Machine learning based hybrid anomaly detection technique for automatic diagnosis of cardiovascular diseases using cardiac sympathetic nerve activity and electrocardiogram
Coronary artery diseases (CADs) are the leading cause of death worldwide and early diagnosis is crucial for timely treatment. To address this, our study presents a novel automated Artificial Intelligence (AI)-based Hybrid Anomaly Detection (AIHAD) technique that combines various signal processing, f...
Saved in:
Published in | Biomedizinische Technik Vol. 69; no. 1; pp. 79 - 109 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Germany
De Gruyter
26.02.2024
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Coronary artery diseases (CADs) are the leading cause of death worldwide and early diagnosis is crucial for timely treatment. To address this, our study presents a novel automated Artificial Intelligence (AI)-based Hybrid Anomaly Detection (AIHAD) technique that combines various signal processing, feature extraction, supervised, and unsupervised machine learning methods. By jointly and simultaneously analyzing 12-lead cardiac sympathetic nerve activity (CSNA) and electrocardiogram (ECG) data, the automated AIHAD technique performs fast, early, and accurate diagnosis of CADs.
In order to develop and evaluate the proposed automated AIHAD technique, we utilized the fully labeled STAFF III and PTBD databases, which contain the 12-lead wideband raw recordings non-invasively acquired from 260 subjects. Using these wideband raw recordings, we developed a signal processing technique that simultaneously detects the 12-lead CSNA and ECG signals of all subjects. Using the pre-processed 12-lead CSNA and ECG signals, we developed a time-domain feature extraction technique that extracts the statistical CSNA and ECG features critical for the reliable diagnosis of CADs. Using the extracted discriminative features, we developed a supervised classification technique based on Artificial Neural Networks (ANNs) that simultaneously detects anomalies in the 12-lead CSNA and ECG data. Furthermore, we developed an unsupervised clustering technique based on Gaussian mixture models (GMMs) and Neyman-Pearson criterion, which robustly detects outliers corresponding to CADs.
Using the automated AIHAD technique, we have, for the first time, demonstrated a significant association between the increase in CSNA signals and anomalies in ECG signals during CADs. The AIHAD technique achieved highly reliable detection of CADs with a sensitivity of 98.48 %, specificity of 97.73 %, accuracy of 98.11 %, positive predictive value of 97.74 %, negative predictive value of 98.47 %, and F1-score of 98.11 %. Hence, the automated AIHAD technique demonstrates superior performance compared to the gold standard diagnostic test ECG in the diagnosis of CADs. Additionally, it outperforms other techniques developed in this study that separately utilize either only CSNA data or only ECG data. Therefore, it significantly increases the detection performance of CADs by taking advantage of the diversity in different data types and leveraging their strengths. Furthermore, its performance is comparatively better than that of most previously proposed machine and deep learning methods that exclusively used ECG data to diagnose or classify CADs. Additionally, it has a very low implementation time, which is highly desirable for real-time detection of CADs.
The proposed automated AIHAD technique may serve as an efficient decision-support system to increase physicians' success in fast, early, and accurate diagnosis of CADs. It may be highly beneficial and valuable, particularly for asymptomatic patients, for whom the diagnostic information provided by ECG alone is not sufficient to reliably diagnose the disease. Hence, it may significantly improve patient outcomes by enabling timely treatments and considerably reducing the mortality of cardiovascular diseases (CVDs). |
---|---|
AbstractList | Coronary artery diseases (CADs) are the leading cause of death worldwide and early diagnosis is crucial for timely treatment. To address this, our study presents a novel automated Artificial Intelligence (AI)-based Hybrid Anomaly Detection (AIHAD) technique that combines various signal processing, feature extraction, supervised, and unsupervised machine learning methods. By jointly and simultaneously analyzing 12-lead cardiac sympathetic nerve activity (CSNA) and electrocardiogram (ECG) data, the automated AIHAD technique performs fast, early, and accurate diagnosis of CADs.In order to develop and evaluate the proposed automated AIHAD technique, we utilized the fully labeled STAFF III and PTBD databases, which contain the 12-lead wideband raw recordings non-invasively acquired from 260 subjects. Using these wideband raw recordings, we developed a signal processing technique that simultaneously detects the 12-lead CSNA and ECG signals of all subjects. Using the pre-processed 12-lead CSNA and ECG signals, we developed a time-domain feature extraction technique that extracts the statistical CSNA and ECG features critical for the reliable diagnosis of CADs. Using the extracted discriminative features, we developed a supervised classification technique based on Artificial Neural Networks (ANNs) that simultaneously detects anomalies in the 12-lead CSNA and ECG data. Furthermore, we developed an unsupervised clustering technique based on Gaussian mixture models (GMMs) and Neyman-Pearson criterion, which robustly detects outliers corresponding to CADs.Using the automated AIHAD technique, we have, for the first time, demonstrated a significant association between the increase in CSNA signals and anomalies in ECG signals during CADs. The AIHAD technique achieved highly reliable detection of CADs with a sensitivity of 98.48 %, specificity of 97.73 %, accuracy of 98.11 %, positive predictive value of 97.74 %, negative predictive value of 98.47 %, and F1-score of 98.11 %. Hence, the automated AIHAD technique demonstrates superior performance compared to the gold standard diagnostic test ECG in the diagnosis of CADs. Additionally, it outperforms other techniques developed in this study that separately utilize either only CSNA data or only ECG data. Therefore, it significantly increases the detection performance of CADs by taking advantage of the diversity in different data types and leveraging their strengths. Furthermore, its performance is comparatively better than that of most previously proposed machine and deep learning methods that exclusively used ECG data to diagnose or classify CADs. Additionally, it has a very low implementation time, which is highly desirable for real-time detection of CADs.The proposed automated AIHAD technique may serve as an efficient decision-support system to increase physicians’ success in fast, early, and accurate diagnosis of CADs. It may be highly beneficial and valuable, particularly for asymptomatic patients, for whom the diagnostic information provided by ECG alone is not sufficient to reliably diagnose the disease. Hence, it may significantly improve patient outcomes by enabling timely treatments and considerably reducing the mortality of cardiovascular diseases (CVDs). Coronary artery diseases (CADs) are the leading cause of death worldwide and early diagnosis is crucial for timely treatment. To address this, our study presents a novel automated Artificial Intelligence (AI)-based Hybrid Anomaly Detection (AIHAD) technique that combines various signal processing, feature extraction, supervised, and unsupervised machine learning methods. By jointly and simultaneously analyzing 12-lead cardiac sympathetic nerve activity (CSNA) and electrocardiogram (ECG) data, the automated AIHAD technique performs fast, early, and accurate diagnosis of CADs.OBJECTIVESCoronary artery diseases (CADs) are the leading cause of death worldwide and early diagnosis is crucial for timely treatment. To address this, our study presents a novel automated Artificial Intelligence (AI)-based Hybrid Anomaly Detection (AIHAD) technique that combines various signal processing, feature extraction, supervised, and unsupervised machine learning methods. By jointly and simultaneously analyzing 12-lead cardiac sympathetic nerve activity (CSNA) and electrocardiogram (ECG) data, the automated AIHAD technique performs fast, early, and accurate diagnosis of CADs.In order to develop and evaluate the proposed automated AIHAD technique, we utilized the fully labeled STAFF III and PTBD databases, which contain the 12-lead wideband raw recordings non-invasively acquired from 260 subjects. Using these wideband raw recordings, we developed a signal processing technique that simultaneously detects the 12-lead CSNA and ECG signals of all subjects. Using the pre-processed 12-lead CSNA and ECG signals, we developed a time-domain feature extraction technique that extracts the statistical CSNA and ECG features critical for the reliable diagnosis of CADs. Using the extracted discriminative features, we developed a supervised classification technique based on Artificial Neural Networks (ANNs) that simultaneously detects anomalies in the 12-lead CSNA and ECG data. Furthermore, we developed an unsupervised clustering technique based on Gaussian mixture models (GMMs) and Neyman-Pearson criterion, which robustly detects outliers corresponding to CADs.METHODSIn order to develop and evaluate the proposed automated AIHAD technique, we utilized the fully labeled STAFF III and PTBD databases, which contain the 12-lead wideband raw recordings non-invasively acquired from 260 subjects. Using these wideband raw recordings, we developed a signal processing technique that simultaneously detects the 12-lead CSNA and ECG signals of all subjects. Using the pre-processed 12-lead CSNA and ECG signals, we developed a time-domain feature extraction technique that extracts the statistical CSNA and ECG features critical for the reliable diagnosis of CADs. Using the extracted discriminative features, we developed a supervised classification technique based on Artificial Neural Networks (ANNs) that simultaneously detects anomalies in the 12-lead CSNA and ECG data. Furthermore, we developed an unsupervised clustering technique based on Gaussian mixture models (GMMs) and Neyman-Pearson criterion, which robustly detects outliers corresponding to CADs.Using the automated AIHAD technique, we have, for the first time, demonstrated a significant association between the increase in CSNA signals and anomalies in ECG signals during CADs. The AIHAD technique achieved highly reliable detection of CADs with a sensitivity of 98.48 %, specificity of 97.73 %, accuracy of 98.11 %, positive predictive value of 97.74 %, negative predictive value of 98.47 %, and F1-score of 98.11 %. Hence, the automated AIHAD technique demonstrates superior performance compared to the gold standard diagnostic test ECG in the diagnosis of CADs. Additionally, it outperforms other techniques developed in this study that separately utilize either only CSNA data or only ECG data. Therefore, it significantly increases the detection performance of CADs by taking advantage of the diversity in different data types and leveraging their strengths. Furthermore, its performance is comparatively better than that of most previously proposed machine and deep learning methods that exclusively used ECG data to diagnose or classify CADs. Additionally, it has a very low implementation time, which is highly desirable for real-time detection of CADs.RESULTSUsing the automated AIHAD technique, we have, for the first time, demonstrated a significant association between the increase in CSNA signals and anomalies in ECG signals during CADs. The AIHAD technique achieved highly reliable detection of CADs with a sensitivity of 98.48 %, specificity of 97.73 %, accuracy of 98.11 %, positive predictive value of 97.74 %, negative predictive value of 98.47 %, and F1-score of 98.11 %. Hence, the automated AIHAD technique demonstrates superior performance compared to the gold standard diagnostic test ECG in the diagnosis of CADs. Additionally, it outperforms other techniques developed in this study that separately utilize either only CSNA data or only ECG data. Therefore, it significantly increases the detection performance of CADs by taking advantage of the diversity in different data types and leveraging their strengths. Furthermore, its performance is comparatively better than that of most previously proposed machine and deep learning methods that exclusively used ECG data to diagnose or classify CADs. Additionally, it has a very low implementation time, which is highly desirable for real-time detection of CADs.The proposed automated AIHAD technique may serve as an efficient decision-support system to increase physicians' success in fast, early, and accurate diagnosis of CADs. It may be highly beneficial and valuable, particularly for asymptomatic patients, for whom the diagnostic information provided by ECG alone is not sufficient to reliably diagnose the disease. Hence, it may significantly improve patient outcomes by enabling timely treatments and considerably reducing the mortality of cardiovascular diseases (CVDs).CONCLUSIONSThe proposed automated AIHAD technique may serve as an efficient decision-support system to increase physicians' success in fast, early, and accurate diagnosis of CADs. It may be highly beneficial and valuable, particularly for asymptomatic patients, for whom the diagnostic information provided by ECG alone is not sufficient to reliably diagnose the disease. Hence, it may significantly improve patient outcomes by enabling timely treatments and considerably reducing the mortality of cardiovascular diseases (CVDs). Coronary artery diseases (CADs) are the leading cause of death worldwide and early diagnosis is crucial for timely treatment. To address this, our study presents a novel automated Artificial Intelligence (AI)-based Hybrid Anomaly Detection (AIHAD) technique that combines various signal processing, feature extraction, supervised, and unsupervised machine learning methods. By jointly and simultaneously analyzing 12-lead cardiac sympathetic nerve activity (CSNA) and electrocardiogram (ECG) data, the automated AIHAD technique performs fast, early, and accurate diagnosis of CADs. In order to develop and evaluate the proposed automated AIHAD technique, we utilized the fully labeled STAFF III and PTBD databases, which contain the 12-lead wideband raw recordings non-invasively acquired from 260 subjects. Using these wideband raw recordings, we developed a signal processing technique that simultaneously detects the 12-lead CSNA and ECG signals of all subjects. Using the pre-processed 12-lead CSNA and ECG signals, we developed a time-domain feature extraction technique that extracts the statistical CSNA and ECG features critical for the reliable diagnosis of CADs. Using the extracted discriminative features, we developed a supervised classification technique based on Artificial Neural Networks (ANNs) that simultaneously detects anomalies in the 12-lead CSNA and ECG data. Furthermore, we developed an unsupervised clustering technique based on Gaussian mixture models (GMMs) and Neyman-Pearson criterion, which robustly detects outliers corresponding to CADs. Using the automated AIHAD technique, we have, for the first time, demonstrated a significant association between the increase in CSNA signals and anomalies in ECG signals during CADs. The AIHAD technique achieved highly reliable detection of CADs with a sensitivity of 98.48 %, specificity of 97.73 %, accuracy of 98.11 %, positive predictive value of 97.74 %, negative predictive value of 98.47 %, and F1-score of 98.11 %. Hence, the automated AIHAD technique demonstrates superior performance compared to the gold standard diagnostic test ECG in the diagnosis of CADs. Additionally, it outperforms other techniques developed in this study that separately utilize either only CSNA data or only ECG data. Therefore, it significantly increases the detection performance of CADs by taking advantage of the diversity in different data types and leveraging their strengths. Furthermore, its performance is comparatively better than that of most previously proposed machine and deep learning methods that exclusively used ECG data to diagnose or classify CADs. Additionally, it has a very low implementation time, which is highly desirable for real-time detection of CADs. The proposed automated AIHAD technique may serve as an efficient decision-support system to increase physicians' success in fast, early, and accurate diagnosis of CADs. It may be highly beneficial and valuable, particularly for asymptomatic patients, for whom the diagnostic information provided by ECG alone is not sufficient to reliably diagnose the disease. Hence, it may significantly improve patient outcomes by enabling timely treatments and considerably reducing the mortality of cardiovascular diseases (CVDs). |
Author | Arikan, Orhan Terzi, Merve Begum |
Author_xml | – sequence: 1 givenname: Merve Begum orcidid: 0000-0002-8680-3781 surname: Terzi fullname: Terzi, Merve Begum email: mervebegumterzi@gmail.com organization: Faculty of Engineering, Electrical and Electronics Engineering Department, Bilkent University, Ankara, Türkiye – sequence: 2 givenname: Orhan surname: Arikan fullname: Arikan, Orhan organization: Faculty of Engineering, Electrical and Electronics Engineering Department, Bilkent University, Ankara, Türkiye |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37823386$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU2LFDEQhoOsuLOrR68S8OKlNR-ddMebLH7BihcFb6E6ycxk6U7GJD1L_yb_pGlnF2HRUwXqed-q1HuBzkIMDqHnlLymgoo3w1QaRhhrSEvkI7ShvWQN6_ofZ2hDCOWNEL04Rxc53xDSCqHIE3TOu55x3ssN-vUFzN4Hh0cHKfiwwwNkZ_F-GZK3GEKcYFywdcWZ4mPAte6D_zk7vI0Jw1wqULzB1sMuxOwzjltsIFkfj5DNPEKqveyqa8ZzXif86YLBeZkOUPZulQeXjg5DnXH0ZalzLXZjHZniyWuXYHqKHm9hzO7ZXb1E3z-8_3b1qbn--vHz1bvrxvCOlUZ1INjQGsOY7BStB7GKtpYYbiUHypiB3qjKuJ4ZKi3vudwKahTnkrSq45fo1cn3kGL9aC568tm4cYTg4pw16zspWyIoqejLB-hNnFOo22mmmKR1AUUr9eKOmofJWX1IfoK06PsYKsBPgEkx5-S22vgC671LAj9qSvQatq5h6zVsvYZdVc0D1b3x__i3J_4WxuKSdbs0L_Xxd-d_6qSineK_AdVgwfA |
CitedBy_id | crossref_primary_10_1038_s41598_024_65849_w |
Cites_doi | 10.1007/s13246-022-01119-1 10.1016/j.cmpb.2016.08.016 10.3390/s21217163 10.1016/j.patcog.2009.02.008 10.1007/s13721-022-00354-6 10.1007/s11760-021-02009-x 10.1109/JSEN.2020.2984493 10.1161/01.CIR.101.23.e215 10.1038/s41598-020-65105-x 10.1016/j.bspc.2012.10.005 10.1016/j.bspc.2019.101690 10.1016/j.cmpb.2022.107124 10.1007/s13246-020-00947-3 10.1016/j.bspc.2020.102138 10.1016/j.irbm.2019.09.003 10.1109/R10-HTC.2017.8289058 10.1007/s13246-011-0099-8 10.14569/IJACSA.2018.091001 10.1016/j.compbiomed.2014.08.010 10.1016/j.bspc.2021.102835 10.1016/j.bspc.2018.03.003 10.1109/IBCAST51254.2021.9393243 10.1515/bmt-2014-0154 10.1007/s13246-019-00722-z 10.1515/bmte.1995.40.s1.317 10.1515/BMT.2007.005 10.1152/ajpheart.00703.2016 10.1016/j.knosys.2017.06.026 10.1016/j.knosys.2012.08.011 10.1016/j.knosys.2013.09.016 10.1515/bmt-2016-0072 10.1109/ICECS.2018.8618007 10.1016/j.eswa.2020.113408 10.1016/j.measurement.2017.05.022 10.1016/j.bspc.2021.103228 10.1007/s13246-020-00965-1 10.1161/CIR.0000000000000950 10.1515/BMT.2006.031 10.1007/s13246-018-0623-1 10.1007/s13534-011-0017-8 10.1007/s13246-021-01072-5 10.1515/bmt.2010.030 10.1007/s00521-012-1063-6 10.1007/s00530-020-00728-8 10.1016/j.asoc.2012.06.004 10.1016/j.jelectrocard.2017.08.007 10.1016/j.bspc.2020.102260 10.1016/j.jelectrocard.2014.04.018 10.1038/s41467-020-17804-2 10.3390/a12060118 10.1016/j.cmpb.2020.105400 10.1007/s11517-021-02461-4 10.1016/j.bspc.2020.102326 10.1007/s13246-018-0670-7 10.1016/j.jelectrocard.2018.08.018 10.1515/bmt-2019-0147 10.1016/j.knosys.2016.01.040 10.1007/s13246-021-01005-2 10.1016/j.bspc.2021.102683 10.22489/CinC.2016.117-295 10.1172/jci.insight.125853 10.1007/s13246-019-00815-9 10.1109/BSN.2015.7299399 10.1016/j.ins.2016.10.013 10.1016/j.suscom.2022.100732 10.1016/j.artmed.2006.07.006 10.1007/s13246-020-00906-y 10.3390/app9091879 10.1016/j.compbiomed.2020.103753 10.1016/j.compbiomed.2018.08.003 10.1093/ehjdh/ztab002 10.1109/ACCESS.2021.3097614 10.3390/jcm11174935 10.1007/s13246-021-00996-2 10.1016/j.dsp.2023.103938 10.1007/s40031-021-00606-5 10.1007/s13246-020-00875-2 10.1016/j.ejmp.2020.01.007 10.1016/j.compbiomed.2022.105425 10.1007/s11760-020-01813-1 10.1109/JSEN.2019.2896308 10.1109/TIM.2018.2816458 10.1515/bmt-2022-0199 10.1016/j.hrthm.2019.06.008 10.1016/j.bspc.2022.104041 10.1016/j.health.2022.100121 10.1088/1361-6579/aad386 10.1093/eurheartj/ehab724.3049 10.1007/s10916-016-0432-6 10.1016/j.jelectrocard.2018.07.026 10.1007/s10489-021-02696-6 10.1111/coin.12070 10.1007/s13246-020-00964-2 10.1016/j.bspc.2022.103654 10.1016/j.compbiomed.2019.103386 10.1109/TBME.2006.873753 10.1016/j.asoc.2017.12.001 10.1016/j.artmed.2019.101789 10.1134/S1054661819040151 10.1109/TIM.2021.3072144 10.1016/j.compbiomed.2017.06.006 10.1007/s10916-010-9535-7 10.1515/bmt-2020-0329 10.1016/j.compbiomed.2022.106081 10.1016/j.knosys.2017.06.003 10.1016/j.eswa.2010.10.028 |
ContentType | Journal Article |
Copyright | 2023 Walter de Gruyter GmbH, Berlin/Boston. 2023 Walter de Gruyter GmbH, Berlin/Boston |
Copyright_xml | – notice: 2023 Walter de Gruyter GmbH, Berlin/Boston. – notice: 2023 Walter de Gruyter GmbH, Berlin/Boston |
DBID | AAYXX CITATION NPM 7QO 7TB 7U5 8FD FR3 L7M P64 7X8 |
DOI | 10.1515/bmt-2022-0406 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Biotechnology Research Abstracts MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1862-278X |
EndPage | 109 |
ExternalDocumentID | 37823386 10_1515_bmt_2022_0406 10_1515_bmt_2022_040669179 |
Genre | Journal Article |
GroupedDBID | 0R~ 0~D 23N 4.4 5GY AAAEU AAAVF AABBZ AACIX AAGVJ AALGR AAOQK AAOWA AAPJK AAQCX AARRE AASQH AAXCG ABDRH ABFKT ABFQV ABJNI ABMIY ABPLS ABRDF ABUVI ABWLS ABXMZ ABYBW ACDEB ACEFL ACGFS ACPMA ACUND ACYCL ACZBO ADDWE ADEQT ADGQD ADGYE AECWL AEGVQ AEICA AEJTT AERZL AEXIE AFBAA AFBDD AFCXV AFGDO AFYRI AGBEV AGQYU AHGSO AHOVO AHVWV AHXUK AIERV AIWOI AJHHK AKXKS ALMA_UNASSIGNED_HOLDINGS ALYBR ASYPN BAKPI BCIFA CGQUA CS3 DU5 EBS EMOBN F5P HZ~ IY9 KDIRW O9- P2P QD8 RDG SA. SLJYH UK5 WTRAM AAYXX CITATION ABVMU NPM 7QO 7TB 7U5 8FD ADNPR FR3 L7M P64 7X8 |
ID | FETCH-LOGICAL-c372t-97a52b4cc226791186d914d0c3d63a122ca8c9a52e82c16d3836f51c933604973 |
ISSN | 0013-5585 1862-278X |
IngestDate | Tue Aug 05 10:48:56 EDT 2025 Sat Jul 26 02:17:21 EDT 2025 Thu Apr 03 07:06:12 EDT 2025 Tue Jul 01 03:36:37 EDT 2025 Thu Apr 24 22:52:40 EDT 2025 Thu Jul 10 10:30:25 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | clustering classification Neyman-Pearson hypothesis testing feature extraction signal processing synthetic minority oversampling technique (SMOTE) |
Language | English |
License | 2023 Walter de Gruyter GmbH, Berlin/Boston. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c372t-97a52b4cc226791186d914d0c3d63a122ca8c9a52e82c16d3836f51c933604973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8680-3781 |
PMID | 37823386 |
PQID | 2926167991 |
PQPubID | 2045214 |
PageCount | 031 |
ParticipantIDs | proquest_miscellaneous_2876640510 proquest_journals_2926167991 pubmed_primary_37823386 crossref_citationtrail_10_1515_bmt_2022_0406 crossref_primary_10_1515_bmt_2022_0406 walterdegruyter_journals_10_1515_bmt_2022_040669179 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-26 |
PublicationDateYYYYMMDD | 2024-02-26 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Berlin |
PublicationTitle | Biomedizinische Technik |
PublicationTitleAlternate | Biomed Tech (Berl) |
PublicationYear | 2024 |
Publisher | De Gruyter Walter de Gruyter GmbH |
Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
References | 2024021416532484280_j_bmt-2022-0406_ref_007 2024021416532484280_j_bmt-2022-0406_ref_006 2024021416532484280_j_bmt-2022-0406_ref_009 2024021416532484280_j_bmt-2022-0406_ref_008 2024021416532484280_j_bmt-2022-0406_ref_003 2024021416532484280_j_bmt-2022-0406_ref_002 2024021416532484280_j_bmt-2022-0406_ref_005 2024021416532484280_j_bmt-2022-0406_ref_004 2024021416532484280_j_bmt-2022-0406_ref_087 2024021416532484280_j_bmt-2022-0406_ref_086 2024021416532484280_j_bmt-2022-0406_ref_001 2024021416532484280_j_bmt-2022-0406_ref_089 2024021416532484280_j_bmt-2022-0406_ref_088 2024021416532484280_j_bmt-2022-0406_ref_083 2024021416532484280_j_bmt-2022-0406_ref_082 2024021416532484280_j_bmt-2022-0406_ref_085 2024021416532484280_j_bmt-2022-0406_ref_084 2024021416532484280_j_bmt-2022-0406_ref_081 2024021416532484280_j_bmt-2022-0406_ref_080 2024021416532484280_j_bmt-2022-0406_ref_079 2024021416532484280_j_bmt-2022-0406_ref_076 2024021416532484280_j_bmt-2022-0406_ref_075 2024021416532484280_j_bmt-2022-0406_ref_078 2024021416532484280_j_bmt-2022-0406_ref_077 2024021416532484280_j_bmt-2022-0406_ref_110 2024021416532484280_j_bmt-2022-0406_ref_072 2024021416532484280_j_bmt-2022-0406_ref_071 2024021416532484280_j_bmt-2022-0406_ref_074 2024021416532484280_j_bmt-2022-0406_ref_073 2024021416532484280_j_bmt-2022-0406_ref_070 2024021416532484280_j_bmt-2022-0406_ref_029 2024021416532484280_j_bmt-2022-0406_ref_028 2024021416532484280_j_bmt-2022-0406_ref_025 2024021416532484280_j_bmt-2022-0406_ref_024 2024021416532484280_j_bmt-2022-0406_ref_027 2024021416532484280_j_bmt-2022-0406_ref_026 2024021416532484280_j_bmt-2022-0406_ref_021 2024021416532484280_j_bmt-2022-0406_ref_020 2024021416532484280_j_bmt-2022-0406_ref_023 2024021416532484280_j_bmt-2022-0406_ref_022 2024021416532484280_j_bmt-2022-0406_ref_018 2024021416532484280_j_bmt-2022-0406_ref_017 2024021416532484280_j_bmt-2022-0406_ref_019 2024021416532484280_j_bmt-2022-0406_ref_014 2024021416532484280_j_bmt-2022-0406_ref_013 2024021416532484280_j_bmt-2022-0406_ref_016 2024021416532484280_j_bmt-2022-0406_ref_015 2024021416532484280_j_bmt-2022-0406_ref_010 2024021416532484280_j_bmt-2022-0406_ref_098 2024021416532484280_j_bmt-2022-0406_ref_097 2024021416532484280_j_bmt-2022-0406_ref_012 2024021416532484280_j_bmt-2022-0406_ref_011 2024021416532484280_j_bmt-2022-0406_ref_099 2024021416532484280_j_bmt-2022-0406_ref_094 2024021416532484280_j_bmt-2022-0406_ref_093 2024021416532484280_j_bmt-2022-0406_ref_096 2024021416532484280_j_bmt-2022-0406_ref_095 2024021416532484280_j_bmt-2022-0406_ref_090 2024021416532484280_j_bmt-2022-0406_ref_092 2024021416532484280_j_bmt-2022-0406_ref_091 2024021416532484280_j_bmt-2022-0406_ref_047 2024021416532484280_j_bmt-2022-0406_ref_046 2024021416532484280_j_bmt-2022-0406_ref_049 2024021416532484280_j_bmt-2022-0406_ref_048 2024021416532484280_j_bmt-2022-0406_ref_043 2024021416532484280_j_bmt-2022-0406_ref_042 2024021416532484280_j_bmt-2022-0406_ref_045 2024021416532484280_j_bmt-2022-0406_ref_044 2024021416532484280_j_bmt-2022-0406_ref_041 2024021416532484280_j_bmt-2022-0406_ref_040 2024021416532484280_j_bmt-2022-0406_ref_039 2024021416532484280_j_bmt-2022-0406_ref_036 2024021416532484280_j_bmt-2022-0406_ref_035 2024021416532484280_j_bmt-2022-0406_ref_038 2024021416532484280_j_bmt-2022-0406_ref_037 2024021416532484280_j_bmt-2022-0406_ref_032 2024021416532484280_j_bmt-2022-0406_ref_031 2024021416532484280_j_bmt-2022-0406_ref_034 2024021416532484280_j_bmt-2022-0406_ref_033 2024021416532484280_j_bmt-2022-0406_ref_030 2024021416532484280_j_bmt-2022-0406_ref_109 2024021416532484280_j_bmt-2022-0406_ref_106 2024021416532484280_j_bmt-2022-0406_ref_105 2024021416532484280_j_bmt-2022-0406_ref_108 2024021416532484280_j_bmt-2022-0406_ref_107 2024021416532484280_j_bmt-2022-0406_ref_069 2024021416532484280_j_bmt-2022-0406_ref_102 2024021416532484280_j_bmt-2022-0406_ref_068 2024021416532484280_j_bmt-2022-0406_ref_101 2024021416532484280_j_bmt-2022-0406_ref_104 2024021416532484280_j_bmt-2022-0406_ref_103 2024021416532484280_j_bmt-2022-0406_ref_065 2024021416532484280_j_bmt-2022-0406_ref_064 2024021416532484280_j_bmt-2022-0406_ref_067 2024021416532484280_j_bmt-2022-0406_ref_100 2024021416532484280_j_bmt-2022-0406_ref_066 2024021416532484280_j_bmt-2022-0406_ref_061 2024021416532484280_j_bmt-2022-0406_ref_060 2024021416532484280_j_bmt-2022-0406_ref_063 2024021416532484280_j_bmt-2022-0406_ref_062 2024021416532484280_j_bmt-2022-0406_ref_058 2024021416532484280_j_bmt-2022-0406_ref_057 2024021416532484280_j_bmt-2022-0406_ref_059 2024021416532484280_j_bmt-2022-0406_ref_054 2024021416532484280_j_bmt-2022-0406_ref_053 2024021416532484280_j_bmt-2022-0406_ref_056 2024021416532484280_j_bmt-2022-0406_ref_055 2024021416532484280_j_bmt-2022-0406_ref_050 2024021416532484280_j_bmt-2022-0406_ref_052 2024021416532484280_j_bmt-2022-0406_ref_051 |
References_xml | – ident: 2024021416532484280_j_bmt-2022-0406_ref_054 doi: 10.1007/s13246-022-01119-1 – ident: 2024021416532484280_j_bmt-2022-0406_ref_035 doi: 10.1016/j.cmpb.2016.08.016 – ident: 2024021416532484280_j_bmt-2022-0406_ref_092 – ident: 2024021416532484280_j_bmt-2022-0406_ref_103 doi: 10.3390/s21217163 – ident: 2024021416532484280_j_bmt-2022-0406_ref_006 doi: 10.1016/j.patcog.2009.02.008 – ident: 2024021416532484280_j_bmt-2022-0406_ref_051 doi: 10.1007/s13721-022-00354-6 – ident: 2024021416532484280_j_bmt-2022-0406_ref_021 doi: 10.1007/s11760-021-02009-x – ident: 2024021416532484280_j_bmt-2022-0406_ref_080 doi: 10.1109/JSEN.2020.2984493 – ident: 2024021416532484280_j_bmt-2022-0406_ref_090 doi: 10.1161/01.CIR.101.23.e215 – ident: 2024021416532484280_j_bmt-2022-0406_ref_074 doi: 10.1038/s41598-020-65105-x – ident: 2024021416532484280_j_bmt-2022-0406_ref_065 doi: 10.1016/j.bspc.2012.10.005 – ident: 2024021416532484280_j_bmt-2022-0406_ref_063 doi: 10.1016/j.bspc.2019.101690 – ident: 2024021416532484280_j_bmt-2022-0406_ref_004 doi: 10.1016/j.cmpb.2022.107124 – ident: 2024021416532484280_j_bmt-2022-0406_ref_024 doi: 10.1007/s13246-020-00947-3 – ident: 2024021416532484280_j_bmt-2022-0406_ref_058 doi: 10.1016/j.bspc.2020.102138 – ident: 2024021416532484280_j_bmt-2022-0406_ref_028 doi: 10.1016/j.irbm.2019.09.003 – ident: 2024021416532484280_j_bmt-2022-0406_ref_071 doi: 10.1109/R10-HTC.2017.8289058 – ident: 2024021416532484280_j_bmt-2022-0406_ref_005 doi: 10.1007/s13246-011-0099-8 – ident: 2024021416532484280_j_bmt-2022-0406_ref_086 doi: 10.14569/IJACSA.2018.091001 – ident: 2024021416532484280_j_bmt-2022-0406_ref_109 doi: 10.1016/j.compbiomed.2014.08.010 – ident: 2024021416532484280_j_bmt-2022-0406_ref_018 doi: 10.1016/j.bspc.2021.102835 – ident: 2024021416532484280_j_bmt-2022-0406_ref_099 doi: 10.1016/j.bspc.2018.03.003 – ident: 2024021416532484280_j_bmt-2022-0406_ref_102 doi: 10.1109/IBCAST51254.2021.9393243 – ident: 2024021416532484280_j_bmt-2022-0406_ref_017 doi: 10.1515/bmt-2014-0154 – ident: 2024021416532484280_j_bmt-2022-0406_ref_023 doi: 10.1007/s13246-019-00722-z – ident: 2024021416532484280_j_bmt-2022-0406_ref_091 doi: 10.1515/bmte.1995.40.s1.317 – ident: 2024021416532484280_j_bmt-2022-0406_ref_043 doi: 10.1515/BMT.2007.005 – ident: 2024021416532484280_j_bmt-2022-0406_ref_013 doi: 10.1152/ajpheart.00703.2016 – ident: 2024021416532484280_j_bmt-2022-0406_ref_032 doi: 10.1016/j.knosys.2017.06.026 – ident: 2024021416532484280_j_bmt-2022-0406_ref_104 doi: 10.1016/j.knosys.2012.08.011 – ident: 2024021416532484280_j_bmt-2022-0406_ref_105 doi: 10.1016/j.knosys.2013.09.016 – ident: 2024021416532484280_j_bmt-2022-0406_ref_098 doi: 10.1515/bmt-2016-0072 – ident: 2024021416532484280_j_bmt-2022-0406_ref_062 doi: 10.1109/ICECS.2018.8618007 – ident: 2024021416532484280_j_bmt-2022-0406_ref_072 doi: 10.1016/j.eswa.2020.113408 – ident: 2024021416532484280_j_bmt-2022-0406_ref_025 doi: 10.1016/j.measurement.2017.05.022 – ident: 2024021416532484280_j_bmt-2022-0406_ref_078 doi: 10.1016/j.bspc.2021.103228 – ident: 2024021416532484280_j_bmt-2022-0406_ref_079 doi: 10.1007/s13246-020-00965-1 – ident: 2024021416532484280_j_bmt-2022-0406_ref_001 doi: 10.1161/CIR.0000000000000950 – ident: 2024021416532484280_j_bmt-2022-0406_ref_015 doi: 10.1515/BMT.2006.031 – ident: 2024021416532484280_j_bmt-2022-0406_ref_033 – ident: 2024021416532484280_j_bmt-2022-0406_ref_096 doi: 10.1007/s13246-018-0623-1 – ident: 2024021416532484280_j_bmt-2022-0406_ref_097 doi: 10.1007/s13534-011-0017-8 – ident: 2024021416532484280_j_bmt-2022-0406_ref_047 doi: 10.1007/s13246-021-01072-5 – ident: 2024021416532484280_j_bmt-2022-0406_ref_061 – ident: 2024021416532484280_j_bmt-2022-0406_ref_034 doi: 10.1515/bmt.2010.030 – ident: 2024021416532484280_j_bmt-2022-0406_ref_066 doi: 10.1007/s00521-012-1063-6 – ident: 2024021416532484280_j_bmt-2022-0406_ref_075 doi: 10.1007/s00530-020-00728-8 – ident: 2024021416532484280_j_bmt-2022-0406_ref_053 doi: 10.1016/j.asoc.2012.06.004 – ident: 2024021416532484280_j_bmt-2022-0406_ref_007 doi: 10.1016/j.jelectrocard.2017.08.007 – ident: 2024021416532484280_j_bmt-2022-0406_ref_019 doi: 10.1016/j.bspc.2020.102260 – ident: 2024021416532484280_j_bmt-2022-0406_ref_089 doi: 10.1016/j.jelectrocard.2014.04.018 – ident: 2024021416532484280_j_bmt-2022-0406_ref_011 doi: 10.1038/s41467-020-17804-2 – ident: 2024021416532484280_j_bmt-2022-0406_ref_082 doi: 10.3390/a12060118 – ident: 2024021416532484280_j_bmt-2022-0406_ref_046 doi: 10.1016/j.cmpb.2020.105400 – ident: 2024021416532484280_j_bmt-2022-0406_ref_020 doi: 10.1007/s11517-021-02461-4 – ident: 2024021416532484280_j_bmt-2022-0406_ref_031 doi: 10.1016/j.bspc.2020.102326 – ident: 2024021416532484280_j_bmt-2022-0406_ref_094 doi: 10.1007/s13246-018-0670-7 – ident: 2024021416532484280_j_bmt-2022-0406_ref_002 doi: 10.1016/j.jelectrocard.2018.08.018 – ident: 2024021416532484280_j_bmt-2022-0406_ref_030 doi: 10.1515/bmt-2019-0147 – ident: 2024021416532484280_j_bmt-2022-0406_ref_029 doi: 10.1016/j.knosys.2016.01.040 – ident: 2024021416532484280_j_bmt-2022-0406_ref_101 – ident: 2024021416532484280_j_bmt-2022-0406_ref_055 doi: 10.1007/s13246-021-01005-2 – ident: 2024021416532484280_j_bmt-2022-0406_ref_077 doi: 10.1016/j.bspc.2021.102683 – ident: 2024021416532484280_j_bmt-2022-0406_ref_057 doi: 10.22489/CinC.2016.117-295 – ident: 2024021416532484280_j_bmt-2022-0406_ref_016 doi: 10.1172/jci.insight.125853 – ident: 2024021416532484280_j_bmt-2022-0406_ref_070 doi: 10.1007/s13246-019-00815-9 – ident: 2024021416532484280_j_bmt-2022-0406_ref_088 doi: 10.1109/BSN.2015.7299399 – ident: 2024021416532484280_j_bmt-2022-0406_ref_027 doi: 10.1016/j.ins.2016.10.013 – ident: 2024021416532484280_j_bmt-2022-0406_ref_064 doi: 10.1016/j.suscom.2022.100732 – ident: 2024021416532484280_j_bmt-2022-0406_ref_045 doi: 10.1016/j.artmed.2006.07.006 – ident: 2024021416532484280_j_bmt-2022-0406_ref_095 doi: 10.1007/s13246-020-00906-y – ident: 2024021416532484280_j_bmt-2022-0406_ref_083 doi: 10.3390/app9091879 – ident: 2024021416532484280_j_bmt-2022-0406_ref_040 doi: 10.1016/j.compbiomed.2020.103753 – ident: 2024021416532484280_j_bmt-2022-0406_ref_048 doi: 10.1016/j.compbiomed.2018.08.003 – ident: 2024021416532484280_j_bmt-2022-0406_ref_073 doi: 10.1093/ehjdh/ztab002 – ident: 2024021416532484280_j_bmt-2022-0406_ref_056 doi: 10.1109/ACCESS.2021.3097614 – ident: 2024021416532484280_j_bmt-2022-0406_ref_059 doi: 10.3390/jcm11174935 – ident: 2024021416532484280_j_bmt-2022-0406_ref_110 doi: 10.1007/s13246-021-00996-2 – ident: 2024021416532484280_j_bmt-2022-0406_ref_038 doi: 10.1016/j.dsp.2023.103938 – ident: 2024021416532484280_j_bmt-2022-0406_ref_100 doi: 10.1007/s40031-021-00606-5 – ident: 2024021416532484280_j_bmt-2022-0406_ref_050 doi: 10.1007/s13246-020-00875-2 – ident: 2024021416532484280_j_bmt-2022-0406_ref_085 doi: 10.1016/j.ejmp.2020.01.007 – ident: 2024021416532484280_j_bmt-2022-0406_ref_037 doi: 10.1016/j.compbiomed.2022.105425 – ident: 2024021416532484280_j_bmt-2022-0406_ref_042 doi: 10.1007/s11760-020-01813-1 – ident: 2024021416532484280_j_bmt-2022-0406_ref_041 doi: 10.1109/JSEN.2019.2896308 – ident: 2024021416532484280_j_bmt-2022-0406_ref_044 doi: 10.1109/TIM.2018.2816458 – ident: 2024021416532484280_j_bmt-2022-0406_ref_087 doi: 10.1515/bmt-2022-0199 – ident: 2024021416532484280_j_bmt-2022-0406_ref_014 doi: 10.1016/j.hrthm.2019.06.008 – ident: 2024021416532484280_j_bmt-2022-0406_ref_081 doi: 10.1016/j.bspc.2022.104041 – ident: 2024021416532484280_j_bmt-2022-0406_ref_049 doi: 10.1016/j.health.2022.100121 – ident: 2024021416532484280_j_bmt-2022-0406_ref_076 doi: 10.1088/1361-6579/aad386 – ident: 2024021416532484280_j_bmt-2022-0406_ref_003 doi: 10.1093/eurheartj/ehab724.3049 – ident: 2024021416532484280_j_bmt-2022-0406_ref_010 doi: 10.1007/s10916-016-0432-6 – ident: 2024021416532484280_j_bmt-2022-0406_ref_068 doi: 10.1016/j.jelectrocard.2018.07.026 – ident: 2024021416532484280_j_bmt-2022-0406_ref_108 doi: 10.1007/s10489-021-02696-6 – ident: 2024021416532484280_j_bmt-2022-0406_ref_060 doi: 10.1111/coin.12070 – ident: 2024021416532484280_j_bmt-2022-0406_ref_026 doi: 10.1007/s13246-020-00964-2 – ident: 2024021416532484280_j_bmt-2022-0406_ref_039 doi: 10.1016/j.bspc.2022.103654 – ident: 2024021416532484280_j_bmt-2022-0406_ref_022 doi: 10.1016/j.compbiomed.2019.103386 – ident: 2024021416532484280_j_bmt-2022-0406_ref_067 doi: 10.1109/TBME.2006.873753 – ident: 2024021416532484280_j_bmt-2022-0406_ref_008 doi: 10.1016/j.asoc.2017.12.001 – ident: 2024021416532484280_j_bmt-2022-0406_ref_084 doi: 10.1016/j.artmed.2019.101789 – ident: 2024021416532484280_j_bmt-2022-0406_ref_009 doi: 10.1134/S1054661819040151 – ident: 2024021416532484280_j_bmt-2022-0406_ref_069 doi: 10.1109/TIM.2021.3072144 – ident: 2024021416532484280_j_bmt-2022-0406_ref_036 doi: 10.1016/j.compbiomed.2017.06.006 – ident: 2024021416532484280_j_bmt-2022-0406_ref_106 doi: 10.1007/s10916-010-9535-7 – ident: 2024021416532484280_j_bmt-2022-0406_ref_093 doi: 10.1515/bmt-2020-0329 – ident: 2024021416532484280_j_bmt-2022-0406_ref_052 doi: 10.1016/j.compbiomed.2022.106081 – ident: 2024021416532484280_j_bmt-2022-0406_ref_012 doi: 10.1016/j.knosys.2017.06.003 – ident: 2024021416532484280_j_bmt-2022-0406_ref_107 doi: 10.1016/j.eswa.2010.10.028 |
SSID | ssj0045590 |
Score | 2.3200579 |
Snippet | Coronary artery diseases (CADs) are the leading cause of death worldwide and early diagnosis is crucial for timely treatment. To address this, our study... |
SourceID | proquest pubmed crossref walterdegruyter |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 79 |
SubjectTerms | Anomalies Artificial intelligence Artificial neural networks Automation Broadband Cardiovascular diseases classification Clustering Coronary artery disease Data processing Decision support systems Deep learning Diagnosis Diagnostic systems EKG Electrocardiography Feature extraction Heart diseases Learning algorithms Machine learning Nerves Neural networks Neyman-Pearson hypothesis testing Outliers (statistics) Probabilistic models Signal processing Statistical analysis Sympathetic nerves synthetic minority oversampling technique (SMOTE) Time domain analysis Unsupervised learning |
Title | Machine learning based hybrid anomaly detection technique for automatic diagnosis of cardiovascular diseases using cardiac sympathetic nerve activity and electrocardiogram |
URI | https://www.degruyter.com/doi/10.1515/bmt-2022-0406 https://www.ncbi.nlm.nih.gov/pubmed/37823386 https://www.proquest.com/docview/2926167991 https://www.proquest.com/docview/2876640510 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9EIPFW8CBS0S4mJcsrv22j62qFAhBS4p6s2yd9dp1cZBiS2U_CEO_ElmH3biJkiFixU5-4rmy8zO7sx8CL1lSunsj8Lnw4z6QcGlnzMR-ywAfZkTTnPDdTj6ys_Ogy8X4UWv92sjaqmu8iOx2plX8j9ShXcgV50l-w-SbQeFF_AZ5AtPkDA87yTjkYmEVA31w8TTNkl6l0udhuVl5Wya3Sw9qSplCcHXBVtN7GRdzWzBVmnj7WxpEtGNUHU3OAuvtvm5BlHCWyynmsxYp0B6pY6aNFU5DBGFPop37Dp2LB0A1rk8Nin_Vytd1URobiGzrDZlaKzmKxNjMDLjnqiJKxdhcHl1bY9sv80vHbDdmQUNTA4439TDhPlhaMl6jpRVveBb-TQyRMOtbrY0Lh0MWkVrGWicySamwsK2NQhN4Yx8WgFqwOcGfbWj6vYta9jGKGrvCAZIoXuqu6e6-z20R8EfoX20d_z55PR7Y_QDcMyGDVmG_mGunCsM8KEzf3f7s-XT7KODnyZMQqrJvF5WzbW82e2MH6AD56bgY4u5h6inykdof6N45WP026EPN-jDBn3Yog879OEWfbhFHwb04RZ9uEUfnhW4iz7coA8b9GGHPryBPmzQhxv0wbwSb6HvCTr_dDr-eOY76g9fsIhWfhJlIc0DIcA7iMAex1wmJJBDwSRnGaFUZLFIoI2KqSBcspjxIiQiYYyDzxuxp6hfzkr1HGHB8mGRKBKoMAtIVECHjEhOiyzJwJeWA_S-kUgqXF18Tc9yk-5EwAC9a5v_sAVh_tbwsBFv6nTGIqUJ5friMyED9Kb9GjS6vqbLSjWroQ1sUHigjeUAPbOwaGdisKFnLIbB2S2crOfYuRqegOV9cde1v0T313_bQ9Sv5rV6BZvvKn_tgP8HLifkBQ |
linkProvider | Walter de Gruyter |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7B9gA9lDddKDBIiBPpbmLHSY4FtSzQ7alF3CLHdraI3aRqEqHlL_EnGSdO6AMucLZjx5rJPOJvvgF4xYyx1R-5J6Yy8HgutJcxFXuMk73MfBFkba_D-ZGYnfCPX8IeTVg5WKU2i_NmXXcMqRNdqsb-KBu4BsgDT7JVTfKlPIp0UExO69XyJmzEnNKVEWzsvX-7_7k3x5xC5mnfxiCk4NgRbV5b5bJjuhZtbsLW9_YCe3i7C37o4A5k_Qk6-Mm33abOdtWPK-SO_3XEu7DlolTc69TqHtwwxX3YvMBd-AB-zlsYpkHXd2KB1iFqPF3bGjCURbmSyzVqU7dgrwIHtlikOBllU5ctWyzqDuz3tcIyR3UJHovu-qhCC89fdKNSYbVe2U7Ktv4SCwvZRFueYbtg0L4aXWufbi2LPnsIJwf7x-9mnuv84CkWBbWXRDIMMq4UBYcRmeNY6MTneqqYFkz6QaBkrBKaY-JA-UJTmi3y0FcJY4JSnog9glFRFmYbULFsmifG5yaU3I9yekD6WgS5TCSlUnoMb3qxp8rRotvuHMvUpkckiJQEkVpBpFYQY3g9TD_r-ED-NnGn16HUmYUqDRJKWOlEiT-Gl8MwfdD2lkYWpmxoDvknwa2tHMPjTveGnRjFc4zFtDi7ooy_9_jj2wjKypMn__TUC7g1O54fpocfjj49hds0yNuSfrEDo_q8Mc8oKKuz5-6z-wWwsDbE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVkL00PIqXVpgkBAn0l3HjpMc29KlPFpxoKi3yLGdBdFNqm6iavlL_EnGebFt4QJnO3asmcwj_uYbgJfcWlf9kXlyrHxPZNJ4KdeRxwXZy5RJP617HR4dy8MT8f40OF2q4newSmOnF9WibBhSR6bQlftR1nMNkAcepbOS5Et5FOmgHJ2b7DasRIJSmQGs7L7dO_jSWWNBEfO462IQUGzc8mzeWOSqX7oRbK7C2mV9f92_3JIbmqyD6g7QoE--71RluqN_XON2_J8T3oO1NkbF3Uap7sMtmz-A1SXmwofw86gGYVpsu05M0blDg18XrgIMVV7M1NkCjS1rqFeOPVcsUpSMqiqLmisWTQP1-zbHIkN9BRyL7eXRHB04f9qMKo3zxcz1UXbVl5g7wCa64gzXA4P2Ndg29mnWctizR3AyOfi8f-i1fR88zUO_9OJQBX4qtKbQMCRjHEkTM2HGmhvJFfN9rSId0xwb-ZpJQ0m2zAKmY84lJTwh34BBXuR2E1DzdJzFlgkbKMHCjB5QzEg_U7GiRMoM4XUn9US3pOiuN8dZ4pIjkkNCckicHBInhyG86qefN2wgf5u43alQ0hqFeeLHlK7SiWI2hBf9MH3O7o5G5baoaA55JymcpRzC40b1-p04RXOcR7Q4v6aLv_f449tIysnjJ__01HO48-nNJPn47vjDFtylMVHX88ttGJQXlX1KEVmZPms_ul_kDjVr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+based+hybrid+anomaly+detection+technique+for+automatic+diagnosis+of+cardiovascular+diseases+using+cardiac+sympathetic+nerve+activity+and+electrocardiogram&rft.jtitle=Biomedizinische+Technik&rft.au=Terzi%2C+Merve+Begum&rft.au=Arikan%2C+Orhan&rft.date=2024-02-26&rft.issn=0013-5585&rft.eissn=1862-278X&rft.volume=69&rft.issue=1&rft.spage=79&rft.epage=109&rft_id=info:doi/10.1515%2Fbmt-2022-0406&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_bmt_2022_0406 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5585&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5585&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5585&client=summon |