An overview of recent multi-view clustering
With the widespread deployment of sensors and the Internet-of-Things, multi-view data has become more common and publicly available. Compared to traditional data that describes objects from single perspective, multi-view data is semantically richer, more useful, however more complex. Since tradition...
Saved in:
Published in | Neurocomputing (Amsterdam) Vol. 402; pp. 148 - 161 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
18.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the widespread deployment of sensors and the Internet-of-Things, multi-view data has become more common and publicly available. Compared to traditional data that describes objects from single perspective, multi-view data is semantically richer, more useful, however more complex. Since traditional clustering algorithms cannot handle such data, multi-view clustering has become a research hotspot. In this paper, we review some of the latest multi-view clustering algorithms, which are reasonably divided into three categories. To evaluate their performance, we perform extensive experiments on seven real-world data sets. Three mainstream metrics are used, including clustering accuracy, normalized mutual information and purity. Based on the experimental results and a large number of literature reading, we also discuss existing problems in current multi-view clustering and point out possible research directions in the future. This research provides some insights for researchers in related fields and may further promote the development of multi-view clustering algorithms. |
---|---|
AbstractList | With the widespread deployment of sensors and the Internet-of-Things, multi-view data has become more common and publicly available. Compared to traditional data that describes objects from single perspective, multi-view data is semantically richer, more useful, however more complex. Since traditional clustering algorithms cannot handle such data, multi-view clustering has become a research hotspot. In this paper, we review some of the latest multi-view clustering algorithms, which are reasonably divided into three categories. To evaluate their performance, we perform extensive experiments on seven real-world data sets. Three mainstream metrics are used, including clustering accuracy, normalized mutual information and purity. Based on the experimental results and a large number of literature reading, we also discuss existing problems in current multi-view clustering and point out possible research directions in the future. This research provides some insights for researchers in related fields and may further promote the development of multi-view clustering algorithms. |
Author | Fu, Lele Vasilakos, Athanasios V. Lin, Pengfei Wang, Shiping |
Author_xml | – sequence: 1 givenname: Lele surname: Fu fullname: Fu, Lele organization: College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, China – sequence: 2 givenname: Pengfei surname: Lin fullname: Lin, Pengfei organization: College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, China – sequence: 3 givenname: Athanasios V. surname: Vasilakos fullname: Vasilakos, Athanasios V. organization: College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, China – sequence: 4 givenname: Shiping orcidid: 0000-0001-5195-9682 surname: Wang fullname: Wang, Shiping email: shipingwangphd@163.com organization: College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, China |
BookMark | eNqFkE1LAzEQhoNUsK3-Aw97l10zSdrd9SCU4hcUvOg5pMlEUraJJGnFf29qPXnQ0wwv87zwzISMfPBIyCXQBijMrzeNx50O24ZRRhvKSipOyBi6ltUd6-YjMqY9m9WMAzsjk5Q2lEILrB-Tq4Wvwh7j3uFHFWwVUaPP1XY3ZFd_h3rYpYzR-bdzcmrVkPDiZ07J6_3dy_KxXj0_PC0Xq1rzluW6t6pHAxxb4Ea1SnTGMCMocNBacbNWfM2oQJgJa8vCjZ1BOWz7rkMQlk-JOPbqGFKKaOV7dFsVPyVQeRCWG3kUlgdhSVlJRcFufmHaZZVd8DkqN_wH3x5hLGLFO8qkHXqNxpWXZGmC-7vgC0b_djk |
CitedBy_id | crossref_primary_10_1007_s13278_023_01061_4 crossref_primary_10_1371_journal_pone_0309206 crossref_primary_10_1016_j_ins_2022_05_091 crossref_primary_10_1007_s13042_023_01969_5 crossref_primary_10_1016_j_engappai_2024_107857 crossref_primary_10_1007_s10044_023_01167_7 crossref_primary_10_1007_s13042_021_01297_6 crossref_primary_10_1117_1_JEI_31_4_043024 crossref_primary_10_1155_2021_5526479 crossref_primary_10_1109_LGRS_2023_3273854 crossref_primary_10_1016_j_neucom_2022_06_009 crossref_primary_10_1016_j_patcog_2023_109829 crossref_primary_10_1109_LSP_2025_3527231 crossref_primary_10_1109_TMM_2022_3185886 crossref_primary_10_1016_j_jbi_2023_104406 crossref_primary_10_1007_s40747_024_01509_w crossref_primary_10_1109_TETCI_2024_3369316 crossref_primary_10_1016_j_physa_2023_129405 crossref_primary_10_1016_j_ins_2022_07_093 crossref_primary_10_3390_s21206775 crossref_primary_10_1155_2023_5872359 crossref_primary_10_3233_JIFS_212316 crossref_primary_10_1145_3698875 crossref_primary_10_1016_j_simpa_2025_100743 crossref_primary_10_3390_e24040568 crossref_primary_10_1007_s44243_024_00047_w crossref_primary_10_1016_j_neucom_2024_127742 crossref_primary_10_3389_fgene_2022_859462 crossref_primary_10_1016_j_neucom_2024_129240 crossref_primary_10_1007_s10462_024_10785_4 crossref_primary_10_1016_j_inffus_2023_102174 crossref_primary_10_1016_j_inffus_2024_102693 crossref_primary_10_1007_s13042_023_01981_9 crossref_primary_10_1016_j_ins_2022_11_026 crossref_primary_10_1145_3674839 crossref_primary_10_3724_SP_J_1089_2022_19522 crossref_primary_10_1016_j_psychres_2023_115265 crossref_primary_10_1007_s10489_022_03205_z crossref_primary_10_1016_j_eswa_2022_118408 crossref_primary_10_1016_j_knosys_2025_113314 crossref_primary_10_1016_j_neucom_2024_127870 crossref_primary_10_1016_j_patcog_2024_110592 crossref_primary_10_1109_JAS_2022_105980 crossref_primary_10_1016_j_knosys_2023_111330 crossref_primary_10_1016_j_dsp_2022_103447 crossref_primary_10_1007_s11704_024_40004_w crossref_primary_10_1016_j_patcog_2024_110888 crossref_primary_10_1109_LSP_2024_3409213 crossref_primary_10_1007_s13042_024_02105_7 crossref_primary_10_1016_j_ins_2023_118948 crossref_primary_10_1109_TAI_2023_3271964 crossref_primary_10_3390_electronics11060883 crossref_primary_10_1016_j_neucom_2023_127102 crossref_primary_10_1016_j_patcog_2021_108108 crossref_primary_10_1016_j_neucom_2025_129689 crossref_primary_10_1007_s00224_024_10174_y crossref_primary_10_1109_TSIPN_2023_3306098 crossref_primary_10_1016_j_neucom_2022_09_087 crossref_primary_10_1109_TIP_2023_3327564 crossref_primary_10_1016_j_neunet_2023_03_013 crossref_primary_10_3390_app12105094 crossref_primary_10_5753_jbcs_2024_3483 crossref_primary_10_1016_j_knosys_2021_107567 crossref_primary_10_1016_j_neucom_2021_12_029 crossref_primary_10_1016_j_agwat_2020_106547 crossref_primary_10_1016_j_orl_2023_11_005 crossref_primary_10_1109_TSMC_2025_3537801 crossref_primary_10_1109_TII_2024_3385066 crossref_primary_10_1016_j_aei_2024_102799 crossref_primary_10_1109_TAI_2021_3139573 crossref_primary_10_1007_s41237_023_00200_7 crossref_primary_10_1007_s00530_022_00905_x crossref_primary_10_1016_j_neucom_2024_127899 crossref_primary_10_1016_j_neunet_2022_03_009 crossref_primary_10_1016_j_patcog_2024_111140 crossref_primary_10_1109_TNNLS_2023_3274289 crossref_primary_10_1109_TMM_2024_3398295 crossref_primary_10_1016_j_dsp_2024_104879 crossref_primary_10_1007_s13042_025_02589_x crossref_primary_10_1088_1361_6501_ad6022 crossref_primary_10_1016_j_asoc_2024_111278 crossref_primary_10_1016_j_neucom_2022_09_145 crossref_primary_10_1109_TETCI_2023_3314551 crossref_primary_10_1145_3643564 crossref_primary_10_1145_3645108 crossref_primary_10_1007_s10489_022_04385_4 crossref_primary_10_1109_TPAMI_2025_3526790 crossref_primary_10_3390_axioms11120722 crossref_primary_10_1016_j_knosys_2021_107182 crossref_primary_10_1016_j_patcog_2024_110716 crossref_primary_10_1109_TBDATA_2024_3426277 crossref_primary_10_2139_ssrn_4064479 crossref_primary_10_1145_3527449 crossref_primary_10_1109_TCSS_2023_3242145 crossref_primary_10_1109_TPAMI_2024_3386828 crossref_primary_10_1016_j_ins_2021_02_054 crossref_primary_10_1109_TNSM_2022_3197725 crossref_primary_10_1016_j_eswa_2023_121298 crossref_primary_10_1016_j_knosys_2023_111132 crossref_primary_10_3390_math11061509 crossref_primary_10_3390_sym17020161 crossref_primary_10_1016_j_inffus_2025_103012 crossref_primary_10_1016_j_knosys_2023_110424 crossref_primary_10_1016_j_neunet_2021_08_031 crossref_primary_10_1016_j_dsp_2022_103888 crossref_primary_10_1371_journal_pone_0276006 crossref_primary_10_1109_TKDE_2023_3270311 crossref_primary_10_1016_j_neucom_2023_126695 crossref_primary_10_1016_j_eswa_2023_119949 crossref_primary_10_1016_j_neunet_2023_02_016 crossref_primary_10_1007_s10994_025_06735_y crossref_primary_10_1109_ACCESS_2025_3543099 crossref_primary_10_1016_j_neunet_2024_106287 crossref_primary_10_1109_TIP_2021_3114995 |
Cites_doi | 10.1109/MSP.2010.939739 10.1109/TPAMI.2019.2943860 10.1109/TIP.2019.2916740 10.1016/j.inffus.2017.02.007 10.1109/TSMC.2016.2605132 10.1007/3-540-28349-8_2 10.1109/TSMCB.2009.2039566 10.1109/TIP.2015.2457339 10.1109/TIP.2011.2169274 10.1109/TPAMI.2013.57 10.1109/TKDE.2017.2701825 10.1109/TPAMI.2018.2847335 10.1016/j.neucom.2015.01.017 10.1016/j.neucom.2014.06.023 10.1109/TPAMI.2015.2417578 10.1016/j.patrec.2017.12.011 10.1109/TNANO.2019.2932271 10.1016/j.patcog.2014.08.004 10.1016/j.neucom.2018.09.001 10.1016/j.eswa.2019.112878 10.1016/j.inffus.2017.12.002 10.1016/j.knosys.2017.09.033 10.1016/j.patcog.2018.09.009 10.1016/j.patcog.2012.06.011 10.1016/j.patcog.2013.07.003 10.1109/TSMC.2019.2900344 10.1109/TPAMI.2017.2699960 10.1109/TMM.2017.2663324 10.1111/j.2517-6161.1977.tb01600.x 10.1007/s11432-016-0280-9 10.1016/j.neucom.2012.05.031 10.1007/s00521-013-1362-6 10.1016/j.neunet.2017.02.003 10.1109/34.868688 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.neucom.2020.02.104 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-8286 |
EndPage | 161 |
ExternalDocumentID | 10_1016_j_neucom_2020_02_104 S0925231220303222 |
GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- RIG SBC SEW SSH WUQ XPP |
ID | FETCH-LOGICAL-c372t-9fa9ed13e713da7a48dd2d40131cca3dba3b204e154ff2043df51da77988e14f3 |
IEDL.DBID | .~1 |
ISSN | 0925-2312 |
IngestDate | Thu Apr 24 22:57:47 EDT 2025 Tue Jul 01 01:46:48 EDT 2025 Fri Feb 23 02:47:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multi-view clustering Unsupervised learning Machine learning Graph-based clustering Space learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-9fa9ed13e713da7a48dd2d40131cca3dba3b204e154ff2043df51da77988e14f3 |
ORCID | 0000-0001-5195-9682 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1016_j_neucom_2020_02_104 crossref_citationtrail_10_1016_j_neucom_2020_02_104 elsevier_sciencedirect_doi_10_1016_j_neucom_2020_02_104 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-18 |
PublicationDateYYYYMMDD | 2020-08-18 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-18 day: 18 |
PublicationDecade | 2020 |
PublicationTitle | Neurocomputing (Amsterdam) |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Houthuys, Langone, Suykens (bib0003) 2018; 44 Lang, Liu, Yu, Yan (bib0005) 2011; 21 Wang, Lei, Guo, Zhang, Shi, Li (bib0063) 2019; 88 Blaschko, Lampert (bib0040) 2008 Flammarion, Palaniappan, Bach (bib0074) 2017; 18 Yang, Shen, Huang, Shen, Li (bib0035) 2017; 29 Chen, Jian (bib0012) 2014; 143 Wang, Chen, Guo, Liu (bib0038) 2020; 140 Guo, Shi, Wang (bib0072) 2019 Fan (bib0052) 1949 Elhamifar, Vidal (bib0056) 2009 Chen, Zhu, Xing (bib0054) 2010 Zhang, Fu, Liu, Liu, Cao (bib0031) 2015 Lu, Fu, Shu (bib0067) 2014; 47 Wu, Lin, Zha (bib0079) 2019; 28 Chaudhuri, Kakade, Livescu, Sridharan (bib0039) 2009 Vidal (bib0026) 2011; 28 Gretton, Borgwardt, Rasch, Schölkopf, Smola (bib0070) 2006 Nie, Cai, Li (bib0049) 2017 Wang, Lin, Wu, Zhang, Zhang, Huang (bib0029) 2015; 24 C. Xu, D. Tao, C. Xu, A survey on multi-view learning, 2013, ArXiv: Learning. Zhang, Shi, Cheng, Liu, Bian, Zhou, Zheng, Zeng (bib0006) 2019 He, Li, Roqueiro, Borgwardt (bib0001) 2017 Wang, Guo (bib0037) 2017; 138 Zeng, Wang, Zhang (bib0011) 2016; 59 Xia, Pan, Du, Yin (bib0044) 2014 Shen, Liu, Tsang, Shen, Sun (bib0020) 2017 Zeng, Wang, Zhang, Kim, Li, Liu (bib0009) 2019; 18 Shi, Malik (bib0065) 2000; 22 White, Zhang, Schuurmans, Yu (bib0060) 2012 Jiang, Liu, Li, Li, Lu (bib0023) 2012 Liu, Jiao, Shang (bib0066) 2013; 46 Wang, Guo (bib0025) 2017; 19 Kriegel, Kröger, Zimek (bib0027) 2012; 2 Cai, Nie, Cai, Huang (bib0042) 2013 Zhang, Liu, Shen, Shen, Shao (bib0075) 2018; 41 Wang, Zhu (bib0078) 2016; 48 Wang, Pedrycz, Zhu, Zhu (bib0028) 2015; 48 Elhamifar, Vidal (bib0061) 2013; 35 Berkhin (bib0002) 2006 Ding, Zhao, Shen, Musuvathi, Mytkowicz (bib0021) 2015 Peng, Huang, Lv, Zhu, Zhou (bib0071) 2019 Yin, Wu, He, Wang (bib0030) 2015; 156 Gao, Han, Liu, Wang (bib0034) 2013 Zhao, Xie, Xu, Sun (bib0015) 2017; 38 Jing, Hu, Wu, Chen, Liu, Yao (bib0068) 2014 Hocking, Vert, Bach, Joulin (bib0073) 2011 Mohar (bib0051) 1991 Liu, Nie, Wu, Chen (bib0050) 2013; 105 Xu, Tao, Xu (bib0064) 2015; 37 Niu, Dy, Jordan (bib0041) 2010 Cai, Nie, Huang, Kamangar (bib0004) 2011 Arthur, Vassilvitskii (bib0019) 2007 Gao, Nie, Li, Huang (bib0033) 2015 Collins, Liu, Xu, Mukherjee, Singh (bib0055) 2014 Wang, Guo, Lei, Zhang, Li (bib0053) 2017 Hu, Lin, Feng, Zhou (bib0062) 2014 Nie, Wang, Jordan, Huang (bib0048) 2016 Nie, Li, Li (bib0047) 2017 Gretton, Bousquet, Smola, Schölkopf (bib0069) 2005 Cao, Zhang, Fu, Liu, Zhang (bib0032) 2015 Liu, Liang, Liu, Shen, Yang, Xu, Lin, Cao, Yan (bib0008) 2015 Lin, Liu, Su (bib0058) 2011 Dempster, Laird, Rubin (bib0018) 1977; 39 Bickel, Scheffer (bib0016) 2004 Wang, Zhang, Song, Sebe, Shen (bib0076) 2018; 40 Tzortzis, Likas (bib0017) 2009 Xia, Tao, Mei, Zhang (bib0024) 2010; 40 Cheng, Zhao (bib0046) 2009 Gong, Pawlowski, Yang, Brandy, Bourdev, Fergus (bib0077) 2015 Kumar, Daumé (bib0045) 2011 Zhang, Hu, Fu, Zhu, Cao (bib0059) 2017 Li, Vidal (bib0057) 2015 Kanaanizquierdo, Ziyatdinov, Pereralluna (bib0007) 2018; 102 Li, Nie, Huang, Huang (bib0022) 2015 Zong, Zhang, Zhao, Yu, Zhao (bib0036) 2017; 88 Zeng, Qiu, Wang, Liu, Zhang, Li (bib0010) 2018; 320 Sun (bib0014) 2013; 23 Nie, Li, Li (bib0043) 2016 Tzortzis (10.1016/j.neucom.2020.02.104_bib0017) 2009 Liu (10.1016/j.neucom.2020.02.104_bib0066) 2013; 46 Cheng (10.1016/j.neucom.2020.02.104_bib0046) 2009 Fan (10.1016/j.neucom.2020.02.104_bib0052) 1949 Wang (10.1016/j.neucom.2020.02.104_bib0063) 2019; 88 Lu (10.1016/j.neucom.2020.02.104_bib0067) 2014; 47 Kriegel (10.1016/j.neucom.2020.02.104_bib0027) 2012; 2 Li (10.1016/j.neucom.2020.02.104_bib0057) 2015 Zhang (10.1016/j.neucom.2020.02.104_bib0075) 2018; 41 Gretton (10.1016/j.neucom.2020.02.104_bib0069) 2005 Zhang (10.1016/j.neucom.2020.02.104_bib0031) 2015 Liu (10.1016/j.neucom.2020.02.104_bib0008) 2015 Zeng (10.1016/j.neucom.2020.02.104_bib0011) 2016; 59 Yang (10.1016/j.neucom.2020.02.104_bib0035) 2017; 29 Zeng (10.1016/j.neucom.2020.02.104_bib0010) 2018; 320 Guo (10.1016/j.neucom.2020.02.104_bib0072) 2019 Cai (10.1016/j.neucom.2020.02.104_bib0042) 2013 Nie (10.1016/j.neucom.2020.02.104_bib0047) 2017 Hu (10.1016/j.neucom.2020.02.104_bib0062) 2014 Kumar (10.1016/j.neucom.2020.02.104_bib0045) 2011 Wang (10.1016/j.neucom.2020.02.104_bib0053) 2017 Gao (10.1016/j.neucom.2020.02.104_bib0034) 2013 Vidal (10.1016/j.neucom.2020.02.104_bib0026) 2011; 28 Mohar (10.1016/j.neucom.2020.02.104_bib0051) 1991 Yin (10.1016/j.neucom.2020.02.104_bib0030) 2015; 156 Collins (10.1016/j.neucom.2020.02.104_bib0055) 2014 Kanaanizquierdo (10.1016/j.neucom.2020.02.104_bib0007) 2018; 102 Elhamifar (10.1016/j.neucom.2020.02.104_bib0061) 2013; 35 Nie (10.1016/j.neucom.2020.02.104_bib0043) 2016 Peng (10.1016/j.neucom.2020.02.104_bib0071) 2019 Lang (10.1016/j.neucom.2020.02.104_bib0005) 2011; 21 Gao (10.1016/j.neucom.2020.02.104_bib0033) 2015 Houthuys (10.1016/j.neucom.2020.02.104_bib0003) 2018; 44 Wang (10.1016/j.neucom.2020.02.104_bib0076) 2018; 40 Wang (10.1016/j.neucom.2020.02.104_bib0025) 2017; 19 Wang (10.1016/j.neucom.2020.02.104_bib0028) 2015; 48 Xia (10.1016/j.neucom.2020.02.104_bib0044) 2014 Bickel (10.1016/j.neucom.2020.02.104_bib0016) 2004 Cao (10.1016/j.neucom.2020.02.104_bib0032) 2015 Nie (10.1016/j.neucom.2020.02.104_bib0049) 2017 Cai (10.1016/j.neucom.2020.02.104_bib0004) 2011 Li (10.1016/j.neucom.2020.02.104_bib0022) 2015 Shen (10.1016/j.neucom.2020.02.104_bib0020) 2017 Zhang (10.1016/j.neucom.2020.02.104_bib0059) 2017 Berkhin (10.1016/j.neucom.2020.02.104_bib0002) 2006 Wang (10.1016/j.neucom.2020.02.104_bib0038) 2020; 140 Liu (10.1016/j.neucom.2020.02.104_bib0050) 2013; 105 Chen (10.1016/j.neucom.2020.02.104_bib0054) 2010 Hocking (10.1016/j.neucom.2020.02.104_bib0073) 2011 Xu (10.1016/j.neucom.2020.02.104_bib0064) 2015; 37 Flammarion (10.1016/j.neucom.2020.02.104_bib0074) 2017; 18 Arthur (10.1016/j.neucom.2020.02.104_bib0019) 2007 10.1016/j.neucom.2020.02.104_bib0013 Ding (10.1016/j.neucom.2020.02.104_bib0021) 2015 Wang (10.1016/j.neucom.2020.02.104_bib0037) 2017; 138 Zhao (10.1016/j.neucom.2020.02.104_bib0015) 2017; 38 Wang (10.1016/j.neucom.2020.02.104_bib0029) 2015; 24 Chen (10.1016/j.neucom.2020.02.104_bib0012) 2014; 143 Zong (10.1016/j.neucom.2020.02.104_bib0036) 2017; 88 Blaschko (10.1016/j.neucom.2020.02.104_bib0040) 2008 Sun (10.1016/j.neucom.2020.02.104_bib0014) 2013; 23 Wang (10.1016/j.neucom.2020.02.104_bib0078) 2016; 48 Zeng (10.1016/j.neucom.2020.02.104_bib0009) 2019; 18 Xia (10.1016/j.neucom.2020.02.104_bib0024) 2010; 40 Nie (10.1016/j.neucom.2020.02.104_bib0048) 2016 Gretton (10.1016/j.neucom.2020.02.104_bib0070) 2006 Jiang (10.1016/j.neucom.2020.02.104_bib0023) 2012 Niu (10.1016/j.neucom.2020.02.104_bib0041) 2010 Dempster (10.1016/j.neucom.2020.02.104_bib0018) 1977; 39 He (10.1016/j.neucom.2020.02.104_bib0001) 2017 Zhang (10.1016/j.neucom.2020.02.104_bib0006) 2019 Chaudhuri (10.1016/j.neucom.2020.02.104_bib0039) 2009 Shi (10.1016/j.neucom.2020.02.104_bib0065) 2000; 22 Elhamifar (10.1016/j.neucom.2020.02.104_bib0056) 2009 White (10.1016/j.neucom.2020.02.104_bib0060) 2012 Jing (10.1016/j.neucom.2020.02.104_bib0068) 2014 Gong (10.1016/j.neucom.2020.02.104_bib0077) 2015 Lin (10.1016/j.neucom.2020.02.104_bib0058) 2011 Wu (10.1016/j.neucom.2020.02.104_bib0079) 2019; 28 |
References_xml | – start-page: 25 year: 2006 end-page: 71 ident: bib0002 article-title: A survey of clustering data mining techniques publication-title: Grouping Multidimens. Data – start-page: 5092 year: 2019 end-page: 5101 ident: bib0071 article-title: COMIC: Multi-view clustering without parameter selection publication-title: Proceedings of the International Conference on Machine Learning – volume: 48 start-page: 10 year: 2015 end-page: 19 ident: bib0028 article-title: Subspace learning for unsupervised feature selection via matrix factorization publication-title: Pattern Recognit. – start-page: 252 year: 2013 end-page: 260 ident: bib0034 article-title: Multi-view clustering via joint nonnegative matrix factorization publication-title: Proceedings of the SIAM International Conference on Data Mining – volume: 138 start-page: 176 year: 2017 end-page: 187 ident: bib0037 article-title: Robust co-clustering via dual local learning and high-order matrix factorization publication-title: Knowl. Based Syst. – start-page: 277 year: 2015 end-page: 286 ident: bib0057 article-title: Structured sparse subspace clustering: a unified optimization framework publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 1 year: 2019 end-page: 12 ident: bib0072 article-title: A unified scheme for distance metric learning and clustering via rank-reduced regression publication-title: IEEE Trans. Syst. Man Cybern. Syst. – volume: 23 start-page: 2031 year: 2013 end-page: 2038 ident: bib0014 article-title: A survey of multi-view machine learning publication-title: Neural Comput. Appl. – volume: 156 start-page: 12 year: 2015 end-page: 21 ident: bib0030 article-title: Multi-view clustering via pairwise sparse subspace representation publication-title: Neurocomputing – volume: 18 start-page: 2764 year: 2017 end-page: 2813 ident: bib0074 article-title: Robust discriminative clustering with sparse regularizers publication-title: J. Mach. Learning Research – start-page: 19 year: 2004 end-page: 26 ident: bib0016 article-title: Multi-view clustering publication-title: Proceedings of the IEEE International Conference on Data Mining – start-page: 513 year: 2006 end-page: 520 ident: bib0070 article-title: A kernel method for the two-sample-problem publication-title: Proceedings of Advances in Neural Information Processing Systems – volume: 143 start-page: 44 year: 2014 end-page: 50 ident: bib0012 article-title: Gene expression data clustering based on graph regularized subspace segmentation publication-title: Neurocomputing – start-page: 4238 year: 2015 end-page: 4246 ident: bib0033 article-title: Multi-view subspace clustering publication-title: Proceedings of the IEEE International Conference on Computer Vision – start-page: 1 year: 2008 end-page: 8 ident: bib0040 article-title: Correlational spectral clustering publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 37 start-page: 2531 year: 2015 end-page: 2544 ident: bib0064 article-title: Multi-view intact space learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 361 year: 2010 end-page: 369 ident: bib0054 article-title: Predictive subspace learning for multi-view data: a large margin approach publication-title: Proceedings of Advances in Neural Information Processing Systems – volume: 21 start-page: 1327 year: 2011 end-page: 1338 ident: bib0005 article-title: Saliency detection by multitask sparsity pursuit publication-title: IEEE Trans. Image Process. – start-page: 871 year: 1991 end-page: 898 ident: bib0051 article-title: The Laplacian spectrum of graphs publication-title: Graph Theory Combinat. Appl. – volume: 41 start-page: 1774 year: 2018 end-page: 1782 ident: bib0075 article-title: Binary multi-view clustering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 2 start-page: 351 year: 2012 end-page: 364 ident: bib0027 article-title: Subspace clustering publication-title: Wiley Interdisc. Rev.: Data Mining Knowl. Discov. – start-page: 2408 year: 2017 end-page: 2414 ident: bib0049 article-title: Multi-view clustering and semi-supervised classification with adaptive neighbours publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – volume: 24 start-page: 3939 year: 2015 end-page: 3949 ident: bib0029 article-title: Robust subspace clustering for multi-view data by exploiting correlation consensus publication-title: IEEE Trans. Image Process. – volume: 88 start-page: 50 year: 2019 end-page: 63 ident: bib0063 article-title: Multi-view subspace clustering with intactness-aware similarity publication-title: Pattern Recognit. – volume: 38 start-page: 43 year: 2017 end-page: 54 ident: bib0015 article-title: Multi-view learning overview: recent progress and new challenges publication-title: Inf. Fusion – start-page: 282 year: 2014 end-page: 298 ident: bib0055 article-title: Spectral clustering with a convex regularizer on millions of images publication-title: Proceedings of the European Conference on Computer Vision – start-page: 1737 year: 2013 end-page: 1744 ident: bib0042 article-title: Heterogeneous image features integration via multi-modal semi-supervised learning model publication-title: Proceedings of the IEEE International Conference on Computer Vision – start-page: 745 year: 2011 end-page: 752 ident: bib0073 article-title: Clusterpath: an algorithm for clustering using convex fusion penalties publication-title: Proceedings of the International Conference on Machine Learning – start-page: 63 year: 2005 end-page: 77 ident: bib0069 article-title: Measuring statistical dependence with hilbert-schmidt norms publication-title: Proceedings of International Conference on Algorithmic Learning Theory – start-page: 205 year: 2009 end-page: 214 ident: bib0017 article-title: Convex mixture models for multi-view clustering publication-title: Proceedings of the International Conference on Artificial Neural Networks – start-page: 2750 year: 2015 end-page: 2756 ident: bib0022 article-title: Large-scale multi-view spectral clustering via bipartite graph publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – volume: 19 start-page: 1454 year: 2017 end-page: 1466 ident: bib0025 article-title: Sparse multigraph embedding for multimodal feature representation publication-title: IEEE Trans. Multimed. – volume: 59 start-page: 112 year: 2016 end-page: 204 ident: bib0011 article-title: Inferring nonlinear lateral flow immunoassay state-space models via an unscented Kalman filter publication-title: Sci. China Inf. Sci. – volume: 47 start-page: 418 year: 2014 end-page: 426 ident: bib0067 article-title: Non-negative and sparse spectral clustering publication-title: Pattern Recognit. – volume: 29 start-page: 1834 year: 2017 end-page: 1845 ident: bib0035 article-title: Discrete nonnegative spectral clustering publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 612 year: 2011 end-page: 620 ident: bib0058 article-title: Linearized alternating direction method with adaptive penalty for low-rank representation publication-title: Proceedings of Advances in Neural Information Processing Systems – start-page: 652 year: 1949 end-page: 655 ident: bib0052 article-title: On a theorem of Weyl concerning eigenvalues of linear transformations publication-title: Proceedings of the National Academy of Sciences of the United States of America – start-page: 19 year: 2015 end-page: 27 ident: bib0077 article-title: Web scale photo hash clustering on a single machine publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 28 start-page: 52 year: 2011 end-page: 68 ident: bib0026 article-title: Subspace clustering publication-title: IEEE Signal Process. Mag. – volume: 48 start-page: 329 year: 2016 end-page: 341 ident: bib0078 article-title: Sparse graph embedding unsupervised feature selection publication-title: IEEE Trans. Syst. Man Cybernet. Syst. – volume: 22 start-page: 888 year: 2000 end-page: 905 ident: bib0065 article-title: Normalized cuts and image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 393 year: 2011 end-page: 400 ident: bib0045 article-title: A co-training approach for multi-view spectral clustering publication-title: Proceedings of the International Conference on Machine Learning – start-page: 202 year: 2012 end-page: 213 ident: bib0023 article-title: Co-regularized Plsa for multi-view clustering publication-title: Proceedings of the Asian Conference on Computer Vision – start-page: 101 year: 2009 end-page: 106 ident: bib0046 article-title: Multiview spectral clustering via ensemble publication-title: Proceedings of the IEEE International Conference on Granular Computing – start-page: 2564 year: 2017 end-page: 2570 ident: bib0047 article-title: Self-weighted multiview clustering with multiple graphs publication-title: Proceedings of the International Joint Conferences on Artificial Intelligence Organization – start-page: 579 year: 2015 end-page: 587 ident: bib0021 article-title: Yinyang k-means: a drop-in replacement of the classic k-means with consistent speedup publication-title: Proceedings of the International Conference on Machine Learning – start-page: 1969 year: 2016 end-page: 1976 ident: bib0048 article-title: The constrained Laplacian rank algorithm for graph-based clustering publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – volume: 39 start-page: 1 year: 1977 end-page: 22 ident: bib0018 article-title: Maximum likelihood from incomplete data via the em algorithm publication-title: J. R. Stat. Soc. Ser. B – start-page: 923 year: 2017 end-page: 931 ident: bib0053 article-title: Exclusivity-consistency regularized multi-view subspace clustering publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 826 year: 2017 end-page: 842 ident: bib0001 article-title: Multi-view spectral clustering on conflicting views publication-title: Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases – volume: 18 start-page: 819 year: 2019 end-page: 829 ident: bib0009 article-title: An improved particle filter with a novel hybrid proposal distribution for quantitative analysis of gold immunochromatographic strips publication-title: IEEE Trans. Nanotechnol. – volume: 40 start-page: 1438 year: 2010 end-page: 1446 ident: bib0024 article-title: Multiview spectral embedding publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybern.) – volume: 28 start-page: 5910 year: 2019 end-page: 5922 ident: bib0079 article-title: Essential tensor learning for multi-view spectral clustering publication-title: IEEE Trans. Image Process. – volume: 40 start-page: 769 year: 2018 end-page: 790 ident: bib0076 article-title: A survey on learning to hash publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 586 year: 2015 end-page: 594 ident: bib0032 article-title: Diversity-induced multi-view subspace clustering publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 2527 year: 2017 end-page: 2533 ident: bib0020 article-title: Compressed k-means for large-scale clustering publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – start-page: 1977 year: 2011 end-page: 1984 ident: bib0004 article-title: Heterogeneous image feature integration via multi-modal spectral clustering publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 3834 year: 2014 end-page: 3841 ident: bib0062 article-title: Smooth representation clustering publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 2790 year: 2009 end-page: 2797 ident: bib0056 article-title: Sparse subspace clustering publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 1027 year: 2007 end-page: 1035 ident: bib0019 article-title: k-means++: The advantages of careful seeding publication-title: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms – volume: 88 start-page: 74 year: 2017 end-page: 89 ident: bib0036 article-title: Multi-view clustering via multi-manifold regularized non-negative matrix factorization publication-title: Neural Netw. – volume: 140 year: 2020 ident: bib0038 article-title: Structured learning for unsupervised feature selection with high-order matrix factorization publication-title: Expert Syst. Appl. – start-page: 2787 year: 2014 end-page: 2795 ident: bib0068 article-title: Uncorrelated multi-view discrimination dictionary learning for recognition publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – start-page: 129 year: 2009 end-page: 136 ident: bib0039 article-title: Multi-view clustering via canonical correlation analysis publication-title: Proceedings of the International Conference on Machine Learning – volume: 102 start-page: 30 year: 2018 end-page: 36 ident: bib0007 article-title: Multiview and multifeature spectral clustering using common eigenvectors publication-title: Pattern Recognit. Lett. – start-page: 1881 year: 2016 end-page: 1887 ident: bib0043 article-title: Parameter-free auto-weighted multiple graph learning: a framework for multiview clustering and semi-supervised classification publication-title: Proceedings of the International Joint Conferences on Artificial Intelligence Organization – volume: 35 start-page: 2765 year: 2013 end-page: 2781 ident: bib0061 article-title: Sparse subspace clustering: algorithm, theory, and applications publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 2149 year: 2014 end-page: 2155 ident: bib0044 article-title: Robust multi-view spectral clustering via low-rank and sparse decomposition publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – year: 2019 ident: bib0006 article-title: Nonlinear regression via deep negative correlation learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 46 start-page: 284 year: 2013 end-page: 292 ident: bib0066 article-title: An efficient matrix factorization based low-rank representation for subspace clustering publication-title: Pattern Recognit. – start-page: 831 year: 2010 end-page: 838 ident: bib0041 article-title: Multiple non-redundant spectral clustering views publication-title: Proceedings of the International Conference on Machine Learning – start-page: 1419 year: 2015 end-page: 1427 ident: bib0008 article-title: MatchinG-CNN meets KNN: Quasi-parametric human parsing publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 320 start-page: 195 year: 2018 end-page: 202 ident: bib0010 article-title: A new switching-delayed-PSO-based optimized SVM algorithm for diagnosis of Alzheimer’s disease publication-title: Neurocomputing – volume: 105 start-page: 12 year: 2013 end-page: 18 ident: bib0050 article-title: Efficient semi-supervised feature selection with noise insensitive trace ratio criterion publication-title: Neurocomputing – start-page: 1673 year: 2012 end-page: 1681 ident: bib0060 article-title: Convex multi-view subspace learning publication-title: Proceedings of Advances in Neural Information Processing Systems – start-page: 1582 year: 2015 end-page: 1590 ident: bib0031 article-title: Low-rank tensor constrained multiview subspace clustering publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 44 start-page: 46 year: 2018 end-page: 56 ident: bib0003 article-title: Multi-view kernel spectral clustering publication-title: Inf. Fusion – reference: C. Xu, D. Tao, C. Xu, A survey on multi-view learning, 2013, ArXiv: Learning. – start-page: 4279 year: 2017 end-page: 4287 ident: bib0059 article-title: Latent multi-view subspace clustering publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 28 start-page: 52 year: 2011 ident: 10.1016/j.neucom.2020.02.104_bib0026 article-title: Subspace clustering publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2010.939739 – year: 2019 ident: 10.1016/j.neucom.2020.02.104_bib0006 article-title: Nonlinear regression via deep negative correlation learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2943860 – start-page: 5092 year: 2019 ident: 10.1016/j.neucom.2020.02.104_bib0071 article-title: COMIC: Multi-view clustering without parameter selection – start-page: 513 year: 2006 ident: 10.1016/j.neucom.2020.02.104_bib0070 article-title: A kernel method for the two-sample-problem – volume: 28 start-page: 5910 year: 2019 ident: 10.1016/j.neucom.2020.02.104_bib0079 article-title: Essential tensor learning for multi-view spectral clustering publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2916740 – start-page: 652 year: 1949 ident: 10.1016/j.neucom.2020.02.104_bib0052 article-title: On a theorem of Weyl concerning eigenvalues of linear transformations – start-page: 282 year: 2014 ident: 10.1016/j.neucom.2020.02.104_bib0055 article-title: Spectral clustering with a convex regularizer on millions of images – start-page: 19 year: 2015 ident: 10.1016/j.neucom.2020.02.104_bib0077 article-title: Web scale photo hash clustering on a single machine – volume: 38 start-page: 43 year: 2017 ident: 10.1016/j.neucom.2020.02.104_bib0015 article-title: Multi-view learning overview: recent progress and new challenges publication-title: Inf. Fusion doi: 10.1016/j.inffus.2017.02.007 – volume: 48 start-page: 329 year: 2016 ident: 10.1016/j.neucom.2020.02.104_bib0078 article-title: Sparse graph embedding unsupervised feature selection publication-title: IEEE Trans. Syst. Man Cybernet. Syst. doi: 10.1109/TSMC.2016.2605132 – start-page: 2787 year: 2014 ident: 10.1016/j.neucom.2020.02.104_bib0068 article-title: Uncorrelated multi-view discrimination dictionary learning for recognition – start-page: 25 year: 2006 ident: 10.1016/j.neucom.2020.02.104_bib0002 article-title: A survey of clustering data mining techniques publication-title: Grouping Multidimens. Data doi: 10.1007/3-540-28349-8_2 – volume: 40 start-page: 1438 year: 2010 ident: 10.1016/j.neucom.2020.02.104_bib0024 article-title: Multiview spectral embedding publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybern.) doi: 10.1109/TSMCB.2009.2039566 – start-page: 2564 year: 2017 ident: 10.1016/j.neucom.2020.02.104_bib0047 article-title: Self-weighted multiview clustering with multiple graphs – volume: 24 start-page: 3939 year: 2015 ident: 10.1016/j.neucom.2020.02.104_bib0029 article-title: Robust subspace clustering for multi-view data by exploiting correlation consensus publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2015.2457339 – start-page: 2527 year: 2017 ident: 10.1016/j.neucom.2020.02.104_bib0020 article-title: Compressed k-means for large-scale clustering – start-page: 1977 year: 2011 ident: 10.1016/j.neucom.2020.02.104_bib0004 article-title: Heterogeneous image feature integration via multi-modal spectral clustering – volume: 21 start-page: 1327 year: 2011 ident: 10.1016/j.neucom.2020.02.104_bib0005 article-title: Saliency detection by multitask sparsity pursuit publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2011.2169274 – start-page: 1582 year: 2015 ident: 10.1016/j.neucom.2020.02.104_bib0031 article-title: Low-rank tensor constrained multiview subspace clustering – start-page: 745 year: 2011 ident: 10.1016/j.neucom.2020.02.104_bib0073 article-title: Clusterpath: an algorithm for clustering using convex fusion penalties – start-page: 63 year: 2005 ident: 10.1016/j.neucom.2020.02.104_bib0069 article-title: Measuring statistical dependence with hilbert-schmidt norms – volume: 35 start-page: 2765 year: 2013 ident: 10.1016/j.neucom.2020.02.104_bib0061 article-title: Sparse subspace clustering: algorithm, theory, and applications publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.57 – volume: 2 start-page: 351 year: 2012 ident: 10.1016/j.neucom.2020.02.104_bib0027 article-title: Subspace clustering publication-title: Wiley Interdisc. Rev.: Data Mining Knowl. Discov. – volume: 29 start-page: 1834 year: 2017 ident: 10.1016/j.neucom.2020.02.104_bib0035 article-title: Discrete nonnegative spectral clustering publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2017.2701825 – start-page: 2149 year: 2014 ident: 10.1016/j.neucom.2020.02.104_bib0044 article-title: Robust multi-view spectral clustering via low-rank and sparse decomposition – volume: 41 start-page: 1774 year: 2018 ident: 10.1016/j.neucom.2020.02.104_bib0075 article-title: Binary multi-view clustering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2018.2847335 – start-page: 1419 year: 2015 ident: 10.1016/j.neucom.2020.02.104_bib0008 article-title: MatchinG-CNN meets KNN: Quasi-parametric human parsing – volume: 156 start-page: 12 year: 2015 ident: 10.1016/j.neucom.2020.02.104_bib0030 article-title: Multi-view clustering via pairwise sparse subspace representation publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.01.017 – volume: 143 start-page: 44 year: 2014 ident: 10.1016/j.neucom.2020.02.104_bib0012 article-title: Gene expression data clustering based on graph regularized subspace segmentation publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.06.023 – start-page: 1969 year: 2016 ident: 10.1016/j.neucom.2020.02.104_bib0048 article-title: The constrained Laplacian rank algorithm for graph-based clustering – volume: 37 start-page: 2531 year: 2015 ident: 10.1016/j.neucom.2020.02.104_bib0064 article-title: Multi-view intact space learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2417578 – volume: 102 start-page: 30 year: 2018 ident: 10.1016/j.neucom.2020.02.104_bib0007 article-title: Multiview and multifeature spectral clustering using common eigenvectors publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2017.12.011 – volume: 18 start-page: 2764 year: 2017 ident: 10.1016/j.neucom.2020.02.104_bib0074 article-title: Robust discriminative clustering with sparse regularizers publication-title: J. Mach. Learning Research – volume: 18 start-page: 819 year: 2019 ident: 10.1016/j.neucom.2020.02.104_bib0009 article-title: An improved particle filter with a novel hybrid proposal distribution for quantitative analysis of gold immunochromatographic strips publication-title: IEEE Trans. Nanotechnol. doi: 10.1109/TNANO.2019.2932271 – start-page: 2408 year: 2017 ident: 10.1016/j.neucom.2020.02.104_bib0049 article-title: Multi-view clustering and semi-supervised classification with adaptive neighbours – start-page: 205 year: 2009 ident: 10.1016/j.neucom.2020.02.104_bib0017 article-title: Convex mixture models for multi-view clustering – volume: 48 start-page: 10 year: 2015 ident: 10.1016/j.neucom.2020.02.104_bib0028 article-title: Subspace learning for unsupervised feature selection via matrix factorization publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2014.08.004 – volume: 320 start-page: 195 year: 2018 ident: 10.1016/j.neucom.2020.02.104_bib0010 article-title: A new switching-delayed-PSO-based optimized SVM algorithm for diagnosis of Alzheimer’s disease publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.001 – volume: 140 year: 2020 ident: 10.1016/j.neucom.2020.02.104_bib0038 article-title: Structured learning for unsupervised feature selection with high-order matrix factorization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.112878 – start-page: 2750 year: 2015 ident: 10.1016/j.neucom.2020.02.104_bib0022 article-title: Large-scale multi-view spectral clustering via bipartite graph – start-page: 831 year: 2010 ident: 10.1016/j.neucom.2020.02.104_bib0041 article-title: Multiple non-redundant spectral clustering views – volume: 44 start-page: 46 year: 2018 ident: 10.1016/j.neucom.2020.02.104_bib0003 article-title: Multi-view kernel spectral clustering publication-title: Inf. Fusion doi: 10.1016/j.inffus.2017.12.002 – start-page: 4279 year: 2017 ident: 10.1016/j.neucom.2020.02.104_bib0059 article-title: Latent multi-view subspace clustering – volume: 138 start-page: 176 year: 2017 ident: 10.1016/j.neucom.2020.02.104_bib0037 article-title: Robust co-clustering via dual local learning and high-order matrix factorization publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2017.09.033 – start-page: 612 year: 2011 ident: 10.1016/j.neucom.2020.02.104_bib0058 article-title: Linearized alternating direction method with adaptive penalty for low-rank representation – start-page: 361 year: 2010 ident: 10.1016/j.neucom.2020.02.104_bib0054 article-title: Predictive subspace learning for multi-view data: a large margin approach – start-page: 1673 year: 2012 ident: 10.1016/j.neucom.2020.02.104_bib0060 article-title: Convex multi-view subspace learning – volume: 88 start-page: 50 year: 2019 ident: 10.1016/j.neucom.2020.02.104_bib0063 article-title: Multi-view subspace clustering with intactness-aware similarity publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.09.009 – start-page: 101 year: 2009 ident: 10.1016/j.neucom.2020.02.104_bib0046 article-title: Multiview spectral clustering via ensemble – start-page: 252 year: 2013 ident: 10.1016/j.neucom.2020.02.104_bib0034 article-title: Multi-view clustering via joint nonnegative matrix factorization – start-page: 1 year: 2008 ident: 10.1016/j.neucom.2020.02.104_bib0040 article-title: Correlational spectral clustering – start-page: 2790 year: 2009 ident: 10.1016/j.neucom.2020.02.104_bib0056 article-title: Sparse subspace clustering – volume: 46 start-page: 284 year: 2013 ident: 10.1016/j.neucom.2020.02.104_bib0066 article-title: An efficient matrix factorization based low-rank representation for subspace clustering publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2012.06.011 – start-page: 393 year: 2011 ident: 10.1016/j.neucom.2020.02.104_bib0045 article-title: A co-training approach for multi-view spectral clustering – start-page: 3834 year: 2014 ident: 10.1016/j.neucom.2020.02.104_bib0062 article-title: Smooth representation clustering – volume: 47 start-page: 418 year: 2014 ident: 10.1016/j.neucom.2020.02.104_bib0067 article-title: Non-negative and sparse spectral clustering publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2013.07.003 – start-page: 202 year: 2012 ident: 10.1016/j.neucom.2020.02.104_bib0023 article-title: Co-regularized Plsa for multi-view clustering – start-page: 1 year: 2019 ident: 10.1016/j.neucom.2020.02.104_bib0072 article-title: A unified scheme for distance metric learning and clustering via rank-reduced regression publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2019.2900344 – volume: 40 start-page: 769 year: 2018 ident: 10.1016/j.neucom.2020.02.104_bib0076 article-title: A survey on learning to hash publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2699960 – start-page: 129 year: 2009 ident: 10.1016/j.neucom.2020.02.104_bib0039 article-title: Multi-view clustering via canonical correlation analysis – start-page: 586 year: 2015 ident: 10.1016/j.neucom.2020.02.104_bib0032 article-title: Diversity-induced multi-view subspace clustering – start-page: 826 year: 2017 ident: 10.1016/j.neucom.2020.02.104_bib0001 article-title: Multi-view spectral clustering on conflicting views – start-page: 1737 year: 2013 ident: 10.1016/j.neucom.2020.02.104_bib0042 article-title: Heterogeneous image features integration via multi-modal semi-supervised learning model – start-page: 277 year: 2015 ident: 10.1016/j.neucom.2020.02.104_bib0057 article-title: Structured sparse subspace clustering: a unified optimization framework – start-page: 1027 year: 2007 ident: 10.1016/j.neucom.2020.02.104_bib0019 article-title: k-means++: The advantages of careful seeding – volume: 19 start-page: 1454 year: 2017 ident: 10.1016/j.neucom.2020.02.104_bib0025 article-title: Sparse multigraph embedding for multimodal feature representation publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2017.2663324 – start-page: 1881 year: 2016 ident: 10.1016/j.neucom.2020.02.104_bib0043 article-title: Parameter-free auto-weighted multiple graph learning: a framework for multiview clustering and semi-supervised classification – start-page: 19 year: 2004 ident: 10.1016/j.neucom.2020.02.104_bib0016 article-title: Multi-view clustering – ident: 10.1016/j.neucom.2020.02.104_bib0013 – start-page: 871 year: 1991 ident: 10.1016/j.neucom.2020.02.104_bib0051 article-title: The Laplacian spectrum of graphs publication-title: Graph Theory Combinat. Appl. – volume: 39 start-page: 1 year: 1977 ident: 10.1016/j.neucom.2020.02.104_bib0018 article-title: Maximum likelihood from incomplete data via the em algorithm publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.2517-6161.1977.tb01600.x – start-page: 923 year: 2017 ident: 10.1016/j.neucom.2020.02.104_bib0053 article-title: Exclusivity-consistency regularized multi-view subspace clustering – volume: 59 start-page: 112 year: 2016 ident: 10.1016/j.neucom.2020.02.104_bib0011 article-title: Inferring nonlinear lateral flow immunoassay state-space models via an unscented Kalman filter publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-016-0280-9 – start-page: 579 year: 2015 ident: 10.1016/j.neucom.2020.02.104_bib0021 article-title: Yinyang k-means: a drop-in replacement of the classic k-means with consistent speedup – start-page: 4238 year: 2015 ident: 10.1016/j.neucom.2020.02.104_bib0033 article-title: Multi-view subspace clustering – volume: 105 start-page: 12 year: 2013 ident: 10.1016/j.neucom.2020.02.104_bib0050 article-title: Efficient semi-supervised feature selection with noise insensitive trace ratio criterion publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.05.031 – volume: 23 start-page: 2031 year: 2013 ident: 10.1016/j.neucom.2020.02.104_bib0014 article-title: A survey of multi-view machine learning publication-title: Neural Comput. Appl. doi: 10.1007/s00521-013-1362-6 – volume: 88 start-page: 74 year: 2017 ident: 10.1016/j.neucom.2020.02.104_bib0036 article-title: Multi-view clustering via multi-manifold regularized non-negative matrix factorization publication-title: Neural Netw. doi: 10.1016/j.neunet.2017.02.003 – volume: 22 start-page: 888 year: 2000 ident: 10.1016/j.neucom.2020.02.104_bib0065 article-title: Normalized cuts and image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.868688 |
SSID | ssj0017129 |
Score | 2.6053858 |
Snippet | With the widespread deployment of sensors and the Internet-of-Things, multi-view data has become more common and publicly available. Compared to traditional... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 148 |
SubjectTerms | Graph-based clustering Machine learning Multi-view clustering Space learning Unsupervised learning |
Title | An overview of recent multi-view clustering |
URI | https://dx.doi.org/10.1016/j.neucom.2020.02.104 |
Volume | 402 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KvXjxLdZHycGbrM0-0iTHUixVsRct9BY22V2olLSU9upvdybZFEVQ8JhlB7KTzTx2v_kG4NYo9NFR6FiRYLqqdJ6wRJuC9ftOx6kwxlVXMS-T_niqnmbRrAXDphaGYJXe9tc2vbLWfqTntdlbzee91zAVmEVxIXCf0n0BVbCrmHb5_ccO5sFjLmq-PRExmt2Uz1UYr9JuCTMiMGYi5k7u27X9cE9fXM7oCA58rBgM6tc5hpYtT-Cw6cMQ-N_yFO4GZUBITDrlD5YuwAWhKwkqrCCrBovFlggR0E2dwXT08DYcM98EgRUyFhuWOp1aw6XFbNLoWKvEGGEoK-KofGlyLXMRKouhkHNU6GpcxHEi8ZBZrpw8h3a5LO0FBFEeamHTJC-cJmKzHIMlLTEAMc4VcZR2QDZrzwrPEE6NKhZZAwV7z2qNZaSxLBQ4qjrAdlKrmiHjj_lxo9bs25fO0Ij_Knn5b8kr2KcnOgvmyTW0N-utvcFgYpN3q93Shb3B4_N48glV08lT |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8MwDBZde9gue491zxx2G6axkzTJsZSVdH1c1kJvwYlt6ChpGe3_n5Q4ZWOwwa6KBbHi6GFJnwCelI82OnANyyMMV32ZRSySKmfdrpFhLJQyZSpmMu0mc_91ESwa0K97Yais0ur-SqeX2tpSOlaanc1y2XlzY4FRFBcCzynlCw6gRehUQRNaveEome6TCSEXFeSeCBgx1B10ZZlXoXdUNiLQbSLwTm4ntv2wUF-szuAUjq276PSqNzqDhi7O4aQexeDYP_MCnnuFQ8WYdNHvrI2De0Jr4pTlgqwk5qsdYSKgpbqE-eBl1k-YnYPAci8UWxYbGWvFPY0BpZKh9COlhKLAiKP8PZVJLxOur9EbMoZ6XZUJOC4kKDLNfeNdQbNYF_oanCBzpdBxlOVGErZZhv6S9NAHUcbkYRC3wav3nuYWJJxmVazSuhrsPa0klpLEUlcg1W8D23NtKpCMP9aHtVjTbx87RT3-K-fNvzkf4TCZTcbpeDgd3cIRPaGrYR7dQXP7sdP36Ftsswd7dj4BT63MBA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+overview+of+recent+multi-view+clustering&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Fu%2C+Lele&rft.au=Lin%2C+Pengfei&rft.au=Vasilakos%2C+Athanasios+V.&rft.au=Wang%2C+Shiping&rft.date=2020-08-18&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=402&rft.spage=148&rft.epage=161&rft_id=info:doi/10.1016%2Fj.neucom.2020.02.104&rft.externalDocID=S0925231220303222 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |