A review of thiocyanate gold leaching – Chemistry, thermodynamics, kinetics and processing

[Display omitted] •Gold leaching by thiocyanate as a promising less toxic lixiviant than cyanide.•Thiocyanate resonances and its coordination with gold using Infrared spectroscopy were investigated.•Effective parameters on thermodynamics and kinetics of thiocyanate gold leaching were studied.•Optimu...

Full description

Saved in:
Bibliographic Details
Published inMinerals engineering Vol. 160; p. 106689
Main Authors Azizitorghabeh, Atefeh, Wang, Jingxiu, Ramsay, Juliana A., Ghahreman, Ahmad
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Gold leaching by thiocyanate as a promising less toxic lixiviant than cyanide.•Thiocyanate resonances and its coordination with gold using Infrared spectroscopy were investigated.•Effective parameters on thermodynamics and kinetics of thiocyanate gold leaching were studied.•Optimum condition of gold leaching using thiocyanate was evaluated.•Gold recovery processes from pregnant leach solution were summarized. Thiocyanate is among the most promising alternative gold lixiviants for gold leaching and has not been extensively covered in the literature. Thiocyanate is 1000 times less toxic than cyanide and is a very strong gold leaching lixiviant. This review paper provides an overview of the chemistry, thermodynamics, kinetics, and processing of gold leaching using thiocyanate as well as gold recovery from the pregnant leach solution. One main reason that the thiocyanate gold leaching process has not yet been commercialized is that the process requires a reduction-oxidation (redox) potential higher than that required of cyanide gold leaching. The oxidant, mostly ferric, is needed to leach gold. However, the redox potential must be lowered by removing oxidants to allow gold recovery from the pregnant leach solution. The molar ratio of oxidant to thiocyanate is considered an effective parameter for gold oxidation kinetics and should range between 2 and 20. Thiocyanate gold leaching is an electrochemical reaction which occurs at pH 1.5–2.5 and electrochemical potential of 600–700 mV. The literature shows fast gold leaching kinetics in well-designed thiocyanate systems. The solubilized gold-thiocyanate species can be recovered from the pregnant leach solution by a variety of methods including conventional activated carbon adsorption, solvent extraction, ion exchange, and cementation. Leaching can be performed in both heaps and tanks.
AbstractList [Display omitted] •Gold leaching by thiocyanate as a promising less toxic lixiviant than cyanide.•Thiocyanate resonances and its coordination with gold using Infrared spectroscopy were investigated.•Effective parameters on thermodynamics and kinetics of thiocyanate gold leaching were studied.•Optimum condition of gold leaching using thiocyanate was evaluated.•Gold recovery processes from pregnant leach solution were summarized. Thiocyanate is among the most promising alternative gold lixiviants for gold leaching and has not been extensively covered in the literature. Thiocyanate is 1000 times less toxic than cyanide and is a very strong gold leaching lixiviant. This review paper provides an overview of the chemistry, thermodynamics, kinetics, and processing of gold leaching using thiocyanate as well as gold recovery from the pregnant leach solution. One main reason that the thiocyanate gold leaching process has not yet been commercialized is that the process requires a reduction-oxidation (redox) potential higher than that required of cyanide gold leaching. The oxidant, mostly ferric, is needed to leach gold. However, the redox potential must be lowered by removing oxidants to allow gold recovery from the pregnant leach solution. The molar ratio of oxidant to thiocyanate is considered an effective parameter for gold oxidation kinetics and should range between 2 and 20. Thiocyanate gold leaching is an electrochemical reaction which occurs at pH 1.5–2.5 and electrochemical potential of 600–700 mV. The literature shows fast gold leaching kinetics in well-designed thiocyanate systems. The solubilized gold-thiocyanate species can be recovered from the pregnant leach solution by a variety of methods including conventional activated carbon adsorption, solvent extraction, ion exchange, and cementation. Leaching can be performed in both heaps and tanks.
ArticleNumber 106689
Author Azizitorghabeh, Atefeh
Ramsay, Juliana A.
Wang, Jingxiu
Ghahreman, Ahmad
Author_xml – sequence: 1
  givenname: Atefeh
  surname: Azizitorghabeh
  fullname: Azizitorghabeh, Atefeh
  organization: Hydrometallurgy and Environment Laboratory, Robert M. Buchan Department of Mining, Queen’s University, 25 Union Street, Kingston, Ontario K7L 3N6, Canada
– sequence: 2
  givenname: Jingxiu
  surname: Wang
  fullname: Wang, Jingxiu
  organization: Hydrometallurgy and Environment Laboratory, Robert M. Buchan Department of Mining, Queen’s University, 25 Union Street, Kingston, Ontario K7L 3N6, Canada
– sequence: 3
  givenname: Juliana A.
  surname: Ramsay
  fullname: Ramsay, Juliana A.
  organization: Department of Chemical Engineering, Queen’s University, 19 Division Street, Kingston, Ontario K7L 3N6, Canada
– sequence: 4
  givenname: Ahmad
  orcidid: 0000-0002-3568-7880
  surname: Ghahreman
  fullname: Ghahreman, Ahmad
  email: ahmad.g@queensu.ca
  organization: Hydrometallurgy and Environment Laboratory, Robert M. Buchan Department of Mining, Queen’s University, 25 Union Street, Kingston, Ontario K7L 3N6, Canada
BookMark eNqFkM1KAzEQgINUsFbfwEMeoK1JdptsPAil-AcFL3oTQjY7aVO7SUmC0pvv4Bv6JO5STx70NMMw3_x8p2jggweELiiZUkL55WbaOg9-NWWE9SXOK3mEhrQSbCLLshygIakkm_BKzE7QaUobQshMVHKIXuY4wpuDdxwszmsXzF57nQGvwrbBW9Bm7fwKf3184sUaWpdy3I-7RohtaPZet86kMX7t1ucuw9o3eBeDgZQ67AwdW71NcP4TR-j59uZpcT9ZPt49LObLiSkEy_2JomC2Acn7CFUhLaM1iFpyyoXgZU0kZbWwltayri0FwfuHigpsyWQxQuVhrokhpQhW7aJrddwrSlRvSG3UwZDqDamDoQ67-oUZl3V2weeo3fY_-PoAQ_dYJzCqZBx4A42LYLJqgvt7wDeWe4fq
CitedBy_id crossref_primary_10_1016_j_mineng_2022_107957
crossref_primary_10_1016_j_molstruc_2022_133569
crossref_primary_10_1007_s42461_024_01036_9
crossref_primary_10_1016_j_mineng_2021_107314
crossref_primary_10_1016_j_jclepro_2021_126457
crossref_primary_10_1016_j_jece_2021_106030
crossref_primary_10_1007_s11274_022_03481_4
crossref_primary_10_3390_su142416666
crossref_primary_10_3390_ijms24032173
crossref_primary_10_1016_j_seppur_2023_125053
crossref_primary_10_1016_j_seppur_2023_124481
crossref_primary_10_1016_j_mineng_2023_108074
crossref_primary_10_3390_molecules28031508
crossref_primary_10_1016_j_jclepro_2023_136016
crossref_primary_10_1016_j_hydromet_2023_106055
crossref_primary_10_1007_s11837_024_07053_9
crossref_primary_10_1016_j_chemosphere_2023_139683
crossref_primary_10_1016_j_seppur_2023_123456
crossref_primary_10_1177_25726641251321409
crossref_primary_10_1016_j_jhazmat_2022_129778
crossref_primary_10_1515_revic_2021_0044
crossref_primary_10_2139_ssrn_4101010
crossref_primary_10_1016_j_jiec_2022_08_002
crossref_primary_10_1016_S1003_6326_24_66614_8
crossref_primary_10_1080_01490451_2021_1977431
crossref_primary_10_3390_min11040387
crossref_primary_10_21285_1814_3520_2023_4_821_828
crossref_primary_10_1016_j_mineng_2022_107403
crossref_primary_10_1021_acsomega_1c00525
crossref_primary_10_1007_s40831_022_00567_z
crossref_primary_10_1007_s11084_023_09640_3
crossref_primary_10_1016_j_cej_2021_132283
crossref_primary_10_1016_j_colsurfa_2024_135486
crossref_primary_10_1016_j_mineng_2024_109009
crossref_primary_10_1016_j_scitotenv_2022_156269
crossref_primary_10_1016_j_cep_2021_108673
crossref_primary_10_1016_j_chemosphere_2022_134283
crossref_primary_10_1016_j_seppur_2024_128959
crossref_primary_10_1016_j_corsci_2025_112843
crossref_primary_10_1016_j_seppur_2024_128535
crossref_primary_10_1016_j_hydromet_2023_106040
crossref_primary_10_3390_ma17153832
Cites_doi 10.1016/j.mineng.2004.02.001
10.1016/j.hydromet.2011.11.006
10.1007/s11837-019-03859-0
10.1016/0022-0728(94)03765-U
10.1016/j.hydromet.2010.04.007
10.1016/S0304-386X(00)00131-6
10.1016/S0003-2670(00)87340-7
10.1016/j.poly.2018.12.039
10.1016/S0020-1693(00)91966-2
10.1016/j.hydromet.2007.07.005
10.1016/S0065-2792(08)60064-3
10.1021/ja00905a001
10.1080/01496395.2016.1250778
10.1134/S0036024408030199
10.1021/ic50029a007
10.1016/j.mineng.2006.12.009
10.1080/01496399108050525
10.1016/0022-0728(84)80233-8
10.1021/ic000561r
10.1080/08827500500339315
10.1016/j.hydromet.2011.11.008
10.1016/S0304-386X(02)00005-1
10.1016/j.seppur.2016.07.037
10.1016/0022-1902(66)80011-8
10.1016/0304-386X(90)90082-D
10.1016/j.mineng.2019.105864
10.1016/j.hydromet.2011.11.005
10.1016/S0304-386X(02)00169-X
10.1016/j.hydromet.2011.12.012
10.1039/C5CS00532A
10.1016/j.jclepro.2004.09.005
10.1016/j.molstruc.2005.11.036
10.1088/1742-6596/1333/3/032053
10.1016/S0304-386X(03)00005-7
10.1016/0304-386X(93)90045-F
10.1016/S0038-092X(03)00248-2
10.1016/0892-6875(91)90171-Q
10.1016/j.mineng.2020.106233
10.1021/ci050050t
10.1080/08827508808952634
10.1016/S0003-2670(00)87531-5
10.1016/j.hydromet.2005.11.003
10.1016/j.carbon.2004.08.021
10.1016/j.hydromet.2011.11.007
10.3390/met7120555
10.1016/j.poly.2012.07.008
10.1016/S0020-1693(00)90837-5
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.mineng.2020.106689
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-9444
ExternalDocumentID 10_1016_j_mineng_2020_106689
S0892687520305094
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABNUV
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSE
SSG
SSZ
T5K
~02
~G-
29M
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMA
HVGLF
HZ~
R2-
RIG
SEP
SET
SEW
SSH
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c372t-944732fde96732fe839f21be7b96167764b0912b7ff1b9bbf1e76089238ef4293
IEDL.DBID .~1
ISSN 0892-6875
IngestDate Thu Apr 24 22:52:20 EDT 2025
Tue Jul 01 01:13:28 EDT 2025
Fri Feb 23 02:46:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Gold leaching
Thiocyanate
Isothiocyanate
Iron
Kinetics
Copper
Thermodynamic
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-944732fde96732fe839f21be7b96167764b0912b7ff1b9bbf1e76089238ef4293
ORCID 0000-0002-3568-7880
ParticipantIDs crossref_primary_10_1016_j_mineng_2020_106689
crossref_citationtrail_10_1016_j_mineng_2020_106689
elsevier_sciencedirect_doi_10_1016_j_mineng_2020_106689
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
2021-01-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Minerals engineering
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kholmogorov, Kononova, Pashkov, Kononov (b0190) 2002; 64
Karavasteva (b0180) 2010; 104
Wang, Chen, Chen (b0370) 2007; 89
Barbosa-Filho, Monhemius (b0040) 1994; 103
Krinitsyn, Kononova, Krylov, Maznyak, Kholmogorov (b0205) 2008; 82
Li, Safarzadeh, Moats, Miller, Levier, Dietrich, Wan (b0240) 2012; 113–114
Newman (b0285) 1975
Grosse, Dicinoski, Shaw, Haddad (b0140) 2003; 69
Wan, R.Y., LeVier, K.M., 2007. Precious metal recovery using thiocyanate lixiviant.
Gutmann (b0145) 2012
Syed (b0350) 2012; 115–116
Jolly, W.L., 1964. The inorganic chemistry of nitrogen. WA Benjamin.
Rees, Van Deventer (b0325) 2000; 58
Holub, Skopenko (b0165) 1986
Williams (b0390) 1915
Li, Safarzadeh, Moats, Miller, Levier, Dietrich, Wan (b0235) 2012; 113–114
Barbosa-Filho, Monhemius (b0025) 1989; 89
Navarro, Alvarez, Vargas, Alguacil (b0280) 2004; 17
Semencha, Blinov (b0340) 2016
Brent Hiskey, Atluri (b0065) 1988; 4
Elshin, Melnik (b0100) 2019; 1333
Gauguin (b0120) 1949; 3
Li, Miller (b0220) 2006; 27
Prasad, Mensah-Biney, Pizarro (b0315) 1991; 4
Zhou, Liu, Zhang, Li, Zhang (b0400) 2006; 788
Barbosa-Filho, Monhemius (b0030) 2011; ’94
Itabashi (b0170) 1984; 177
Dong, Jiang, Xu, Yang, Li (b0095) 2017; 7
Marsden, Botz (b0250) 2017; 34
Sabatini, Bertini (b0335) 1965; 4
Barbosa-Filho, Monhemius (b0035) 1994; 103
Norbury (b0290) 1975; vol. 17
Norbury (b0295) 1975
Riveros (b0330) 1990; 24
Barbosa-Filho, Monhemius (b0045) 1994; 103
Lee, Kim, Oh (b0215) 1997; 36
Li, Safarzadeh, Moats, Miller, Levier, Dietrich, Wan (b0225) 2012; 113–114
Hannachi, Valkonen, Rzaigui, Smirani (b0155) 2019; 161
Korondán, Nagypál (b0200) 1983; 73
Awadalla, Ritcey (b0010) 1991; 26
Azizitorghabeh, Rashchi, Babakhani (b0015) 2016; 171
Greijer, Lindgren, Hagfeldt (b0135) 2003; 75
Olson, Brierley, Briggs, Calmet (b0300) 2006; 81
MacHura, Świtlicka, Penkala (b0245) 2012; 45
Monhemius, A.J., 1987. Recent advances in the treatment of refractory gold ores. In: Proc. Second Meeting Southem Hemisphere Mineral Techn., Rio DeJaneiro, pp. 280–302.
Gauguin (b0115) 1951; 5
Martell, Smith (b0260) 1974
Yannopoulos (b0395) 1991
Pregosin, Streit, Venanzi (b0320) 1980; 38
Wang, Chen, Chen (b0365) 2007; 20
Soltani, Marzban, Darabi, Aazami, Chegeni (b0345) 2020; 72
Azizitorghabeh, Rashchi, Babakhani, Noori (b0020) 2017; 52
Ahn, Wu, Ahn, Lee (b0005) 2019; 140
Kononova, Kholmogorov, Danilenko, Kachin, Kononov, Dmitrieva (b0195) 2005; 43
Cauquis, Pierre (b0090) 1972; 6
Munoz, Miller (b0270) 2000; 17
Gönen (b0125) 2003; 69
Pearson (b0305) 1963; 85
Figlar, Stanbury (b0105) 2000; 39
Boughton, Keller (b0060) 1966; 28
Li, Safarzadeh, Moats, Miller, Levier, Dietrich, Wan (b0230) 2012; 113–114
Buda, Kazi, Dinescu, Cundari (b0080) 2005; 45
Broadhurst, du Perez (b0070) 1993; 32
Portilla, He, Jacome-Collazos, Visurraga, Chirif, Teplyakov, Rodríguez-Reyes (b0310) 2020; 149
Bron, Holze (b0075) 2002; 385
Hilson, Monhemius (b0160) 2006; 14
Vasilev, Mukhina (b0355) 1964; 7
Kuzugüdenli, Kantar (b0210) 1999; 15
Gos, S., Rubo, A., 2001. The Relevance of Alternative Lixiviants with Regard to Technical Aspects, Work Safety and Environmental Safety. Cyplus. Degussa AG, Hanau, Ger.
White (b0385) 1905; 6
Marsden, House (b0255) 2006
Castanheiro, Suffert, Donnard, Gulea (b0085) 2016; 45
Pearson (10.1016/j.mineng.2020.106689_b0305) 1963; 85
Broadhurst (10.1016/j.mineng.2020.106689_b0070) 1993; 32
Karavasteva (10.1016/j.mineng.2020.106689_b0180) 2010; 104
Lee (10.1016/j.mineng.2020.106689_b0215) 1997; 36
Li (10.1016/j.mineng.2020.106689_b0230) 2012; 113–114
Li (10.1016/j.mineng.2020.106689_b0220) 2006; 27
10.1016/j.mineng.2020.106689_b0175
Barbosa-Filho (10.1016/j.mineng.2020.106689_b0030) 2011; ’94
Itabashi (10.1016/j.mineng.2020.106689_b0170) 1984; 177
Figlar (10.1016/j.mineng.2020.106689_b0105) 2000; 39
10.1016/j.mineng.2020.106689_b0130
Portilla (10.1016/j.mineng.2020.106689_b0310) 2020; 149
Hannachi (10.1016/j.mineng.2020.106689_b0155) 2019; 161
Krinitsyn (10.1016/j.mineng.2020.106689_b0205) 2008; 82
Riveros (10.1016/j.mineng.2020.106689_b0330) 1990; 24
Greijer (10.1016/j.mineng.2020.106689_b0135) 2003; 75
Bron (10.1016/j.mineng.2020.106689_b0075) 2002; 385
Buda (10.1016/j.mineng.2020.106689_b0080) 2005; 45
Gauguin (10.1016/j.mineng.2020.106689_b0115) 1951; 5
Vasilev (10.1016/j.mineng.2020.106689_b0355) 1964; 7
Elshin (10.1016/j.mineng.2020.106689_b0100) 2019; 1333
Prasad (10.1016/j.mineng.2020.106689_b0315) 1991; 4
Castanheiro (10.1016/j.mineng.2020.106689_b0085) 2016; 45
Gönen (10.1016/j.mineng.2020.106689_b0125) 2003; 69
Sabatini (10.1016/j.mineng.2020.106689_b0335) 1965; 4
Wang (10.1016/j.mineng.2020.106689_b0370) 2007; 89
Zhou (10.1016/j.mineng.2020.106689_b0400) 2006; 788
Norbury (10.1016/j.mineng.2020.106689_b0290) 1975; vol. 17
Azizitorghabeh (10.1016/j.mineng.2020.106689_b0015) 2016; 171
Semencha (10.1016/j.mineng.2020.106689_b0340) 2016
Martell (10.1016/j.mineng.2020.106689_b0260) 1974
10.1016/j.mineng.2020.106689_b0265
Hilson (10.1016/j.mineng.2020.106689_b0160) 2006; 14
Kuzugüdenli (10.1016/j.mineng.2020.106689_b0210) 1999; 15
Olson (10.1016/j.mineng.2020.106689_b0300) 2006; 81
Soltani (10.1016/j.mineng.2020.106689_b0345) 2020; 72
Barbosa-Filho (10.1016/j.mineng.2020.106689_b0035) 1994; 103
MacHura (10.1016/j.mineng.2020.106689_b0245) 2012; 45
Li (10.1016/j.mineng.2020.106689_b0240) 2012; 113–114
Li (10.1016/j.mineng.2020.106689_b0235) 2012; 113–114
Wang (10.1016/j.mineng.2020.106689_b0365) 2007; 20
Navarro (10.1016/j.mineng.2020.106689_b0280) 2004; 17
Newman (10.1016/j.mineng.2020.106689_b0285) 1975
Barbosa-Filho (10.1016/j.mineng.2020.106689_b0045) 1994; 103
Williams (10.1016/j.mineng.2020.106689_b0390) 1915
Awadalla (10.1016/j.mineng.2020.106689_b0010) 1991; 26
Azizitorghabeh (10.1016/j.mineng.2020.106689_b0020) 2017; 52
Marsden (10.1016/j.mineng.2020.106689_b0255) 2006
Pregosin (10.1016/j.mineng.2020.106689_b0320) 1980; 38
Munoz (10.1016/j.mineng.2020.106689_b0270) 2000; 17
White (10.1016/j.mineng.2020.106689_b0385) 1905; 6
Holub (10.1016/j.mineng.2020.106689_b0165) 1986
Barbosa-Filho (10.1016/j.mineng.2020.106689_b0040) 1994; 103
Ahn (10.1016/j.mineng.2020.106689_b0005) 2019; 140
Dong (10.1016/j.mineng.2020.106689_b0095) 2017; 7
Grosse (10.1016/j.mineng.2020.106689_b0140) 2003; 69
Yannopoulos (10.1016/j.mineng.2020.106689_b0395) 1991
Gauguin (10.1016/j.mineng.2020.106689_b0120) 1949; 3
Li (10.1016/j.mineng.2020.106689_b0225) 2012; 113–114
Norbury (10.1016/j.mineng.2020.106689_b0295) 1975
Marsden (10.1016/j.mineng.2020.106689_b0250) 2017; 34
Gutmann (10.1016/j.mineng.2020.106689_b0145) 2012
Boughton (10.1016/j.mineng.2020.106689_b0060) 1966; 28
10.1016/j.mineng.2020.106689_b0360
Cauquis (10.1016/j.mineng.2020.106689_b0090) 1972; 6
Kholmogorov (10.1016/j.mineng.2020.106689_b0190) 2002; 64
Rees (10.1016/j.mineng.2020.106689_b0325) 2000; 58
Brent Hiskey (10.1016/j.mineng.2020.106689_b0065) 1988; 4
Korondán (10.1016/j.mineng.2020.106689_b0200) 1983; 73
Barbosa-Filho (10.1016/j.mineng.2020.106689_b0025) 1989; 89
Syed (10.1016/j.mineng.2020.106689_b0350) 2012; 115–116
Kononova (10.1016/j.mineng.2020.106689_b0195) 2005; 43
References_xml – volume: 104
  start-page: 119
  year: 2010
  end-page: 122
  ident: b0180
  article-title: Kinetics and deposit morphology of gold cemented on magnesium, aluminum, zinc, iron and copper from ammonium thiosulfate-ammonia solutions
  publication-title: Hydrometallurgy
– volume: 4
  start-page: 95
  year: 1988
  end-page: 134
  ident: b0065
  article-title: Dissolution chemistry of gold and silver in different lixiviants
  publication-title: Miner. Procesing Extr. Metall. Rev.
– year: 2012
  ident: b0145
  article-title: Coordination Chemistry in Non-Aqueous Solutions
– volume: 161
  start-page: 222
  year: 2019
  end-page: 230
  ident: b0155
  article-title: Thiocyanate precursor impact on the formation of cobalt complexes: synthesis and characterization
  publication-title: Polyhedron
– volume: 69
  start-page: 169
  year: 2003
  end-page: 176
  ident: b0125
  article-title: Leaching of finely disseminated gold ore with cyanide and thiourea solutions
  publication-title: Hydrometallurgy
– volume: 113–114
  start-page: 31
  year: 2012
  end-page: 38
  ident: b0240
  article-title: Thiocyanate hydrometallurgy for the recovery of gold. Part V: Process alternatives for solution concentration and purification
  publication-title: Hydrometallurgy
– start-page: 231
  year: 1975
  end-page: 386
  ident: b0295
  article-title: Coordination chemistry of the cyanate, thiocyanate, and selenocyanate ions
  publication-title: Advances in Inorganic Chemistry and Radiochemistry
– volume: 14
  start-page: 1158
  year: 2006
  end-page: 1167
  ident: b0160
  article-title: Alternatives to cyanide in the gold mining industry: what prospects for the future?
  publication-title: J. Clean. Prod.
– reference: Jolly, W.L., 1964. The inorganic chemistry of nitrogen. WA Benjamin.
– volume: 6
  start-page: 109
  year: 1905
  end-page: 111
  ident: b0385
  article-title: The Solubility of Gold in Thiosulphates and Thiocyanates
  publication-title: J. Chem. Metall. Min. Soc. South Africa
– volume: 113–114
  start-page: 1
  year: 2012
  end-page: 9
  ident: b0225
  article-title: Thiocyanate hydrometallurgy for the recovery of gold. Part I: Chemical and thermodynamic considerations
  publication-title: Hydrometallurgy
– volume: 17
  start-page: 198
  year: 2000
  end-page: 204
  ident: b0270
  article-title: Noncyanide leaching of an auriferous pyrite ore from Ecuador
  publication-title: Mining Metall. Explor.
– volume: 89
  start-page: 307
  year: 1989
  end-page: 339
  ident: b0025
  article-title: Thermochemistry of thiocyanate systems for leaching gold and silver ores
  publication-title: Precious Met.
– volume: 64
  start-page: 43
  year: 2002
  end-page: 48
  ident: b0190
  article-title: Thiocyanate solutions in gold technology
  publication-title: Hydrometallurgy
– volume: 113–114
  start-page: 10
  year: 2012
  end-page: 18
  ident: b0230
  article-title: Thiocyanate hydrometallurgy for the recovery of gold.: Part II: The leaching kinetics
  publication-title: Hydrometallurgy
– volume: 89
  start-page: 196
  year: 2007
  end-page: 206
  ident: b0370
  article-title: Application of fluoride to enhance aluminum cementation of gold from acidic thiocyanate solution
  publication-title: Hydrometallurgy
– volume: 34
  start-page: 53
  year: 2017
  end-page: 64
  ident: b0250
  article-title: Heap leach modeling – a review of approaches to metal production forecasting
  publication-title: Miner. Metall. Process.
– volume: 17
  start-page: 825
  year: 2004
  end-page: 831
  ident: b0280
  article-title: On the use of zinc for gold cementation from ammoniacal–thiosulphate solutions
  publication-title: Miner. Eng.
– volume: 385
  start-page: 105
  year: 2002
  end-page: 113
  ident: b0075
  article-title: Cyanate and thiocyanate adsorption at copper and gold electrodes as probed by in situ infrared and surface-enhanced Raman spectroscopy
  publication-title: J. Electroanal. Chem.
– year: 1986
  ident: b0165
  article-title: Chemistry of Pseudohalides
– volume: 7
  start-page: 620
  year: 1964
  end-page: 623
  ident: b0355
  article-title: Equilibria in aqueous solutions of thiocyanato-complexes of iron
  publication-title: Russian
– volume: 6
  start-page: 2244
  year: 1972
  ident: b0090
  article-title: La formation transitoire de l’ion complexe (SCN) 3− au cours de l’oxidation èlectrochimique de l’ion thiocyanate dans l’acètinitrile
  publication-title: Bull. Soc. Chim. Fr.
– volume: 27
  start-page: 177
  year: 2006
  end-page: 214
  ident: b0220
  article-title: A review of gold leaching in acid thiourea solutions
  publication-title: Miner. Process. Extr. Metall. Rev.
– volume: 115–116
  start-page: 30
  year: 2012
  end-page: 51
  ident: b0350
  article-title: Recovery of gold from secondary sources-a review
  publication-title: Hydrometallurgy
– volume: 103
  start-page: C117
  year: 1994
  ident: b0045
  article-title: Leaching of gold in thiocyanate solutions. Part 3: rates and mechanism of gold dissolution
  publication-title: Trans. Min. Metall.
– volume: 20
  start-page: 581
  year: 2007
  end-page: 590
  ident: b0365
  article-title: Gold cementation from thiocyanate solutions by iron powder
  publication-title: Miner. Eng.
– volume: 113–114
  start-page: 25
  year: 2012
  end-page: 30
  ident: b0235
  article-title: Thiocyanate hydrometallurgy for the recovery of gold. Part IV: Solvent extraction of gold with Alamine 336
  publication-title: Hydrometallurgy
– volume: 32
  start-page: 317
  year: 1993
  end-page: 344
  ident: b0070
  article-title: A thermodynamic study of the dissolution of gold in an acidic aqueous thiocyanate medium using iron (III) sulphate as an oxidant
  publication-title: Hydrometallurgy
– volume: vol. 17
  start-page: 231
  year: 1975
  ident: b0290
  publication-title: Advances in Inorganic Chemistry and Radiochemistry
– volume: ’94
  start-page: 425
  year: 2011
  end-page: 440
  ident: b0030
  article-title: Iodide—thiocyanate leaching system for gold
  publication-title: Hydrometallurgy
– year: 1975
  ident: b0285
  article-title: Chemistry and Biochemistry of Thiocyanic Acid and its Derivatives
– year: 1974
  ident: b0260
  article-title: Critical Stability Constants
– volume: 149
  year: 2020
  ident: b0310
  article-title: Acidic pretreatment of a copper-silver ore and its beneficial effect on cyanide leaching
  publication-title: Miner. Eng.
– volume: 73
  start-page: 131
  year: 1983
  end-page: 134
  ident: b0200
  article-title: NMR relaxation studies in solutions of transition metal complexes. X. The stepwise equilibria in the iron (III)-thiocyanate system studied by NMR relaxation
  publication-title: Inorg. Chim. Acta
– volume: 45
  start-page: 965
  year: 2005
  end-page: 970
  ident: b0080
  article-title: Stability studies of transition-metal linkage isomers using quantum mechanical methods. Groups 11 and 12 transition metals
  publication-title: J. Chem. Inf. Model.
– volume: 75
  start-page: 169
  year: 2003
  end-page: 180
  ident: b0135
  article-title: Degradation mechanisms in a dye-sensitized solar cell studied by UV – VIS and IR spectroscopy
  publication-title: Sol. Energy
– volume: 1333
  year: 2019
  ident: b0100
  article-title: Development and identification of a mathematical model of the process of continuous autoclave desorption of noble metals in moving-bed apparatus
  publication-title: J. Phys. Conf. Ser.
– volume: 4
  start-page: 959
  year: 1965
  end-page: 961
  ident: b0335
  article-title: Infrared Spectra between 100 and 2500 Cm.-1 of some complex metal cyanates, thiocyanates, and selenocyanates
  publication-title: Inorg. Chem.
– volume: 7
  start-page: 555
  year: 2017
  ident: b0095
  article-title: Recovery of gold from pregnant thiosulfate solutions by the resin adsorption technique
  publication-title: Metals (Basel)
– year: 1991
  ident: b0395
  article-title: The Extractive Metallurgy of Gold
– volume: 3
  start-page: 272
  year: 1949
  end-page: 276
  ident: b0120
  article-title: Remarques sur l’oxydation des thiocyanates par l’iodate
  publication-title: Anal. Chim. Acta
– volume: 82
  start-page: 429
  year: 2008
  end-page: 433
  ident: b0205
  article-title: Recovery of gold(I) thiocyanate complexes by some anion-exchangers
  publication-title: Russ. J. Phys. Chem. A
– volume: 28
  start-page: 2851
  year: 1966
  end-page: 2859
  ident: b0060
  article-title: Dissociation constants of hydropseudohalic acids
  publication-title: J. Inorg. Nucl. Chem.
– volume: 15
  start-page: 119
  year: 1999
  end-page: 127
  ident: b0210
  article-title: Alternates to gold recovery by cyanide leaching
  publication-title: Erciyes Üniversitesi Fen Bilim. Derg.
– volume: 85
  start-page: 3533
  year: 1963
  end-page: 3539
  ident: b0305
  article-title: Hard and soft acids and bases
  publication-title: J. Am. Chem. Soc.
– volume: 38
  start-page: 237
  year: 1980
  end-page: 242
  ident: b0320
  article-title: 15N, 31P and 195Pt NMR studies of thiocyanate complexes
  publication-title: Inorg. Chim. Acta
– reference: Wan, R.Y., LeVier, K.M., 2007. Precious metal recovery using thiocyanate lixiviant.
– volume: 69
  start-page: 1
  year: 2003
  end-page: 21
  ident: b0140
  article-title: Leaching and recovery of gold using ammoniacal thiosulfate leach liquors (a review)
  publication-title: Hydrometallurgy
– volume: 36
  start-page: 149
  year: 1997
  end-page: 155
  ident: b0215
  article-title: Cementation behavior of gold and silver onto Zn, Al, and Fe powders from acid thiourea solutions
  publication-title: Can. Metall. Q.
– volume: 45
  start-page: 494
  year: 2016
  end-page: 505
  ident: b0085
  article-title: Recent advances in the chemistry of organic thiocyanates
  publication-title: Chem. Soc. Rev.
– volume: 52
  year: 2017
  ident: b0020
  article-title: Synergistic extraction and separation of Fe(III) and Zn(II) using TBP and D2EHPA
  publication-title: Sep. Sci. Technol.
– volume: 58
  start-page: 61
  year: 2000
  end-page: 80
  ident: b0325
  article-title: Preg-robbing phenomena in the cyanidation of sulphide gold ores
  publication-title: Hydrometallurgy
– volume: 103
  start-page: C105
  year: 1994
  ident: b0035
  article-title: Leaching of gold in thiocyanate solutions: Part 1: chemistry and thermodynamics
  publication-title: Trans. Inst. Min. Metall. C-Mineral Process.
– volume: 171
  year: 2016
  ident: b0015
  article-title: Stoichiometry and structural studies of Fe(III) and Zn(II) solvent extraction using D2EHPA/TBP
  publication-title: Sep. Purif. Technol.
– reference: Monhemius, A.J., 1987. Recent advances in the treatment of refractory gold ores. In: Proc. Second Meeting Southem Hemisphere Mineral Techn., Rio DeJaneiro, pp. 280–302.
– volume: 4
  start-page: 1257
  year: 1991
  end-page: 1277
  ident: b0315
  article-title: Modern trends in gold processing – overview
  publication-title: Miner. Eng.
– volume: 24
  start-page: 135
  year: 1990
  end-page: 156
  ident: b0330
  article-title: Studies on the solvent extraction of gold from cyanide media
  publication-title: Hydrometallurgy
– year: 1915
  ident: b0390
  article-title: The Chemistry of Cyanogen Compounds and their Manufacture and Estimation
– volume: 140
  year: 2019
  ident: b0005
  article-title: Comparative investigations on sulfidic gold ore processing: A novel biooxidation process option
  publication-title: Miner. Eng.
– volume: 43
  start-page: 17
  year: 2005
  end-page: 22
  ident: b0195
  article-title: Sorption of gold and silver on carbon adsorbents from thiocyanate solutions
  publication-title: Carbon N. Y.
– volume: 26
  start-page: 1207
  year: 1991
  end-page: 1228
  ident: b0010
  article-title: Recovery of gold from thiourea, thiocyanate, or thiosulfate solutions by reduction-precipitation with a stabilized form of sodium borohydride
  publication-title: Sep. Sci. Technol.
– volume: 177
  start-page: 311
  year: 1984
  end-page: 315
  ident: b0170
  article-title: Identification of electrooxidation products of thiocyanate ion in acidic solutions by thin-layer spectroelectrochemistry
  publication-title: J. Electroanal. Chem. interfacial Electrochem.
– volume: 72
  start-page: 774
  year: 2020
  end-page: 781
  ident: b0345
  article-title: Effect of oxidative pretreatment and lead nitrate addition on the cyanidation of refractory gold ore
  publication-title: JOM
– volume: 788
  start-page: 194
  year: 2006
  end-page: 199
  ident: b0400
  article-title: Syntheses and structures of three cobalt (II) complexes with thiocyanate and 1, 2-bis (benzotriazol-1-yl) ethane
  publication-title: J. Mol. Struct.
– volume: 45
  start-page: 221
  year: 2012
  end-page: 228
  ident: b0245
  article-title: N- and S-bonded thiocyanate copper(II) complexes of 2,6-bis- (benzimidazolyl)pyridine - Synthesis, spectroscopic characterization, X-ray structure and DFT calculations
  publication-title: Polyhedron
– year: 2006
  ident: b0255
  article-title: The Chemistry of Gold Extraction
– volume: 39
  start-page: 5089
  year: 2000
  end-page: 5094
  ident: b0105
  article-title: Thiocyanogen as an intermediate in the oxidation of thiocyanate by hydrogen peroxide in acidic aqueous solution
  publication-title: Inorg. Chem.
– reference: Gos, S., Rubo, A., 2001. The Relevance of Alternative Lixiviants with Regard to Technical Aspects, Work Safety and Environmental Safety. Cyplus. Degussa AG, Hanau, Ger.
– year: 2016
  ident: b0340
  article-title: Theoretical prerequisites, problems, and practical approaches to the preparation of carbon nitride: a review
  publication-title: Glass Phys. Chem.
– volume: 5
  start-page: 200
  year: 1951
  end-page: 214
  ident: b0115
  article-title: Oxydation électrochimique de l’ion thiocyanique. Application aux dosages et ä l’étude des réactions
  publication-title: Anal. Chim. Acta
– volume: 81
  start-page: 159
  year: 2006
  end-page: 166
  ident: b0300
  article-title: Biooxidation of thiocyanate-containing refractory gold tailings from Minacalpa, Peru
  publication-title: Hydrometallurgy
– volume: 103
  start-page: C111
  year: 1994
  ident: b0040
  article-title: Leaching of gold in thiocyanate solutions. Part 2: redox processes in iron (III)-thiocyanate solutions
  publication-title: Trans. Min. Metall.
– volume: 103
  start-page: C105
  year: 1994
  ident: 10.1016/j.mineng.2020.106689_b0035
  article-title: Leaching of gold in thiocyanate solutions: Part 1: chemistry and thermodynamics
  publication-title: Trans. Inst. Min. Metall. C-Mineral Process.
– volume: 17
  start-page: 825
  year: 2004
  ident: 10.1016/j.mineng.2020.106689_b0280
  article-title: On the use of zinc for gold cementation from ammoniacal–thiosulphate solutions
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2004.02.001
– volume: 113–114
  start-page: 25
  year: 2012
  ident: 10.1016/j.mineng.2020.106689_b0235
  article-title: Thiocyanate hydrometallurgy for the recovery of gold. Part IV: Solvent extraction of gold with Alamine 336
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2011.11.006
– volume: 72
  start-page: 774
  year: 2020
  ident: 10.1016/j.mineng.2020.106689_b0345
  article-title: Effect of oxidative pretreatment and lead nitrate addition on the cyanidation of refractory gold ore
  publication-title: JOM
  doi: 10.1007/s11837-019-03859-0
– year: 1915
  ident: 10.1016/j.mineng.2020.106689_b0390
– volume: 6
  start-page: 2244
  year: 1972
  ident: 10.1016/j.mineng.2020.106689_b0090
  article-title: La formation transitoire de l’ion complexe (SCN) 3− au cours de l’oxidation èlectrochimique de l’ion thiocyanate dans l’acètinitrile
  publication-title: Bull. Soc. Chim. Fr.
– volume: 385
  start-page: 105
  year: 2002
  ident: 10.1016/j.mineng.2020.106689_b0075
  article-title: Cyanate and thiocyanate adsorption at copper and gold electrodes as probed by in situ infrared and surface-enhanced Raman spectroscopy
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/0022-0728(94)03765-U
– volume: ’94
  start-page: 425
  year: 2011
  ident: 10.1016/j.mineng.2020.106689_b0030
  article-title: Iodide—thiocyanate leaching system for gold
  publication-title: Hydrometallurgy
– volume: 103
  start-page: C111
  year: 1994
  ident: 10.1016/j.mineng.2020.106689_b0040
  article-title: Leaching of gold in thiocyanate solutions. Part 2: redox processes in iron (III)-thiocyanate solutions
  publication-title: Trans. Min. Metall.
– year: 2006
  ident: 10.1016/j.mineng.2020.106689_b0255
– volume: 104
  start-page: 119
  year: 2010
  ident: 10.1016/j.mineng.2020.106689_b0180
  article-title: Kinetics and deposit morphology of gold cemented on magnesium, aluminum, zinc, iron and copper from ammonium thiosulfate-ammonia solutions
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2010.04.007
– volume: 58
  start-page: 61
  year: 2000
  ident: 10.1016/j.mineng.2020.106689_b0325
  article-title: Preg-robbing phenomena in the cyanidation of sulphide gold ores
  publication-title: Hydrometallurgy
  doi: 10.1016/S0304-386X(00)00131-6
– volume: 3
  start-page: 272
  year: 1949
  ident: 10.1016/j.mineng.2020.106689_b0120
  article-title: Remarques sur l’oxydation des thiocyanates par l’iodate
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(00)87340-7
– volume: 161
  start-page: 222
  year: 2019
  ident: 10.1016/j.mineng.2020.106689_b0155
  article-title: Thiocyanate precursor impact on the formation of cobalt complexes: synthesis and characterization
  publication-title: Polyhedron
  doi: 10.1016/j.poly.2018.12.039
– ident: 10.1016/j.mineng.2020.106689_b0265
– volume: 38
  start-page: 237
  year: 1980
  ident: 10.1016/j.mineng.2020.106689_b0320
  article-title: 15N, 31P and 195Pt NMR studies of thiocyanate complexes
  publication-title: Inorg. Chim. Acta
  doi: 10.1016/S0020-1693(00)91966-2
– volume: 89
  start-page: 196
  year: 2007
  ident: 10.1016/j.mineng.2020.106689_b0370
  article-title: Application of fluoride to enhance aluminum cementation of gold from acidic thiocyanate solution
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2007.07.005
– start-page: 231
  year: 1975
  ident: 10.1016/j.mineng.2020.106689_b0295
  article-title: Coordination chemistry of the cyanate, thiocyanate, and selenocyanate ions
  doi: 10.1016/S0065-2792(08)60064-3
– volume: 85
  start-page: 3533
  year: 1963
  ident: 10.1016/j.mineng.2020.106689_b0305
  article-title: Hard and soft acids and bases
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00905a001
– year: 2016
  ident: 10.1016/j.mineng.2020.106689_b0340
  article-title: Theoretical prerequisites, problems, and practical approaches to the preparation of carbon nitride: a review
  publication-title: Glass Phys. Chem.
– ident: 10.1016/j.mineng.2020.106689_b0360
– volume: 52
  year: 2017
  ident: 10.1016/j.mineng.2020.106689_b0020
  article-title: Synergistic extraction and separation of Fe(III) and Zn(II) using TBP and D2EHPA
  publication-title: Sep. Sci. Technol.
  doi: 10.1080/01496395.2016.1250778
– volume: 89
  start-page: 307
  year: 1989
  ident: 10.1016/j.mineng.2020.106689_b0025
  article-title: Thermochemistry of thiocyanate systems for leaching gold and silver ores
  publication-title: Precious Met.
– volume: 82
  start-page: 429
  year: 2008
  ident: 10.1016/j.mineng.2020.106689_b0205
  article-title: Recovery of gold(I) thiocyanate complexes by some anion-exchangers
  publication-title: Russ. J. Phys. Chem. A
  doi: 10.1134/S0036024408030199
– volume: 4
  start-page: 959
  year: 1965
  ident: 10.1016/j.mineng.2020.106689_b0335
  article-title: Infrared Spectra between 100 and 2500 Cm.-1 of some complex metal cyanates, thiocyanates, and selenocyanates
  publication-title: Inorg. Chem.
  doi: 10.1021/ic50029a007
– volume: 20
  start-page: 581
  year: 2007
  ident: 10.1016/j.mineng.2020.106689_b0365
  article-title: Gold cementation from thiocyanate solutions by iron powder
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2006.12.009
– volume: 26
  start-page: 1207
  year: 1991
  ident: 10.1016/j.mineng.2020.106689_b0010
  article-title: Recovery of gold from thiourea, thiocyanate, or thiosulfate solutions by reduction-precipitation with a stabilized form of sodium borohydride
  publication-title: Sep. Sci. Technol.
  doi: 10.1080/01496399108050525
– volume: 15
  start-page: 119
  year: 1999
  ident: 10.1016/j.mineng.2020.106689_b0210
  article-title: Alternates to gold recovery by cyanide leaching
  publication-title: Erciyes Üniversitesi Fen Bilim. Derg.
– volume: 177
  start-page: 311
  year: 1984
  ident: 10.1016/j.mineng.2020.106689_b0170
  article-title: Identification of electrooxidation products of thiocyanate ion in acidic solutions by thin-layer spectroelectrochemistry
  publication-title: J. Electroanal. Chem. interfacial Electrochem.
  doi: 10.1016/0022-0728(84)80233-8
– volume: 39
  start-page: 5089
  year: 2000
  ident: 10.1016/j.mineng.2020.106689_b0105
  article-title: Thiocyanogen as an intermediate in the oxidation of thiocyanate by hydrogen peroxide in acidic aqueous solution
  publication-title: Inorg. Chem.
  doi: 10.1021/ic000561r
– volume: 27
  start-page: 177
  year: 2006
  ident: 10.1016/j.mineng.2020.106689_b0220
  article-title: A review of gold leaching in acid thiourea solutions
  publication-title: Miner. Process. Extr. Metall. Rev.
  doi: 10.1080/08827500500339315
– volume: 113–114
  start-page: 31
  year: 2012
  ident: 10.1016/j.mineng.2020.106689_b0240
  article-title: Thiocyanate hydrometallurgy for the recovery of gold. Part V: Process alternatives for solution concentration and purification
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2011.11.008
– volume: 64
  start-page: 43
  year: 2002
  ident: 10.1016/j.mineng.2020.106689_b0190
  article-title: Thiocyanate solutions in gold technology
  publication-title: Hydrometallurgy
  doi: 10.1016/S0304-386X(02)00005-1
– volume: 171
  year: 2016
  ident: 10.1016/j.mineng.2020.106689_b0015
  article-title: Stoichiometry and structural studies of Fe(III) and Zn(II) solvent extraction using D2EHPA/TBP
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2016.07.037
– volume: 7
  start-page: 620
  year: 1964
  ident: 10.1016/j.mineng.2020.106689_b0355
  article-title: Equilibria in aqueous solutions of thiocyanato-complexes of iron
  publication-title: Russian
– volume: 28
  start-page: 2851
  year: 1966
  ident: 10.1016/j.mineng.2020.106689_b0060
  article-title: Dissociation constants of hydropseudohalic acids
  publication-title: J. Inorg. Nucl. Chem.
  doi: 10.1016/0022-1902(66)80011-8
– volume: 24
  start-page: 135
  year: 1990
  ident: 10.1016/j.mineng.2020.106689_b0330
  article-title: Studies on the solvent extraction of gold from cyanide media
  publication-title: Hydrometallurgy
  doi: 10.1016/0304-386X(90)90082-D
– volume: 140
  year: 2019
  ident: 10.1016/j.mineng.2020.106689_b0005
  article-title: Comparative investigations on sulfidic gold ore processing: A novel biooxidation process option
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2019.105864
– volume: 113–114
  start-page: 1
  year: 2012
  ident: 10.1016/j.mineng.2020.106689_b0225
  article-title: Thiocyanate hydrometallurgy for the recovery of gold. Part I: Chemical and thermodynamic considerations
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2011.11.005
– volume: 69
  start-page: 1
  year: 2003
  ident: 10.1016/j.mineng.2020.106689_b0140
  article-title: Leaching and recovery of gold using ammoniacal thiosulfate leach liquors (a review)
  publication-title: Hydrometallurgy
  doi: 10.1016/S0304-386X(02)00169-X
– year: 1975
  ident: 10.1016/j.mineng.2020.106689_b0285
– volume: 115–116
  start-page: 30
  year: 2012
  ident: 10.1016/j.mineng.2020.106689_b0350
  article-title: Recovery of gold from secondary sources-a review
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2011.12.012
– year: 1974
  ident: 10.1016/j.mineng.2020.106689_b0260
– volume: 45
  start-page: 494
  year: 2016
  ident: 10.1016/j.mineng.2020.106689_b0085
  article-title: Recent advances in the chemistry of organic thiocyanates
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00532A
– volume: 103
  start-page: C117
  year: 1994
  ident: 10.1016/j.mineng.2020.106689_b0045
  article-title: Leaching of gold in thiocyanate solutions. Part 3: rates and mechanism of gold dissolution
  publication-title: Trans. Min. Metall.
– volume: 14
  start-page: 1158
  year: 2006
  ident: 10.1016/j.mineng.2020.106689_b0160
  article-title: Alternatives to cyanide in the gold mining industry: what prospects for the future?
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2004.09.005
– year: 1986
  ident: 10.1016/j.mineng.2020.106689_b0165
– volume: vol. 17
  start-page: 231
  year: 1975
  ident: 10.1016/j.mineng.2020.106689_b0290
  publication-title: Advances in Inorganic Chemistry and Radiochemistry
  doi: 10.1016/S0065-2792(08)60064-3
– volume: 788
  start-page: 194
  year: 2006
  ident: 10.1016/j.mineng.2020.106689_b0400
  article-title: Syntheses and structures of three cobalt (II) complexes with thiocyanate and 1, 2-bis (benzotriazol-1-yl) ethane
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2005.11.036
– volume: 1333
  year: 2019
  ident: 10.1016/j.mineng.2020.106689_b0100
  article-title: Development and identification of a mathematical model of the process of continuous autoclave desorption of noble metals in moving-bed apparatus
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1333/3/032053
– volume: 69
  start-page: 169
  year: 2003
  ident: 10.1016/j.mineng.2020.106689_b0125
  article-title: Leaching of finely disseminated gold ore with cyanide and thiourea solutions
  publication-title: Hydrometallurgy
  doi: 10.1016/S0304-386X(03)00005-7
– volume: 32
  start-page: 317
  year: 1993
  ident: 10.1016/j.mineng.2020.106689_b0070
  article-title: A thermodynamic study of the dissolution of gold in an acidic aqueous thiocyanate medium using iron (III) sulphate as an oxidant
  publication-title: Hydrometallurgy
  doi: 10.1016/0304-386X(93)90045-F
– ident: 10.1016/j.mineng.2020.106689_b0175
– volume: 75
  start-page: 169
  year: 2003
  ident: 10.1016/j.mineng.2020.106689_b0135
  article-title: Degradation mechanisms in a dye-sensitized solar cell studied by UV – VIS and IR spectroscopy
  publication-title: Sol. Energy
  doi: 10.1016/S0038-092X(03)00248-2
– volume: 4
  start-page: 1257
  year: 1991
  ident: 10.1016/j.mineng.2020.106689_b0315
  article-title: Modern trends in gold processing – overview
  publication-title: Miner. Eng.
  doi: 10.1016/0892-6875(91)90171-Q
– year: 1991
  ident: 10.1016/j.mineng.2020.106689_b0395
– volume: 149
  year: 2020
  ident: 10.1016/j.mineng.2020.106689_b0310
  article-title: Acidic pretreatment of a copper-silver ore and its beneficial effect on cyanide leaching
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2020.106233
– volume: 6
  start-page: 109
  year: 1905
  ident: 10.1016/j.mineng.2020.106689_b0385
  article-title: The Solubility of Gold in Thiosulphates and Thiocyanates
  publication-title: J. Chem. Metall. Min. Soc. South Africa
– year: 2012
  ident: 10.1016/j.mineng.2020.106689_b0145
– volume: 45
  start-page: 965
  year: 2005
  ident: 10.1016/j.mineng.2020.106689_b0080
  article-title: Stability studies of transition-metal linkage isomers using quantum mechanical methods. Groups 11 and 12 transition metals
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci050050t
– volume: 4
  start-page: 95
  year: 1988
  ident: 10.1016/j.mineng.2020.106689_b0065
  article-title: Dissolution chemistry of gold and silver in different lixiviants
  publication-title: Miner. Procesing Extr. Metall. Rev.
  doi: 10.1080/08827508808952634
– volume: 5
  start-page: 200
  year: 1951
  ident: 10.1016/j.mineng.2020.106689_b0115
  article-title: Oxydation électrochimique de l’ion thiocyanique. Application aux dosages et ä l’étude des réactions
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(00)87531-5
– volume: 81
  start-page: 159
  year: 2006
  ident: 10.1016/j.mineng.2020.106689_b0300
  article-title: Biooxidation of thiocyanate-containing refractory gold tailings from Minacalpa, Peru
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2005.11.003
– ident: 10.1016/j.mineng.2020.106689_b0130
– volume: 17
  start-page: 198
  year: 2000
  ident: 10.1016/j.mineng.2020.106689_b0270
  article-title: Noncyanide leaching of an auriferous pyrite ore from Ecuador
  publication-title: Mining Metall. Explor.
– volume: 43
  start-page: 17
  year: 2005
  ident: 10.1016/j.mineng.2020.106689_b0195
  article-title: Sorption of gold and silver on carbon adsorbents from thiocyanate solutions
  publication-title: Carbon N. Y.
  doi: 10.1016/j.carbon.2004.08.021
– volume: 113–114
  start-page: 10
  year: 2012
  ident: 10.1016/j.mineng.2020.106689_b0230
  article-title: Thiocyanate hydrometallurgy for the recovery of gold.: Part II: The leaching kinetics
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2011.11.007
– volume: 7
  start-page: 555
  year: 2017
  ident: 10.1016/j.mineng.2020.106689_b0095
  article-title: Recovery of gold from pregnant thiosulfate solutions by the resin adsorption technique
  publication-title: Metals (Basel)
  doi: 10.3390/met7120555
– volume: 45
  start-page: 221
  year: 2012
  ident: 10.1016/j.mineng.2020.106689_b0245
  article-title: N- and S-bonded thiocyanate copper(II) complexes of 2,6-bis- (benzimidazolyl)pyridine - Synthesis, spectroscopic characterization, X-ray structure and DFT calculations
  publication-title: Polyhedron
  doi: 10.1016/j.poly.2012.07.008
– volume: 36
  start-page: 149
  year: 1997
  ident: 10.1016/j.mineng.2020.106689_b0215
  article-title: Cementation behavior of gold and silver onto Zn, Al, and Fe powders from acid thiourea solutions
  publication-title: Can. Metall. Q.
– volume: 73
  start-page: 131
  year: 1983
  ident: 10.1016/j.mineng.2020.106689_b0200
  article-title: NMR relaxation studies in solutions of transition metal complexes. X. The stepwise equilibria in the iron (III)-thiocyanate system studied by NMR relaxation
  publication-title: Inorg. Chim. Acta
  doi: 10.1016/S0020-1693(00)90837-5
– volume: 34
  start-page: 53
  year: 2017
  ident: 10.1016/j.mineng.2020.106689_b0250
  article-title: Heap leach modeling – a review of approaches to metal production forecasting
  publication-title: Miner. Metall. Process.
SSID ssj0005789
Score 2.4854145
SecondaryResourceType review_article
Snippet [Display omitted] •Gold leaching by thiocyanate as a promising less toxic lixiviant than cyanide.•Thiocyanate resonances and its coordination with gold using...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106689
SubjectTerms Copper
Gold leaching
Iron
Isothiocyanate
Kinetics
Thermodynamic
Thiocyanate
Title A review of thiocyanate gold leaching – Chemistry, thermodynamics, kinetics and processing
URI https://dx.doi.org/10.1016/j.mineng.2020.106689
Volume 160
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgPrE-yh48NrbZJLvZYymWqtiLFnoQQjfZrdU2KRoPXsT_4D_0lziTTaSCKHgKLDtL8mWY-WaZByEnTCkWGrB-YpwoCFDaoRNy7jsCrxuAz7s6wELhqwHvD_2LUTCqkW5VC4NplaXttza9sNblSqtEs7WYTlvX7VAyDnSboc5ClIIV7L5ALT99XUrzEMUYPNzs4O6qfK7I8ZoDk0snECUyXOIch73_5J6WXE5vk2yUXJF27OtskZpOt8n6UgfBHXLbobb4hGaG5nfTLH4Zp0Af6SSbJXRWpkrSj7d32q1GuzUpkr55lthh9E9N-gAHYrtmOk4TurClAyC2S4a9s5tu3ykHJjixJ1juSPh-j5lES45PDeTHMFdpoSR3uRDcV0APmBLGuEoqZVwtOCLjhdqAY_L2yEqapXqf0HasZaCVhIAMW7IHSsk45CqIJZzh-7JOvAqnKC67ieNQi1lUpY3dRxbdCNGNLLp14nxJLWw3jT_2i-oXRN-0IgKD_6vkwb8lD8kaw7yV4prliKzkj8_6GIhHrhqFZjXIauf8sj_4BH_217I
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60PagH8Yn1uQePDW02yW72WIqlVduLLfQghG6y0WqbFK0Hb_4H_6G_xJkm8QGi4Cmw7Czh22Hmm2UeAKdca-7HaP3kKNIYoNR9yxfCtSQ9NyCft41HhcLdnmgP3POhN1yCZlELQ2mVue3PbPrCWucrtRzN2mw8rl3VfcUF0m1OOotRyjKUqTuVV4Jyo3PR7n1mesjFJDzab5FAUUG3SPOaIplLbjBQ5LQkBM17_8lDffE6rQ1Yz-kia2R_tAlLJtmCtS9NBLfhusGy-hOWxmx-O07D51GCDJLdpJOITfJsSfb28sqaxXS3KiPeN02jbB79Y5Xd44HUsZmNkojNsuoBFNuBQeus32xb-cwEK3Qkn1vKdaXD48goQV-D_CfmtjZSK2ELKYWrkSFwLePY1krr2DZSEDKOb2L0Tc4ulJI0MXvA6qFRntEKYzLqyu5prUJfaC9UeIbrqgo4BU5BmDcUp7kWk6DIHLsLMnQDQjfI0K2A9SE1yxpq_LFfFlcQfFOMAG3-r5L7_5Y8gZV2v3sZXHZ6FwewyimNZfHqcgil-cOTOUIeMtfHuZ69A-_62mM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+thiocyanate+gold+leaching+%E2%80%93+Chemistry%2C+thermodynamics%2C+kinetics+and+processing&rft.jtitle=Minerals+engineering&rft.au=Azizitorghabeh%2C+Atefeh&rft.au=Wang%2C+Jingxiu&rft.au=Ramsay%2C+Juliana+A.&rft.au=Ghahreman%2C+Ahmad&rft.date=2021-01-01&rft.pub=Elsevier+Ltd&rft.issn=0892-6875&rft.eissn=1872-9444&rft.volume=160&rft_id=info:doi/10.1016%2Fj.mineng.2020.106689&rft.externalDocID=S0892687520305094
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0892-6875&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0892-6875&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0892-6875&client=summon