Conductive elastic sponge-based triboelectric nanogenerator (TENG) for effective random mechanical energy harvesting and ammonia sensing
Triboelectric nanogenerator (TENG) based on elastic materials is increasing interests for irregular and random mechanical energies harvesting. However, the conductive design of the elastic materials in TENGs often limits its applications. Herein, a new conductive and elastic sponge-based triboelectr...
Saved in:
Published in | Nano energy Vol. 79; p. 105422 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Triboelectric nanogenerator (TENG) based on elastic materials is increasing interests for irregular and random mechanical energies harvesting. However, the conductive design of the elastic materials in TENGs often limits its applications. Herein, a new conductive and elastic sponge-based triboelectric nanogenerator (ES-TENG) is developed for random mechanical energy harvesting, which integrates the elastic material and the conductive material on a flexible sponge to realize the collection of mechanical energies, particularly for irregular and random motions. The conductive elastic sponge is prepared by a simple dilute chemical polymerization of aniline to grow conductive polyaniline nanowires (PANI NWs) on the surface of elastic sponge. Due to the flexible deformation of sponge, it can harvest the kinetic energy of disordered motion with different amplitudes and from variable directions. As the triboelectric layer of ES-TENG, the porous sponge and polyaniline nanowires on its surface can provide a large contact area and improve the triboelectric efficiency. At the same time, the conductive polyaniline coating on the surface of sponge can also be used as the electrode of ES-TENG to conduct electrons and generate an output of 540 V and 6 μA respectively, which can be used on various flexible object surfaces to collect irregular and random mechanical energy ubiquitous in daily life. In addition, based on the NH3-sensing performance and the three-dimensional reticular structure of the polyaniline nanowires on the elastic sponge, the ES-TENG can make it work as self-powered sensor for detecting toxic NH3 with the detection limit up to 1 ppm and the response time less than 3 s. In view of the microporous and nanowire structures, elasticity, conductivity and easy fabrication of the conductive elastic sponge, the ES-TENG has promising applications in various irregular and random mechanical energy harvesting and self-powered NH3 sensors.
[Display omitted]
•A new conductive elastic sponge-based triboelectric nanogenerator (ES-TENG) is developed.•The conductive elastic sponge is prepared by a dilute chemical polymerization of aniline on the surface of sponge.•The ES-TENG can conveniently harvest irregular and random mechanical energies.•The ES-TENG based self-powered NH3 sensor has detection limit up to 1 ppm and fast response of less than 3 s. |
---|---|
AbstractList | Triboelectric nanogenerator (TENG) based on elastic materials is increasing interests for irregular and random mechanical energies harvesting. However, the conductive design of the elastic materials in TENGs often limits its applications. Herein, a new conductive and elastic sponge-based triboelectric nanogenerator (ES-TENG) is developed for random mechanical energy harvesting, which integrates the elastic material and the conductive material on a flexible sponge to realize the collection of mechanical energies, particularly for irregular and random motions. The conductive elastic sponge is prepared by a simple dilute chemical polymerization of aniline to grow conductive polyaniline nanowires (PANI NWs) on the surface of elastic sponge. Due to the flexible deformation of sponge, it can harvest the kinetic energy of disordered motion with different amplitudes and from variable directions. As the triboelectric layer of ES-TENG, the porous sponge and polyaniline nanowires on its surface can provide a large contact area and improve the triboelectric efficiency. At the same time, the conductive polyaniline coating on the surface of sponge can also be used as the electrode of ES-TENG to conduct electrons and generate an output of 540 V and 6 μA respectively, which can be used on various flexible object surfaces to collect irregular and random mechanical energy ubiquitous in daily life. In addition, based on the NH3-sensing performance and the three-dimensional reticular structure of the polyaniline nanowires on the elastic sponge, the ES-TENG can make it work as self-powered sensor for detecting toxic NH3 with the detection limit up to 1 ppm and the response time less than 3 s. In view of the microporous and nanowire structures, elasticity, conductivity and easy fabrication of the conductive elastic sponge, the ES-TENG has promising applications in various irregular and random mechanical energy harvesting and self-powered NH3 sensors.
[Display omitted]
•A new conductive elastic sponge-based triboelectric nanogenerator (ES-TENG) is developed.•The conductive elastic sponge is prepared by a dilute chemical polymerization of aniline on the surface of sponge.•The ES-TENG can conveniently harvest irregular and random mechanical energies.•The ES-TENG based self-powered NH3 sensor has detection limit up to 1 ppm and fast response of less than 3 s. |
ArticleNumber | 105422 |
Author | Wu, Zishuai Zhou, Feng Wang, Daoai Zheng, Youbin Li, Tinghua Zhang, Liqiang Liu, Yupeng Sun, Weixiang |
Author_xml | – sequence: 1 givenname: Yupeng surname: Liu fullname: Liu, Yupeng organization: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China – sequence: 2 givenname: Youbin surname: Zheng fullname: Zheng, Youbin organization: Qingdao Center of Resource Chemistry and New Materials, Qingdao 266100, China – sequence: 3 givenname: Zishuai surname: Wu fullname: Wu, Zishuai organization: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China – sequence: 4 givenname: Liqiang surname: Zhang fullname: Zhang, Liqiang organization: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China – sequence: 5 givenname: Weixiang surname: Sun fullname: Sun, Weixiang organization: Qingdao Center of Resource Chemistry and New Materials, Qingdao 266100, China – sequence: 6 givenname: Tinghua surname: Li fullname: Li, Tinghua organization: Technical Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming 650231, China – sequence: 7 givenname: Daoai surname: Wang fullname: Wang, Daoai email: wangda@licp.cas.cn organization: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China – sequence: 8 givenname: Feng surname: Zhou fullname: Zhou, Feng organization: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China |
BookMark | eNqFkLFOwzAQhj2ABBTegMEjDCm2Y6ctAxKqoCBVsJTZujjn4iqxKztU4g14bByFiQFuudOv-__TfWfkyAePhFxyNuWMVze7qQcf0E8FE4OkpBBH5FQIzgsxV-qEXKS0Y7kqxWdcnJKvZfDNh-ndASm2kHpnaNoHv8WihoQN7aOrA7Zo8mDoEL9FjxH6EOnV5uFldU1tHtFaHFMi-CZ0tEPzDt4ZaOmwv_2k7xAPmA_4Lc0rFLoueAc0oU9ZOyfHFtqEFz99Qt4eHzbLp2L9unpe3q8LU85EXyyktCjrcjEXXGHV1GUNAu3cKqVqKWXNRFWiEMC5nZWMwQylkXMuuVILVkE5IXLMNTGkFNHqfXQdxE_NmR4g6p0eIeoBoh4hZtvtL5txPfQu-D6Ca_8z341mzI8dHEadjENvsHExU9NNcH8HfAOX_pYe |
CitedBy_id | crossref_primary_10_1088_1361_665X_ad791b crossref_primary_10_1080_19475411_2023_2168782 crossref_primary_10_1002_adsu_202300385 crossref_primary_10_1016_j_nanoen_2024_109681 crossref_primary_10_1039_D3EE03052K crossref_primary_10_1016_j_nanoen_2025_110711 crossref_primary_10_1016_j_compositesa_2024_108582 crossref_primary_10_1002_admt_202301225 crossref_primary_10_1016_j_nanoen_2023_109080 crossref_primary_10_1021_acsaelm_2c00909 crossref_primary_10_1021_acsomega_2c06335 crossref_primary_10_1016_j_inoche_2024_112618 crossref_primary_10_1016_j_nanoen_2024_109609 crossref_primary_10_1002_ente_202200113 crossref_primary_10_1016_j_enconman_2021_114571 crossref_primary_10_1016_j_nanoen_2022_107506 crossref_primary_10_1039_D4MA01026D crossref_primary_10_1021_acs_langmuir_2c03405 crossref_primary_10_1080_21663831_2022_2026513 crossref_primary_10_1016_j_nanoen_2021_106058 crossref_primary_10_1016_j_nanoen_2024_109444 crossref_primary_10_1002_ente_202301136 crossref_primary_10_1021_acsami_1c06330 crossref_primary_10_1039_D0TA12359E crossref_primary_10_1016_j_nanoen_2024_109672 crossref_primary_10_1016_j_cej_2023_146505 crossref_primary_10_1016_j_cej_2023_143358 crossref_primary_10_1021_acsami_3c14082 crossref_primary_10_3390_nano11102496 crossref_primary_10_1002_adsr_202200058 crossref_primary_10_1016_j_nanoen_2022_107859 crossref_primary_10_1016_j_snb_2023_133917 crossref_primary_10_1021_acsnano_2c12458 crossref_primary_10_1016_j_nanoen_2021_106787 crossref_primary_10_1016_j_cej_2024_153367 crossref_primary_10_1039_D4MA00304G crossref_primary_10_1016_j_cej_2023_144280 crossref_primary_10_1016_j_cej_2025_160598 crossref_primary_10_1016_j_nanoen_2023_108365 crossref_primary_10_1088_2631_8695_acf980 crossref_primary_10_3390_s23020579 crossref_primary_10_1016_j_nanoen_2023_108253 crossref_primary_10_1002_agt2_319 crossref_primary_10_1021_acsami_1c16748 crossref_primary_10_1016_j_carbpol_2024_123074 crossref_primary_10_3390_chemosensors11050304 crossref_primary_10_1016_j_jcis_2024_08_233 crossref_primary_10_1088_1361_6528_ac4b7b crossref_primary_10_3390_bios12121127 crossref_primary_10_1002_smll_202107222 crossref_primary_10_1016_j_nanoen_2020_105623 crossref_primary_10_1021_acsami_1c19174 crossref_primary_10_1016_j_cej_2025_159614 crossref_primary_10_1016_j_cej_2023_147186 crossref_primary_10_1016_j_snb_2023_133688 crossref_primary_10_1021_acssuschemeng_3c00124 crossref_primary_10_1016_j_nanoen_2024_109426 crossref_primary_10_1039_D3TA03415A crossref_primary_10_1016_j_nanoen_2023_108178 crossref_primary_10_1039_D4NR03517H crossref_primary_10_1088_1361_6463_acf770 crossref_primary_10_3390_mi13101586 crossref_primary_10_1002_gch2_202400224 crossref_primary_10_3390_s24123812 crossref_primary_10_1016_j_nanoen_2024_110283 crossref_primary_10_1021_acsabm_3c00377 crossref_primary_10_1021_acsomega_3c00970 crossref_primary_10_1039_D2QM00690A crossref_primary_10_1002_admt_202300685 crossref_primary_10_1039_D2MA00771A crossref_primary_10_3390_mi12111308 crossref_primary_10_1016_j_nanoen_2021_105833 crossref_primary_10_1021_acsaem_2c01469 crossref_primary_10_1016_j_ijbiomac_2024_137226 crossref_primary_10_3390_bios13060604 crossref_primary_10_1016_j_talanta_2025_127752 crossref_primary_10_1021_acsapm_3c01775 crossref_primary_10_1021_acsbiomaterials_1c01106 crossref_primary_10_1039_D3NR04060G crossref_primary_10_1039_D2TA01788A crossref_primary_10_3390_polym15224383 crossref_primary_10_1007_s11431_021_1943_8 crossref_primary_10_1039_D2TA05071D crossref_primary_10_1002_adfm_202313794 crossref_primary_10_1016_j_cej_2024_153705 crossref_primary_10_1002_aelm_202300334 crossref_primary_10_1016_j_nanoen_2021_106442 |
Cites_doi | 10.1016/j.nanoen.2019.103997 10.1002/aenm.201702671 10.1016/j.nanoen.2018.02.046 10.1016/j.nanoen.2019.104205 10.1038/542159a 10.1016/j.nanoen.2018.06.019 10.1002/aenm.202000426 10.1039/C5EE01532D 10.1002/adma.201704077 10.1016/j.nanoen.2019.01.077 10.1016/j.snb.2017.04.039 10.1016/j.snb.2017.12.052 10.1016/j.nanoen.2012.01.004 10.1016/j.nanoen.2018.03.027 10.1002/aenm.201700124 10.1002/aenm.201602397 10.1016/j.nanoen.2018.02.031 10.1016/j.nanoen.2018.06.041 10.1016/j.nanoen.2019.05.043 10.1021/acsnano.7b00396 10.1021/acsnano.6b07389 10.1002/adsu.201800081 10.1016/j.nanoen.2019.05.007 10.1002/adfm.201304211 10.1002/aenm.201301322 10.1021/acsnano.5b02010 10.1021/acsnano.8b00140 10.1038/ncomms6747 10.1063/1.5028478 10.1016/j.nanoen.2019.04.025 10.1016/j.nanoen.2019.01.002 10.1016/j.nanoen.2020.104524 10.1016/j.nanoen.2019.03.019 10.1002/adfm.201504675 10.1016/j.nanoen.2017.10.029 10.1002/aenm.201501778 10.1002/aenm.201600665 10.1002/smll.201400863 10.1002/adma.201504356 10.1016/j.nanoen.2019.02.057 10.1021/nn4007708 10.1021/acsnano.8b00108 10.1016/j.nanoen.2015.06.006 10.1016/j.nanoen.2018.11.071 10.1039/C6RA17429A 10.1016/j.nanoen.2018.12.054 10.1016/j.nanoen.2019.06.025 10.1016/j.nanoen.2020.105112 10.1016/j.nanoen.2019.02.054 10.1016/j.nanoen.2019.05.046 10.1002/adma.201404071 10.1021/acsnano.8b02479 10.1016/j.nanoen.2018.12.032 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nanoen.2020.105422 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_nanoen_2020_105422 S221128552030999X |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ JARJE KOM M41 MAGPM MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSM SSR SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c372t-944fe4b398215e6db3ba2ef8f555b444b0263e22a11f7300a7e4c4814155906a3 |
IEDL.DBID | .~1 |
ISSN | 2211-2855 |
IngestDate | Tue Jul 01 00:56:41 EDT 2025 Thu Apr 24 23:13:19 EDT 2025 Tue Feb 13 08:07:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Polyaniline Nanowires Random energy harvesting Ammonia sensing Conductive elastic sponge Triboelectric Nanogenerator |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-944fe4b398215e6db3ba2ef8f555b444b0263e22a11f7300a7e4c4814155906a3 |
ParticipantIDs | crossref_primary_10_1016_j_nanoen_2020_105422 crossref_citationtrail_10_1016_j_nanoen_2020_105422 elsevier_sciencedirect_doi_10_1016_j_nanoen_2020_105422 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 2021-01-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationTitle | Nano energy |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zou, Zhang, Huang, Bian, Jie, Willander, Cao, Wang, Wang (bib3) 2018; 8 Cheng, Guo, Wen, Zhang, Yin, Li, Liu, Song, Sun, Wang, Wang (bib34) 2019; 57 Chen, Wang, Ma, Li, Willander, Jie, Cao, Wang (bib9) 2016; 6 Xia, Wu, Fu, Xu (bib10) 2020; 77 Li, Zou, Xing, Zhang, Cao, Wang, Wang (bib4) 2017; 11 Xi, Guo, Zi, Li, Wang, Deng, Li, Hu, Cao, Wang (bib6) 2017; 7 Parida, Xiong, Zhou, Lee (bib36) 2019; 59 Xia, Zhu, Zhang, Du, Fu, Xu (bib27) 2019; 56 Wang, Wen, Zi, Zhou, Lin, Guo, Xu, Wang (bib53) 2016; 26 Li, Xu, Xing, Cao, Bian, Wang, Wang (bib2) 2017; 7 Zhang, Xie, Xu, Su, Tai, Du, Jiang (bib49) 2018; 259 Wang (bib1) 2017; 542 Chen, Zhang, Zhan, Lin, Zhang, Zou, Zhang, Zou, Wang (bib23) 2019; 0 Xia, Zhu, Zhang, Du, Xu, Wang (bib20) 2018; 50 Chen, Miao, Guo, Chen, Song, Su, Zhang (bib46) 2018; 112 Cao, Jie, Wang, Wang (bib11) 2016; 6 Tang, Han, Han, Gao, Cao, Wang (bib8) 2015; 27 Xia, Fu, Xu (bib30) 2020; 10 Seol, Woo, Lee, Im, Hur, Choi (bib47) 2014; 10 He, Shi, Wang, Wen, Chen, Ouyang, Lee (bib16) 2019; 57 Wu, Zeng, Tang, Liu, Liu, Zhang, Wu, Hu, Wang (bib22) 2020; 67 Wang, Jiang, Tai, Liu, Duan, Yuan, Pan, Xie, Du, Su (bib55) 2019; 63 Wen, Chen, Yeh, Guo, Li, Fan, Zhang, Zhu, Wang (bib51) 2015; 16 Guo, Jia, Liu, Cao, Wang, Wang (bib19) 2018; 12 Song, Yin, Liu, Ma, Zhang, Li, Cheng, Zhang, Wang, Wang (bib32) 2019; 65 Kim, Chun, Kim, Lee, Park, Kim, Wang, Baik (bib33) 2015; 9 Zeng, Wu, Tang, Liu, Wu, Zhang, Yin, Yang, Yuan, Tan, Hu, Wang (bib21) 2020; 70 Liu, Li, Liu, Bu, Guo, Jiang, Zhao, Xi, Hu, Zhang (bib40) 2018; 2 Cheng, Li, Wang, Gao, Ma, Wang (bib28) 2019; 60 Liu, Liu, Dou, Sun, Cong, Jiang, Du, Pu, Hu, Wang (bib45) 2018; 12 Zhang, Liu, Huang, Guo, Li, Wu (bib42) 2019; 62 Kim, Lee, Shim, Ghaffari, Cho, Son, Jung, Soh, Choi, Jung, Chu, Jeon, Lee, Kim, Choi, Hyeon, Kim (bib43) 2014; 5 Zhao, Zhang, Shi, Liu, Zhang, Wu, Pan, Liu, Li, Wang (bib44) 2019; 59 Chen, Cao, Wang, Ma, Zhu, Willander, Jie, Wang (bib13) 2017; 7 Zhang, Han, Kim, Bao, Brugger, Zhang (bib15) 2018; 47 Li, Jiang, Zhao, Lan, Yao, Yu, Ping, Ying (bib31) 2019; 61 Feng, Huang, Liu, Guo, Li, Wu (bib38) 2019; 62 Cao, Zhang, Huang, Jiang, Zou, Wang, Wang (bib5) 2018; 30 Bai, Zhu, Lin, Jing, Chen, Zhang, Ma, Wang (bib26) 2013; 7 Su, Xie, Tai, Li, Yang, Wang, Zhang, Du, Zhang, Du, Jiang (bib48) 2018; 47 Su, Xie, Wang, Tai, Zhang, Du, Zhang, Du, Jiang (bib50) 2017; 251 Li, Chen, Guo, Fan, Wen, Yeh, Yu, Cao, Wang (bib12) 2016; 28 Wang, Chen, Lin (bib52) 2015; 8 Wang, Xie, Tai, Su, Yang, Zhang, Du, Jiang (bib54) 2018; 51 Sun, Pu, Liu, Yu, Du, Zhai, Hu, Wang (bib37) 2018; 12 Kim, Lee, Lee, Lee, Baik (bib29) 2016; 6 Guo, Li, Cao, Xiong, Jie, Willander, Cao, Wang, Wang (bib39) 2017; 11 Fan, Tian, Lin Wang (bib18) 2012; 1 Yang, Chen, Yang, Zhang, Yang, Bai, Su, Wang (bib25) 2014; 4 Yang, Chen, Jing, Yang, Wen, Su, Zhu, Bai, Wang (bib24) 2014; 24 Bian, Wang, Ma, Jie, Zou, Cao (bib41) 2018; 47 Liu, Zheng, Li, Wang, Zhou (bib14) 2019; 61 Liu, Zhao, Zeng, Fu, Hu (bib17) 2019; 59 Xing, Jie, Cao, Li, Wang (bib7) 2017; 42 Shi, He, Lee (bib35) 2019; 57 Fan (10.1016/j.nanoen.2020.105422_bib18) 2012; 1 Li (10.1016/j.nanoen.2020.105422_bib2) 2017; 7 Li (10.1016/j.nanoen.2020.105422_bib12) 2016; 28 Zou (10.1016/j.nanoen.2020.105422_bib3) 2018; 8 Bai (10.1016/j.nanoen.2020.105422_bib26) 2013; 7 Xing (10.1016/j.nanoen.2020.105422_bib7) 2017; 42 Li (10.1016/j.nanoen.2020.105422_bib4) 2017; 11 Seol (10.1016/j.nanoen.2020.105422_bib47) 2014; 10 Wang (10.1016/j.nanoen.2020.105422_bib54) 2018; 51 Shi (10.1016/j.nanoen.2020.105422_bib35) 2019; 57 Wang (10.1016/j.nanoen.2020.105422_bib1) 2017; 542 Bian (10.1016/j.nanoen.2020.105422_bib41) 2018; 47 Liu (10.1016/j.nanoen.2020.105422_bib14) 2019; 61 Wu (10.1016/j.nanoen.2020.105422_bib22) 2020; 67 Zeng (10.1016/j.nanoen.2020.105422_bib21) 2020; 70 Wang (10.1016/j.nanoen.2020.105422_bib55) 2019; 63 Kim (10.1016/j.nanoen.2020.105422_bib29) 2016; 6 Parida (10.1016/j.nanoen.2020.105422_bib36) 2019; 59 Kim (10.1016/j.nanoen.2020.105422_bib33) 2015; 9 Cheng (10.1016/j.nanoen.2020.105422_bib28) 2019; 60 Feng (10.1016/j.nanoen.2020.105422_bib38) 2019; 62 Zhao (10.1016/j.nanoen.2020.105422_bib44) 2019; 59 Cheng (10.1016/j.nanoen.2020.105422_bib34) 2019; 57 Liu (10.1016/j.nanoen.2020.105422_bib45) 2018; 12 Wang (10.1016/j.nanoen.2020.105422_bib53) 2016; 26 Xia (10.1016/j.nanoen.2020.105422_bib20) 2018; 50 Xia (10.1016/j.nanoen.2020.105422_bib30) 2020; 10 Chen (10.1016/j.nanoen.2020.105422_bib46) 2018; 112 Zhang (10.1016/j.nanoen.2020.105422_bib42) 2019; 62 Su (10.1016/j.nanoen.2020.105422_bib50) 2017; 251 Zhang (10.1016/j.nanoen.2020.105422_bib49) 2018; 259 Sun (10.1016/j.nanoen.2020.105422_bib37) 2018; 12 Tang (10.1016/j.nanoen.2020.105422_bib8) 2015; 27 Xia (10.1016/j.nanoen.2020.105422_bib10) 2020; 77 He (10.1016/j.nanoen.2020.105422_bib16) 2019; 57 Chen (10.1016/j.nanoen.2020.105422_bib13) 2017; 7 Zhang (10.1016/j.nanoen.2020.105422_bib15) 2018; 47 Wen (10.1016/j.nanoen.2020.105422_bib51) 2015; 16 Chen (10.1016/j.nanoen.2020.105422_bib9) 2016; 6 Yang (10.1016/j.nanoen.2020.105422_bib24) 2014; 24 Xia (10.1016/j.nanoen.2020.105422_bib27) 2019; 56 Chen (10.1016/j.nanoen.2020.105422_bib23) 2019; 0 Li (10.1016/j.nanoen.2020.105422_bib31) 2019; 61 Guo (10.1016/j.nanoen.2020.105422_bib39) 2017; 11 Yang (10.1016/j.nanoen.2020.105422_bib25) 2014; 4 Su (10.1016/j.nanoen.2020.105422_bib48) 2018; 47 Wang (10.1016/j.nanoen.2020.105422_bib52) 2015; 8 Liu (10.1016/j.nanoen.2020.105422_bib17) 2019; 59 Cao (10.1016/j.nanoen.2020.105422_bib5) 2018; 30 Song (10.1016/j.nanoen.2020.105422_bib32) 2019; 65 Liu (10.1016/j.nanoen.2020.105422_bib40) 2018; 2 Kim (10.1016/j.nanoen.2020.105422_bib43) 2014; 5 Cao (10.1016/j.nanoen.2020.105422_bib11) 2016; 6 Xi (10.1016/j.nanoen.2020.105422_bib6) 2017; 7 Guo (10.1016/j.nanoen.2020.105422_bib19) 2018; 12 |
References_xml | – volume: 62 start-page: 197 year: 2019 end-page: 204 ident: bib38 article-title: A self-powered smart safety belt enabled by triboelectric nanogenerators for driving status monitoring publication-title: Nano Energy – volume: 50 start-page: 571 year: 2018 end-page: 580 ident: bib20 article-title: Painting a high-output triboelectric nanogenerator on paper for harvesting energy from human body motion publication-title: Nano Energy – volume: 10 year: 2020 ident: bib30 article-title: Multiple‐frequency high‐output triboelectric nanogenerator based on a water balloon for all‐weather water wave energy harvesting publication-title: Adv. Energy Mater. – volume: 47 start-page: 442 year: 2018 end-page: 450 ident: bib41 article-title: Stretchable 3D polymer for simultaneously mechanical energy harvesting and biomimetic force sensing publication-title: Nano Energy – volume: 2 year: 2018 ident: bib40 article-title: Soft tubular triboelectric nanogenerator for biomechanical energy harvesting publication-title: Adv. Sustain. Syst. – volume: 24 start-page: 4090 year: 2014 end-page: 4096 ident: bib24 article-title: 3D stack integrated triboelectric nanogenerator for harvesting vibration energy publication-title: Adv. Funct. Mater. – volume: 77 year: 2020 ident: bib10 article-title: A pulse controllable voltage source based on triboelectric nanogenerator publication-title: Nano Energy – volume: 51 start-page: 231 year: 2018 end-page: 240 ident: bib54 article-title: Ultrasensitive flexible self-powered ammonia sensor based on triboelectric nanogenerator at room temperature publication-title: Nano Energy – volume: 11 start-page: 3950 year: 2017 end-page: 3956 ident: bib4 article-title: From dual-mode triboelectric nanogenerator to smart tactile sensor: a multiplexing design publication-title: ACS Nano – volume: 42 start-page: 138 year: 2017 end-page: 142 ident: bib7 article-title: Natural triboelectric nanogenerator based on soles for harvesting low-frequency walking energy publication-title: Nano Energy – volume: 112 year: 2018 ident: bib46 article-title: Waterproof and stretchable triboelectric nanogenerator for biomechanical energy harvesting and self-powered sensing publication-title: Appl. Phys. Lett. – volume: 8 year: 2018 ident: bib3 article-title: Coupled supercapacitor and triboelectric nanogenerator boost biomimetic pressure sensor publication-title: Adv. Energy Mater. – volume: 30 year: 2018 ident: bib5 article-title: Inductor-free wireless energy delivery via Maxwell’s displacement current from an electrodeless triboelectric nanogenerator publication-title: Adv. Mater. – volume: 57 start-page: 432 year: 2019 end-page: 439 ident: bib34 article-title: Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure publication-title: Nano Energy – volume: 1 start-page: 328 year: 2012 end-page: 334 ident: bib18 article-title: Flexible triboelectric generator publication-title: Nano Energy – volume: 70 year: 2020 ident: bib21 article-title: A high-efficient breeze energy harvester utilizing a full-packaged triboelectric nanogenerator based on flow-induced vibration publication-title: Nano Energy – volume: 26 start-page: 1070 year: 2016 end-page: 1076 ident: bib53 article-title: All-plastic-materials based self-charging power system composed of triboelectric nanogenerators and supercapacitors publication-title: Adv. Funct. Mater. – volume: 47 start-page: 410 year: 2018 end-page: 426 ident: bib15 article-title: All-in-one self-powered flexible microsystems based on triboelectric nanogenerators publication-title: Nano Energy – volume: 7 start-page: 3713 year: 2013 end-page: 3719 ident: bib26 article-title: Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions publication-title: ACS Nano – volume: 0 year: 2019 ident: bib23 article-title: An elastic triboelectric nanogenerator for harvesting random mechanical energy with multiple working modes publication-title: Adv. Mater. Technol. – volume: 11 start-page: 856 year: 2017 end-page: 864 ident: bib39 article-title: Self-sterilized flexible single-electrode triboelectric nanogenerator for energy harvesting and dynamic force sensing publication-title: ACS Nano – volume: 61 start-page: 454 year: 2019 end-page: 461 ident: bib14 article-title: Water-solid triboelectrification with self-repairable surfaces for water-flow energy harvesting publication-title: Nano Energy – volume: 12 start-page: 3461 year: 2018 end-page: 3467 ident: bib19 article-title: Freestanding triboelectric nanogenerator enables noncontact motion-tracking and positioning publication-title: ACS Nano – volume: 6 year: 2016 ident: bib11 article-title: Triboelectric nanogenerators driven self-powered electrochemical processes for energy and environmental science publication-title: Adv. Energy Mater. – volume: 67 year: 2020 ident: bib22 article-title: A teeterboard-like hybrid nanogenerator for efficient harvesting of low-frequency ocean wave energy publication-title: Nano Energy – volume: 8 start-page: 2250 year: 2015 end-page: 2282 ident: bib52 article-title: Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors publication-title: Energy Environ. Sci. – volume: 65 year: 2019 ident: bib32 article-title: A highly elastic self-charging power system for simultaneously harvesting solar and mechanical energy publication-title: Nano Energy – volume: 5 start-page: 5747 year: 2014 ident: bib43 article-title: Stretchable silicon nanoribbon electronics for skin prosthesis publication-title: Nat. Commun. – volume: 16 start-page: 38 year: 2015 end-page: 46 ident: bib51 article-title: Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer publication-title: Nano Energy – volume: 542 start-page: 159 year: 2017 end-page: 160 ident: bib1 article-title: Catch wave power in floating nets publication-title: Nature – volume: 60 start-page: 137 year: 2019 end-page: 143 ident: bib28 article-title: Triboelectric nanogenerator by integrating a cam and a movable frame for ambient mechanical energy harvesting publication-title: Nano Energy – volume: 27 start-page: 272 year: 2015 end-page: 276 ident: bib8 article-title: Self-powered water splitting using flowing kinetic energy publication-title: Adv. Mater. – volume: 56 start-page: 400 year: 2019 end-page: 410 ident: bib27 article-title: Milk-based triboelectric nanogenerator on paper for harvesting energy from human body motion publication-title: Nano Energy – volume: 259 start-page: 269 year: 2018 end-page: 281 ident: bib49 article-title: Visible light-assisted room temperature gas sensing with ZnO-Ag heterostructure nanoparticles publication-title: Sens. Actuators B Chem. – volume: 59 start-page: 237 year: 2019 end-page: 257 ident: bib36 article-title: Progress on triboelectric nanogenerator with stretchability, self-healability and bio-compatibility publication-title: Nano Energy – volume: 6 year: 2016 ident: bib9 article-title: Triboelectric nanogenerator for sustainable wastewater treatment via a self-powered electrochemical process publication-title: Adv. Energy Mater. – volume: 57 start-page: 338 year: 2019 end-page: 352 ident: bib16 article-title: Beyond energy harvesting - multi-functional triboelectric nanosensors on a textile publication-title: Nano Energy – volume: 12 start-page: 2818 year: 2018 end-page: 2826 ident: bib45 article-title: Triboelectric-nanogenerator-based soft energy-harvesting skin enabled by toughly bonded elastomer/hydrogel hybrids publication-title: ACS Nano – volume: 251 start-page: 144 year: 2017 end-page: 152 ident: bib50 article-title: Novel high-performance self-powered humidity detection enabled by triboelectric effect publication-title: Sens. Actuators B Chem. – volume: 12 start-page: 6147 year: 2018 end-page: 6155 ident: bib37 article-title: Self-healable, stretchable, transparent triboelectric nanogenerators as soft power sources publication-title: ACS Nano – volume: 62 start-page: 164 year: 2019 end-page: 170 ident: bib42 article-title: A stretchable dual-mode sensor array for multifunctional robotic electronic skin publication-title: Nano Energy – volume: 7 year: 2017 ident: bib13 article-title: An ultrathin flexible single-electrode triboelectric-nanogenerator for mechanical energy harvesting and instantaneous force sensing publication-title: Adv. Energy Mater. – volume: 7 year: 2017 ident: bib2 article-title: Boosting photoelectrochemical water splitting by TENG-charged Li-ion battery publication-title: Adv. Energy Mater. – volume: 9 start-page: 6394 year: 2015 end-page: 6400 ident: bib33 article-title: Highly stretchable 2D fabrics for wearable triboelectric nanogenerator under harsh environments publication-title: ACS Nano – volume: 4 year: 2014 ident: bib25 article-title: Broadband vibrational energy harvesting based on a triboelectric nanogenerator publication-title: Adv. Energy Mater. – volume: 63 year: 2019 ident: bib55 article-title: An integrated flexible self-powered wearable respiration sensor publication-title: Nano Energy – volume: 57 start-page: 851 year: 2019 end-page: 871 ident: bib35 article-title: More than energy harvesting – combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems publication-title: Nano Energy – volume: 59 start-page: 302 year: 2019 end-page: 310 ident: bib44 article-title: Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing publication-title: Nano Energy – volume: 6 start-page: 88526 year: 2016 end-page: 88530 ident: bib29 article-title: Ergonomically designed replaceable and multifunctional triboelectric nanogenerator for a uniform contact publication-title: RSC Adv. – volume: 28 start-page: 2983 year: 2016 end-page: 2991 ident: bib12 article-title: Triboelectrification-enabled self-powered detection and removal of heavy metal ions in wastewater publication-title: Adv. Mater. – volume: 10 start-page: 3887 year: 2014 end-page: 3894 ident: bib47 article-title: Nature-replicated nano-in-micro structures for triboelectric energy harvesting publication-title: Small – volume: 61 start-page: 78 year: 2019 end-page: 85 ident: bib31 article-title: Fully stretchable triboelectric nanogenerator for energy harvesting and self-powered sensing publication-title: Nano Energy – volume: 47 start-page: 316 year: 2018 end-page: 324 ident: bib48 article-title: Self-powered room temperature NO2 detection driven by triboelectric nanogenerator under UV illumination publication-title: Nano Energy – volume: 59 start-page: 295 year: 2019 end-page: 301 ident: bib17 article-title: Expandable microsphere-based triboelectric nanogenerators as ultrasensitive pressure sensors for respiratory and pulse monitoring publication-title: Nano Energy – volume: 7 year: 2017 ident: bib6 article-title: Multifunctional TENG for blue energy scavenging and self-powered wind-speed sensor publication-title: Adv. Energy Mater. – volume: 65 year: 2019 ident: 10.1016/j.nanoen.2020.105422_bib32 article-title: A highly elastic self-charging power system for simultaneously harvesting solar and mechanical energy publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.103997 – volume: 8 year: 2018 ident: 10.1016/j.nanoen.2020.105422_bib3 article-title: Coupled supercapacitor and triboelectric nanogenerator boost biomimetic pressure sensor publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702671 – volume: 47 start-page: 410 year: 2018 ident: 10.1016/j.nanoen.2020.105422_bib15 article-title: All-in-one self-powered flexible microsystems based on triboelectric nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.02.046 – volume: 67 year: 2020 ident: 10.1016/j.nanoen.2020.105422_bib22 article-title: A teeterboard-like hybrid nanogenerator for efficient harvesting of low-frequency ocean wave energy publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104205 – volume: 0 year: 2019 ident: 10.1016/j.nanoen.2020.105422_bib23 article-title: An elastic triboelectric nanogenerator for harvesting random mechanical energy with multiple working modes publication-title: Adv. Mater. Technol. – volume: 542 start-page: 159 year: 2017 ident: 10.1016/j.nanoen.2020.105422_bib1 article-title: Catch wave power in floating nets publication-title: Nature doi: 10.1038/542159a – volume: 50 start-page: 571 year: 2018 ident: 10.1016/j.nanoen.2020.105422_bib20 article-title: Painting a high-output triboelectric nanogenerator on paper for harvesting energy from human body motion publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.06.019 – volume: 10 year: 2020 ident: 10.1016/j.nanoen.2020.105422_bib30 article-title: Multiple‐frequency high‐output triboelectric nanogenerator based on a water balloon for all‐weather water wave energy harvesting publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000426 – volume: 7 year: 2017 ident: 10.1016/j.nanoen.2020.105422_bib13 article-title: An ultrathin flexible single-electrode triboelectric-nanogenerator for mechanical energy harvesting and instantaneous force sensing publication-title: Adv. Energy Mater. – volume: 8 start-page: 2250 year: 2015 ident: 10.1016/j.nanoen.2020.105422_bib52 article-title: Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors publication-title: Energy Environ. Sci. doi: 10.1039/C5EE01532D – volume: 30 year: 2018 ident: 10.1016/j.nanoen.2020.105422_bib5 article-title: Inductor-free wireless energy delivery via Maxwell’s displacement current from an electrodeless triboelectric nanogenerator publication-title: Adv. Mater. doi: 10.1002/adma.201704077 – volume: 59 start-page: 237 year: 2019 ident: 10.1016/j.nanoen.2020.105422_bib36 article-title: Progress on triboelectric nanogenerator with stretchability, self-healability and bio-compatibility publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.077 – volume: 251 start-page: 144 year: 2017 ident: 10.1016/j.nanoen.2020.105422_bib50 article-title: Novel high-performance self-powered humidity detection enabled by triboelectric effect publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.04.039 – volume: 259 start-page: 269 year: 2018 ident: 10.1016/j.nanoen.2020.105422_bib49 article-title: Visible light-assisted room temperature gas sensing with ZnO-Ag heterostructure nanoparticles publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.12.052 – volume: 1 start-page: 328 year: 2012 ident: 10.1016/j.nanoen.2020.105422_bib18 article-title: Flexible triboelectric generator publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.01.004 – volume: 47 start-page: 442 year: 2018 ident: 10.1016/j.nanoen.2020.105422_bib41 article-title: Stretchable 3D polymer for simultaneously mechanical energy harvesting and biomimetic force sensing publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.03.027 – volume: 7 year: 2017 ident: 10.1016/j.nanoen.2020.105422_bib2 article-title: Boosting photoelectrochemical water splitting by TENG-charged Li-ion battery publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700124 – volume: 7 year: 2017 ident: 10.1016/j.nanoen.2020.105422_bib6 article-title: Multifunctional TENG for blue energy scavenging and self-powered wind-speed sensor publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602397 – volume: 47 start-page: 316 year: 2018 ident: 10.1016/j.nanoen.2020.105422_bib48 article-title: Self-powered room temperature NO2 detection driven by triboelectric nanogenerator under UV illumination publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.02.031 – volume: 51 start-page: 231 year: 2018 ident: 10.1016/j.nanoen.2020.105422_bib54 article-title: Ultrasensitive flexible self-powered ammonia sensor based on triboelectric nanogenerator at room temperature publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.06.041 – volume: 62 start-page: 197 year: 2019 ident: 10.1016/j.nanoen.2020.105422_bib38 article-title: A self-powered smart safety belt enabled by triboelectric nanogenerators for driving status monitoring publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.05.043 – volume: 11 start-page: 3950 year: 2017 ident: 10.1016/j.nanoen.2020.105422_bib4 article-title: From dual-mode triboelectric nanogenerator to smart tactile sensor: a multiplexing design publication-title: ACS Nano doi: 10.1021/acsnano.7b00396 – volume: 11 start-page: 856 year: 2017 ident: 10.1016/j.nanoen.2020.105422_bib39 article-title: Self-sterilized flexible single-electrode triboelectric nanogenerator for energy harvesting and dynamic force sensing publication-title: ACS Nano doi: 10.1021/acsnano.6b07389 – volume: 2 year: 2018 ident: 10.1016/j.nanoen.2020.105422_bib40 article-title: Soft tubular triboelectric nanogenerator for biomechanical energy harvesting publication-title: Adv. Sustain. Syst. doi: 10.1002/adsu.201800081 – volume: 61 start-page: 454 year: 2019 ident: 10.1016/j.nanoen.2020.105422_bib14 article-title: Water-solid triboelectrification with self-repairable surfaces for water-flow energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.05.007 – volume: 24 start-page: 4090 year: 2014 ident: 10.1016/j.nanoen.2020.105422_bib24 article-title: 3D stack integrated triboelectric nanogenerator for harvesting vibration energy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201304211 – volume: 4 year: 2014 ident: 10.1016/j.nanoen.2020.105422_bib25 article-title: Broadband vibrational energy harvesting based on a triboelectric nanogenerator publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201301322 – volume: 9 start-page: 6394 year: 2015 ident: 10.1016/j.nanoen.2020.105422_bib33 article-title: Highly stretchable 2D fabrics for wearable triboelectric nanogenerator under harsh environments publication-title: ACS Nano doi: 10.1021/acsnano.5b02010 – volume: 12 start-page: 3461 year: 2018 ident: 10.1016/j.nanoen.2020.105422_bib19 article-title: Freestanding triboelectric nanogenerator enables noncontact motion-tracking and positioning publication-title: ACS Nano doi: 10.1021/acsnano.8b00140 – volume: 5 start-page: 5747 year: 2014 ident: 10.1016/j.nanoen.2020.105422_bib43 article-title: Stretchable silicon nanoribbon electronics for skin prosthesis publication-title: Nat. Commun. doi: 10.1038/ncomms6747 – volume: 112 year: 2018 ident: 10.1016/j.nanoen.2020.105422_bib46 article-title: Waterproof and stretchable triboelectric nanogenerator for biomechanical energy harvesting and self-powered sensing publication-title: Appl. Phys. Lett. doi: 10.1063/1.5028478 – volume: 61 start-page: 78 year: 2019 ident: 10.1016/j.nanoen.2020.105422_bib31 article-title: Fully stretchable triboelectric nanogenerator for energy harvesting and self-powered sensing publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.04.025 – volume: 57 start-page: 851 year: 2019 ident: 10.1016/j.nanoen.2020.105422_bib35 article-title: More than energy harvesting – combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.002 – volume: 70 year: 2020 ident: 10.1016/j.nanoen.2020.105422_bib21 article-title: A high-efficient breeze energy harvester utilizing a full-packaged triboelectric nanogenerator based on flow-induced vibration publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104524 – volume: 60 start-page: 137 year: 2019 ident: 10.1016/j.nanoen.2020.105422_bib28 article-title: Triboelectric nanogenerator by integrating a cam and a movable frame for ambient mechanical energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.019 – volume: 26 start-page: 1070 year: 2016 ident: 10.1016/j.nanoen.2020.105422_bib53 article-title: All-plastic-materials based self-charging power system composed of triboelectric nanogenerators and supercapacitors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201504675 – volume: 42 start-page: 138 year: 2017 ident: 10.1016/j.nanoen.2020.105422_bib7 article-title: Natural triboelectric nanogenerator based on soles for harvesting low-frequency walking energy publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.10.029 – volume: 6 year: 2016 ident: 10.1016/j.nanoen.2020.105422_bib9 article-title: Triboelectric nanogenerator for sustainable wastewater treatment via a self-powered electrochemical process publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501778 – volume: 6 year: 2016 ident: 10.1016/j.nanoen.2020.105422_bib11 article-title: Triboelectric nanogenerators driven self-powered electrochemical processes for energy and environmental science publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600665 – volume: 10 start-page: 3887 year: 2014 ident: 10.1016/j.nanoen.2020.105422_bib47 article-title: Nature-replicated nano-in-micro structures for triboelectric energy harvesting publication-title: Small doi: 10.1002/smll.201400863 – volume: 28 start-page: 2983 year: 2016 ident: 10.1016/j.nanoen.2020.105422_bib12 article-title: Triboelectrification-enabled self-powered detection and removal of heavy metal ions in wastewater publication-title: Adv. Mater. doi: 10.1002/adma.201504356 – volume: 59 start-page: 295 year: 2019 ident: 10.1016/j.nanoen.2020.105422_bib17 article-title: Expandable microsphere-based triboelectric nanogenerators as ultrasensitive pressure sensors for respiratory and pulse monitoring publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.02.057 – volume: 7 start-page: 3713 year: 2013 ident: 10.1016/j.nanoen.2020.105422_bib26 article-title: Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions publication-title: ACS Nano doi: 10.1021/nn4007708 – volume: 12 start-page: 2818 year: 2018 ident: 10.1016/j.nanoen.2020.105422_bib45 article-title: Triboelectric-nanogenerator-based soft energy-harvesting skin enabled by toughly bonded elastomer/hydrogel hybrids publication-title: ACS Nano doi: 10.1021/acsnano.8b00108 – volume: 16 start-page: 38 year: 2015 ident: 10.1016/j.nanoen.2020.105422_bib51 article-title: Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.06.006 – volume: 56 start-page: 400 year: 2019 ident: 10.1016/j.nanoen.2020.105422_bib27 article-title: Milk-based triboelectric nanogenerator on paper for harvesting energy from human body motion publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.11.071 – volume: 6 start-page: 88526 year: 2016 ident: 10.1016/j.nanoen.2020.105422_bib29 article-title: Ergonomically designed replaceable and multifunctional triboelectric nanogenerator for a uniform contact publication-title: RSC Adv. doi: 10.1039/C6RA17429A – volume: 57 start-page: 432 year: 2019 ident: 10.1016/j.nanoen.2020.105422_bib34 article-title: Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.054 – volume: 63 year: 2019 ident: 10.1016/j.nanoen.2020.105422_bib55 article-title: An integrated flexible self-powered wearable respiration sensor publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.06.025 – volume: 77 year: 2020 ident: 10.1016/j.nanoen.2020.105422_bib10 article-title: A pulse controllable voltage source based on triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105112 – volume: 59 start-page: 302 year: 2019 ident: 10.1016/j.nanoen.2020.105422_bib44 article-title: Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.02.054 – volume: 62 start-page: 164 year: 2019 ident: 10.1016/j.nanoen.2020.105422_bib42 article-title: A stretchable dual-mode sensor array for multifunctional robotic electronic skin publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.05.046 – volume: 27 start-page: 272 year: 2015 ident: 10.1016/j.nanoen.2020.105422_bib8 article-title: Self-powered water splitting using flowing kinetic energy publication-title: Adv. Mater. doi: 10.1002/adma.201404071 – volume: 12 start-page: 6147 year: 2018 ident: 10.1016/j.nanoen.2020.105422_bib37 article-title: Self-healable, stretchable, transparent triboelectric nanogenerators as soft power sources publication-title: ACS Nano doi: 10.1021/acsnano.8b02479 – volume: 57 start-page: 338 year: 2019 ident: 10.1016/j.nanoen.2020.105422_bib16 article-title: Beyond energy harvesting - multi-functional triboelectric nanosensors on a textile publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.032 |
SSID | ssj0000651712 |
Score | 2.5590212 |
Snippet | Triboelectric nanogenerator (TENG) based on elastic materials is increasing interests for irregular and random mechanical energies harvesting. However, the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105422 |
SubjectTerms | Ammonia sensing Conductive elastic sponge Polyaniline Nanowires Random energy harvesting Triboelectric Nanogenerator |
Title | Conductive elastic sponge-based triboelectric nanogenerator (TENG) for effective random mechanical energy harvesting and ammonia sensing |
URI | https://dx.doi.org/10.1016/j.nanoen.2020.105422 |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQWWBAPEV5VB4YYDBNnIudjKhqKSC6AFK3yI7dUgQJgrIy87PxOUkFEgKJNbmzLN_pHvbdd4QcCZ3w3JiU5QICBjLnTPFAMhlBDFpypXxX2vVIDO_gchyPl0iv6YXBssra9lc23Vvr-ku3Ps3u82zWveEud-FJHHN8JUjTMXawg0QtP30PF_cszsWG0j96Ij1DhqaDzpd5FaooLQKhcj_zFjj_2UN98TqDdbJWh4v0rNrRBlmyxSZZ_QIiuEU-emWBoK3ObFHrYmFHSbHudWoZuihDcaZVWY27cb9wJ1OPNe2ybXp82x-dn1AXudKqsgNXce7LlE_0yWJXMAqRWt8hSO_Vi0flKKbUkVCFOjxT9BWL4IvpNrkb9G97Q1bPV2B5JPmcpQATCzpKE-f3rTA60orbSTKJ41gDgHb5WWQ5V2E4QVh7JS3kkIQYg6SBUNEOaRVlYXcJVS6xASECIxMXX0GqjYQgUqlRRggVxm0SNWea5TX4OM7AeMyaKrOHrJJEhpLIKkm0CVtwPVfgG3_Qy0Zc2Tclypx_-JVz79-c-2SFY5mLv5U5IK35y5s9dHHKXHe8InbI8tnF1XD0CVNT5_4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKdoefkAEhzMJs7ETg4cUGnZ0nYvbKW9BTv2LovapGoXIS6c-T_8QWacpCoSAgmp18S2LI8934z9zQzAM-0KVXtfylpjItHUSlqVGGkyzNEZZW2MSjuY6PEhvp_lszX4OcTCMK2y1_2dTo_auv8y6ldzdLJcjj4o8l1UkeeKXwnKctYzK_fCt6_kt5293n1LQn6u1M72dGss-9ICss6MWskScR7QZWVBkBe0d5mzKsyLeZ7nDhEduSZZUMqm6ZwzulsTsMYiZfgtE20zGvcKXEVSF1w24dX39PxihzA9NfGVlScoeYZDyF7klTW2aQNnXlWxyC4q9WdIvABzO7fgZm-fijfdEtyGtdDcgRsXshbehR9bbcNZYklPikDGN7UUTLRdBMmY6AUX0Wq7-jr0i2eyiMmtyb0XL6bbk3cvBZnKoqOS8CiEl749FseBw5B514gQQxLFJ3sa04A0C0FNhOVDs7TijFn3zeIeHF7Kqt-H9aZtwgMQljwp1DrxpiCDDkvnDSaZLb31Wts034BsWNOq7rOdc9GNo2qgtX2uOklULImqk8QGyPNeJ122j3-0N4O4qt92bUWA9Neem__d8ylcG08P9qv93cneQ7iumGMTr4Qewfrq9Et4TEbSyj2Jm1LAx8s-Bb8AOnIh1Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conductive+elastic+sponge-based+triboelectric+nanogenerator+%28TENG%29+for+effective+random+mechanical+energy+harvesting+and+ammonia+sensing&rft.jtitle=Nano+energy&rft.au=Liu%2C+Yupeng&rft.au=Zheng%2C+Youbin&rft.au=Wu%2C+Zishuai&rft.au=Zhang%2C+Liqiang&rft.date=2021-01-01&rft.issn=2211-2855&rft.volume=79&rft.spage=105422&rft_id=info:doi/10.1016%2Fj.nanoen.2020.105422&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nanoen_2020_105422 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon |