Conductive elastic sponge-based triboelectric nanogenerator (TENG) for effective random mechanical energy harvesting and ammonia sensing

Triboelectric nanogenerator (TENG) based on elastic materials is increasing interests for irregular and random mechanical energies harvesting. However, the conductive design of the elastic materials in TENGs often limits its applications. Herein, a new conductive and elastic sponge-based triboelectr...

Full description

Saved in:
Bibliographic Details
Published inNano energy Vol. 79; p. 105422
Main Authors Liu, Yupeng, Zheng, Youbin, Wu, Zishuai, Zhang, Liqiang, Sun, Weixiang, Li, Tinghua, Wang, Daoai, Zhou, Feng
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Triboelectric nanogenerator (TENG) based on elastic materials is increasing interests for irregular and random mechanical energies harvesting. However, the conductive design of the elastic materials in TENGs often limits its applications. Herein, a new conductive and elastic sponge-based triboelectric nanogenerator (ES-TENG) is developed for random mechanical energy harvesting, which integrates the elastic material and the conductive material on a flexible sponge to realize the collection of mechanical energies, particularly for irregular and random motions. The conductive elastic sponge is prepared by a simple dilute chemical polymerization of aniline to grow conductive polyaniline nanowires (PANI NWs) on the surface of elastic sponge. Due to the flexible deformation of sponge, it can harvest the kinetic energy of disordered motion with different amplitudes and from variable directions. As the triboelectric layer of ES-TENG, the porous sponge and polyaniline nanowires on its surface can provide a large contact area and improve the triboelectric efficiency. At the same time, the conductive polyaniline coating on the surface of sponge can also be used as the electrode of ES-TENG to conduct electrons and generate an output of 540 V and 6 μA respectively, which can be used on various flexible object surfaces to collect irregular and random mechanical energy ubiquitous in daily life. In addition, based on the NH3-sensing performance and the three-dimensional reticular structure of the polyaniline nanowires on the elastic sponge, the ES-TENG can make it work as self-powered sensor for detecting toxic NH3 with the detection limit up to 1 ppm and the response time less than 3 s. In view of the microporous and nanowire structures, elasticity, conductivity and easy fabrication of the conductive elastic sponge, the ES-TENG has promising applications in various irregular and random mechanical energy harvesting and self-powered NH3 sensors. [Display omitted] •A new conductive elastic sponge-based triboelectric nanogenerator (ES-TENG) is developed.•The conductive elastic sponge is prepared by a dilute chemical polymerization of aniline on the surface of sponge.•The ES-TENG can conveniently harvest irregular and random mechanical energies.•The ES-TENG based self-powered NH3 sensor has detection limit up to 1 ppm and fast response of less than 3 s.
AbstractList Triboelectric nanogenerator (TENG) based on elastic materials is increasing interests for irregular and random mechanical energies harvesting. However, the conductive design of the elastic materials in TENGs often limits its applications. Herein, a new conductive and elastic sponge-based triboelectric nanogenerator (ES-TENG) is developed for random mechanical energy harvesting, which integrates the elastic material and the conductive material on a flexible sponge to realize the collection of mechanical energies, particularly for irregular and random motions. The conductive elastic sponge is prepared by a simple dilute chemical polymerization of aniline to grow conductive polyaniline nanowires (PANI NWs) on the surface of elastic sponge. Due to the flexible deformation of sponge, it can harvest the kinetic energy of disordered motion with different amplitudes and from variable directions. As the triboelectric layer of ES-TENG, the porous sponge and polyaniline nanowires on its surface can provide a large contact area and improve the triboelectric efficiency. At the same time, the conductive polyaniline coating on the surface of sponge can also be used as the electrode of ES-TENG to conduct electrons and generate an output of 540 V and 6 μA respectively, which can be used on various flexible object surfaces to collect irregular and random mechanical energy ubiquitous in daily life. In addition, based on the NH3-sensing performance and the three-dimensional reticular structure of the polyaniline nanowires on the elastic sponge, the ES-TENG can make it work as self-powered sensor for detecting toxic NH3 with the detection limit up to 1 ppm and the response time less than 3 s. In view of the microporous and nanowire structures, elasticity, conductivity and easy fabrication of the conductive elastic sponge, the ES-TENG has promising applications in various irregular and random mechanical energy harvesting and self-powered NH3 sensors. [Display omitted] •A new conductive elastic sponge-based triboelectric nanogenerator (ES-TENG) is developed.•The conductive elastic sponge is prepared by a dilute chemical polymerization of aniline on the surface of sponge.•The ES-TENG can conveniently harvest irregular and random mechanical energies.•The ES-TENG based self-powered NH3 sensor has detection limit up to 1 ppm and fast response of less than 3 s.
ArticleNumber 105422
Author Wu, Zishuai
Zhou, Feng
Wang, Daoai
Zheng, Youbin
Li, Tinghua
Zhang, Liqiang
Liu, Yupeng
Sun, Weixiang
Author_xml – sequence: 1
  givenname: Yupeng
  surname: Liu
  fullname: Liu, Yupeng
  organization: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
– sequence: 2
  givenname: Youbin
  surname: Zheng
  fullname: Zheng, Youbin
  organization: Qingdao Center of Resource Chemistry and New Materials, Qingdao 266100, China
– sequence: 3
  givenname: Zishuai
  surname: Wu
  fullname: Wu, Zishuai
  organization: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
– sequence: 4
  givenname: Liqiang
  surname: Zhang
  fullname: Zhang, Liqiang
  organization: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
– sequence: 5
  givenname: Weixiang
  surname: Sun
  fullname: Sun, Weixiang
  organization: Qingdao Center of Resource Chemistry and New Materials, Qingdao 266100, China
– sequence: 6
  givenname: Tinghua
  surname: Li
  fullname: Li, Tinghua
  organization: Technical Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming 650231, China
– sequence: 7
  givenname: Daoai
  surname: Wang
  fullname: Wang, Daoai
  email: wangda@licp.cas.cn
  organization: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
– sequence: 8
  givenname: Feng
  surname: Zhou
  fullname: Zhou, Feng
  organization: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
BookMark eNqFkLFOwzAQhj2ABBTegMEjDCm2Y6ctAxKqoCBVsJTZujjn4iqxKztU4g14bByFiQFuudOv-__TfWfkyAePhFxyNuWMVze7qQcf0E8FE4OkpBBH5FQIzgsxV-qEXKS0Y7kqxWdcnJKvZfDNh-ndASm2kHpnaNoHv8WihoQN7aOrA7Zo8mDoEL9FjxH6EOnV5uFldU1tHtFaHFMi-CZ0tEPzDt4ZaOmwv_2k7xAPmA_4Lc0rFLoueAc0oU9ZOyfHFtqEFz99Qt4eHzbLp2L9unpe3q8LU85EXyyktCjrcjEXXGHV1GUNAu3cKqVqKWXNRFWiEMC5nZWMwQylkXMuuVILVkE5IXLMNTGkFNHqfXQdxE_NmR4g6p0eIeoBoh4hZtvtL5txPfQu-D6Ca_8z341mzI8dHEadjENvsHExU9NNcH8HfAOX_pYe
CitedBy_id crossref_primary_10_1088_1361_665X_ad791b
crossref_primary_10_1080_19475411_2023_2168782
crossref_primary_10_1002_adsu_202300385
crossref_primary_10_1016_j_nanoen_2024_109681
crossref_primary_10_1039_D3EE03052K
crossref_primary_10_1016_j_nanoen_2025_110711
crossref_primary_10_1016_j_compositesa_2024_108582
crossref_primary_10_1002_admt_202301225
crossref_primary_10_1016_j_nanoen_2023_109080
crossref_primary_10_1021_acsaelm_2c00909
crossref_primary_10_1021_acsomega_2c06335
crossref_primary_10_1016_j_inoche_2024_112618
crossref_primary_10_1016_j_nanoen_2024_109609
crossref_primary_10_1002_ente_202200113
crossref_primary_10_1016_j_enconman_2021_114571
crossref_primary_10_1016_j_nanoen_2022_107506
crossref_primary_10_1039_D4MA01026D
crossref_primary_10_1021_acs_langmuir_2c03405
crossref_primary_10_1080_21663831_2022_2026513
crossref_primary_10_1016_j_nanoen_2021_106058
crossref_primary_10_1016_j_nanoen_2024_109444
crossref_primary_10_1002_ente_202301136
crossref_primary_10_1021_acsami_1c06330
crossref_primary_10_1039_D0TA12359E
crossref_primary_10_1016_j_nanoen_2024_109672
crossref_primary_10_1016_j_cej_2023_146505
crossref_primary_10_1016_j_cej_2023_143358
crossref_primary_10_1021_acsami_3c14082
crossref_primary_10_3390_nano11102496
crossref_primary_10_1002_adsr_202200058
crossref_primary_10_1016_j_nanoen_2022_107859
crossref_primary_10_1016_j_snb_2023_133917
crossref_primary_10_1021_acsnano_2c12458
crossref_primary_10_1016_j_nanoen_2021_106787
crossref_primary_10_1016_j_cej_2024_153367
crossref_primary_10_1039_D4MA00304G
crossref_primary_10_1016_j_cej_2023_144280
crossref_primary_10_1016_j_cej_2025_160598
crossref_primary_10_1016_j_nanoen_2023_108365
crossref_primary_10_1088_2631_8695_acf980
crossref_primary_10_3390_s23020579
crossref_primary_10_1016_j_nanoen_2023_108253
crossref_primary_10_1002_agt2_319
crossref_primary_10_1021_acsami_1c16748
crossref_primary_10_1016_j_carbpol_2024_123074
crossref_primary_10_3390_chemosensors11050304
crossref_primary_10_1016_j_jcis_2024_08_233
crossref_primary_10_1088_1361_6528_ac4b7b
crossref_primary_10_3390_bios12121127
crossref_primary_10_1002_smll_202107222
crossref_primary_10_1016_j_nanoen_2020_105623
crossref_primary_10_1021_acsami_1c19174
crossref_primary_10_1016_j_cej_2025_159614
crossref_primary_10_1016_j_cej_2023_147186
crossref_primary_10_1016_j_snb_2023_133688
crossref_primary_10_1021_acssuschemeng_3c00124
crossref_primary_10_1016_j_nanoen_2024_109426
crossref_primary_10_1039_D3TA03415A
crossref_primary_10_1016_j_nanoen_2023_108178
crossref_primary_10_1039_D4NR03517H
crossref_primary_10_1088_1361_6463_acf770
crossref_primary_10_3390_mi13101586
crossref_primary_10_1002_gch2_202400224
crossref_primary_10_3390_s24123812
crossref_primary_10_1016_j_nanoen_2024_110283
crossref_primary_10_1021_acsabm_3c00377
crossref_primary_10_1021_acsomega_3c00970
crossref_primary_10_1039_D2QM00690A
crossref_primary_10_1002_admt_202300685
crossref_primary_10_1039_D2MA00771A
crossref_primary_10_3390_mi12111308
crossref_primary_10_1016_j_nanoen_2021_105833
crossref_primary_10_1021_acsaem_2c01469
crossref_primary_10_1016_j_ijbiomac_2024_137226
crossref_primary_10_3390_bios13060604
crossref_primary_10_1016_j_talanta_2025_127752
crossref_primary_10_1021_acsapm_3c01775
crossref_primary_10_1021_acsbiomaterials_1c01106
crossref_primary_10_1039_D3NR04060G
crossref_primary_10_1039_D2TA01788A
crossref_primary_10_3390_polym15224383
crossref_primary_10_1007_s11431_021_1943_8
crossref_primary_10_1039_D2TA05071D
crossref_primary_10_1002_adfm_202313794
crossref_primary_10_1016_j_cej_2024_153705
crossref_primary_10_1002_aelm_202300334
crossref_primary_10_1016_j_nanoen_2021_106442
Cites_doi 10.1016/j.nanoen.2019.103997
10.1002/aenm.201702671
10.1016/j.nanoen.2018.02.046
10.1016/j.nanoen.2019.104205
10.1038/542159a
10.1016/j.nanoen.2018.06.019
10.1002/aenm.202000426
10.1039/C5EE01532D
10.1002/adma.201704077
10.1016/j.nanoen.2019.01.077
10.1016/j.snb.2017.04.039
10.1016/j.snb.2017.12.052
10.1016/j.nanoen.2012.01.004
10.1016/j.nanoen.2018.03.027
10.1002/aenm.201700124
10.1002/aenm.201602397
10.1016/j.nanoen.2018.02.031
10.1016/j.nanoen.2018.06.041
10.1016/j.nanoen.2019.05.043
10.1021/acsnano.7b00396
10.1021/acsnano.6b07389
10.1002/adsu.201800081
10.1016/j.nanoen.2019.05.007
10.1002/adfm.201304211
10.1002/aenm.201301322
10.1021/acsnano.5b02010
10.1021/acsnano.8b00140
10.1038/ncomms6747
10.1063/1.5028478
10.1016/j.nanoen.2019.04.025
10.1016/j.nanoen.2019.01.002
10.1016/j.nanoen.2020.104524
10.1016/j.nanoen.2019.03.019
10.1002/adfm.201504675
10.1016/j.nanoen.2017.10.029
10.1002/aenm.201501778
10.1002/aenm.201600665
10.1002/smll.201400863
10.1002/adma.201504356
10.1016/j.nanoen.2019.02.057
10.1021/nn4007708
10.1021/acsnano.8b00108
10.1016/j.nanoen.2015.06.006
10.1016/j.nanoen.2018.11.071
10.1039/C6RA17429A
10.1016/j.nanoen.2018.12.054
10.1016/j.nanoen.2019.06.025
10.1016/j.nanoen.2020.105112
10.1016/j.nanoen.2019.02.054
10.1016/j.nanoen.2019.05.046
10.1002/adma.201404071
10.1021/acsnano.8b02479
10.1016/j.nanoen.2018.12.032
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nanoen.2020.105422
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_nanoen_2020_105422
S221128552030999X
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
JARJE
KOM
M41
MAGPM
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SPC
SPCBC
SSM
SSR
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c372t-944fe4b398215e6db3ba2ef8f555b444b0263e22a11f7300a7e4c4814155906a3
IEDL.DBID .~1
ISSN 2211-2855
IngestDate Tue Jul 01 00:56:41 EDT 2025
Thu Apr 24 23:13:19 EDT 2025
Tue Feb 13 08:07:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Polyaniline Nanowires
Random energy harvesting
Ammonia sensing
Conductive elastic sponge
Triboelectric Nanogenerator
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-944fe4b398215e6db3ba2ef8f555b444b0263e22a11f7300a7e4c4814155906a3
ParticipantIDs crossref_primary_10_1016_j_nanoen_2020_105422
crossref_citationtrail_10_1016_j_nanoen_2020_105422
elsevier_sciencedirect_doi_10_1016_j_nanoen_2020_105422
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationTitle Nano energy
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zou, Zhang, Huang, Bian, Jie, Willander, Cao, Wang, Wang (bib3) 2018; 8
Cheng, Guo, Wen, Zhang, Yin, Li, Liu, Song, Sun, Wang, Wang (bib34) 2019; 57
Chen, Wang, Ma, Li, Willander, Jie, Cao, Wang (bib9) 2016; 6
Xia, Wu, Fu, Xu (bib10) 2020; 77
Li, Zou, Xing, Zhang, Cao, Wang, Wang (bib4) 2017; 11
Xi, Guo, Zi, Li, Wang, Deng, Li, Hu, Cao, Wang (bib6) 2017; 7
Parida, Xiong, Zhou, Lee (bib36) 2019; 59
Xia, Zhu, Zhang, Du, Fu, Xu (bib27) 2019; 56
Wang, Wen, Zi, Zhou, Lin, Guo, Xu, Wang (bib53) 2016; 26
Li, Xu, Xing, Cao, Bian, Wang, Wang (bib2) 2017; 7
Zhang, Xie, Xu, Su, Tai, Du, Jiang (bib49) 2018; 259
Wang (bib1) 2017; 542
Chen, Zhang, Zhan, Lin, Zhang, Zou, Zhang, Zou, Wang (bib23) 2019; 0
Xia, Zhu, Zhang, Du, Xu, Wang (bib20) 2018; 50
Chen, Miao, Guo, Chen, Song, Su, Zhang (bib46) 2018; 112
Cao, Jie, Wang, Wang (bib11) 2016; 6
Tang, Han, Han, Gao, Cao, Wang (bib8) 2015; 27
Xia, Fu, Xu (bib30) 2020; 10
Seol, Woo, Lee, Im, Hur, Choi (bib47) 2014; 10
He, Shi, Wang, Wen, Chen, Ouyang, Lee (bib16) 2019; 57
Wu, Zeng, Tang, Liu, Liu, Zhang, Wu, Hu, Wang (bib22) 2020; 67
Wang, Jiang, Tai, Liu, Duan, Yuan, Pan, Xie, Du, Su (bib55) 2019; 63
Wen, Chen, Yeh, Guo, Li, Fan, Zhang, Zhu, Wang (bib51) 2015; 16
Guo, Jia, Liu, Cao, Wang, Wang (bib19) 2018; 12
Song, Yin, Liu, Ma, Zhang, Li, Cheng, Zhang, Wang, Wang (bib32) 2019; 65
Kim, Chun, Kim, Lee, Park, Kim, Wang, Baik (bib33) 2015; 9
Zeng, Wu, Tang, Liu, Wu, Zhang, Yin, Yang, Yuan, Tan, Hu, Wang (bib21) 2020; 70
Liu, Li, Liu, Bu, Guo, Jiang, Zhao, Xi, Hu, Zhang (bib40) 2018; 2
Cheng, Li, Wang, Gao, Ma, Wang (bib28) 2019; 60
Liu, Liu, Dou, Sun, Cong, Jiang, Du, Pu, Hu, Wang (bib45) 2018; 12
Zhang, Liu, Huang, Guo, Li, Wu (bib42) 2019; 62
Kim, Lee, Shim, Ghaffari, Cho, Son, Jung, Soh, Choi, Jung, Chu, Jeon, Lee, Kim, Choi, Hyeon, Kim (bib43) 2014; 5
Zhao, Zhang, Shi, Liu, Zhang, Wu, Pan, Liu, Li, Wang (bib44) 2019; 59
Chen, Cao, Wang, Ma, Zhu, Willander, Jie, Wang (bib13) 2017; 7
Zhang, Han, Kim, Bao, Brugger, Zhang (bib15) 2018; 47
Li, Jiang, Zhao, Lan, Yao, Yu, Ping, Ying (bib31) 2019; 61
Feng, Huang, Liu, Guo, Li, Wu (bib38) 2019; 62
Cao, Zhang, Huang, Jiang, Zou, Wang, Wang (bib5) 2018; 30
Bai, Zhu, Lin, Jing, Chen, Zhang, Ma, Wang (bib26) 2013; 7
Su, Xie, Tai, Li, Yang, Wang, Zhang, Du, Zhang, Du, Jiang (bib48) 2018; 47
Su, Xie, Wang, Tai, Zhang, Du, Zhang, Du, Jiang (bib50) 2017; 251
Li, Chen, Guo, Fan, Wen, Yeh, Yu, Cao, Wang (bib12) 2016; 28
Wang, Chen, Lin (bib52) 2015; 8
Wang, Xie, Tai, Su, Yang, Zhang, Du, Jiang (bib54) 2018; 51
Sun, Pu, Liu, Yu, Du, Zhai, Hu, Wang (bib37) 2018; 12
Kim, Lee, Lee, Lee, Baik (bib29) 2016; 6
Guo, Li, Cao, Xiong, Jie, Willander, Cao, Wang, Wang (bib39) 2017; 11
Fan, Tian, Lin Wang (bib18) 2012; 1
Yang, Chen, Yang, Zhang, Yang, Bai, Su, Wang (bib25) 2014; 4
Yang, Chen, Jing, Yang, Wen, Su, Zhu, Bai, Wang (bib24) 2014; 24
Bian, Wang, Ma, Jie, Zou, Cao (bib41) 2018; 47
Liu, Zheng, Li, Wang, Zhou (bib14) 2019; 61
Liu, Zhao, Zeng, Fu, Hu (bib17) 2019; 59
Xing, Jie, Cao, Li, Wang (bib7) 2017; 42
Shi, He, Lee (bib35) 2019; 57
Fan (10.1016/j.nanoen.2020.105422_bib18) 2012; 1
Li (10.1016/j.nanoen.2020.105422_bib2) 2017; 7
Li (10.1016/j.nanoen.2020.105422_bib12) 2016; 28
Zou (10.1016/j.nanoen.2020.105422_bib3) 2018; 8
Bai (10.1016/j.nanoen.2020.105422_bib26) 2013; 7
Xing (10.1016/j.nanoen.2020.105422_bib7) 2017; 42
Li (10.1016/j.nanoen.2020.105422_bib4) 2017; 11
Seol (10.1016/j.nanoen.2020.105422_bib47) 2014; 10
Wang (10.1016/j.nanoen.2020.105422_bib54) 2018; 51
Shi (10.1016/j.nanoen.2020.105422_bib35) 2019; 57
Wang (10.1016/j.nanoen.2020.105422_bib1) 2017; 542
Bian (10.1016/j.nanoen.2020.105422_bib41) 2018; 47
Liu (10.1016/j.nanoen.2020.105422_bib14) 2019; 61
Wu (10.1016/j.nanoen.2020.105422_bib22) 2020; 67
Zeng (10.1016/j.nanoen.2020.105422_bib21) 2020; 70
Wang (10.1016/j.nanoen.2020.105422_bib55) 2019; 63
Kim (10.1016/j.nanoen.2020.105422_bib29) 2016; 6
Parida (10.1016/j.nanoen.2020.105422_bib36) 2019; 59
Kim (10.1016/j.nanoen.2020.105422_bib33) 2015; 9
Cheng (10.1016/j.nanoen.2020.105422_bib28) 2019; 60
Feng (10.1016/j.nanoen.2020.105422_bib38) 2019; 62
Zhao (10.1016/j.nanoen.2020.105422_bib44) 2019; 59
Cheng (10.1016/j.nanoen.2020.105422_bib34) 2019; 57
Liu (10.1016/j.nanoen.2020.105422_bib45) 2018; 12
Wang (10.1016/j.nanoen.2020.105422_bib53) 2016; 26
Xia (10.1016/j.nanoen.2020.105422_bib20) 2018; 50
Xia (10.1016/j.nanoen.2020.105422_bib30) 2020; 10
Chen (10.1016/j.nanoen.2020.105422_bib46) 2018; 112
Zhang (10.1016/j.nanoen.2020.105422_bib42) 2019; 62
Su (10.1016/j.nanoen.2020.105422_bib50) 2017; 251
Zhang (10.1016/j.nanoen.2020.105422_bib49) 2018; 259
Sun (10.1016/j.nanoen.2020.105422_bib37) 2018; 12
Tang (10.1016/j.nanoen.2020.105422_bib8) 2015; 27
Xia (10.1016/j.nanoen.2020.105422_bib10) 2020; 77
He (10.1016/j.nanoen.2020.105422_bib16) 2019; 57
Chen (10.1016/j.nanoen.2020.105422_bib13) 2017; 7
Zhang (10.1016/j.nanoen.2020.105422_bib15) 2018; 47
Wen (10.1016/j.nanoen.2020.105422_bib51) 2015; 16
Chen (10.1016/j.nanoen.2020.105422_bib9) 2016; 6
Yang (10.1016/j.nanoen.2020.105422_bib24) 2014; 24
Xia (10.1016/j.nanoen.2020.105422_bib27) 2019; 56
Chen (10.1016/j.nanoen.2020.105422_bib23) 2019; 0
Li (10.1016/j.nanoen.2020.105422_bib31) 2019; 61
Guo (10.1016/j.nanoen.2020.105422_bib39) 2017; 11
Yang (10.1016/j.nanoen.2020.105422_bib25) 2014; 4
Su (10.1016/j.nanoen.2020.105422_bib48) 2018; 47
Wang (10.1016/j.nanoen.2020.105422_bib52) 2015; 8
Liu (10.1016/j.nanoen.2020.105422_bib17) 2019; 59
Cao (10.1016/j.nanoen.2020.105422_bib5) 2018; 30
Song (10.1016/j.nanoen.2020.105422_bib32) 2019; 65
Liu (10.1016/j.nanoen.2020.105422_bib40) 2018; 2
Kim (10.1016/j.nanoen.2020.105422_bib43) 2014; 5
Cao (10.1016/j.nanoen.2020.105422_bib11) 2016; 6
Xi (10.1016/j.nanoen.2020.105422_bib6) 2017; 7
Guo (10.1016/j.nanoen.2020.105422_bib19) 2018; 12
References_xml – volume: 62
  start-page: 197
  year: 2019
  end-page: 204
  ident: bib38
  article-title: A self-powered smart safety belt enabled by triboelectric nanogenerators for driving status monitoring
  publication-title: Nano Energy
– volume: 50
  start-page: 571
  year: 2018
  end-page: 580
  ident: bib20
  article-title: Painting a high-output triboelectric nanogenerator on paper for harvesting energy from human body motion
  publication-title: Nano Energy
– volume: 10
  year: 2020
  ident: bib30
  article-title: Multiple‐frequency high‐output triboelectric nanogenerator based on a water balloon for all‐weather water wave energy harvesting
  publication-title: Adv. Energy Mater.
– volume: 47
  start-page: 442
  year: 2018
  end-page: 450
  ident: bib41
  article-title: Stretchable 3D polymer for simultaneously mechanical energy harvesting and biomimetic force sensing
  publication-title: Nano Energy
– volume: 2
  year: 2018
  ident: bib40
  article-title: Soft tubular triboelectric nanogenerator for biomechanical energy harvesting
  publication-title: Adv. Sustain. Syst.
– volume: 24
  start-page: 4090
  year: 2014
  end-page: 4096
  ident: bib24
  article-title: 3D stack integrated triboelectric nanogenerator for harvesting vibration energy
  publication-title: Adv. Funct. Mater.
– volume: 77
  year: 2020
  ident: bib10
  article-title: A pulse controllable voltage source based on triboelectric nanogenerator
  publication-title: Nano Energy
– volume: 51
  start-page: 231
  year: 2018
  end-page: 240
  ident: bib54
  article-title: Ultrasensitive flexible self-powered ammonia sensor based on triboelectric nanogenerator at room temperature
  publication-title: Nano Energy
– volume: 11
  start-page: 3950
  year: 2017
  end-page: 3956
  ident: bib4
  article-title: From dual-mode triboelectric nanogenerator to smart tactile sensor: a multiplexing design
  publication-title: ACS Nano
– volume: 42
  start-page: 138
  year: 2017
  end-page: 142
  ident: bib7
  article-title: Natural triboelectric nanogenerator based on soles for harvesting low-frequency walking energy
  publication-title: Nano Energy
– volume: 112
  year: 2018
  ident: bib46
  article-title: Waterproof and stretchable triboelectric nanogenerator for biomechanical energy harvesting and self-powered sensing
  publication-title: Appl. Phys. Lett.
– volume: 8
  year: 2018
  ident: bib3
  article-title: Coupled supercapacitor and triboelectric nanogenerator boost biomimetic pressure sensor
  publication-title: Adv. Energy Mater.
– volume: 30
  year: 2018
  ident: bib5
  article-title: Inductor-free wireless energy delivery via Maxwell’s displacement current from an electrodeless triboelectric nanogenerator
  publication-title: Adv. Mater.
– volume: 57
  start-page: 432
  year: 2019
  end-page: 439
  ident: bib34
  article-title: Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure
  publication-title: Nano Energy
– volume: 1
  start-page: 328
  year: 2012
  end-page: 334
  ident: bib18
  article-title: Flexible triboelectric generator
  publication-title: Nano Energy
– volume: 70
  year: 2020
  ident: bib21
  article-title: A high-efficient breeze energy harvester utilizing a full-packaged triboelectric nanogenerator based on flow-induced vibration
  publication-title: Nano Energy
– volume: 26
  start-page: 1070
  year: 2016
  end-page: 1076
  ident: bib53
  article-title: All-plastic-materials based self-charging power system composed of triboelectric nanogenerators and supercapacitors
  publication-title: Adv. Funct. Mater.
– volume: 47
  start-page: 410
  year: 2018
  end-page: 426
  ident: bib15
  article-title: All-in-one self-powered flexible microsystems based on triboelectric nanogenerators
  publication-title: Nano Energy
– volume: 7
  start-page: 3713
  year: 2013
  end-page: 3719
  ident: bib26
  article-title: Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions
  publication-title: ACS Nano
– volume: 0
  year: 2019
  ident: bib23
  article-title: An elastic triboelectric nanogenerator for harvesting random mechanical energy with multiple working modes
  publication-title: Adv. Mater. Technol.
– volume: 11
  start-page: 856
  year: 2017
  end-page: 864
  ident: bib39
  article-title: Self-sterilized flexible single-electrode triboelectric nanogenerator for energy harvesting and dynamic force sensing
  publication-title: ACS Nano
– volume: 61
  start-page: 454
  year: 2019
  end-page: 461
  ident: bib14
  article-title: Water-solid triboelectrification with self-repairable surfaces for water-flow energy harvesting
  publication-title: Nano Energy
– volume: 12
  start-page: 3461
  year: 2018
  end-page: 3467
  ident: bib19
  article-title: Freestanding triboelectric nanogenerator enables noncontact motion-tracking and positioning
  publication-title: ACS Nano
– volume: 6
  year: 2016
  ident: bib11
  article-title: Triboelectric nanogenerators driven self-powered electrochemical processes for energy and environmental science
  publication-title: Adv. Energy Mater.
– volume: 67
  year: 2020
  ident: bib22
  article-title: A teeterboard-like hybrid nanogenerator for efficient harvesting of low-frequency ocean wave energy
  publication-title: Nano Energy
– volume: 8
  start-page: 2250
  year: 2015
  end-page: 2282
  ident: bib52
  article-title: Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors
  publication-title: Energy Environ. Sci.
– volume: 65
  year: 2019
  ident: bib32
  article-title: A highly elastic self-charging power system for simultaneously harvesting solar and mechanical energy
  publication-title: Nano Energy
– volume: 5
  start-page: 5747
  year: 2014
  ident: bib43
  article-title: Stretchable silicon nanoribbon electronics for skin prosthesis
  publication-title: Nat. Commun.
– volume: 16
  start-page: 38
  year: 2015
  end-page: 46
  ident: bib51
  article-title: Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer
  publication-title: Nano Energy
– volume: 542
  start-page: 159
  year: 2017
  end-page: 160
  ident: bib1
  article-title: Catch wave power in floating nets
  publication-title: Nature
– volume: 60
  start-page: 137
  year: 2019
  end-page: 143
  ident: bib28
  article-title: Triboelectric nanogenerator by integrating a cam and a movable frame for ambient mechanical energy harvesting
  publication-title: Nano Energy
– volume: 27
  start-page: 272
  year: 2015
  end-page: 276
  ident: bib8
  article-title: Self-powered water splitting using flowing kinetic energy
  publication-title: Adv. Mater.
– volume: 56
  start-page: 400
  year: 2019
  end-page: 410
  ident: bib27
  article-title: Milk-based triboelectric nanogenerator on paper for harvesting energy from human body motion
  publication-title: Nano Energy
– volume: 259
  start-page: 269
  year: 2018
  end-page: 281
  ident: bib49
  article-title: Visible light-assisted room temperature gas sensing with ZnO-Ag heterostructure nanoparticles
  publication-title: Sens. Actuators B Chem.
– volume: 59
  start-page: 237
  year: 2019
  end-page: 257
  ident: bib36
  article-title: Progress on triboelectric nanogenerator with stretchability, self-healability and bio-compatibility
  publication-title: Nano Energy
– volume: 6
  year: 2016
  ident: bib9
  article-title: Triboelectric nanogenerator for sustainable wastewater treatment via a self-powered electrochemical process
  publication-title: Adv. Energy Mater.
– volume: 57
  start-page: 338
  year: 2019
  end-page: 352
  ident: bib16
  article-title: Beyond energy harvesting - multi-functional triboelectric nanosensors on a textile
  publication-title: Nano Energy
– volume: 12
  start-page: 2818
  year: 2018
  end-page: 2826
  ident: bib45
  article-title: Triboelectric-nanogenerator-based soft energy-harvesting skin enabled by toughly bonded elastomer/hydrogel hybrids
  publication-title: ACS Nano
– volume: 251
  start-page: 144
  year: 2017
  end-page: 152
  ident: bib50
  article-title: Novel high-performance self-powered humidity detection enabled by triboelectric effect
  publication-title: Sens. Actuators B Chem.
– volume: 12
  start-page: 6147
  year: 2018
  end-page: 6155
  ident: bib37
  article-title: Self-healable, stretchable, transparent triboelectric nanogenerators as soft power sources
  publication-title: ACS Nano
– volume: 62
  start-page: 164
  year: 2019
  end-page: 170
  ident: bib42
  article-title: A stretchable dual-mode sensor array for multifunctional robotic electronic skin
  publication-title: Nano Energy
– volume: 7
  year: 2017
  ident: bib13
  article-title: An ultrathin flexible single-electrode triboelectric-nanogenerator for mechanical energy harvesting and instantaneous force sensing
  publication-title: Adv. Energy Mater.
– volume: 7
  year: 2017
  ident: bib2
  article-title: Boosting photoelectrochemical water splitting by TENG-charged Li-ion battery
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 6394
  year: 2015
  end-page: 6400
  ident: bib33
  article-title: Highly stretchable 2D fabrics for wearable triboelectric nanogenerator under harsh environments
  publication-title: ACS Nano
– volume: 4
  year: 2014
  ident: bib25
  article-title: Broadband vibrational energy harvesting based on a triboelectric nanogenerator
  publication-title: Adv. Energy Mater.
– volume: 63
  year: 2019
  ident: bib55
  article-title: An integrated flexible self-powered wearable respiration sensor
  publication-title: Nano Energy
– volume: 57
  start-page: 851
  year: 2019
  end-page: 871
  ident: bib35
  article-title: More than energy harvesting – combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems
  publication-title: Nano Energy
– volume: 59
  start-page: 302
  year: 2019
  end-page: 310
  ident: bib44
  article-title: Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing
  publication-title: Nano Energy
– volume: 6
  start-page: 88526
  year: 2016
  end-page: 88530
  ident: bib29
  article-title: Ergonomically designed replaceable and multifunctional triboelectric nanogenerator for a uniform contact
  publication-title: RSC Adv.
– volume: 28
  start-page: 2983
  year: 2016
  end-page: 2991
  ident: bib12
  article-title: Triboelectrification-enabled self-powered detection and removal of heavy metal ions in wastewater
  publication-title: Adv. Mater.
– volume: 10
  start-page: 3887
  year: 2014
  end-page: 3894
  ident: bib47
  article-title: Nature-replicated nano-in-micro structures for triboelectric energy harvesting
  publication-title: Small
– volume: 61
  start-page: 78
  year: 2019
  end-page: 85
  ident: bib31
  article-title: Fully stretchable triboelectric nanogenerator for energy harvesting and self-powered sensing
  publication-title: Nano Energy
– volume: 47
  start-page: 316
  year: 2018
  end-page: 324
  ident: bib48
  article-title: Self-powered room temperature NO2 detection driven by triboelectric nanogenerator under UV illumination
  publication-title: Nano Energy
– volume: 59
  start-page: 295
  year: 2019
  end-page: 301
  ident: bib17
  article-title: Expandable microsphere-based triboelectric nanogenerators as ultrasensitive pressure sensors for respiratory and pulse monitoring
  publication-title: Nano Energy
– volume: 7
  year: 2017
  ident: bib6
  article-title: Multifunctional TENG for blue energy scavenging and self-powered wind-speed sensor
  publication-title: Adv. Energy Mater.
– volume: 65
  year: 2019
  ident: 10.1016/j.nanoen.2020.105422_bib32
  article-title: A highly elastic self-charging power system for simultaneously harvesting solar and mechanical energy
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.103997
– volume: 8
  year: 2018
  ident: 10.1016/j.nanoen.2020.105422_bib3
  article-title: Coupled supercapacitor and triboelectric nanogenerator boost biomimetic pressure sensor
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702671
– volume: 47
  start-page: 410
  year: 2018
  ident: 10.1016/j.nanoen.2020.105422_bib15
  article-title: All-in-one self-powered flexible microsystems based on triboelectric nanogenerators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.02.046
– volume: 67
  year: 2020
  ident: 10.1016/j.nanoen.2020.105422_bib22
  article-title: A teeterboard-like hybrid nanogenerator for efficient harvesting of low-frequency ocean wave energy
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104205
– volume: 0
  year: 2019
  ident: 10.1016/j.nanoen.2020.105422_bib23
  article-title: An elastic triboelectric nanogenerator for harvesting random mechanical energy with multiple working modes
  publication-title: Adv. Mater. Technol.
– volume: 542
  start-page: 159
  year: 2017
  ident: 10.1016/j.nanoen.2020.105422_bib1
  article-title: Catch wave power in floating nets
  publication-title: Nature
  doi: 10.1038/542159a
– volume: 50
  start-page: 571
  year: 2018
  ident: 10.1016/j.nanoen.2020.105422_bib20
  article-title: Painting a high-output triboelectric nanogenerator on paper for harvesting energy from human body motion
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.06.019
– volume: 10
  year: 2020
  ident: 10.1016/j.nanoen.2020.105422_bib30
  article-title: Multiple‐frequency high‐output triboelectric nanogenerator based on a water balloon for all‐weather water wave energy harvesting
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202000426
– volume: 7
  year: 2017
  ident: 10.1016/j.nanoen.2020.105422_bib13
  article-title: An ultrathin flexible single-electrode triboelectric-nanogenerator for mechanical energy harvesting and instantaneous force sensing
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 2250
  year: 2015
  ident: 10.1016/j.nanoen.2020.105422_bib52
  article-title: Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE01532D
– volume: 30
  year: 2018
  ident: 10.1016/j.nanoen.2020.105422_bib5
  article-title: Inductor-free wireless energy delivery via Maxwell’s displacement current from an electrodeless triboelectric nanogenerator
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704077
– volume: 59
  start-page: 237
  year: 2019
  ident: 10.1016/j.nanoen.2020.105422_bib36
  article-title: Progress on triboelectric nanogenerator with stretchability, self-healability and bio-compatibility
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.01.077
– volume: 251
  start-page: 144
  year: 2017
  ident: 10.1016/j.nanoen.2020.105422_bib50
  article-title: Novel high-performance self-powered humidity detection enabled by triboelectric effect
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2017.04.039
– volume: 259
  start-page: 269
  year: 2018
  ident: 10.1016/j.nanoen.2020.105422_bib49
  article-title: Visible light-assisted room temperature gas sensing with ZnO-Ag heterostructure nanoparticles
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2017.12.052
– volume: 1
  start-page: 328
  year: 2012
  ident: 10.1016/j.nanoen.2020.105422_bib18
  article-title: Flexible triboelectric generator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.01.004
– volume: 47
  start-page: 442
  year: 2018
  ident: 10.1016/j.nanoen.2020.105422_bib41
  article-title: Stretchable 3D polymer for simultaneously mechanical energy harvesting and biomimetic force sensing
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.03.027
– volume: 7
  year: 2017
  ident: 10.1016/j.nanoen.2020.105422_bib2
  article-title: Boosting photoelectrochemical water splitting by TENG-charged Li-ion battery
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700124
– volume: 7
  year: 2017
  ident: 10.1016/j.nanoen.2020.105422_bib6
  article-title: Multifunctional TENG for blue energy scavenging and self-powered wind-speed sensor
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602397
– volume: 47
  start-page: 316
  year: 2018
  ident: 10.1016/j.nanoen.2020.105422_bib48
  article-title: Self-powered room temperature NO2 detection driven by triboelectric nanogenerator under UV illumination
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.02.031
– volume: 51
  start-page: 231
  year: 2018
  ident: 10.1016/j.nanoen.2020.105422_bib54
  article-title: Ultrasensitive flexible self-powered ammonia sensor based on triboelectric nanogenerator at room temperature
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.06.041
– volume: 62
  start-page: 197
  year: 2019
  ident: 10.1016/j.nanoen.2020.105422_bib38
  article-title: A self-powered smart safety belt enabled by triboelectric nanogenerators for driving status monitoring
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.05.043
– volume: 11
  start-page: 3950
  year: 2017
  ident: 10.1016/j.nanoen.2020.105422_bib4
  article-title: From dual-mode triboelectric nanogenerator to smart tactile sensor: a multiplexing design
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b00396
– volume: 11
  start-page: 856
  year: 2017
  ident: 10.1016/j.nanoen.2020.105422_bib39
  article-title: Self-sterilized flexible single-electrode triboelectric nanogenerator for energy harvesting and dynamic force sensing
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b07389
– volume: 2
  year: 2018
  ident: 10.1016/j.nanoen.2020.105422_bib40
  article-title: Soft tubular triboelectric nanogenerator for biomechanical energy harvesting
  publication-title: Adv. Sustain. Syst.
  doi: 10.1002/adsu.201800081
– volume: 61
  start-page: 454
  year: 2019
  ident: 10.1016/j.nanoen.2020.105422_bib14
  article-title: Water-solid triboelectrification with self-repairable surfaces for water-flow energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.05.007
– volume: 24
  start-page: 4090
  year: 2014
  ident: 10.1016/j.nanoen.2020.105422_bib24
  article-title: 3D stack integrated triboelectric nanogenerator for harvesting vibration energy
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201304211
– volume: 4
  year: 2014
  ident: 10.1016/j.nanoen.2020.105422_bib25
  article-title: Broadband vibrational energy harvesting based on a triboelectric nanogenerator
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201301322
– volume: 9
  start-page: 6394
  year: 2015
  ident: 10.1016/j.nanoen.2020.105422_bib33
  article-title: Highly stretchable 2D fabrics for wearable triboelectric nanogenerator under harsh environments
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b02010
– volume: 12
  start-page: 3461
  year: 2018
  ident: 10.1016/j.nanoen.2020.105422_bib19
  article-title: Freestanding triboelectric nanogenerator enables noncontact motion-tracking and positioning
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b00140
– volume: 5
  start-page: 5747
  year: 2014
  ident: 10.1016/j.nanoen.2020.105422_bib43
  article-title: Stretchable silicon nanoribbon electronics for skin prosthesis
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6747
– volume: 112
  year: 2018
  ident: 10.1016/j.nanoen.2020.105422_bib46
  article-title: Waterproof and stretchable triboelectric nanogenerator for biomechanical energy harvesting and self-powered sensing
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5028478
– volume: 61
  start-page: 78
  year: 2019
  ident: 10.1016/j.nanoen.2020.105422_bib31
  article-title: Fully stretchable triboelectric nanogenerator for energy harvesting and self-powered sensing
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.04.025
– volume: 57
  start-page: 851
  year: 2019
  ident: 10.1016/j.nanoen.2020.105422_bib35
  article-title: More than energy harvesting – combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.01.002
– volume: 70
  year: 2020
  ident: 10.1016/j.nanoen.2020.105422_bib21
  article-title: A high-efficient breeze energy harvester utilizing a full-packaged triboelectric nanogenerator based on flow-induced vibration
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104524
– volume: 60
  start-page: 137
  year: 2019
  ident: 10.1016/j.nanoen.2020.105422_bib28
  article-title: Triboelectric nanogenerator by integrating a cam and a movable frame for ambient mechanical energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.03.019
– volume: 26
  start-page: 1070
  year: 2016
  ident: 10.1016/j.nanoen.2020.105422_bib53
  article-title: All-plastic-materials based self-charging power system composed of triboelectric nanogenerators and supercapacitors
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201504675
– volume: 42
  start-page: 138
  year: 2017
  ident: 10.1016/j.nanoen.2020.105422_bib7
  article-title: Natural triboelectric nanogenerator based on soles for harvesting low-frequency walking energy
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.10.029
– volume: 6
  year: 2016
  ident: 10.1016/j.nanoen.2020.105422_bib9
  article-title: Triboelectric nanogenerator for sustainable wastewater treatment via a self-powered electrochemical process
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501778
– volume: 6
  year: 2016
  ident: 10.1016/j.nanoen.2020.105422_bib11
  article-title: Triboelectric nanogenerators driven self-powered electrochemical processes for energy and environmental science
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600665
– volume: 10
  start-page: 3887
  year: 2014
  ident: 10.1016/j.nanoen.2020.105422_bib47
  article-title: Nature-replicated nano-in-micro structures for triboelectric energy harvesting
  publication-title: Small
  doi: 10.1002/smll.201400863
– volume: 28
  start-page: 2983
  year: 2016
  ident: 10.1016/j.nanoen.2020.105422_bib12
  article-title: Triboelectrification-enabled self-powered detection and removal of heavy metal ions in wastewater
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504356
– volume: 59
  start-page: 295
  year: 2019
  ident: 10.1016/j.nanoen.2020.105422_bib17
  article-title: Expandable microsphere-based triboelectric nanogenerators as ultrasensitive pressure sensors for respiratory and pulse monitoring
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.02.057
– volume: 7
  start-page: 3713
  year: 2013
  ident: 10.1016/j.nanoen.2020.105422_bib26
  article-title: Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions
  publication-title: ACS Nano
  doi: 10.1021/nn4007708
– volume: 12
  start-page: 2818
  year: 2018
  ident: 10.1016/j.nanoen.2020.105422_bib45
  article-title: Triboelectric-nanogenerator-based soft energy-harvesting skin enabled by toughly bonded elastomer/hydrogel hybrids
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b00108
– volume: 16
  start-page: 38
  year: 2015
  ident: 10.1016/j.nanoen.2020.105422_bib51
  article-title: Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.06.006
– volume: 56
  start-page: 400
  year: 2019
  ident: 10.1016/j.nanoen.2020.105422_bib27
  article-title: Milk-based triboelectric nanogenerator on paper for harvesting energy from human body motion
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.11.071
– volume: 6
  start-page: 88526
  year: 2016
  ident: 10.1016/j.nanoen.2020.105422_bib29
  article-title: Ergonomically designed replaceable and multifunctional triboelectric nanogenerator for a uniform contact
  publication-title: RSC Adv.
  doi: 10.1039/C6RA17429A
– volume: 57
  start-page: 432
  year: 2019
  ident: 10.1016/j.nanoen.2020.105422_bib34
  article-title: Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.054
– volume: 63
  year: 2019
  ident: 10.1016/j.nanoen.2020.105422_bib55
  article-title: An integrated flexible self-powered wearable respiration sensor
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.06.025
– volume: 77
  year: 2020
  ident: 10.1016/j.nanoen.2020.105422_bib10
  article-title: A pulse controllable voltage source based on triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105112
– volume: 59
  start-page: 302
  year: 2019
  ident: 10.1016/j.nanoen.2020.105422_bib44
  article-title: Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.02.054
– volume: 62
  start-page: 164
  year: 2019
  ident: 10.1016/j.nanoen.2020.105422_bib42
  article-title: A stretchable dual-mode sensor array for multifunctional robotic electronic skin
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.05.046
– volume: 27
  start-page: 272
  year: 2015
  ident: 10.1016/j.nanoen.2020.105422_bib8
  article-title: Self-powered water splitting using flowing kinetic energy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404071
– volume: 12
  start-page: 6147
  year: 2018
  ident: 10.1016/j.nanoen.2020.105422_bib37
  article-title: Self-healable, stretchable, transparent triboelectric nanogenerators as soft power sources
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b02479
– volume: 57
  start-page: 338
  year: 2019
  ident: 10.1016/j.nanoen.2020.105422_bib16
  article-title: Beyond energy harvesting - multi-functional triboelectric nanosensors on a textile
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.032
SSID ssj0000651712
Score 2.5590212
Snippet Triboelectric nanogenerator (TENG) based on elastic materials is increasing interests for irregular and random mechanical energies harvesting. However, the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105422
SubjectTerms Ammonia sensing
Conductive elastic sponge
Polyaniline Nanowires
Random energy harvesting
Triboelectric Nanogenerator
Title Conductive elastic sponge-based triboelectric nanogenerator (TENG) for effective random mechanical energy harvesting and ammonia sensing
URI https://dx.doi.org/10.1016/j.nanoen.2020.105422
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQWWBAPEV5VB4YYDBNnIudjKhqKSC6AFK3yI7dUgQJgrIy87PxOUkFEgKJNbmzLN_pHvbdd4QcCZ3w3JiU5QICBjLnTPFAMhlBDFpypXxX2vVIDO_gchyPl0iv6YXBssra9lc23Vvr-ku3Ps3u82zWveEud-FJHHN8JUjTMXawg0QtP30PF_cszsWG0j96Ij1DhqaDzpd5FaooLQKhcj_zFjj_2UN98TqDdbJWh4v0rNrRBlmyxSZZ_QIiuEU-emWBoK3ObFHrYmFHSbHudWoZuihDcaZVWY27cb9wJ1OPNe2ybXp82x-dn1AXudKqsgNXce7LlE_0yWJXMAqRWt8hSO_Vi0flKKbUkVCFOjxT9BWL4IvpNrkb9G97Q1bPV2B5JPmcpQATCzpKE-f3rTA60orbSTKJ41gDgHb5WWQ5V2E4QVh7JS3kkIQYg6SBUNEOaRVlYXcJVS6xASECIxMXX0GqjYQgUqlRRggVxm0SNWea5TX4OM7AeMyaKrOHrJJEhpLIKkm0CVtwPVfgG3_Qy0Zc2Tclypx_-JVz79-c-2SFY5mLv5U5IK35y5s9dHHKXHe8InbI8tnF1XD0CVNT5_4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKdoefkAEhzMJs7ETg4cUGnZ0nYvbKW9BTv2LovapGoXIS6c-T_8QWacpCoSAgmp18S2LI8934z9zQzAM-0KVXtfylpjItHUSlqVGGkyzNEZZW2MSjuY6PEhvp_lszX4OcTCMK2y1_2dTo_auv8y6ldzdLJcjj4o8l1UkeeKXwnKctYzK_fCt6_kt5293n1LQn6u1M72dGss-9ICss6MWskScR7QZWVBkBe0d5mzKsyLeZ7nDhEduSZZUMqm6ZwzulsTsMYiZfgtE20zGvcKXEVSF1w24dX39PxihzA9NfGVlScoeYZDyF7klTW2aQNnXlWxyC4q9WdIvABzO7fgZm-fijfdEtyGtdDcgRsXshbehR9bbcNZYklPikDGN7UUTLRdBMmY6AUX0Wq7-jr0i2eyiMmtyb0XL6bbk3cvBZnKoqOS8CiEl749FseBw5B514gQQxLFJ3sa04A0C0FNhOVDs7TijFn3zeIeHF7Kqt-H9aZtwgMQljwp1DrxpiCDDkvnDSaZLb31Wts034BsWNOq7rOdc9GNo2qgtX2uOklULImqk8QGyPNeJ122j3-0N4O4qt92bUWA9Neem__d8ylcG08P9qv93cneQ7iumGMTr4Qewfrq9Et4TEbSyj2Jm1LAx8s-Bb8AOnIh1Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conductive+elastic+sponge-based+triboelectric+nanogenerator+%28TENG%29+for+effective+random+mechanical+energy+harvesting+and+ammonia+sensing&rft.jtitle=Nano+energy&rft.au=Liu%2C+Yupeng&rft.au=Zheng%2C+Youbin&rft.au=Wu%2C+Zishuai&rft.au=Zhang%2C+Liqiang&rft.date=2021-01-01&rft.issn=2211-2855&rft.volume=79&rft.spage=105422&rft_id=info:doi/10.1016%2Fj.nanoen.2020.105422&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nanoen_2020_105422
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon