom.2020.02.104_bib0054) 2010
Hocking (10.1016/j.neucom.2020.02.104_bib0073) 2011
Xu (10.1016/j.neucom.2020.02.104_bib0064) 2015; 37
Flammarion (10.1016/j.neucom.2020.02.104_bib0074) 2017; 18
Arthur (10.1016/j.neucom.2020.02.104_bib0019) 2007
10.1016/j.neucom.2020.02.104_bib0013
Ding (10.1016/j.neucom.2020.02.104_bib0021) 2015
Wang (10.1016/j.neucom.2020.02.104_bib0037) 2017; 138
Zhao (10.1016/j.neucom.2020.02.104_bib0015) 2017; 38
Wang (10.1016/j.neucom.2020.02.104_bib0029) 2015; 24
Chen (10.1016/j.neucom.2020.02.104_bib0012) 2014; 143
Zong (10.1016/j.neucom.2020.02.104_bib0036) 2017; 88
Blaschko (10.1016/j.neucom.2020.02.104_bib0040) 2008
Sun (10.1016/j.neucom.2020.02.104_bib0014) 2013; 23
Wang (10.1016/j.neucom.2020.02.104_bib0078) 2016; 48
Zeng (10.1016/j.neucom.2020.02.104_bib0009) 2019; 18
Xia (10.1016/j.neucom.2020.02.104_bib0024) 2010; 40
Nie (10.1016/j.neucom.2020.02.104_bib0048) 2016
Gretton (10.1016/j.neucom.2020.02.104_bib0070) 2006
Jiang (10.1016/j.neucom.2020.02.104_bib0023) 2012
Niu (10.1016/j.neucom.2020.02.104_bib0041) 2010
Dempster (10.1016/j.neucom.2020.02.104_bib0018) 1977; 39
He (10.1016/j.neucom.2020.02.104_bib0001) 2017
Zhang (10.1016/j.neucom.2020.02.104_bib0006) 2019
Chaudhuri (10.1016/j.neucom.2020.02.104_bib0039) 2009
Shi (10.1016/j.neucom.2020.02.104_bib0065) 2000; 22
Elhamifar (10.1016/j.neucom.2020.02.104_bib0056) 2009
White (10.1016/j.neucom.2020.02.104_bib0060) 2012
Jing (10.1016/j.neucom.2020.02.104_bib0068) 2014
Gong (10.1016/j.neucom.2020.02.104_bib0077) 2015
Lin (10.1016/j.neucom.2020.02.104_bib0058) 2011
Wu (10.1016/j.neucom.2020.02.104_bib0079) 2019; 28
References_xml – start-page: 25
  year: 2006
  end-page: 71
  ident: bib0002
  article-title: A survey of clustering data mining techniques
  publication-title: Grouping Multidimens. Data
– start-page: 5092
  year: 2019
  end-page: 5101
  ident: bib0071
  article-title: COMIC: Multi-view clustering without parameter selection
  publication-title: Proceedings of the International Conference on Machine Learning
– volume: 48
  start-page: 10
  year: 2015
  end-page: 19
  ident: bib0028
  article-title: Subspace learning for unsupervised feature selection via matrix factorization
  publication-title: Pattern Recognit.
– start-page: 252
  year: 2013
  end-page: 260
  ident: bib0034
  article-title: Multi-view clustering via joint nonnegative matrix factorization
  publication-title: Proceedings of the SIAM International Conference on Data Mining
– volume: 138
  start-page: 176
  year: 2017
  end-page: 187
  ident: bib0037
  article-title: Robust co-clustering via dual local learning and high-order matrix factorization
  publication-title: Knowl. Based Syst.
– start-page: 277
  year: 2015
  end-page: 286
  ident: bib0057
  article-title: Structured sparse subspace clustering: a unified optimization framework
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1
  year: 2019
  end-page: 12
  ident: bib0072
  article-title: A unified scheme for distance metric learning and clustering via rank-reduced regression
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 23
  start-page: 2031
  year: 2013
  end-page: 2038
  ident: bib0014
  article-title: A survey of multi-view machine learning
  publication-title: Neural Comput. Appl.
– volume: 156
  start-page: 12
  year: 2015
  end-page: 21
  ident: bib0030
  article-title: Multi-view clustering via pairwise sparse subspace representation
  publication-title: Neurocomputing
– volume: 18
  start-page: 2764
  year: 2017
  end-page: 2813
  ident: bib0074
  article-title: Robust discriminative clustering with sparse regularizers
  publication-title: J. Mach. Learning Research
– start-page: 19
  year: 2004
  end-page: 26
  ident: bib0016
  article-title: Multi-view clustering
  publication-title: Proceedings of the IEEE International Conference on Data Mining
– start-page: 513
  year: 2006
  end-page: 520
  ident: bib0070
  article-title: A kernel method for the two-sample-problem
  publication-title: Proceedings of Advances in Neural Information Processing Systems
– volume: 143
  start-page: 44
  year: 2014
  end-page: 50
  ident: bib0012
  article-title: Gene expression data clustering based on graph regularized subspace segmentation
  publication-title: Neurocomputing
– start-page: 4238
  year: 2015
  end-page: 4246
  ident: bib0033
  article-title: Multi-view subspace clustering
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 1
  year: 2008
  end-page: 8
  ident: bib0040
  article-title: Correlational spectral clustering
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 37
  start-page: 2531
  year: 2015
  end-page: 2544
  ident: bib0064
  article-title: Multi-view intact space learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 361
  year: 2010
  end-page: 369
  ident: bib0054
  article-title: Predictive subspace learning for multi-view data: a large margin approach
  publication-title: Proceedings of Advances in Neural Information Processing Systems
– volume: 21
  start-page: 1327
  year: 2011
  end-page: 1338
  ident: bib0005
  article-title: Saliency detection by multitask sparsity pursuit
  publication-title: IEEE Trans. Image Process.
– start-page: 871
  year: 1991
  end-page: 898
  ident: bib0051
  article-title: The Laplacian spectrum of graphs
  publication-title: Graph Theory Combinat. Appl.
– volume: 41
  start-page: 1774
  year: 2018
  end-page: 1782
  ident: bib0075
  article-title: Binary multi-view clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 2
  start-page: 351
  year: 2012
  end-page: 364
  ident: bib0027
  article-title: Subspace clustering
  publication-title: Wiley Interdisc. Rev.: Data Mining Knowl. Discov.
– start-page: 2408
  year: 2017
  end-page: 2414
  ident: bib0049
  article-title: Multi-view clustering and semi-supervised classification with adaptive neighbours
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– volume: 24
  start-page: 3939
  year: 2015
  end-page: 3949
  ident: bib0029
  article-title: Robust subspace clustering for multi-view data by exploiting correlation consensus
  publication-title: IEEE Trans. Image Process.
– volume: 88
  start-page: 50
  year: 2019
  end-page: 63
  ident: bib0063
  article-title: Multi-view subspace clustering with intactness-aware similarity
  publication-title: Pattern Recognit.
– volume: 38
  start-page: 43
  year: 2017
  end-page: 54
  ident: bib0015
  article-title: Multi-view learning overview: recent progress and new challenges
  publication-title: Inf. Fusion
– start-page: 282
  year: 2014
  end-page: 298
  ident: bib0055
  article-title: Spectral clustering with a convex regularizer on millions of images
  publication-title: Proceedings of the European Conference on Computer Vision
– start-page: 1737
  year: 2013
  end-page: 1744
  ident: bib0042
  article-title: Heterogeneous image features integration via multi-modal semi-supervised learning model
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 745
  year: 2011
  end-page: 752
  ident: bib0073
  article-title: Clusterpath: an algorithm for clustering using convex fusion penalties
  publication-title: Proceedings of the International Conference on Machine Learning
– start-page: 63
  year: 2005
  end-page: 77
  ident: bib0069
  article-title: Measuring statistical dependence with hilbert-schmidt norms
  publication-title: Proceedings of International Conference on Algorithmic Learning Theory
– start-page: 205
  year: 2009
  end-page: 214
  ident: bib0017
  article-title: Convex mixture models for multi-view clustering
  publication-title: Proceedings of the International Conference on Artificial Neural Networks
– start-page: 2750
  year: 2015
  end-page: 2756
  ident: bib0022
  article-title: Large-scale multi-view spectral clustering via bipartite graph
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– volume: 19
  start-page: 1454
  year: 2017
  end-page: 1466
  ident: bib0025
  article-title: Sparse multigraph embedding for multimodal feature representation
  publication-title: IEEE Trans. Multimed.
– volume: 59
  start-page: 112
  year: 2016
  end-page: 204
  ident: bib0011
  article-title: Inferring nonlinear lateral flow immunoassay state-space models via an unscented Kalman filter
  publication-title: Sci. China Inf. Sci.
– volume: 47
  start-page: 418
  year: 2014
  end-page: 426
  ident: bib0067
  article-title: Non-negative and sparse spectral clustering
  publication-title: Pattern Recognit.
– volume: 29
  start-page: 1834
  year: 2017
  end-page: 1845
  ident: bib0035
  article-title: Discrete nonnegative spectral clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 612
  year: 2011
  end-page: 620
  ident: bib0058
  article-title: Linearized alternating direction method with adaptive penalty for low-rank representation
  publication-title: Proceedings of Advances in Neural Information Processing Systems
– start-page: 652
  year: 1949
  end-page: 655
  ident: bib0052
  article-title: On a theorem of Weyl concerning eigenvalues of linear transformations
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– start-page: 19
  year: 2015
  end-page: 27
  ident: bib0077
  article-title: Web scale photo hash clustering on a single machine
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 28
  start-page: 52
  year: 2011
  end-page: 68
  ident: bib0026
  article-title: Subspace clustering
  publication-title: IEEE Signal Process. Mag.
– volume: 48
  start-page: 329
  year: 2016
  end-page: 341
  ident: bib0078
  article-title: Sparse graph embedding unsupervised feature selection
  publication-title: IEEE Trans. Syst. Man Cybernet. Syst.
– volume: 22
  start-page: 888
  year: 2000
  end-page: 905
  ident: bib0065
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 393
  year: 2011
  end-page: 400
  ident: bib0045
  article-title: A co-training approach for multi-view spectral clustering
  publication-title: Proceedings of the International Conference on Machine Learning
– start-page: 202
  year: 2012
  end-page: 213
  ident: bib0023
  article-title: Co-regularized Plsa for multi-view clustering
  publication-title: Proceedings of the Asian Conference on Computer Vision
– start-page: 101
  year: 2009
  end-page: 106
  ident: bib0046
  article-title: Multiview spectral clustering via ensemble
  publication-title: Proceedings of the IEEE International Conference on Granular Computing
– start-page: 2564
  year: 2017
  end-page: 2570
  ident: bib0047
  article-title: Self-weighted multiview clustering with multiple graphs
  publication-title: Proceedings of the International Joint Conferences on Artificial Intelligence Organization
– start-page: 579
  year: 2015
  end-page: 587
  ident: bib0021
  article-title: Yinyang k-means: a drop-in replacement of the classic k-means with consistent speedup
  publication-title: Proceedings of the International Conference on Machine Learning
– start-page: 1969
  year: 2016
  end-page: 1976
  ident: bib0048
  article-title: The constrained Laplacian rank algorithm for graph-based clustering
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– volume: 39
  start-page: 1
  year: 1977
  end-page: 22
  ident: bib0018
  article-title: Maximum likelihood from incomplete data via the em algorithm
  publication-title: J. R. Stat. Soc. Ser. B
– start-page: 923
  year: 2017
  end-page: 931
  ident: bib0053
  article-title: Exclusivity-consistency regularized multi-view subspace clustering
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 826
  year: 2017
  end-page: 842
  ident: bib0001
  article-title: Multi-view spectral clustering on conflicting views
  publication-title: Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases
– volume: 18
  start-page: 819
  year: 2019
  end-page: 829
  ident: bib0009
  article-title: An improved particle filter with a novel hybrid proposal distribution for quantitative analysis of gold immunochromatographic strips
  publication-title: IEEE Trans. Nanotechnol.
– volume: 40
  start-page: 1438
  year: 2010
  end-page: 1446
  ident: bib0024
  article-title: Multiview spectral embedding
  publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybern.)
– volume: 28
  start-page: 5910
  year: 2019
  end-page: 5922
  ident: bib0079
  article-title: Essential tensor learning for multi-view spectral clustering
  publication-title: IEEE Trans. Image Process.
– volume: 40
  start-page: 769
  year: 2018
  end-page: 790
  ident: bib0076
  article-title: A survey on learning to hash
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 586
  year: 2015
  end-page: 594
  ident: bib0032
  article-title: Diversity-induced multi-view subspace clustering
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 2527
  year: 2017
  end-page: 2533
  ident: bib0020
  article-title: Compressed k-means for large-scale clustering
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– start-page: 1977
  year: 2011
  end-page: 1984
  ident: bib0004
  article-title: Heterogeneous image feature integration via multi-modal spectral clustering
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 3834
  year: 2014
  end-page: 3841
  ident: bib0062
  article-title: Smooth representation clustering
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 2790
  year: 2009
  end-page: 2797
  ident: bib0056
  article-title: Sparse subspace clustering
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1027
  year: 2007
  end-page: 1035
  ident: bib0019
  article-title: k-means++: The advantages of careful seeding
  publication-title: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms
– volume: 88
  start-page: 74
  year: 2017
  end-page: 89
  ident: bib0036
  article-title: Multi-view clustering via multi-manifold regularized non-negative matrix factorization
  publication-title: Neural Netw.
– volume: 140
  year: 2020
  ident: bib0038
  article-title: Structured learning for unsupervised feature selection with high-order matrix factorization
  publication-title: Expert Syst. Appl.
– start-page: 2787
  year: 2014
  end-page: 2795
  ident: bib0068
  article-title: Uncorrelated multi-view discrimination dictionary learning for recognition
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– start-page: 129
  year: 2009
  end-page: 136
  ident: bib0039
  article-title: Multi-view clustering via canonical correlation analysis
  publication-title: Proceedings of the International Conference on Machine Learning
– volume: 102
  start-page: 30
  year: 2018
  end-page: 36
  ident: bib0007
  article-title: Multiview and multifeature spectral clustering using common eigenvectors
  publication-title: Pattern Recognit. Lett.
– start-page: 1881
  year: 2016
  end-page: 1887
  ident: bib0043
  article-title: Parameter-free auto-weighted multiple graph learning: a framework for multiview clustering and semi-supervised classification
  publication-title: Proceedings of the International Joint Conferences on Artificial Intelligence Organization
– volume: 35
  start-page: 2765
  year: 2013
  end-page: 2781
  ident: bib0061
  article-title: Sparse subspace clustering: algorithm, theory, and applications
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 2149
  year: 2014
  end-page: 2155
  ident: bib0044
  article-title: Robust multi-view spectral clustering via low-rank and sparse decomposition
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– year: 2019
  ident: bib0006
  article-title: Nonlinear regression via deep negative correlation learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 46
  start-page: 284
  year: 2013
  end-page: 292
  ident: bib0066
  article-title: An efficient matrix factorization based low-rank representation for subspace clustering
  publication-title: Pattern Recognit.
– start-page: 831
  year: 2010
  end-page: 838
  ident: bib0041
  article-title: Multiple non-redundant spectral clustering views
  publication-title: Proceedings of the International Conference on Machine Learning
– start-page: 1419
  year: 2015
  end-page: 1427
  ident: bib0008
  article-title: MatchinG-CNN meets KNN: Quasi-parametric human parsing
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 320
  start-page: 195
  year: 2018
  end-page: 202
  ident: bib0010
  article-title: A new switching-delayed-PSO-based optimized SVM algorithm for diagnosis of Alzheimer’s disease
  publication-title: Neurocomputing
– volume: 105
  start-page: 12
  year: 2013
  end-page: 18
  ident: bib0050
  article-title: Efficient semi-supervised feature selection with noise insensitive trace ratio criterion
  publication-title: Neurocomputing
– start-page: 1673
  year: 2012
  end-page: 1681
  ident: bib0060
  article-title: Convex multi-view subspace learning
  publication-title: Proceedings of Advances in Neural Information Processing Systems
– start-page: 1582
  year: 2015
  end-page: 1590
  ident: bib0031
  article-title: Low-rank tensor constrained multiview subspace clustering
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 44
  start-page: 46
  year: 2018
  end-page: 56
  ident: bib0003
  article-title: Multi-view kernel spectral clustering
  publication-title: Inf. Fusion
– reference: C. Xu, D. Tao, C. Xu, A survey on multi-view learning, 2013, ArXiv: Learning.
– start-page: 4279
  year: 2017
  end-page: 4287
  ident: bib0059
  article-title: Latent multi-view subspace clustering
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 28
  start-page: 52
  year: 2011
  ident: 10.1016/j.neucom.2020.02.104_bib0026
  article-title: Subspace clustering
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2010.939739
– year: 2019
  ident: 10.1016/j.neucom.2020.02.104_bib0006
  article-title: Nonlinear regression via deep negative correlation learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2943860
– start-page: 5092
  year: 2019
  ident: 10.1016/j.neucom.2020.02.104_bib0071
  article-title: COMIC: Multi-view clustering without parameter selection
– start-page: 513
  year: 2006
  ident: 10.1016/j.neucom.2020.02.104_bib0070
  article-title: A kernel method for the two-sample-problem
– volume: 28
  start-page: 5910
  year: 2019
  ident: 10.1016/j.neucom.2020.02.104_bib0079
  article-title: Essential tensor learning for multi-view spectral clustering
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2916740
– start-page: 652
  year: 1949
  ident: 10.1016/j.neucom.2020.02.104_bib0052
  article-title: On a theorem of Weyl concerning eigenvalues of linear transformations
– start-page: 282
  year: 2014
  ident: 10.1016/j.neucom.2020.02.104_bib0055
  article-title: Spectral clustering with a convex regularizer on millions of images
– start-page: 19
  year: 2015
  ident: 10.1016/j.neucom.2020.02.104_bib0077
  article-title: Web scale photo hash clustering on a single machine
– volume: 38
  start-page: 43
  year: 2017
  ident: 10.1016/j.neucom.2020.02.104_bib0015
  article-title: Multi-view learning overview: recent progress and new challenges
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2017.02.007
– volume: 48
  start-page: 329
  year: 2016
  ident: 10.1016/j.neucom.2020.02.104_bib0078
  article-title: Sparse graph embedding unsupervised feature selection
  publication-title: IEEE Trans. Syst. Man Cybernet. Syst.
  doi: 10.1109/TSMC.2016.2605132
– start-page: 2787
  year: 2014
  ident: 10.1016/j.neucom.2020.02.104_bib0068
  article-title: Uncorrelated multi-view discrimination dictionary learning for recognition
– start-page: 25
  year: 2006
  ident: 10.1016/j.neucom.2020.02.104_bib0002
  article-title: A survey of clustering data mining techniques
  publication-title: Grouping Multidimens. Data
  doi: 10.1007/3-540-28349-8_2
– volume: 40
  start-page: 1438
  year: 2010
  ident: 10.1016/j.neucom.2020.02.104_bib0024
  article-title: Multiview spectral embedding
  publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybern.)
  doi: 10.1109/TSMCB.2009.2039566
– start-page: 2564
  year: 2017
  ident: 10.1016/j.neucom.2020.02.104_bib0047
  article-title: Self-weighted multiview clustering with multiple graphs
– volume: 24
  start-page: 3939
  year: 2015
  ident: 10.1016/j.neucom.2020.02.104_bib0029
  article-title: Robust subspace clustering for multi-view data by exploiting correlation consensus
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2457339
– start-page: 2527
  year: 2017
  ident: 10.1016/j.neucom.2020.02.104_bib0020
  article-title: Compressed k-means for large-scale clustering
– start-page: 1977
  year: 2011
  ident: 10.1016/j.neucom.2020.02.104_bib0004
  article-title: Heterogeneous image feature integration via multi-modal spectral clustering
– volume: 21
  start-page: 1327
  year: 2011
  ident: 10.1016/j.neucom.2020.02.104_bib0005
  article-title: Saliency detection by multitask sparsity pursuit
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2169274
– start-page: 1582
  year: 2015
  ident: 10.1016/j.neucom.2020.02.104_bib0031
  article-title: Low-rank tensor constrained multiview subspace clustering
– start-page: 745
  year: 2011
  ident: 10.1016/j.neucom.2020.02.104_bib0073
  article-title: Clusterpath: an algorithm for clustering using convex fusion penalties
– start-page: 63
  year: 2005
  ident: 10.1016/j.neucom.2020.02.104_bib0069
  article-title: Measuring statistical dependence with hilbert-schmidt norms
– volume: 35
  start-page: 2765
  year: 2013
  ident: 10.1016/j.neucom.2020.02.104_bib0061
  article-title: Sparse subspace clustering: algorithm, theory, and applications
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.57
– volume: 2
  start-page: 351
  year: 2012
  ident: 10.1016/j.neucom.2020.02.104_bib0027
  article-title: Subspace clustering
  publication-title: Wiley Interdisc. Rev.: Data Mining Knowl. Discov.
– volume: 29
  start-page: 1834
  year: 2017
  ident: 10.1016/j.neucom.2020.02.104_bib0035
  article-title: Discrete nonnegative spectral clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2017.2701825
– start-page: 2149
  year: 2014
  ident: 10.1016/j.neucom.2020.02.104_bib0044
  article-title: Robust multi-view spectral clustering via low-rank and sparse decomposition
– volume: 41
  start-page: 1774
  year: 2018
  ident: 10.1016/j.neucom.2020.02.104_bib0075
  article-title: Binary multi-view clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2847335
– start-page: 1419
  year: 2015
  ident: 10.1016/j.neucom.2020.02.104_bib0008
  article-title: MatchinG-CNN meets KNN: Quasi-parametric human parsing
– volume: 156
  start-page: 12
  year: 2015
  ident: 10.1016/j.neucom.2020.02.104_bib0030
  article-title: Multi-view clustering via pairwise sparse subspace representation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.01.017
– volume: 143
  start-page: 44
  year: 2014
  ident: 10.1016/j.neucom.2020.02.104_bib0012
  article-title: Gene expression data clustering based on graph regularized subspace segmentation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.06.023
– start-page: 1969
  year: 2016
  ident: 10.1016/j.neucom.2020.02.104_bib0048
  article-title: The constrained Laplacian rank algorithm for graph-based clustering
– volume: 37
  start-page: 2531
  year: 2015
  ident: 10.1016/j.neucom.2020.02.104_bib0064
  article-title: Multi-view intact space learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2417578
– volume: 102
  start-page: 30
  year: 2018
  ident: 10.1016/j.neucom.2020.02.104_bib0007
  article-title: Multiview and multifeature spectral clustering using common eigenvectors
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2017.12.011
– volume: 18
  start-page: 2764
  year: 2017
  ident: 10.1016/j.neucom.2020.02.104_bib0074
  article-title: Robust discriminative clustering with sparse regularizers
  publication-title: J. Mach. Learning Research
– volume: 18
  start-page: 819
  year: 2019
  ident: 10.1016/j.neucom.2020.02.104_bib0009
  article-title: An improved particle filter with a novel hybrid proposal distribution for quantitative analysis of gold immunochromatographic strips
  publication-title: IEEE Trans. Nanotechnol.
  doi: 10.1109/TNANO.2019.2932271
– start-page: 2408
  year: 2017
  ident: 10.1016/j.neucom.2020.02.104_bib0049
  article-title: Multi-view clustering and semi-supervised classification with adaptive neighbours
– start-page: 205
  year: 2009
  ident: 10.1016/j.neucom.2020.02.104_bib0017
  article-title: Convex mixture models for multi-view clustering
– volume: 48
  start-page: 10
  year: 2015
  ident: 10.1016/j.neucom.2020.02.104_bib0028
  article-title: Subspace learning for unsupervised feature selection via matrix factorization
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.08.004
– volume: 320
  start-page: 195
  year: 2018
  ident: 10.1016/j.neucom.2020.02.104_bib0010
  article-title: A new switching-delayed-PSO-based optimized SVM algorithm for diagnosis of Alzheimer’s disease
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.001
– volume: 140
  year: 2020
  ident: 10.1016/j.neucom.2020.02.104_bib0038
  article-title: Structured learning for unsupervised feature selection with high-order matrix factorization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.112878
– start-page: 2750
  year: 2015
  ident: 10.1016/j.neucom.2020.02.104_bib0022
  article-title: Large-scale multi-view spectral clustering via bipartite graph
– start-page: 831
  year: 2010
  ident: 10.1016/j.neucom.2020.02.104_bib0041
  article-title: Multiple non-redundant spectral clustering views
– volume: 44
  start-page: 46
  year: 2018
  ident: 10.1016/j.neucom.2020.02.104_bib0003
  article-title: Multi-view kernel spectral clustering
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2017.12.002
– start-page: 4279
  year: 2017
  ident: 10.1016/j.neucom.2020.02.104_bib0059
  article-title: Latent multi-view subspace clustering
– volume: 138
  start-page: 176
  year: 2017
  ident: 10.1016/j.neucom.2020.02.104_bib0037
  article-title: Robust co-clustering via dual local learning and high-order matrix factorization
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2017.09.033
– start-page: 612
  year: 2011
  ident: 10.1016/j.neucom.2020.02.104_bib0058
  article-title: Linearized alternating direction method with adaptive penalty for low-rank representation
– start-page: 361
  year: 2010
  ident: 10.1016/j.neucom.2020.02.104_bib0054
  article-title: Predictive subspace learning for multi-view data: a large margin approach
– start-page: 1673
  year: 2012
  ident: 10.1016/j.neucom.2020.02.104_bib0060
  article-title: Convex multi-view subspace learning
– volume: 88
  start-page: 50
  year: 2019
  ident: 10.1016/j.neucom.2020.02.104_bib0063
  article-title: Multi-view subspace clustering with intactness-aware similarity
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.09.009
– start-page: 101
  year: 2009
  ident: 10.1016/j.neucom.2020.02.104_bib0046
  article-title: Multiview spectral clustering via ensemble
– start-page: 252
  year: 2013
  ident: 10.1016/j.neucom.2020.02.104_bib0034
  article-title: Multi-view clustering via joint nonnegative matrix factorization
– start-page: 1
  year: 2008
  ident: 10.1016/j.neucom.2020.02.104_bib0040
  article-title: Correlational spectral clustering
– start-page: 2790
  year: 2009
  ident: 10.1016/j.neucom.2020.02.104_bib0056
  article-title: Sparse subspace clustering
– volume: 46
  start-page: 284
  year: 2013
  ident: 10.1016/j.neucom.2020.02.104_bib0066
  article-title: An efficient matrix factorization based low-rank representation for subspace clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.06.011
– start-page: 393
  year: 2011
  ident: 10.1016/j.neucom.2020.02.104_bib0045
  article-title: A co-training approach for multi-view spectral clustering
– start-page: 3834
  year: 2014
  ident: 10.1016/j.neucom.2020.02.104_bib0062
  article-title: Smooth representation clustering
– volume: 47
  start-page: 418
  year: 2014
  ident: 10.1016/j.neucom.2020.02.104_bib0067
  article-title: Non-negative and sparse spectral clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2013.07.003
– start-page: 202
  year: 2012
  ident: 10.1016/j.neucom.2020.02.104_bib0023
  article-title: Co-regularized Plsa for multi-view clustering
– start-page: 1
  year: 2019
  ident: 10.1016/j.neucom.2020.02.104_bib0072
  article-title: A unified scheme for distance metric learning and clustering via rank-reduced regression
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2019.2900344
– volume: 40
  start-page: 769
  year: 2018
  ident: 10.1016/j.neucom.2020.02.104_bib0076
  article-title: A survey on learning to hash
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699960
– start-page: 129
  year: 2009
  ident: 10.1016/j.neucom.2020.02.104_bib0039
  article-title: Multi-view clustering via canonical correlation analysis
– start-page: 586
  year: 2015
  ident: 10.1016/j.neucom.2020.02.104_bib0032
  article-title: Diversity-induced multi-view subspace clustering
– start-page: 826
  year: 2017
  ident: 10.1016/j.neucom.2020.02.104_bib0001
  article-title: Multi-view spectral clustering on conflicting views
– start-page: 1737
  year: 2013
  ident: 10.1016/j.neucom.2020.02.104_bib0042
  article-title: Heterogeneous image features integration via multi-modal semi-supervised learning model
– start-page: 277
  year: 2015
  ident: 10.1016/j.neucom.2020.02.104_bib0057
  article-title: Structured sparse subspace clustering: a unified optimization framework
– start-page: 1027
  year: 2007
  ident: 10.1016/j.neucom.2020.02.104_bib0019
  article-title: k-means++: The advantages of careful seeding
– volume: 19
  start-page: 1454
  year: 2017
  ident: 10.1016/j.neucom.2020.02.104_bib0025
  article-title: Sparse multigraph embedding for multimodal feature representation
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2017.2663324
– start-page: 1881
  year: 2016
  ident: 10.1016/j.neucom.2020.02.104_bib0043
  article-title: Parameter-free auto-weighted multiple graph learning: a framework for multiview clustering and semi-supervised classification
– start-page: 19
  year: 2004
  ident: 10.1016/j.neucom.2020.02.104_bib0016
  article-title: Multi-view clustering
– ident: 10.1016/j.neucom.2020.02.104_bib0013
– start-page: 871
  year: 1991
  ident: 10.1016/j.neucom.2020.02.104_bib0051
  article-title: The Laplacian spectrum of graphs
  publication-title: Graph Theory Combinat. Appl.
– volume: 39
  start-page: 1
  year: 1977
  ident: 10.1016/j.neucom.2020.02.104_bib0018
  article-title: Maximum likelihood from incomplete data via the em algorithm
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– start-page: 923
  year: 2017
  ident: 10.1016/j.neucom.2020.02.104_bib0053
  article-title: Exclusivity-consistency regularized multi-view subspace clustering
– volume: 59
  start-page: 112
  year: 2016
  ident: 10.1016/j.neucom.2020.02.104_bib0011
  article-title: Inferring nonlinear lateral flow immunoassay state-space models via an unscented Kalman filter
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-016-0280-9
– start-page: 579
  year: 2015
  ident: 10.1016/j.neucom.2020.02.104_bib0021
  article-title: Yinyang k-means: a drop-in replacement of the classic k-means with consistent speedup
– start-page: 4238
  year: 2015
  ident: 10.1016/j.neucom.2020.02.104_bib0033
  article-title: Multi-view subspace clustering
– volume: 105
  start-page: 12
  year: 2013
  ident: 10.1016/j.neucom.2020.02.104_bib0050
  article-title: Efficient semi-supervised feature selection with noise insensitive trace ratio criterion
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.05.031
– volume: 23
  start-page: 2031
  year: 2013
  ident: 10.1016/j.neucom.2020.02.104_bib0014
  article-title: A survey of multi-view machine learning
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-013-1362-6
– volume: 88
  start-page: 74
  year: 2017
  ident: 10.1016/j.neucom.2020.02.104_bib0036
  article-title: Multi-view clustering via multi-manifold regularized non-negative matrix factorization
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2017.02.003
– volume: 22
  start-page: 888
  year: 2000
  ident: 10.1016/j.neucom.2020.02.104_bib0065
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.868688
SSID ssj0017129
Score 2.6053858
Snippet With the widespread deployment of sensors and the Internet-of-Things, multi-view data has become more common and publicly available. Compared to traditional...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 148
SubjectTerms Graph-based clustering
Machine learning
Multi-view clustering
Space learning
Unsupervised learning
Title An overview of recent multi-view clustering
URI https://dx.doi.org/10.1016/j.neucom.2020.02.104
Volume 402
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KvXjxLdZHycGbrM0-0iTHUixVsRct9BY22V2olLSU9upvdybZFEVQ8JhlB7KTzTx2v_kG4NYo9NFR6FiRYLqqdJ6wRJuC9ftOx6kwxlVXMS-T_niqnmbRrAXDphaGYJXe9tc2vbLWfqTntdlbzee91zAVmEVxIXCf0n0BVbCrmHb5_ccO5sFjLmq-PRExmt2Uz1UYr9JuCTMiMGYi5k7u27X9cE9fXM7oCA58rBgM6tc5hpYtT-Cw6cMQ-N_yFO4GZUBITDrlD5YuwAWhKwkqrCCrBovFlggR0E2dwXT08DYcM98EgRUyFhuWOp1aw6XFbNLoWKvEGGEoK-KofGlyLXMRKouhkHNU6GpcxHEi8ZBZrpw8h3a5LO0FBFEeamHTJC-cJmKzHIMlLTEAMc4VcZR2QDZrzwrPEE6NKhZZAwV7z2qNZaSxLBQ4qjrAdlKrmiHjj_lxo9bs25fO0Ij_Knn5b8kr2KcnOgvmyTW0N-utvcFgYpN3q93Shb3B4_N48glV08lT
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8MwDBZde9gue491zxx2G6axkzTJsZSVdH1c1kJvwYlt6ChpGe3_n5Q4ZWOwwa6KBbHi6GFJnwCelI82OnANyyMMV32ZRSySKmfdrpFhLJQyZSpmMu0mc_91ESwa0K97Yais0ur-SqeX2tpSOlaanc1y2XlzY4FRFBcCzynlCw6gRehUQRNaveEome6TCSEXFeSeCBgx1B10ZZlXoXdUNiLQbSLwTm4ntv2wUF-szuAUjq276PSqNzqDhi7O4aQexeDYP_MCnnuFQ8WYdNHvrI2De0Jr4pTlgqwk5qsdYSKgpbqE-eBl1k-YnYPAci8UWxYbGWvFPY0BpZKh9COlhKLAiKP8PZVJLxOur9EbMoZ6XZUJOC4kKDLNfeNdQbNYF_oanCBzpdBxlOVGErZZhv6S9NAHUcbkYRC3wav3nuYWJJxmVazSuhrsPa0klpLEUlcg1W8D23NtKpCMP9aHtVjTbx87RT3-K-fNvzkf4TCZTcbpeDgd3cIRPaGrYR7dQXP7sdP36Ftsswd7dj4BT63MBA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+overview+of+recent+multi-view+clustering&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Fu%2C+Lele&rft.au=Lin%2C+Pengfei&rft.au=Vasilakos%2C+Athanasios+V.&rft.au=Wang%2C+Shiping&rft.date=2020-08-18&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=402&rft.spage=148&rft.epage=161&rft_id=info:doi/10.1016%2Fj.neucom.2020.02.104&rft.externalDocID=S0925231220303222
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon