Machine learning based hybrid anomaly detection technique for automatic diagnosis of cardiovascular diseases using cardiac sympathetic nerve activity and electrocardiogram

Coronary artery diseases (CADs) are the leading cause of death worldwide and early diagnosis is crucial for timely treatment. To address this, our study presents a novel automated Artificial Intelligence (AI)-based Hybrid Anomaly Detection (AIHAD) technique that combines various signal processing, f...

Full description

Saved in:
Bibliographic Details
Published inBiomedizinische Technik Vol. 69; no. 1; pp. 79 - 109
Main Authors Terzi, Merve Begum, Arikan, Orhan
Format Journal Article
LanguageEnglish
Published Germany De Gruyter 26.02.2024
Walter de Gruyter GmbH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Coronary artery diseases (CADs) are the leading cause of death worldwide and early diagnosis is crucial for timely treatment. To address this, our study presents a novel automated Artificial Intelligence (AI)-based Hybrid Anomaly Detection (AIHAD) technique that combines various signal processing, feature extraction, supervised, and unsupervised machine learning methods. By jointly and simultaneously analyzing 12-lead cardiac sympathetic nerve activity (CSNA) and electrocardiogram (ECG) data, the automated AIHAD technique performs fast, early, and accurate diagnosis of CADs. In order to develop and evaluate the proposed automated AIHAD technique, we utilized the fully labeled STAFF III and PTBD databases, which contain the 12-lead wideband raw recordings non-invasively acquired from 260 subjects. Using these wideband raw recordings, we developed a signal processing technique that simultaneously detects the 12-lead CSNA and ECG signals of all subjects. Using the pre-processed 12-lead CSNA and ECG signals, we developed a time-domain feature extraction technique that extracts the statistical CSNA and ECG features critical for the reliable diagnosis of CADs. Using the extracted discriminative features, we developed a supervised classification technique based on Artificial Neural Networks (ANNs) that simultaneously detects anomalies in the 12-lead CSNA and ECG data. Furthermore, we developed an unsupervised clustering technique based on Gaussian mixture models (GMMs) and Neyman-Pearson criterion, which robustly detects outliers corresponding to CADs. Using the automated AIHAD technique, we have, for the first time, demonstrated a significant association between the increase in CSNA signals and anomalies in ECG signals during CADs. The AIHAD technique achieved highly reliable detection of CADs with a sensitivity of 98.48 %, specificity of 97.73 %, accuracy of 98.11 %, positive predictive value of 97.74 %, negative predictive value of 98.47 %, and F1-score of 98.11 %. Hence, the automated AIHAD technique demonstrates superior performance compared to the gold standard diagnostic test ECG in the diagnosis of CADs. Additionally, it outperforms other techniques developed in this study that separately utilize either only CSNA data or only ECG data. Therefore, it significantly increases the detection performance of CADs by taking advantage of the diversity in different data types and leveraging their strengths. Furthermore, its performance is comparatively better than that of most previously proposed machine and deep learning methods that exclusively used ECG data to diagnose or classify CADs. Additionally, it has a very low implementation time, which is highly desirable for real-time detection of CADs. The proposed automated AIHAD technique may serve as an efficient decision-support system to increase physicians' success in fast, early, and accurate diagnosis of CADs. It may be highly beneficial and valuable, particularly for asymptomatic patients, for whom the diagnostic information provided by ECG alone is not sufficient to reliably diagnose the disease. Hence, it may significantly improve patient outcomes by enabling timely treatments and considerably reducing the mortality of cardiovascular diseases (CVDs).
AbstractList Coronary artery diseases (CADs) are the leading cause of death worldwide and early diagnosis is crucial for timely treatment. To address this, our study presents a novel automated Artificial Intelligence (AI)-based Hybrid Anomaly Detection (AIHAD) technique that combines various signal processing, feature extraction, supervised, and unsupervised machine learning methods. By jointly and simultaneously analyzing 12-lead cardiac sympathetic nerve activity (CSNA) and electrocardiogram (ECG) data, the automated AIHAD technique performs fast, early, and accurate diagnosis of CADs.In order to develop and evaluate the proposed automated AIHAD technique, we utilized the fully labeled STAFF III and PTBD databases, which contain the 12-lead wideband raw recordings non-invasively acquired from 260 subjects. Using these wideband raw recordings, we developed a signal processing technique that simultaneously detects the 12-lead CSNA and ECG signals of all subjects. Using the pre-processed 12-lead CSNA and ECG signals, we developed a time-domain feature extraction technique that extracts the statistical CSNA and ECG features critical for the reliable diagnosis of CADs. Using the extracted discriminative features, we developed a supervised classification technique based on Artificial Neural Networks (ANNs) that simultaneously detects anomalies in the 12-lead CSNA and ECG data. Furthermore, we developed an unsupervised clustering technique based on Gaussian mixture models (GMMs) and Neyman-Pearson criterion, which robustly detects outliers corresponding to CADs.Using the automated AIHAD technique, we have, for the first time, demonstrated a significant association between the increase in CSNA signals and anomalies in ECG signals during CADs. The AIHAD technique achieved highly reliable detection of CADs with a sensitivity of 98.48 %, specificity of 97.73 %, accuracy of 98.11 %, positive predictive value of 97.74 %, negative predictive value of 98.47 %, and F1-score of 98.11 %. Hence, the automated AIHAD technique demonstrates superior performance compared to the gold standard diagnostic test ECG in the diagnosis of CADs. Additionally, it outperforms other techniques developed in this study that separately utilize either only CSNA data or only ECG data. Therefore, it significantly increases the detection performance of CADs by taking advantage of the diversity in different data types and leveraging their strengths. Furthermore, its performance is comparatively better than that of most previously proposed machine and deep learning methods that exclusively used ECG data to diagnose or classify CADs. Additionally, it has a very low implementation time, which is highly desirable for real-time detection of CADs.The proposed automated AIHAD technique may serve as an efficient decision-support system to increase physicians’ success in fast, early, and accurate diagnosis of CADs. It may be highly beneficial and valuable, particularly for asymptomatic patients, for whom the diagnostic information provided by ECG alone is not sufficient to reliably diagnose the disease. Hence, it may significantly improve patient outcomes by enabling timely treatments and considerably reducing the mortality of cardiovascular diseases (CVDs).
Coronary artery diseases (CADs) are the leading cause of death worldwide and early diagnosis is crucial for timely treatment. To address this, our study presents a novel automated Artificial Intelligence (AI)-based Hybrid Anomaly Detection (AIHAD) technique that combines various signal processing, feature extraction, supervised, and unsupervised machine learning methods. By jointly and simultaneously analyzing 12-lead cardiac sympathetic nerve activity (CSNA) and electrocardiogram (ECG) data, the automated AIHAD technique performs fast, early, and accurate diagnosis of CADs.OBJECTIVESCoronary artery diseases (CADs) are the leading cause of death worldwide and early diagnosis is crucial for timely treatment. To address this, our study presents a novel automated Artificial Intelligence (AI)-based Hybrid Anomaly Detection (AIHAD) technique that combines various signal processing, feature extraction, supervised, and unsupervised machine learning methods. By jointly and simultaneously analyzing 12-lead cardiac sympathetic nerve activity (CSNA) and electrocardiogram (ECG) data, the automated AIHAD technique performs fast, early, and accurate diagnosis of CADs.In order to develop and evaluate the proposed automated AIHAD technique, we utilized the fully labeled STAFF III and PTBD databases, which contain the 12-lead wideband raw recordings non-invasively acquired from 260 subjects. Using these wideband raw recordings, we developed a signal processing technique that simultaneously detects the 12-lead CSNA and ECG signals of all subjects. Using the pre-processed 12-lead CSNA and ECG signals, we developed a time-domain feature extraction technique that extracts the statistical CSNA and ECG features critical for the reliable diagnosis of CADs. Using the extracted discriminative features, we developed a supervised classification technique based on Artificial Neural Networks (ANNs) that simultaneously detects anomalies in the 12-lead CSNA and ECG data. Furthermore, we developed an unsupervised clustering technique based on Gaussian mixture models (GMMs) and Neyman-Pearson criterion, which robustly detects outliers corresponding to CADs.METHODSIn order to develop and evaluate the proposed automated AIHAD technique, we utilized the fully labeled STAFF III and PTBD databases, which contain the 12-lead wideband raw recordings non-invasively acquired from 260 subjects. Using these wideband raw recordings, we developed a signal processing technique that simultaneously detects the 12-lead CSNA and ECG signals of all subjects. Using the pre-processed 12-lead CSNA and ECG signals, we developed a time-domain feature extraction technique that extracts the statistical CSNA and ECG features critical for the reliable diagnosis of CADs. Using the extracted discriminative features, we developed a supervised classification technique based on Artificial Neural Networks (ANNs) that simultaneously detects anomalies in the 12-lead CSNA and ECG data. Furthermore, we developed an unsupervised clustering technique based on Gaussian mixture models (GMMs) and Neyman-Pearson criterion, which robustly detects outliers corresponding to CADs.Using the automated AIHAD technique, we have, for the first time, demonstrated a significant association between the increase in CSNA signals and anomalies in ECG signals during CADs. The AIHAD technique achieved highly reliable detection of CADs with a sensitivity of 98.48 %, specificity of 97.73 %, accuracy of 98.11 %, positive predictive value of 97.74 %, negative predictive value of 98.47 %, and F1-score of 98.11 %. Hence, the automated AIHAD technique demonstrates superior performance compared to the gold standard diagnostic test ECG in the diagnosis of CADs. Additionally, it outperforms other techniques developed in this study that separately utilize either only CSNA data or only ECG data. Therefore, it significantly increases the detection performance of CADs by taking advantage of the diversity in different data types and leveraging their strengths. Furthermore, its performance is comparatively better than that of most previously proposed machine and deep learning methods that exclusively used ECG data to diagnose or classify CADs. Additionally, it has a very low implementation time, which is highly desirable for real-time detection of CADs.RESULTSUsing the automated AIHAD technique, we have, for the first time, demonstrated a significant association between the increase in CSNA signals and anomalies in ECG signals during CADs. The AIHAD technique achieved highly reliable detection of CADs with a sensitivity of 98.48 %, specificity of 97.73 %, accuracy of 98.11 %, positive predictive value of 97.74 %, negative predictive value of 98.47 %, and F1-score of 98.11 %. Hence, the automated AIHAD technique demonstrates superior performance compared to the gold standard diagnostic test ECG in the diagnosis of CADs. Additionally, it outperforms other techniques developed in this study that separately utilize either only CSNA data or only ECG data. Therefore, it significantly increases the detection performance of CADs by taking advantage of the diversity in different data types and leveraging their strengths. Furthermore, its performance is comparatively better than that of most previously proposed machine and deep learning methods that exclusively used ECG data to diagnose or classify CADs. Additionally, it has a very low implementation time, which is highly desirable for real-time detection of CADs.The proposed automated AIHAD technique may serve as an efficient decision-support system to increase physicians' success in fast, early, and accurate diagnosis of CADs. It may be highly beneficial and valuable, particularly for asymptomatic patients, for whom the diagnostic information provided by ECG alone is not sufficient to reliably diagnose the disease. Hence, it may significantly improve patient outcomes by enabling timely treatments and considerably reducing the mortality of cardiovascular diseases (CVDs).CONCLUSIONSThe proposed automated AIHAD technique may serve as an efficient decision-support system to increase physicians' success in fast, early, and accurate diagnosis of CADs. It may be highly beneficial and valuable, particularly for asymptomatic patients, for whom the diagnostic information provided by ECG alone is not sufficient to reliably diagnose the disease. Hence, it may significantly improve patient outcomes by enabling timely treatments and considerably reducing the mortality of cardiovascular diseases (CVDs).
Coronary artery diseases (CADs) are the leading cause of death worldwide and early diagnosis is crucial for timely treatment. To address this, our study presents a novel automated Artificial Intelligence (AI)-based Hybrid Anomaly Detection (AIHAD) technique that combines various signal processing, feature extraction, supervised, and unsupervised machine learning methods. By jointly and simultaneously analyzing 12-lead cardiac sympathetic nerve activity (CSNA) and electrocardiogram (ECG) data, the automated AIHAD technique performs fast, early, and accurate diagnosis of CADs. In order to develop and evaluate the proposed automated AIHAD technique, we utilized the fully labeled STAFF III and PTBD databases, which contain the 12-lead wideband raw recordings non-invasively acquired from 260 subjects. Using these wideband raw recordings, we developed a signal processing technique that simultaneously detects the 12-lead CSNA and ECG signals of all subjects. Using the pre-processed 12-lead CSNA and ECG signals, we developed a time-domain feature extraction technique that extracts the statistical CSNA and ECG features critical for the reliable diagnosis of CADs. Using the extracted discriminative features, we developed a supervised classification technique based on Artificial Neural Networks (ANNs) that simultaneously detects anomalies in the 12-lead CSNA and ECG data. Furthermore, we developed an unsupervised clustering technique based on Gaussian mixture models (GMMs) and Neyman-Pearson criterion, which robustly detects outliers corresponding to CADs. Using the automated AIHAD technique, we have, for the first time, demonstrated a significant association between the increase in CSNA signals and anomalies in ECG signals during CADs. The AIHAD technique achieved highly reliable detection of CADs with a sensitivity of 98.48 %, specificity of 97.73 %, accuracy of 98.11 %, positive predictive value of 97.74 %, negative predictive value of 98.47 %, and F1-score of 98.11 %. Hence, the automated AIHAD technique demonstrates superior performance compared to the gold standard diagnostic test ECG in the diagnosis of CADs. Additionally, it outperforms other techniques developed in this study that separately utilize either only CSNA data or only ECG data. Therefore, it significantly increases the detection performance of CADs by taking advantage of the diversity in different data types and leveraging their strengths. Furthermore, its performance is comparatively better than that of most previously proposed machine and deep learning methods that exclusively used ECG data to diagnose or classify CADs. Additionally, it has a very low implementation time, which is highly desirable for real-time detection of CADs. The proposed automated AIHAD technique may serve as an efficient decision-support system to increase physicians' success in fast, early, and accurate diagnosis of CADs. It may be highly beneficial and valuable, particularly for asymptomatic patients, for whom the diagnostic information provided by ECG alone is not sufficient to reliably diagnose the disease. Hence, it may significantly improve patient outcomes by enabling timely treatments and considerably reducing the mortality of cardiovascular diseases (CVDs).
Author Arikan, Orhan
Terzi, Merve Begum
Author_xml – sequence: 1
  givenname: Merve Begum
  orcidid: 0000-0002-8680-3781
  surname: Terzi
  fullname: Terzi, Merve Begum
  email: mervebegumterzi@gmail.com
  organization: Faculty of Engineering, Electrical and Electronics Engineering Department, Bilkent University, Ankara, Türkiye
– sequence: 2
  givenname: Orhan
  surname: Arikan
  fullname: Arikan, Orhan
  organization: Faculty of Engineering, Electrical and Electronics Engineering Department, Bilkent University, Ankara, Türkiye
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37823386$$D View this record in MEDLINE/PubMed
BookMark eNp1kU2LFDEQhoOsuLOrR68S8OKlNR-ddMebLH7BihcFb6E6ycxk6U7GJD1L_yb_pGlnF2HRUwXqed-q1HuBzkIMDqHnlLymgoo3w1QaRhhrSEvkI7ShvWQN6_ofZ2hDCOWNEL04Rxc53xDSCqHIE3TOu55x3ssN-vUFzN4Hh0cHKfiwwwNkZ_F-GZK3GEKcYFywdcWZ4mPAte6D_zk7vI0Jw1wqULzB1sMuxOwzjltsIFkfj5DNPEKqveyqa8ZzXif86YLBeZkOUPZulQeXjg5DnXH0ZalzLXZjHZniyWuXYHqKHm9hzO7ZXb1E3z-8_3b1qbn--vHz1bvrxvCOlUZ1INjQGsOY7BStB7GKtpYYbiUHypiB3qjKuJ4ZKi3vudwKahTnkrSq45fo1cn3kGL9aC568tm4cYTg4pw16zspWyIoqejLB-hNnFOo22mmmKR1AUUr9eKOmofJWX1IfoK06PsYKsBPgEkx5-S22vgC671LAj9qSvQatq5h6zVsvYZdVc0D1b3x__i3J_4WxuKSdbs0L_Xxd-d_6qSineK_AdVgwfA
CitedBy_id crossref_primary_10_1038_s41598_024_65849_w
Cites_doi 10.1007/s13246-022-01119-1
10.1016/j.cmpb.2016.08.016
10.3390/s21217163
10.1016/j.patcog.2009.02.008
10.1007/s13721-022-00354-6
10.1007/s11760-021-02009-x
10.1109/JSEN.2020.2984493
10.1161/01.CIR.101.23.e215
10.1038/s41598-020-65105-x
10.1016/j.bspc.2012.10.005
10.1016/j.bspc.2019.101690
10.1016/j.cmpb.2022.107124
10.1007/s13246-020-00947-3
10.1016/j.bspc.2020.102138
10.1016/j.irbm.2019.09.003
10.1109/R10-HTC.2017.8289058
10.1007/s13246-011-0099-8
10.14569/IJACSA.2018.091001
10.1016/j.compbiomed.2014.08.010
10.1016/j.bspc.2021.102835
10.1016/j.bspc.2018.03.003
10.1109/IBCAST51254.2021.9393243
10.1515/bmt-2014-0154
10.1007/s13246-019-00722-z
10.1515/bmte.1995.40.s1.317
10.1515/BMT.2007.005
10.1152/ajpheart.00703.2016
10.1016/j.knosys.2017.06.026
10.1016/j.knosys.2012.08.011
10.1016/j.knosys.2013.09.016
10.1515/bmt-2016-0072
10.1109/ICECS.2018.8618007
10.1016/j.eswa.2020.113408
10.1016/j.measurement.2017.05.022
10.1016/j.bspc.2021.103228
10.1007/s13246-020-00965-1
10.1161/CIR.0000000000000950
10.1515/BMT.2006.031
10.1007/s13246-018-0623-1
10.1007/s13534-011-0017-8
10.1007/s13246-021-01072-5
10.1515/bmt.2010.030
10.1007/s00521-012-1063-6
10.1007/s00530-020-00728-8
10.1016/j.asoc.2012.06.004
10.1016/j.jelectrocard.2017.08.007
10.1016/j.bspc.2020.102260
10.1016/j.jelectrocard.2014.04.018
10.1038/s41467-020-17804-2
10.3390/a12060118
10.1016/j.cmpb.2020.105400
10.1007/s11517-021-02461-4
10.1016/j.bspc.2020.102326
10.1007/s13246-018-0670-7
10.1016/j.jelectrocard.2018.08.018
10.1515/bmt-2019-0147
10.1016/j.knosys.2016.01.040
10.1007/s13246-021-01005-2
10.1016/j.bspc.2021.102683
10.22489/CinC.2016.117-295
10.1172/jci.insight.125853
10.1007/s13246-019-00815-9
10.1109/BSN.2015.7299399
10.1016/j.ins.2016.10.013
10.1016/j.suscom.2022.100732
10.1016/j.artmed.2006.07.006
10.1007/s13246-020-00906-y
10.3390/app9091879
10.1016/j.compbiomed.2020.103753
10.1016/j.compbiomed.2018.08.003
10.1093/ehjdh/ztab002
10.1109/ACCESS.2021.3097614
10.3390/jcm11174935
10.1007/s13246-021-00996-2
10.1016/j.dsp.2023.103938
10.1007/s40031-021-00606-5
10.1007/s13246-020-00875-2
10.1016/j.ejmp.2020.01.007
10.1016/j.compbiomed.2022.105425
10.1007/s11760-020-01813-1
10.1109/JSEN.2019.2896308
10.1109/TIM.2018.2816458
10.1515/bmt-2022-0199
10.1016/j.hrthm.2019.06.008
10.1016/j.bspc.2022.104041
10.1016/j.health.2022.100121
10.1088/1361-6579/aad386
10.1093/eurheartj/ehab724.3049
10.1007/s10916-016-0432-6
10.1016/j.jelectrocard.2018.07.026
10.1007/s10489-021-02696-6
10.1111/coin.12070
10.1007/s13246-020-00964-2
10.1016/j.bspc.2022.103654
10.1016/j.compbiomed.2019.103386
10.1109/TBME.2006.873753
10.1016/j.asoc.2017.12.001
10.1016/j.artmed.2019.101789
10.1134/S1054661819040151
10.1109/TIM.2021.3072144
10.1016/j.compbiomed.2017.06.006
10.1007/s10916-010-9535-7
10.1515/bmt-2020-0329
10.1016/j.compbiomed.2022.106081
10.1016/j.knosys.2017.06.003
10.1016/j.eswa.2010.10.028
ContentType Journal Article
Copyright 2023 Walter de Gruyter GmbH, Berlin/Boston.
2023 Walter de Gruyter GmbH, Berlin/Boston
Copyright_xml – notice: 2023 Walter de Gruyter GmbH, Berlin/Boston.
– notice: 2023 Walter de Gruyter GmbH, Berlin/Boston
DBID AAYXX
CITATION
NPM
7QO
7TB
7U5
8FD
FR3
L7M
P64
7X8
DOI 10.1515/bmt-2022-0406
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Biotechnology Research Abstracts
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1862-278X
EndPage 109
ExternalDocumentID 37823386
10_1515_bmt_2022_0406
10_1515_bmt_2022_040669179
Genre Journal Article
GroupedDBID 0R~
0~D
23N
4.4
5GY
AAAEU
AAAVF
AABBZ
AACIX
AAGVJ
AALGR
AAOQK
AAOWA
AAPJK
AAQCX
AARRE
AASQH
AAXCG
ABDRH
ABFKT
ABFQV
ABJNI
ABMIY
ABPLS
ABRDF
ABUVI
ABWLS
ABXMZ
ABYBW
ACDEB
ACEFL
ACGFS
ACPMA
ACUND
ACYCL
ACZBO
ADDWE
ADEQT
ADGQD
ADGYE
AECWL
AEGVQ
AEICA
AEJTT
AERZL
AEXIE
AFBAA
AFBDD
AFCXV
AFGDO
AFYRI
AGBEV
AGQYU
AHGSO
AHOVO
AHVWV
AHXUK
AIERV
AIWOI
AJHHK
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ALYBR
ASYPN
BAKPI
BCIFA
CGQUA
CS3
DU5
EBS
EMOBN
F5P
HZ~
IY9
KDIRW
O9-
P2P
QD8
RDG
SA.
SLJYH
UK5
WTRAM
AAYXX
CITATION
ABVMU
NPM
7QO
7TB
7U5
8FD
ADNPR
FR3
L7M
P64
7X8
ID FETCH-LOGICAL-c372t-97a52b4cc226791186d914d0c3d63a122ca8c9a52e82c16d3836f51c933604973
ISSN 0013-5585
1862-278X
IngestDate Tue Aug 05 10:48:56 EDT 2025
Sat Jul 26 02:17:21 EDT 2025
Thu Apr 03 07:06:12 EDT 2025
Tue Jul 01 03:36:37 EDT 2025
Thu Apr 24 22:52:40 EDT 2025
Thu Jul 10 10:30:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords clustering
classification
Neyman-Pearson hypothesis testing
feature extraction
signal processing
synthetic minority oversampling technique (SMOTE)
Language English
License 2023 Walter de Gruyter GmbH, Berlin/Boston.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c372t-97a52b4cc226791186d914d0c3d63a122ca8c9a52e82c16d3836f51c933604973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8680-3781
PMID 37823386
PQID 2926167991
PQPubID 2045214
PageCount 031
ParticipantIDs proquest_miscellaneous_2876640510
proquest_journals_2926167991
pubmed_primary_37823386
crossref_citationtrail_10_1515_bmt_2022_0406
crossref_primary_10_1515_bmt_2022_0406
walterdegruyter_journals_10_1515_bmt_2022_040669179
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-26
PublicationDateYYYYMMDD 2024-02-26
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-26
  day: 26
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Berlin
PublicationTitle Biomedizinische Technik
PublicationTitleAlternate Biomed Tech (Berl)
PublicationYear 2024
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References 2024021416532484280_j_bmt-2022-0406_ref_007
2024021416532484280_j_bmt-2022-0406_ref_006
2024021416532484280_j_bmt-2022-0406_ref_009
2024021416532484280_j_bmt-2022-0406_ref_008
2024021416532484280_j_bmt-2022-0406_ref_003
2024021416532484280_j_bmt-2022-0406_ref_002
2024021416532484280_j_bmt-2022-0406_ref_005
2024021416532484280_j_bmt-2022-0406_ref_004
2024021416532484280_j_bmt-2022-0406_ref_087
2024021416532484280_j_bmt-2022-0406_ref_086
2024021416532484280_j_bmt-2022-0406_ref_001
2024021416532484280_j_bmt-2022-0406_ref_089
2024021416532484280_j_bmt-2022-0406_ref_088
2024021416532484280_j_bmt-2022-0406_ref_083
2024021416532484280_j_bmt-2022-0406_ref_082
2024021416532484280_j_bmt-2022-0406_ref_085
2024021416532484280_j_bmt-2022-0406_ref_084
2024021416532484280_j_bmt-2022-0406_ref_081
2024021416532484280_j_bmt-2022-0406_ref_080
2024021416532484280_j_bmt-2022-0406_ref_079
2024021416532484280_j_bmt-2022-0406_ref_076
2024021416532484280_j_bmt-2022-0406_ref_075
2024021416532484280_j_bmt-2022-0406_ref_078
2024021416532484280_j_bmt-2022-0406_ref_077
2024021416532484280_j_bmt-2022-0406_ref_110
2024021416532484280_j_bmt-2022-0406_ref_072
2024021416532484280_j_bmt-2022-0406_ref_071
2024021416532484280_j_bmt-2022-0406_ref_074
2024021416532484280_j_bmt-2022-0406_ref_073
2024021416532484280_j_bmt-2022-0406_ref_070
2024021416532484280_j_bmt-2022-0406_ref_029
2024021416532484280_j_bmt-2022-0406_ref_028
2024021416532484280_j_bmt-2022-0406_ref_025
2024021416532484280_j_bmt-2022-0406_ref_024
2024021416532484280_j_bmt-2022-0406_ref_027
2024021416532484280_j_bmt-2022-0406_ref_026
2024021416532484280_j_bmt-2022-0406_ref_021
2024021416532484280_j_bmt-2022-0406_ref_020
2024021416532484280_j_bmt-2022-0406_ref_023
2024021416532484280_j_bmt-2022-0406_ref_022
2024021416532484280_j_bmt-2022-0406_ref_018
2024021416532484280_j_bmt-2022-0406_ref_017
2024021416532484280_j_bmt-2022-0406_ref_019
2024021416532484280_j_bmt-2022-0406_ref_014
2024021416532484280_j_bmt-2022-0406_ref_013
2024021416532484280_j_bmt-2022-0406_ref_016
2024021416532484280_j_bmt-2022-0406_ref_015
2024021416532484280_j_bmt-2022-0406_ref_010
2024021416532484280_j_bmt-2022-0406_ref_098
2024021416532484280_j_bmt-2022-0406_ref_097
2024021416532484280_j_bmt-2022-0406_ref_012
2024021416532484280_j_bmt-2022-0406_ref_011
2024021416532484280_j_bmt-2022-0406_ref_099
2024021416532484280_j_bmt-2022-0406_ref_094
2024021416532484280_j_bmt-2022-0406_ref_093
2024021416532484280_j_bmt-2022-0406_ref_096
2024021416532484280_j_bmt-2022-0406_ref_095
2024021416532484280_j_bmt-2022-0406_ref_090
2024021416532484280_j_bmt-2022-0406_ref_092
2024021416532484280_j_bmt-2022-0406_ref_091
2024021416532484280_j_bmt-2022-0406_ref_047
2024021416532484280_j_bmt-2022-0406_ref_046
2024021416532484280_j_bmt-2022-0406_ref_049
2024021416532484280_j_bmt-2022-0406_ref_048
2024021416532484280_j_bmt-2022-0406_ref_043
2024021416532484280_j_bmt-2022-0406_ref_042
2024021416532484280_j_bmt-2022-0406_ref_045
2024021416532484280_j_bmt-2022-0406_ref_044
2024021416532484280_j_bmt-2022-0406_ref_041
2024021416532484280_j_bmt-2022-0406_ref_040
2024021416532484280_j_bmt-2022-0406_ref_039
2024021416532484280_j_bmt-2022-0406_ref_036
2024021416532484280_j_bmt-2022-0406_ref_035
2024021416532484280_j_bmt-2022-0406_ref_038
2024021416532484280_j_bmt-2022-0406_ref_037
2024021416532484280_j_bmt-2022-0406_ref_032
2024021416532484280_j_bmt-2022-0406_ref_031
2024021416532484280_j_bmt-2022-0406_ref_034
2024021416532484280_j_bmt-2022-0406_ref_033
2024021416532484280_j_bmt-2022-0406_ref_030
2024021416532484280_j_bmt-2022-0406_ref_109
2024021416532484280_j_bmt-2022-0406_ref_106
2024021416532484280_j_bmt-2022-0406_ref_105
2024021416532484280_j_bmt-2022-0406_ref_108
2024021416532484280_j_bmt-2022-0406_ref_107
2024021416532484280_j_bmt-2022-0406_ref_069
2024021416532484280_j_bmt-2022-0406_ref_102
2024021416532484280_j_bmt-2022-0406_ref_068
2024021416532484280_j_bmt-2022-0406_ref_101
2024021416532484280_j_bmt-2022-0406_ref_104
2024021416532484280_j_bmt-2022-0406_ref_103
2024021416532484280_j_bmt-2022-0406_ref_065
2024021416532484280_j_bmt-2022-0406_ref_064
2024021416532484280_j_bmt-2022-0406_ref_067
2024021416532484280_j_bmt-2022-0406_ref_100
2024021416532484280_j_bmt-2022-0406_ref_066
2024021416532484280_j_bmt-2022-0406_ref_061
2024021416532484280_j_bmt-2022-0406_ref_060
2024021416532484280_j_bmt-2022-0406_ref_063
2024021416532484280_j_bmt-2022-0406_ref_062
2024021416532484280_j_bmt-2022-0406_ref_058
2024021416532484280_j_bmt-2022-0406_ref_057
2024021416532484280_j_bmt-2022-0406_ref_059
2024021416532484280_j_bmt-2022-0406_ref_054
2024021416532484280_j_bmt-2022-0406_ref_053
2024021416532484280_j_bmt-2022-0406_ref_056
2024021416532484280_j_bmt-2022-0406_ref_055
2024021416532484280_j_bmt-2022-0406_ref_050
2024021416532484280_j_bmt-2022-0406_ref_052
2024021416532484280_j_bmt-2022-0406_ref_051
References_xml – ident: 2024021416532484280_j_bmt-2022-0406_ref_054
  doi: 10.1007/s13246-022-01119-1
– ident: 2024021416532484280_j_bmt-2022-0406_ref_035
  doi: 10.1016/j.cmpb.2016.08.016
– ident: 2024021416532484280_j_bmt-2022-0406_ref_092
– ident: 2024021416532484280_j_bmt-2022-0406_ref_103
  doi: 10.3390/s21217163
– ident: 2024021416532484280_j_bmt-2022-0406_ref_006
  doi: 10.1016/j.patcog.2009.02.008
– ident: 2024021416532484280_j_bmt-2022-0406_ref_051
  doi: 10.1007/s13721-022-00354-6
– ident: 2024021416532484280_j_bmt-2022-0406_ref_021
  doi: 10.1007/s11760-021-02009-x
– ident: 2024021416532484280_j_bmt-2022-0406_ref_080
  doi: 10.1109/JSEN.2020.2984493
– ident: 2024021416532484280_j_bmt-2022-0406_ref_090
  doi: 10.1161/01.CIR.101.23.e215
– ident: 2024021416532484280_j_bmt-2022-0406_ref_074
  doi: 10.1038/s41598-020-65105-x
– ident: 2024021416532484280_j_bmt-2022-0406_ref_065
  doi: 10.1016/j.bspc.2012.10.005
– ident: 2024021416532484280_j_bmt-2022-0406_ref_063
  doi: 10.1016/j.bspc.2019.101690
– ident: 2024021416532484280_j_bmt-2022-0406_ref_004
  doi: 10.1016/j.cmpb.2022.107124
– ident: 2024021416532484280_j_bmt-2022-0406_ref_024
  doi: 10.1007/s13246-020-00947-3
– ident: 2024021416532484280_j_bmt-2022-0406_ref_058
  doi: 10.1016/j.bspc.2020.102138
– ident: 2024021416532484280_j_bmt-2022-0406_ref_028
  doi: 10.1016/j.irbm.2019.09.003
– ident: 2024021416532484280_j_bmt-2022-0406_ref_071
  doi: 10.1109/R10-HTC.2017.8289058
– ident: 2024021416532484280_j_bmt-2022-0406_ref_005
  doi: 10.1007/s13246-011-0099-8
– ident: 2024021416532484280_j_bmt-2022-0406_ref_086
  doi: 10.14569/IJACSA.2018.091001
– ident: 2024021416532484280_j_bmt-2022-0406_ref_109
  doi: 10.1016/j.compbiomed.2014.08.010
– ident: 2024021416532484280_j_bmt-2022-0406_ref_018
  doi: 10.1016/j.bspc.2021.102835
– ident: 2024021416532484280_j_bmt-2022-0406_ref_099
  doi: 10.1016/j.bspc.2018.03.003
– ident: 2024021416532484280_j_bmt-2022-0406_ref_102
  doi: 10.1109/IBCAST51254.2021.9393243
– ident: 2024021416532484280_j_bmt-2022-0406_ref_017
  doi: 10.1515/bmt-2014-0154
– ident: 2024021416532484280_j_bmt-2022-0406_ref_023
  doi: 10.1007/s13246-019-00722-z
– ident: 2024021416532484280_j_bmt-2022-0406_ref_091
  doi: 10.1515/bmte.1995.40.s1.317
– ident: 2024021416532484280_j_bmt-2022-0406_ref_043
  doi: 10.1515/BMT.2007.005
– ident: 2024021416532484280_j_bmt-2022-0406_ref_013
  doi: 10.1152/ajpheart.00703.2016
– ident: 2024021416532484280_j_bmt-2022-0406_ref_032
  doi: 10.1016/j.knosys.2017.06.026
– ident: 2024021416532484280_j_bmt-2022-0406_ref_104
  doi: 10.1016/j.knosys.2012.08.011
– ident: 2024021416532484280_j_bmt-2022-0406_ref_105
  doi: 10.1016/j.knosys.2013.09.016
– ident: 2024021416532484280_j_bmt-2022-0406_ref_098
  doi: 10.1515/bmt-2016-0072
– ident: 2024021416532484280_j_bmt-2022-0406_ref_062
  doi: 10.1109/ICECS.2018.8618007
– ident: 2024021416532484280_j_bmt-2022-0406_ref_072
  doi: 10.1016/j.eswa.2020.113408
– ident: 2024021416532484280_j_bmt-2022-0406_ref_025
  doi: 10.1016/j.measurement.2017.05.022
– ident: 2024021416532484280_j_bmt-2022-0406_ref_078
  doi: 10.1016/j.bspc.2021.103228
– ident: 2024021416532484280_j_bmt-2022-0406_ref_079
  doi: 10.1007/s13246-020-00965-1
– ident: 2024021416532484280_j_bmt-2022-0406_ref_001
  doi: 10.1161/CIR.0000000000000950
– ident: 2024021416532484280_j_bmt-2022-0406_ref_015
  doi: 10.1515/BMT.2006.031
– ident: 2024021416532484280_j_bmt-2022-0406_ref_033
– ident: 2024021416532484280_j_bmt-2022-0406_ref_096
  doi: 10.1007/s13246-018-0623-1
– ident: 2024021416532484280_j_bmt-2022-0406_ref_097
  doi: 10.1007/s13534-011-0017-8
– ident: 2024021416532484280_j_bmt-2022-0406_ref_047
  doi: 10.1007/s13246-021-01072-5
– ident: 2024021416532484280_j_bmt-2022-0406_ref_061
– ident: 2024021416532484280_j_bmt-2022-0406_ref_034
  doi: 10.1515/bmt.2010.030
– ident: 2024021416532484280_j_bmt-2022-0406_ref_066
  doi: 10.1007/s00521-012-1063-6
– ident: 2024021416532484280_j_bmt-2022-0406_ref_075
  doi: 10.1007/s00530-020-00728-8
– ident: 2024021416532484280_j_bmt-2022-0406_ref_053
  doi: 10.1016/j.asoc.2012.06.004
– ident: 2024021416532484280_j_bmt-2022-0406_ref_007
  doi: 10.1016/j.jelectrocard.2017.08.007
– ident: 2024021416532484280_j_bmt-2022-0406_ref_019
  doi: 10.1016/j.bspc.2020.102260
– ident: 2024021416532484280_j_bmt-2022-0406_ref_089
  doi: 10.1016/j.jelectrocard.2014.04.018
– ident: 2024021416532484280_j_bmt-2022-0406_ref_011
  doi: 10.1038/s41467-020-17804-2
– ident: 2024021416532484280_j_bmt-2022-0406_ref_082
  doi: 10.3390/a12060118
– ident: 2024021416532484280_j_bmt-2022-0406_ref_046
  doi: 10.1016/j.cmpb.2020.105400
– ident: 2024021416532484280_j_bmt-2022-0406_ref_020
  doi: 10.1007/s11517-021-02461-4
– ident: 2024021416532484280_j_bmt-2022-0406_ref_031
  doi: 10.1016/j.bspc.2020.102326
– ident: 2024021416532484280_j_bmt-2022-0406_ref_094
  doi: 10.1007/s13246-018-0670-7
– ident: 2024021416532484280_j_bmt-2022-0406_ref_002
  doi: 10.1016/j.jelectrocard.2018.08.018
– ident: 2024021416532484280_j_bmt-2022-0406_ref_030
  doi: 10.1515/bmt-2019-0147
– ident: 2024021416532484280_j_bmt-2022-0406_ref_029
  doi: 10.1016/j.knosys.2016.01.040
– ident: 2024021416532484280_j_bmt-2022-0406_ref_101
– ident: 2024021416532484280_j_bmt-2022-0406_ref_055
  doi: 10.1007/s13246-021-01005-2
– ident: 2024021416532484280_j_bmt-2022-0406_ref_077
  doi: 10.1016/j.bspc.2021.102683
– ident: 2024021416532484280_j_bmt-2022-0406_ref_057
  doi: 10.22489/CinC.2016.117-295
– ident: 2024021416532484280_j_bmt-2022-0406_ref_016
  doi: 10.1172/jci.insight.125853
– ident: 2024021416532484280_j_bmt-2022-0406_ref_070
  doi: 10.1007/s13246-019-00815-9
– ident: 2024021416532484280_j_bmt-2022-0406_ref_088
  doi: 10.1109/BSN.2015.7299399
– ident: 2024021416532484280_j_bmt-2022-0406_ref_027
  doi: 10.1016/j.ins.2016.10.013
– ident: 2024021416532484280_j_bmt-2022-0406_ref_064
  doi: 10.1016/j.suscom.2022.100732
– ident: 2024021416532484280_j_bmt-2022-0406_ref_045
  doi: 10.1016/j.artmed.2006.07.006
– ident: 2024021416532484280_j_bmt-2022-0406_ref_095
  doi: 10.1007/s13246-020-00906-y
– ident: 2024021416532484280_j_bmt-2022-0406_ref_083
  doi: 10.3390/app9091879
– ident: 2024021416532484280_j_bmt-2022-0406_ref_040
  doi: 10.1016/j.compbiomed.2020.103753
– ident: 2024021416532484280_j_bmt-2022-0406_ref_048
  doi: 10.1016/j.compbiomed.2018.08.003
– ident: 2024021416532484280_j_bmt-2022-0406_ref_073
  doi: 10.1093/ehjdh/ztab002
– ident: 2024021416532484280_j_bmt-2022-0406_ref_056
  doi: 10.1109/ACCESS.2021.3097614
– ident: 2024021416532484280_j_bmt-2022-0406_ref_059
  doi: 10.3390/jcm11174935
– ident: 2024021416532484280_j_bmt-2022-0406_ref_110
  doi: 10.1007/s13246-021-00996-2
– ident: 2024021416532484280_j_bmt-2022-0406_ref_038
  doi: 10.1016/j.dsp.2023.103938
– ident: 2024021416532484280_j_bmt-2022-0406_ref_100
  doi: 10.1007/s40031-021-00606-5
– ident: 2024021416532484280_j_bmt-2022-0406_ref_050
  doi: 10.1007/s13246-020-00875-2
– ident: 2024021416532484280_j_bmt-2022-0406_ref_085
  doi: 10.1016/j.ejmp.2020.01.007
– ident: 2024021416532484280_j_bmt-2022-0406_ref_037
  doi: 10.1016/j.compbiomed.2022.105425
– ident: 2024021416532484280_j_bmt-2022-0406_ref_042
  doi: 10.1007/s11760-020-01813-1
– ident: 2024021416532484280_j_bmt-2022-0406_ref_041
  doi: 10.1109/JSEN.2019.2896308
– ident: 2024021416532484280_j_bmt-2022-0406_ref_044
  doi: 10.1109/TIM.2018.2816458
– ident: 2024021416532484280_j_bmt-2022-0406_ref_087
  doi: 10.1515/bmt-2022-0199
– ident: 2024021416532484280_j_bmt-2022-0406_ref_014
  doi: 10.1016/j.hrthm.2019.06.008
– ident: 2024021416532484280_j_bmt-2022-0406_ref_081
  doi: 10.1016/j.bspc.2022.104041
– ident: 2024021416532484280_j_bmt-2022-0406_ref_049
  doi: 10.1016/j.health.2022.100121
– ident: 2024021416532484280_j_bmt-2022-0406_ref_076
  doi: 10.1088/1361-6579/aad386
– ident: 2024021416532484280_j_bmt-2022-0406_ref_003
  doi: 10.1093/eurheartj/ehab724.3049
– ident: 2024021416532484280_j_bmt-2022-0406_ref_010
  doi: 10.1007/s10916-016-0432-6
– ident: 2024021416532484280_j_bmt-2022-0406_ref_068
  doi: 10.1016/j.jelectrocard.2018.07.026
– ident: 2024021416532484280_j_bmt-2022-0406_ref_108
  doi: 10.1007/s10489-021-02696-6
– ident: 2024021416532484280_j_bmt-2022-0406_ref_060
  doi: 10.1111/coin.12070
– ident: 2024021416532484280_j_bmt-2022-0406_ref_026
  doi: 10.1007/s13246-020-00964-2
– ident: 2024021416532484280_j_bmt-2022-0406_ref_039
  doi: 10.1016/j.bspc.2022.103654
– ident: 2024021416532484280_j_bmt-2022-0406_ref_022
  doi: 10.1016/j.compbiomed.2019.103386
– ident: 2024021416532484280_j_bmt-2022-0406_ref_067
  doi: 10.1109/TBME.2006.873753
– ident: 2024021416532484280_j_bmt-2022-0406_ref_008
  doi: 10.1016/j.asoc.2017.12.001
– ident: 2024021416532484280_j_bmt-2022-0406_ref_084
  doi: 10.1016/j.artmed.2019.101789
– ident: 2024021416532484280_j_bmt-2022-0406_ref_009
  doi: 10.1134/S1054661819040151
– ident: 2024021416532484280_j_bmt-2022-0406_ref_069
  doi: 10.1109/TIM.2021.3072144
– ident: 2024021416532484280_j_bmt-2022-0406_ref_036
  doi: 10.1016/j.compbiomed.2017.06.006
– ident: 2024021416532484280_j_bmt-2022-0406_ref_106
  doi: 10.1007/s10916-010-9535-7
– ident: 2024021416532484280_j_bmt-2022-0406_ref_093
  doi: 10.1515/bmt-2020-0329
– ident: 2024021416532484280_j_bmt-2022-0406_ref_052
  doi: 10.1016/j.compbiomed.2022.106081
– ident: 2024021416532484280_j_bmt-2022-0406_ref_012
  doi: 10.1016/j.knosys.2017.06.003
– ident: 2024021416532484280_j_bmt-2022-0406_ref_107
  doi: 10.1016/j.eswa.2010.10.028
SSID ssj0045590
Score 2.3200579
Snippet Coronary artery diseases (CADs) are the leading cause of death worldwide and early diagnosis is crucial for timely treatment. To address this, our study...
SourceID proquest
pubmed
crossref
walterdegruyter
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 79
SubjectTerms Anomalies
Artificial intelligence
Artificial neural networks
Automation
Broadband
Cardiovascular diseases
classification
Clustering
Coronary artery disease
Data processing
Decision support systems
Deep learning
Diagnosis
Diagnostic systems
EKG
Electrocardiography
Feature extraction
Heart diseases
Learning algorithms
Machine learning
Nerves
Neural networks
Neyman-Pearson hypothesis testing
Outliers (statistics)
Probabilistic models
Signal processing
Statistical analysis
Sympathetic nerves
synthetic minority oversampling technique (SMOTE)
Time domain analysis
Unsupervised learning
Title Machine learning based hybrid anomaly detection technique for automatic diagnosis of cardiovascular diseases using cardiac sympathetic nerve activity and electrocardiogram
URI https://www.degruyter.com/doi/10.1515/bmt-2022-0406
https://www.ncbi.nlm.nih.gov/pubmed/37823386
https://www.proquest.com/docview/2926167991
https://www.proquest.com/docview/2876640510
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9EIPFW8CBS0S4mJcsrv22j62qFAhBS4p6s2yd9dp1cZBiS2U_CEO_ElmH3biJkiFixU5-4rmy8zO7sx8CL1lSunsj8Lnw4z6QcGlnzMR-ywAfZkTTnPDdTj6ys_Ogy8X4UWv92sjaqmu8iOx2plX8j9ShXcgV50l-w-SbQeFF_AZ5AtPkDA87yTjkYmEVA31w8TTNkl6l0udhuVl5Wya3Sw9qSplCcHXBVtN7GRdzWzBVmnj7WxpEtGNUHU3OAuvtvm5BlHCWyynmsxYp0B6pY6aNFU5DBGFPop37Dp2LB0A1rk8Nin_Vytd1URobiGzrDZlaKzmKxNjMDLjnqiJKxdhcHl1bY9sv80vHbDdmQUNTA4439TDhPlhaMl6jpRVveBb-TQyRMOtbrY0Lh0MWkVrGWicySamwsK2NQhN4Yx8WgFqwOcGfbWj6vYta9jGKGrvCAZIoXuqu6e6-z20R8EfoX20d_z55PR7Y_QDcMyGDVmG_mGunCsM8KEzf3f7s-XT7KODnyZMQqrJvF5WzbW82e2MH6AD56bgY4u5h6inykdof6N45WP026EPN-jDBn3Yog879OEWfbhFHwb04RZ9uEUfnhW4iz7coA8b9GGHPryBPmzQhxv0wbwSb6HvCTr_dDr-eOY76g9fsIhWfhJlIc0DIcA7iMAex1wmJJBDwSRnGaFUZLFIoI2KqSBcspjxIiQiYYyDzxuxp6hfzkr1HGHB8mGRKBKoMAtIVECHjEhOiyzJwJeWA_S-kUgqXF18Tc9yk-5EwAC9a5v_sAVh_tbwsBFv6nTGIqUJ5friMyED9Kb9GjS6vqbLSjWroQ1sUHigjeUAPbOwaGdisKFnLIbB2S2crOfYuRqegOV9cde1v0T313_bQ9Sv5rV6BZvvKn_tgP8HLifkBQ
linkProvider Walter de Gruyter
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7B9gA9lDddKDBIiBPpbmLHSY4FtSzQ7alF3CLHdraI3aRqEqHlL_EnGSdO6AMucLZjx5rJPOJvvgF4xYyx1R-5J6Yy8HgutJcxFXuMk73MfBFkba_D-ZGYnfCPX8IeTVg5WKU2i_NmXXcMqRNdqsb-KBu4BsgDT7JVTfKlPIp0UExO69XyJmzEnNKVEWzsvX-7_7k3x5xC5mnfxiCk4NgRbV5b5bJjuhZtbsLW9_YCe3i7C37o4A5k_Qk6-Mm33abOdtWPK-SO_3XEu7DlolTc69TqHtwwxX3YvMBd-AB-zlsYpkHXd2KB1iFqPF3bGjCURbmSyzVqU7dgrwIHtlikOBllU5ctWyzqDuz3tcIyR3UJHovu-qhCC89fdKNSYbVe2U7Ktv4SCwvZRFueYbtg0L4aXWufbi2LPnsIJwf7x-9mnuv84CkWBbWXRDIMMq4UBYcRmeNY6MTneqqYFkz6QaBkrBKaY-JA-UJTmi3y0FcJY4JSnog9glFRFmYbULFsmifG5yaU3I9yekD6WgS5TCSlUnoMb3qxp8rRotvuHMvUpkckiJQEkVpBpFYQY3g9TD_r-ED-NnGn16HUmYUqDRJKWOlEiT-Gl8MwfdD2lkYWpmxoDvknwa2tHMPjTveGnRjFc4zFtDi7ooy_9_jj2wjKypMn__TUC7g1O54fpocfjj49hds0yNuSfrEDo_q8Mc8oKKuz5-6z-wWwsDbE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVkL00PIqXVpgkBAn0l3HjpMc29KlPFpxoKi3yLGdBdFNqm6iavlL_EnGebFt4QJnO3asmcwj_uYbgJfcWlf9kXlyrHxPZNJ4KdeRxwXZy5RJP617HR4dy8MT8f40OF2q4newSmOnF9WibBhSR6bQlftR1nMNkAcepbOS5Et5FOmgHJ2b7DasRIJSmQGs7L7dO_jSWWNBEfO462IQUGzc8mzeWOSqX7oRbK7C2mV9f92_3JIbmqyD6g7QoE--71RluqN_XON2_J8T3oO1NkbF3Uap7sMtmz-A1SXmwofw86gGYVpsu05M0blDg18XrgIMVV7M1NkCjS1rqFeOPVcsUpSMqiqLmisWTQP1-zbHIkN9BRyL7eXRHB04f9qMKo3zxcz1UXbVl5g7wCa64gzXA4P2Ndg29mnWctizR3AyOfi8f-i1fR88zUO_9OJQBX4qtKbQMCRjHEkTM2HGmhvJFfN9rSId0xwb-ZpJQ0m2zAKmY84lJTwh34BBXuR2E1DzdJzFlgkbKMHCjB5QzEg_U7GiRMoM4XUn9US3pOiuN8dZ4pIjkkNCckicHBInhyG86qefN2wgf5u43alQ0hqFeeLHlK7SiWI2hBf9MH3O7o5G5baoaA55JymcpRzC40b1-p04RXOcR7Q4v6aLv_f449tIysnjJ__01HO48-nNJPn47vjDFtylMVHX88ttGJQXlX1KEVmZPms_ul_kDjVr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+based+hybrid+anomaly+detection+technique+for+automatic+diagnosis+of+cardiovascular+diseases+using+cardiac+sympathetic+nerve+activity+and+electrocardiogram&rft.jtitle=Biomedizinische+Technik&rft.au=Terzi%2C+Merve+Begum&rft.au=Arikan%2C+Orhan&rft.date=2024-02-26&rft.issn=0013-5585&rft.eissn=1862-278X&rft.volume=69&rft.issue=1&rft.spage=79&rft.epage=109&rft_id=info:doi/10.1515%2Fbmt-2022-0406&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_bmt_2022_0406
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5585&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5585&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5585&client=summon