A review of thiocyanate gold leaching – Chemistry, thermodynamics, kinetics and processing
[Display omitted] •Gold leaching by thiocyanate as a promising less toxic lixiviant than cyanide.•Thiocyanate resonances and its coordination with gold using Infrared spectroscopy were investigated.•Effective parameters on thermodynamics and kinetics of thiocyanate gold leaching were studied.•Optimu...
Saved in:
Published in | Minerals engineering Vol. 160; p. 106689 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Gold leaching by thiocyanate as a promising less toxic lixiviant than cyanide.•Thiocyanate resonances and its coordination with gold using Infrared spectroscopy were investigated.•Effective parameters on thermodynamics and kinetics of thiocyanate gold leaching were studied.•Optimum condition of gold leaching using thiocyanate was evaluated.•Gold recovery processes from pregnant leach solution were summarized.
Thiocyanate is among the most promising alternative gold lixiviants for gold leaching and has not been extensively covered in the literature. Thiocyanate is 1000 times less toxic than cyanide and is a very strong gold leaching lixiviant. This review paper provides an overview of the chemistry, thermodynamics, kinetics, and processing of gold leaching using thiocyanate as well as gold recovery from the pregnant leach solution.
One main reason that the thiocyanate gold leaching process has not yet been commercialized is that the process requires a reduction-oxidation (redox) potential higher than that required of cyanide gold leaching. The oxidant, mostly ferric, is needed to leach gold. However, the redox potential must be lowered by removing oxidants to allow gold recovery from the pregnant leach solution. The molar ratio of oxidant to thiocyanate is considered an effective parameter for gold oxidation kinetics and should range between 2 and 20. Thiocyanate gold leaching is an electrochemical reaction which occurs at pH 1.5–2.5 and electrochemical potential of 600–700 mV. The literature shows fast gold leaching kinetics in well-designed thiocyanate systems. The solubilized gold-thiocyanate species can be recovered from the pregnant leach solution by a variety of methods including conventional activated carbon adsorption, solvent extraction, ion exchange, and cementation. Leaching can be performed in both heaps and tanks. |
---|---|
AbstractList | [Display omitted]
•Gold leaching by thiocyanate as a promising less toxic lixiviant than cyanide.•Thiocyanate resonances and its coordination with gold using Infrared spectroscopy were investigated.•Effective parameters on thermodynamics and kinetics of thiocyanate gold leaching were studied.•Optimum condition of gold leaching using thiocyanate was evaluated.•Gold recovery processes from pregnant leach solution were summarized.
Thiocyanate is among the most promising alternative gold lixiviants for gold leaching and has not been extensively covered in the literature. Thiocyanate is 1000 times less toxic than cyanide and is a very strong gold leaching lixiviant. This review paper provides an overview of the chemistry, thermodynamics, kinetics, and processing of gold leaching using thiocyanate as well as gold recovery from the pregnant leach solution.
One main reason that the thiocyanate gold leaching process has not yet been commercialized is that the process requires a reduction-oxidation (redox) potential higher than that required of cyanide gold leaching. The oxidant, mostly ferric, is needed to leach gold. However, the redox potential must be lowered by removing oxidants to allow gold recovery from the pregnant leach solution. The molar ratio of oxidant to thiocyanate is considered an effective parameter for gold oxidation kinetics and should range between 2 and 20. Thiocyanate gold leaching is an electrochemical reaction which occurs at pH 1.5–2.5 and electrochemical potential of 600–700 mV. The literature shows fast gold leaching kinetics in well-designed thiocyanate systems. The solubilized gold-thiocyanate species can be recovered from the pregnant leach solution by a variety of methods including conventional activated carbon adsorption, solvent extraction, ion exchange, and cementation. Leaching can be performed in both heaps and tanks. |
ArticleNumber | 106689 |
Author | Azizitorghabeh, Atefeh Ramsay, Juliana A. Wang, Jingxiu Ghahreman, Ahmad |
Author_xml | – sequence: 1 givenname: Atefeh surname: Azizitorghabeh fullname: Azizitorghabeh, Atefeh organization: Hydrometallurgy and Environment Laboratory, Robert M. Buchan Department of Mining, Queen’s University, 25 Union Street, Kingston, Ontario K7L 3N6, Canada – sequence: 2 givenname: Jingxiu surname: Wang fullname: Wang, Jingxiu organization: Hydrometallurgy and Environment Laboratory, Robert M. Buchan Department of Mining, Queen’s University, 25 Union Street, Kingston, Ontario K7L 3N6, Canada – sequence: 3 givenname: Juliana A. surname: Ramsay fullname: Ramsay, Juliana A. organization: Department of Chemical Engineering, Queen’s University, 19 Division Street, Kingston, Ontario K7L 3N6, Canada – sequence: 4 givenname: Ahmad orcidid: 0000-0002-3568-7880 surname: Ghahreman fullname: Ghahreman, Ahmad email: ahmad.g@queensu.ca organization: Hydrometallurgy and Environment Laboratory, Robert M. Buchan Department of Mining, Queen’s University, 25 Union Street, Kingston, Ontario K7L 3N6, Canada |
BookMark | eNqFkM1KAzEQgINUsFbfwEMeoK1JdptsPAil-AcFL3oTQjY7aVO7SUmC0pvv4Bv6JO5STx70NMMw3_x8p2jggweELiiZUkL55WbaOg9-NWWE9SXOK3mEhrQSbCLLshygIakkm_BKzE7QaUobQshMVHKIXuY4wpuDdxwszmsXzF57nQGvwrbBW9Bm7fwKf3184sUaWpdy3I-7RohtaPZet86kMX7t1ucuw9o3eBeDgZQ67AwdW71NcP4TR-j59uZpcT9ZPt49LObLiSkEy_2JomC2Acn7CFUhLaM1iFpyyoXgZU0kZbWwltayri0FwfuHigpsyWQxQuVhrokhpQhW7aJrddwrSlRvSG3UwZDqDamDoQ67-oUZl3V2weeo3fY_-PoAQ_dYJzCqZBx4A42LYLJqgvt7wDeWe4fq |
CitedBy_id | crossref_primary_10_1016_j_mineng_2022_107957 crossref_primary_10_1016_j_molstruc_2022_133569 crossref_primary_10_1007_s42461_024_01036_9 crossref_primary_10_1016_j_mineng_2021_107314 crossref_primary_10_1016_j_jclepro_2021_126457 crossref_primary_10_1016_j_jece_2021_106030 crossref_primary_10_1007_s11274_022_03481_4 crossref_primary_10_3390_su142416666 crossref_primary_10_3390_ijms24032173 crossref_primary_10_1016_j_seppur_2023_125053 crossref_primary_10_1016_j_seppur_2023_124481 crossref_primary_10_1016_j_mineng_2023_108074 crossref_primary_10_3390_molecules28031508 crossref_primary_10_1016_j_jclepro_2023_136016 crossref_primary_10_1016_j_hydromet_2023_106055 crossref_primary_10_1007_s11837_024_07053_9 crossref_primary_10_1016_j_chemosphere_2023_139683 crossref_primary_10_1016_j_seppur_2023_123456 crossref_primary_10_1177_25726641251321409 crossref_primary_10_1016_j_jhazmat_2022_129778 crossref_primary_10_1515_revic_2021_0044 crossref_primary_10_2139_ssrn_4101010 crossref_primary_10_1016_j_jiec_2022_08_002 crossref_primary_10_1016_S1003_6326_24_66614_8 crossref_primary_10_1080_01490451_2021_1977431 crossref_primary_10_3390_min11040387 crossref_primary_10_21285_1814_3520_2023_4_821_828 crossref_primary_10_1016_j_mineng_2022_107403 crossref_primary_10_1021_acsomega_1c00525 crossref_primary_10_1007_s40831_022_00567_z crossref_primary_10_1007_s11084_023_09640_3 crossref_primary_10_1016_j_cej_2021_132283 crossref_primary_10_1016_j_colsurfa_2024_135486 crossref_primary_10_1016_j_mineng_2024_109009 crossref_primary_10_1016_j_scitotenv_2022_156269 crossref_primary_10_1016_j_cep_2021_108673 crossref_primary_10_1016_j_chemosphere_2022_134283 crossref_primary_10_1016_j_seppur_2024_128959 crossref_primary_10_1016_j_corsci_2025_112843 crossref_primary_10_1016_j_seppur_2024_128535 crossref_primary_10_1016_j_hydromet_2023_106040 crossref_primary_10_3390_ma17153832 |
Cites_doi | 10.1016/j.mineng.2004.02.001 10.1016/j.hydromet.2011.11.006 10.1007/s11837-019-03859-0 10.1016/0022-0728(94)03765-U 10.1016/j.hydromet.2010.04.007 10.1016/S0304-386X(00)00131-6 10.1016/S0003-2670(00)87340-7 10.1016/j.poly.2018.12.039 10.1016/S0020-1693(00)91966-2 10.1016/j.hydromet.2007.07.005 10.1016/S0065-2792(08)60064-3 10.1021/ja00905a001 10.1080/01496395.2016.1250778 10.1134/S0036024408030199 10.1021/ic50029a007 10.1016/j.mineng.2006.12.009 10.1080/01496399108050525 10.1016/0022-0728(84)80233-8 10.1021/ic000561r 10.1080/08827500500339315 10.1016/j.hydromet.2011.11.008 10.1016/S0304-386X(02)00005-1 10.1016/j.seppur.2016.07.037 10.1016/0022-1902(66)80011-8 10.1016/0304-386X(90)90082-D 10.1016/j.mineng.2019.105864 10.1016/j.hydromet.2011.11.005 10.1016/S0304-386X(02)00169-X 10.1016/j.hydromet.2011.12.012 10.1039/C5CS00532A 10.1016/j.jclepro.2004.09.005 10.1016/j.molstruc.2005.11.036 10.1088/1742-6596/1333/3/032053 10.1016/S0304-386X(03)00005-7 10.1016/0304-386X(93)90045-F 10.1016/S0038-092X(03)00248-2 10.1016/0892-6875(91)90171-Q 10.1016/j.mineng.2020.106233 10.1021/ci050050t 10.1080/08827508808952634 10.1016/S0003-2670(00)87531-5 10.1016/j.hydromet.2005.11.003 10.1016/j.carbon.2004.08.021 10.1016/j.hydromet.2011.11.007 10.3390/met7120555 10.1016/j.poly.2012.07.008 10.1016/S0020-1693(00)90837-5 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.mineng.2020.106689 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-9444 |
ExternalDocumentID | 10_1016_j_mineng_2020_106689 S0892687520305094 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABNUV ABQEM ABQYD ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LY3 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSE SSG SSZ T5K ~02 ~G- 29M AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMA HVGLF HZ~ R2- RIG SEP SET SEW SSH WUQ XPP ZMT |
ID | FETCH-LOGICAL-c372t-944732fde96732fe839f21be7b96167764b0912b7ff1b9bbf1e76089238ef4293 |
IEDL.DBID | .~1 |
ISSN | 0892-6875 |
IngestDate | Thu Apr 24 22:52:20 EDT 2025 Tue Jul 01 01:13:28 EDT 2025 Fri Feb 23 02:46:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Gold leaching Thiocyanate Isothiocyanate Iron Kinetics Copper Thermodynamic |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-944732fde96732fe839f21be7b96167764b0912b7ff1b9bbf1e76089238ef4293 |
ORCID | 0000-0002-3568-7880 |
ParticipantIDs | crossref_primary_10_1016_j_mineng_2020_106689 crossref_citationtrail_10_1016_j_mineng_2020_106689 elsevier_sciencedirect_doi_10_1016_j_mineng_2020_106689 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 2021-01-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Minerals engineering |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Kholmogorov, Kononova, Pashkov, Kononov (b0190) 2002; 64 Karavasteva (b0180) 2010; 104 Wang, Chen, Chen (b0370) 2007; 89 Barbosa-Filho, Monhemius (b0040) 1994; 103 Krinitsyn, Kononova, Krylov, Maznyak, Kholmogorov (b0205) 2008; 82 Li, Safarzadeh, Moats, Miller, Levier, Dietrich, Wan (b0240) 2012; 113–114 Newman (b0285) 1975 Grosse, Dicinoski, Shaw, Haddad (b0140) 2003; 69 Wan, R.Y., LeVier, K.M., 2007. Precious metal recovery using thiocyanate lixiviant. Gutmann (b0145) 2012 Syed (b0350) 2012; 115–116 Jolly, W.L., 1964. The inorganic chemistry of nitrogen. WA Benjamin. Rees, Van Deventer (b0325) 2000; 58 Holub, Skopenko (b0165) 1986 Williams (b0390) 1915 Li, Safarzadeh, Moats, Miller, Levier, Dietrich, Wan (b0235) 2012; 113–114 Barbosa-Filho, Monhemius (b0025) 1989; 89 Navarro, Alvarez, Vargas, Alguacil (b0280) 2004; 17 Semencha, Blinov (b0340) 2016 Brent Hiskey, Atluri (b0065) 1988; 4 Elshin, Melnik (b0100) 2019; 1333 Gauguin (b0120) 1949; 3 Li, Miller (b0220) 2006; 27 Prasad, Mensah-Biney, Pizarro (b0315) 1991; 4 Zhou, Liu, Zhang, Li, Zhang (b0400) 2006; 788 Barbosa-Filho, Monhemius (b0030) 2011; ’94 Itabashi (b0170) 1984; 177 Dong, Jiang, Xu, Yang, Li (b0095) 2017; 7 Marsden, Botz (b0250) 2017; 34 Sabatini, Bertini (b0335) 1965; 4 Barbosa-Filho, Monhemius (b0035) 1994; 103 Norbury (b0290) 1975; vol. 17 Norbury (b0295) 1975 Riveros (b0330) 1990; 24 Barbosa-Filho, Monhemius (b0045) 1994; 103 Lee, Kim, Oh (b0215) 1997; 36 Li, Safarzadeh, Moats, Miller, Levier, Dietrich, Wan (b0225) 2012; 113–114 Hannachi, Valkonen, Rzaigui, Smirani (b0155) 2019; 161 Korondán, Nagypál (b0200) 1983; 73 Awadalla, Ritcey (b0010) 1991; 26 Azizitorghabeh, Rashchi, Babakhani (b0015) 2016; 171 Greijer, Lindgren, Hagfeldt (b0135) 2003; 75 Olson, Brierley, Briggs, Calmet (b0300) 2006; 81 MacHura, Świtlicka, Penkala (b0245) 2012; 45 Monhemius, A.J., 1987. Recent advances in the treatment of refractory gold ores. In: Proc. Second Meeting Southem Hemisphere Mineral Techn., Rio DeJaneiro, pp. 280–302. Gauguin (b0115) 1951; 5 Martell, Smith (b0260) 1974 Yannopoulos (b0395) 1991 Pregosin, Streit, Venanzi (b0320) 1980; 38 Wang, Chen, Chen (b0365) 2007; 20 Soltani, Marzban, Darabi, Aazami, Chegeni (b0345) 2020; 72 Azizitorghabeh, Rashchi, Babakhani, Noori (b0020) 2017; 52 Ahn, Wu, Ahn, Lee (b0005) 2019; 140 Kononova, Kholmogorov, Danilenko, Kachin, Kononov, Dmitrieva (b0195) 2005; 43 Cauquis, Pierre (b0090) 1972; 6 Munoz, Miller (b0270) 2000; 17 Gönen (b0125) 2003; 69 Pearson (b0305) 1963; 85 Figlar, Stanbury (b0105) 2000; 39 Boughton, Keller (b0060) 1966; 28 Li, Safarzadeh, Moats, Miller, Levier, Dietrich, Wan (b0230) 2012; 113–114 Buda, Kazi, Dinescu, Cundari (b0080) 2005; 45 Broadhurst, du Perez (b0070) 1993; 32 Portilla, He, Jacome-Collazos, Visurraga, Chirif, Teplyakov, Rodríguez-Reyes (b0310) 2020; 149 Bron, Holze (b0075) 2002; 385 Hilson, Monhemius (b0160) 2006; 14 Vasilev, Mukhina (b0355) 1964; 7 Kuzugüdenli, Kantar (b0210) 1999; 15 Gos, S., Rubo, A., 2001. The Relevance of Alternative Lixiviants with Regard to Technical Aspects, Work Safety and Environmental Safety. Cyplus. Degussa AG, Hanau, Ger. White (b0385) 1905; 6 Marsden, House (b0255) 2006 Castanheiro, Suffert, Donnard, Gulea (b0085) 2016; 45 Pearson (10.1016/j.mineng.2020.106689_b0305) 1963; 85 Broadhurst (10.1016/j.mineng.2020.106689_b0070) 1993; 32 Karavasteva (10.1016/j.mineng.2020.106689_b0180) 2010; 104 Lee (10.1016/j.mineng.2020.106689_b0215) 1997; 36 Li (10.1016/j.mineng.2020.106689_b0230) 2012; 113–114 Li (10.1016/j.mineng.2020.106689_b0220) 2006; 27 10.1016/j.mineng.2020.106689_b0175 Barbosa-Filho (10.1016/j.mineng.2020.106689_b0030) 2011; ’94 Itabashi (10.1016/j.mineng.2020.106689_b0170) 1984; 177 Figlar (10.1016/j.mineng.2020.106689_b0105) 2000; 39 10.1016/j.mineng.2020.106689_b0130 Portilla (10.1016/j.mineng.2020.106689_b0310) 2020; 149 Hannachi (10.1016/j.mineng.2020.106689_b0155) 2019; 161 Krinitsyn (10.1016/j.mineng.2020.106689_b0205) 2008; 82 Riveros (10.1016/j.mineng.2020.106689_b0330) 1990; 24 Greijer (10.1016/j.mineng.2020.106689_b0135) 2003; 75 Bron (10.1016/j.mineng.2020.106689_b0075) 2002; 385 Buda (10.1016/j.mineng.2020.106689_b0080) 2005; 45 Gauguin (10.1016/j.mineng.2020.106689_b0115) 1951; 5 Vasilev (10.1016/j.mineng.2020.106689_b0355) 1964; 7 Elshin (10.1016/j.mineng.2020.106689_b0100) 2019; 1333 Prasad (10.1016/j.mineng.2020.106689_b0315) 1991; 4 Castanheiro (10.1016/j.mineng.2020.106689_b0085) 2016; 45 Gönen (10.1016/j.mineng.2020.106689_b0125) 2003; 69 Sabatini (10.1016/j.mineng.2020.106689_b0335) 1965; 4 Wang (10.1016/j.mineng.2020.106689_b0370) 2007; 89 Zhou (10.1016/j.mineng.2020.106689_b0400) 2006; 788 Norbury (10.1016/j.mineng.2020.106689_b0290) 1975; vol. 17 Azizitorghabeh (10.1016/j.mineng.2020.106689_b0015) 2016; 171 Semencha (10.1016/j.mineng.2020.106689_b0340) 2016 Martell (10.1016/j.mineng.2020.106689_b0260) 1974 10.1016/j.mineng.2020.106689_b0265 Hilson (10.1016/j.mineng.2020.106689_b0160) 2006; 14 Kuzugüdenli (10.1016/j.mineng.2020.106689_b0210) 1999; 15 Olson (10.1016/j.mineng.2020.106689_b0300) 2006; 81 Soltani (10.1016/j.mineng.2020.106689_b0345) 2020; 72 Barbosa-Filho (10.1016/j.mineng.2020.106689_b0035) 1994; 103 MacHura (10.1016/j.mineng.2020.106689_b0245) 2012; 45 Li (10.1016/j.mineng.2020.106689_b0240) 2012; 113–114 Li (10.1016/j.mineng.2020.106689_b0235) 2012; 113–114 Wang (10.1016/j.mineng.2020.106689_b0365) 2007; 20 Navarro (10.1016/j.mineng.2020.106689_b0280) 2004; 17 Newman (10.1016/j.mineng.2020.106689_b0285) 1975 Barbosa-Filho (10.1016/j.mineng.2020.106689_b0045) 1994; 103 Williams (10.1016/j.mineng.2020.106689_b0390) 1915 Awadalla (10.1016/j.mineng.2020.106689_b0010) 1991; 26 Azizitorghabeh (10.1016/j.mineng.2020.106689_b0020) 2017; 52 Marsden (10.1016/j.mineng.2020.106689_b0255) 2006 Pregosin (10.1016/j.mineng.2020.106689_b0320) 1980; 38 Munoz (10.1016/j.mineng.2020.106689_b0270) 2000; 17 White (10.1016/j.mineng.2020.106689_b0385) 1905; 6 Holub (10.1016/j.mineng.2020.106689_b0165) 1986 Barbosa-Filho (10.1016/j.mineng.2020.106689_b0040) 1994; 103 Ahn (10.1016/j.mineng.2020.106689_b0005) 2019; 140 Dong (10.1016/j.mineng.2020.106689_b0095) 2017; 7 Grosse (10.1016/j.mineng.2020.106689_b0140) 2003; 69 Yannopoulos (10.1016/j.mineng.2020.106689_b0395) 1991 Gauguin (10.1016/j.mineng.2020.106689_b0120) 1949; 3 Li (10.1016/j.mineng.2020.106689_b0225) 2012; 113–114 Norbury (10.1016/j.mineng.2020.106689_b0295) 1975 Marsden (10.1016/j.mineng.2020.106689_b0250) 2017; 34 Gutmann (10.1016/j.mineng.2020.106689_b0145) 2012 Boughton (10.1016/j.mineng.2020.106689_b0060) 1966; 28 10.1016/j.mineng.2020.106689_b0360 Cauquis (10.1016/j.mineng.2020.106689_b0090) 1972; 6 Kholmogorov (10.1016/j.mineng.2020.106689_b0190) 2002; 64 Rees (10.1016/j.mineng.2020.106689_b0325) 2000; 58 Brent Hiskey (10.1016/j.mineng.2020.106689_b0065) 1988; 4 Korondán (10.1016/j.mineng.2020.106689_b0200) 1983; 73 Barbosa-Filho (10.1016/j.mineng.2020.106689_b0025) 1989; 89 Syed (10.1016/j.mineng.2020.106689_b0350) 2012; 115–116 Kononova (10.1016/j.mineng.2020.106689_b0195) 2005; 43 |
References_xml | – volume: 104 start-page: 119 year: 2010 end-page: 122 ident: b0180 article-title: Kinetics and deposit morphology of gold cemented on magnesium, aluminum, zinc, iron and copper from ammonium thiosulfate-ammonia solutions publication-title: Hydrometallurgy – volume: 4 start-page: 95 year: 1988 end-page: 134 ident: b0065 article-title: Dissolution chemistry of gold and silver in different lixiviants publication-title: Miner. Procesing Extr. Metall. Rev. – year: 2012 ident: b0145 article-title: Coordination Chemistry in Non-Aqueous Solutions – volume: 161 start-page: 222 year: 2019 end-page: 230 ident: b0155 article-title: Thiocyanate precursor impact on the formation of cobalt complexes: synthesis and characterization publication-title: Polyhedron – volume: 69 start-page: 169 year: 2003 end-page: 176 ident: b0125 article-title: Leaching of finely disseminated gold ore with cyanide and thiourea solutions publication-title: Hydrometallurgy – volume: 113–114 start-page: 31 year: 2012 end-page: 38 ident: b0240 article-title: Thiocyanate hydrometallurgy for the recovery of gold. Part V: Process alternatives for solution concentration and purification publication-title: Hydrometallurgy – start-page: 231 year: 1975 end-page: 386 ident: b0295 article-title: Coordination chemistry of the cyanate, thiocyanate, and selenocyanate ions publication-title: Advances in Inorganic Chemistry and Radiochemistry – volume: 14 start-page: 1158 year: 2006 end-page: 1167 ident: b0160 article-title: Alternatives to cyanide in the gold mining industry: what prospects for the future? publication-title: J. Clean. Prod. – reference: Jolly, W.L., 1964. The inorganic chemistry of nitrogen. WA Benjamin. – volume: 6 start-page: 109 year: 1905 end-page: 111 ident: b0385 article-title: The Solubility of Gold in Thiosulphates and Thiocyanates publication-title: J. Chem. Metall. Min. Soc. South Africa – volume: 113–114 start-page: 1 year: 2012 end-page: 9 ident: b0225 article-title: Thiocyanate hydrometallurgy for the recovery of gold. Part I: Chemical and thermodynamic considerations publication-title: Hydrometallurgy – volume: 17 start-page: 198 year: 2000 end-page: 204 ident: b0270 article-title: Noncyanide leaching of an auriferous pyrite ore from Ecuador publication-title: Mining Metall. Explor. – volume: 89 start-page: 307 year: 1989 end-page: 339 ident: b0025 article-title: Thermochemistry of thiocyanate systems for leaching gold and silver ores publication-title: Precious Met. – volume: 64 start-page: 43 year: 2002 end-page: 48 ident: b0190 article-title: Thiocyanate solutions in gold technology publication-title: Hydrometallurgy – volume: 113–114 start-page: 10 year: 2012 end-page: 18 ident: b0230 article-title: Thiocyanate hydrometallurgy for the recovery of gold.: Part II: The leaching kinetics publication-title: Hydrometallurgy – volume: 89 start-page: 196 year: 2007 end-page: 206 ident: b0370 article-title: Application of fluoride to enhance aluminum cementation of gold from acidic thiocyanate solution publication-title: Hydrometallurgy – volume: 34 start-page: 53 year: 2017 end-page: 64 ident: b0250 article-title: Heap leach modeling – a review of approaches to metal production forecasting publication-title: Miner. Metall. Process. – volume: 17 start-page: 825 year: 2004 end-page: 831 ident: b0280 article-title: On the use of zinc for gold cementation from ammoniacal–thiosulphate solutions publication-title: Miner. Eng. – volume: 385 start-page: 105 year: 2002 end-page: 113 ident: b0075 article-title: Cyanate and thiocyanate adsorption at copper and gold electrodes as probed by in situ infrared and surface-enhanced Raman spectroscopy publication-title: J. Electroanal. Chem. – year: 1986 ident: b0165 article-title: Chemistry of Pseudohalides – volume: 7 start-page: 620 year: 1964 end-page: 623 ident: b0355 article-title: Equilibria in aqueous solutions of thiocyanato-complexes of iron publication-title: Russian – volume: 6 start-page: 2244 year: 1972 ident: b0090 article-title: La formation transitoire de l’ion complexe (SCN) 3− au cours de l’oxidation èlectrochimique de l’ion thiocyanate dans l’acètinitrile publication-title: Bull. Soc. Chim. Fr. – volume: 27 start-page: 177 year: 2006 end-page: 214 ident: b0220 article-title: A review of gold leaching in acid thiourea solutions publication-title: Miner. Process. Extr. Metall. Rev. – volume: 115–116 start-page: 30 year: 2012 end-page: 51 ident: b0350 article-title: Recovery of gold from secondary sources-a review publication-title: Hydrometallurgy – volume: 103 start-page: C117 year: 1994 ident: b0045 article-title: Leaching of gold in thiocyanate solutions. Part 3: rates and mechanism of gold dissolution publication-title: Trans. Min. Metall. – volume: 20 start-page: 581 year: 2007 end-page: 590 ident: b0365 article-title: Gold cementation from thiocyanate solutions by iron powder publication-title: Miner. Eng. – volume: 113–114 start-page: 25 year: 2012 end-page: 30 ident: b0235 article-title: Thiocyanate hydrometallurgy for the recovery of gold. Part IV: Solvent extraction of gold with Alamine 336 publication-title: Hydrometallurgy – volume: 32 start-page: 317 year: 1993 end-page: 344 ident: b0070 article-title: A thermodynamic study of the dissolution of gold in an acidic aqueous thiocyanate medium using iron (III) sulphate as an oxidant publication-title: Hydrometallurgy – volume: vol. 17 start-page: 231 year: 1975 ident: b0290 publication-title: Advances in Inorganic Chemistry and Radiochemistry – volume: ’94 start-page: 425 year: 2011 end-page: 440 ident: b0030 article-title: Iodide—thiocyanate leaching system for gold publication-title: Hydrometallurgy – year: 1975 ident: b0285 article-title: Chemistry and Biochemistry of Thiocyanic Acid and its Derivatives – year: 1974 ident: b0260 article-title: Critical Stability Constants – volume: 149 year: 2020 ident: b0310 article-title: Acidic pretreatment of a copper-silver ore and its beneficial effect on cyanide leaching publication-title: Miner. Eng. – volume: 73 start-page: 131 year: 1983 end-page: 134 ident: b0200 article-title: NMR relaxation studies in solutions of transition metal complexes. X. The stepwise equilibria in the iron (III)-thiocyanate system studied by NMR relaxation publication-title: Inorg. Chim. Acta – volume: 45 start-page: 965 year: 2005 end-page: 970 ident: b0080 article-title: Stability studies of transition-metal linkage isomers using quantum mechanical methods. Groups 11 and 12 transition metals publication-title: J. Chem. Inf. Model. – volume: 75 start-page: 169 year: 2003 end-page: 180 ident: b0135 article-title: Degradation mechanisms in a dye-sensitized solar cell studied by UV – VIS and IR spectroscopy publication-title: Sol. Energy – volume: 1333 year: 2019 ident: b0100 article-title: Development and identification of a mathematical model of the process of continuous autoclave desorption of noble metals in moving-bed apparatus publication-title: J. Phys. Conf. Ser. – volume: 4 start-page: 959 year: 1965 end-page: 961 ident: b0335 article-title: Infrared Spectra between 100 and 2500 Cm.-1 of some complex metal cyanates, thiocyanates, and selenocyanates publication-title: Inorg. Chem. – volume: 7 start-page: 555 year: 2017 ident: b0095 article-title: Recovery of gold from pregnant thiosulfate solutions by the resin adsorption technique publication-title: Metals (Basel) – year: 1991 ident: b0395 article-title: The Extractive Metallurgy of Gold – volume: 3 start-page: 272 year: 1949 end-page: 276 ident: b0120 article-title: Remarques sur l’oxydation des thiocyanates par l’iodate publication-title: Anal. Chim. Acta – volume: 82 start-page: 429 year: 2008 end-page: 433 ident: b0205 article-title: Recovery of gold(I) thiocyanate complexes by some anion-exchangers publication-title: Russ. J. Phys. Chem. A – volume: 28 start-page: 2851 year: 1966 end-page: 2859 ident: b0060 article-title: Dissociation constants of hydropseudohalic acids publication-title: J. Inorg. Nucl. Chem. – volume: 15 start-page: 119 year: 1999 end-page: 127 ident: b0210 article-title: Alternates to gold recovery by cyanide leaching publication-title: Erciyes Üniversitesi Fen Bilim. Derg. – volume: 85 start-page: 3533 year: 1963 end-page: 3539 ident: b0305 article-title: Hard and soft acids and bases publication-title: J. Am. Chem. Soc. – volume: 38 start-page: 237 year: 1980 end-page: 242 ident: b0320 article-title: 15N, 31P and 195Pt NMR studies of thiocyanate complexes publication-title: Inorg. Chim. Acta – reference: Wan, R.Y., LeVier, K.M., 2007. Precious metal recovery using thiocyanate lixiviant. – volume: 69 start-page: 1 year: 2003 end-page: 21 ident: b0140 article-title: Leaching and recovery of gold using ammoniacal thiosulfate leach liquors (a review) publication-title: Hydrometallurgy – volume: 36 start-page: 149 year: 1997 end-page: 155 ident: b0215 article-title: Cementation behavior of gold and silver onto Zn, Al, and Fe powders from acid thiourea solutions publication-title: Can. Metall. Q. – volume: 45 start-page: 494 year: 2016 end-page: 505 ident: b0085 article-title: Recent advances in the chemistry of organic thiocyanates publication-title: Chem. Soc. Rev. – volume: 52 year: 2017 ident: b0020 article-title: Synergistic extraction and separation of Fe(III) and Zn(II) using TBP and D2EHPA publication-title: Sep. Sci. Technol. – volume: 58 start-page: 61 year: 2000 end-page: 80 ident: b0325 article-title: Preg-robbing phenomena in the cyanidation of sulphide gold ores publication-title: Hydrometallurgy – volume: 103 start-page: C105 year: 1994 ident: b0035 article-title: Leaching of gold in thiocyanate solutions: Part 1: chemistry and thermodynamics publication-title: Trans. Inst. Min. Metall. C-Mineral Process. – volume: 171 year: 2016 ident: b0015 article-title: Stoichiometry and structural studies of Fe(III) and Zn(II) solvent extraction using D2EHPA/TBP publication-title: Sep. Purif. Technol. – reference: Monhemius, A.J., 1987. Recent advances in the treatment of refractory gold ores. In: Proc. Second Meeting Southem Hemisphere Mineral Techn., Rio DeJaneiro, pp. 280–302. – volume: 4 start-page: 1257 year: 1991 end-page: 1277 ident: b0315 article-title: Modern trends in gold processing – overview publication-title: Miner. Eng. – volume: 24 start-page: 135 year: 1990 end-page: 156 ident: b0330 article-title: Studies on the solvent extraction of gold from cyanide media publication-title: Hydrometallurgy – year: 1915 ident: b0390 article-title: The Chemistry of Cyanogen Compounds and their Manufacture and Estimation – volume: 140 year: 2019 ident: b0005 article-title: Comparative investigations on sulfidic gold ore processing: A novel biooxidation process option publication-title: Miner. Eng. – volume: 43 start-page: 17 year: 2005 end-page: 22 ident: b0195 article-title: Sorption of gold and silver on carbon adsorbents from thiocyanate solutions publication-title: Carbon N. Y. – volume: 26 start-page: 1207 year: 1991 end-page: 1228 ident: b0010 article-title: Recovery of gold from thiourea, thiocyanate, or thiosulfate solutions by reduction-precipitation with a stabilized form of sodium borohydride publication-title: Sep. Sci. Technol. – volume: 177 start-page: 311 year: 1984 end-page: 315 ident: b0170 article-title: Identification of electrooxidation products of thiocyanate ion in acidic solutions by thin-layer spectroelectrochemistry publication-title: J. Electroanal. Chem. interfacial Electrochem. – volume: 72 start-page: 774 year: 2020 end-page: 781 ident: b0345 article-title: Effect of oxidative pretreatment and lead nitrate addition on the cyanidation of refractory gold ore publication-title: JOM – volume: 788 start-page: 194 year: 2006 end-page: 199 ident: b0400 article-title: Syntheses and structures of three cobalt (II) complexes with thiocyanate and 1, 2-bis (benzotriazol-1-yl) ethane publication-title: J. Mol. Struct. – volume: 45 start-page: 221 year: 2012 end-page: 228 ident: b0245 article-title: N- and S-bonded thiocyanate copper(II) complexes of 2,6-bis- (benzimidazolyl)pyridine - Synthesis, spectroscopic characterization, X-ray structure and DFT calculations publication-title: Polyhedron – year: 2006 ident: b0255 article-title: The Chemistry of Gold Extraction – volume: 39 start-page: 5089 year: 2000 end-page: 5094 ident: b0105 article-title: Thiocyanogen as an intermediate in the oxidation of thiocyanate by hydrogen peroxide in acidic aqueous solution publication-title: Inorg. Chem. – reference: Gos, S., Rubo, A., 2001. The Relevance of Alternative Lixiviants with Regard to Technical Aspects, Work Safety and Environmental Safety. Cyplus. Degussa AG, Hanau, Ger. – year: 2016 ident: b0340 article-title: Theoretical prerequisites, problems, and practical approaches to the preparation of carbon nitride: a review publication-title: Glass Phys. Chem. – volume: 5 start-page: 200 year: 1951 end-page: 214 ident: b0115 article-title: Oxydation électrochimique de l’ion thiocyanique. Application aux dosages et ä l’étude des réactions publication-title: Anal. Chim. Acta – volume: 81 start-page: 159 year: 2006 end-page: 166 ident: b0300 article-title: Biooxidation of thiocyanate-containing refractory gold tailings from Minacalpa, Peru publication-title: Hydrometallurgy – volume: 103 start-page: C111 year: 1994 ident: b0040 article-title: Leaching of gold in thiocyanate solutions. Part 2: redox processes in iron (III)-thiocyanate solutions publication-title: Trans. Min. Metall. – volume: 103 start-page: C105 year: 1994 ident: 10.1016/j.mineng.2020.106689_b0035 article-title: Leaching of gold in thiocyanate solutions: Part 1: chemistry and thermodynamics publication-title: Trans. Inst. Min. Metall. C-Mineral Process. – volume: 17 start-page: 825 year: 2004 ident: 10.1016/j.mineng.2020.106689_b0280 article-title: On the use of zinc for gold cementation from ammoniacal–thiosulphate solutions publication-title: Miner. Eng. doi: 10.1016/j.mineng.2004.02.001 – volume: 113–114 start-page: 25 year: 2012 ident: 10.1016/j.mineng.2020.106689_b0235 article-title: Thiocyanate hydrometallurgy for the recovery of gold. Part IV: Solvent extraction of gold with Alamine 336 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2011.11.006 – volume: 72 start-page: 774 year: 2020 ident: 10.1016/j.mineng.2020.106689_b0345 article-title: Effect of oxidative pretreatment and lead nitrate addition on the cyanidation of refractory gold ore publication-title: JOM doi: 10.1007/s11837-019-03859-0 – year: 1915 ident: 10.1016/j.mineng.2020.106689_b0390 – volume: 6 start-page: 2244 year: 1972 ident: 10.1016/j.mineng.2020.106689_b0090 article-title: La formation transitoire de l’ion complexe (SCN) 3− au cours de l’oxidation èlectrochimique de l’ion thiocyanate dans l’acètinitrile publication-title: Bull. Soc. Chim. Fr. – volume: 385 start-page: 105 year: 2002 ident: 10.1016/j.mineng.2020.106689_b0075 article-title: Cyanate and thiocyanate adsorption at copper and gold electrodes as probed by in situ infrared and surface-enhanced Raman spectroscopy publication-title: J. Electroanal. Chem. doi: 10.1016/0022-0728(94)03765-U – volume: ’94 start-page: 425 year: 2011 ident: 10.1016/j.mineng.2020.106689_b0030 article-title: Iodide—thiocyanate leaching system for gold publication-title: Hydrometallurgy – volume: 103 start-page: C111 year: 1994 ident: 10.1016/j.mineng.2020.106689_b0040 article-title: Leaching of gold in thiocyanate solutions. Part 2: redox processes in iron (III)-thiocyanate solutions publication-title: Trans. Min. Metall. – year: 2006 ident: 10.1016/j.mineng.2020.106689_b0255 – volume: 104 start-page: 119 year: 2010 ident: 10.1016/j.mineng.2020.106689_b0180 article-title: Kinetics and deposit morphology of gold cemented on magnesium, aluminum, zinc, iron and copper from ammonium thiosulfate-ammonia solutions publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2010.04.007 – volume: 58 start-page: 61 year: 2000 ident: 10.1016/j.mineng.2020.106689_b0325 article-title: Preg-robbing phenomena in the cyanidation of sulphide gold ores publication-title: Hydrometallurgy doi: 10.1016/S0304-386X(00)00131-6 – volume: 3 start-page: 272 year: 1949 ident: 10.1016/j.mineng.2020.106689_b0120 article-title: Remarques sur l’oxydation des thiocyanates par l’iodate publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(00)87340-7 – volume: 161 start-page: 222 year: 2019 ident: 10.1016/j.mineng.2020.106689_b0155 article-title: Thiocyanate precursor impact on the formation of cobalt complexes: synthesis and characterization publication-title: Polyhedron doi: 10.1016/j.poly.2018.12.039 – ident: 10.1016/j.mineng.2020.106689_b0265 – volume: 38 start-page: 237 year: 1980 ident: 10.1016/j.mineng.2020.106689_b0320 article-title: 15N, 31P and 195Pt NMR studies of thiocyanate complexes publication-title: Inorg. Chim. Acta doi: 10.1016/S0020-1693(00)91966-2 – volume: 89 start-page: 196 year: 2007 ident: 10.1016/j.mineng.2020.106689_b0370 article-title: Application of fluoride to enhance aluminum cementation of gold from acidic thiocyanate solution publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2007.07.005 – start-page: 231 year: 1975 ident: 10.1016/j.mineng.2020.106689_b0295 article-title: Coordination chemistry of the cyanate, thiocyanate, and selenocyanate ions doi: 10.1016/S0065-2792(08)60064-3 – volume: 85 start-page: 3533 year: 1963 ident: 10.1016/j.mineng.2020.106689_b0305 article-title: Hard and soft acids and bases publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00905a001 – year: 2016 ident: 10.1016/j.mineng.2020.106689_b0340 article-title: Theoretical prerequisites, problems, and practical approaches to the preparation of carbon nitride: a review publication-title: Glass Phys. Chem. – ident: 10.1016/j.mineng.2020.106689_b0360 – volume: 52 year: 2017 ident: 10.1016/j.mineng.2020.106689_b0020 article-title: Synergistic extraction and separation of Fe(III) and Zn(II) using TBP and D2EHPA publication-title: Sep. Sci. Technol. doi: 10.1080/01496395.2016.1250778 – volume: 89 start-page: 307 year: 1989 ident: 10.1016/j.mineng.2020.106689_b0025 article-title: Thermochemistry of thiocyanate systems for leaching gold and silver ores publication-title: Precious Met. – volume: 82 start-page: 429 year: 2008 ident: 10.1016/j.mineng.2020.106689_b0205 article-title: Recovery of gold(I) thiocyanate complexes by some anion-exchangers publication-title: Russ. J. Phys. Chem. A doi: 10.1134/S0036024408030199 – volume: 4 start-page: 959 year: 1965 ident: 10.1016/j.mineng.2020.106689_b0335 article-title: Infrared Spectra between 100 and 2500 Cm.-1 of some complex metal cyanates, thiocyanates, and selenocyanates publication-title: Inorg. Chem. doi: 10.1021/ic50029a007 – volume: 20 start-page: 581 year: 2007 ident: 10.1016/j.mineng.2020.106689_b0365 article-title: Gold cementation from thiocyanate solutions by iron powder publication-title: Miner. Eng. doi: 10.1016/j.mineng.2006.12.009 – volume: 26 start-page: 1207 year: 1991 ident: 10.1016/j.mineng.2020.106689_b0010 article-title: Recovery of gold from thiourea, thiocyanate, or thiosulfate solutions by reduction-precipitation with a stabilized form of sodium borohydride publication-title: Sep. Sci. Technol. doi: 10.1080/01496399108050525 – volume: 15 start-page: 119 year: 1999 ident: 10.1016/j.mineng.2020.106689_b0210 article-title: Alternates to gold recovery by cyanide leaching publication-title: Erciyes Üniversitesi Fen Bilim. Derg. – volume: 177 start-page: 311 year: 1984 ident: 10.1016/j.mineng.2020.106689_b0170 article-title: Identification of electrooxidation products of thiocyanate ion in acidic solutions by thin-layer spectroelectrochemistry publication-title: J. Electroanal. Chem. interfacial Electrochem. doi: 10.1016/0022-0728(84)80233-8 – volume: 39 start-page: 5089 year: 2000 ident: 10.1016/j.mineng.2020.106689_b0105 article-title: Thiocyanogen as an intermediate in the oxidation of thiocyanate by hydrogen peroxide in acidic aqueous solution publication-title: Inorg. Chem. doi: 10.1021/ic000561r – volume: 27 start-page: 177 year: 2006 ident: 10.1016/j.mineng.2020.106689_b0220 article-title: A review of gold leaching in acid thiourea solutions publication-title: Miner. Process. Extr. Metall. Rev. doi: 10.1080/08827500500339315 – volume: 113–114 start-page: 31 year: 2012 ident: 10.1016/j.mineng.2020.106689_b0240 article-title: Thiocyanate hydrometallurgy for the recovery of gold. Part V: Process alternatives for solution concentration and purification publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2011.11.008 – volume: 64 start-page: 43 year: 2002 ident: 10.1016/j.mineng.2020.106689_b0190 article-title: Thiocyanate solutions in gold technology publication-title: Hydrometallurgy doi: 10.1016/S0304-386X(02)00005-1 – volume: 171 year: 2016 ident: 10.1016/j.mineng.2020.106689_b0015 article-title: Stoichiometry and structural studies of Fe(III) and Zn(II) solvent extraction using D2EHPA/TBP publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2016.07.037 – volume: 7 start-page: 620 year: 1964 ident: 10.1016/j.mineng.2020.106689_b0355 article-title: Equilibria in aqueous solutions of thiocyanato-complexes of iron publication-title: Russian – volume: 28 start-page: 2851 year: 1966 ident: 10.1016/j.mineng.2020.106689_b0060 article-title: Dissociation constants of hydropseudohalic acids publication-title: J. Inorg. Nucl. Chem. doi: 10.1016/0022-1902(66)80011-8 – volume: 24 start-page: 135 year: 1990 ident: 10.1016/j.mineng.2020.106689_b0330 article-title: Studies on the solvent extraction of gold from cyanide media publication-title: Hydrometallurgy doi: 10.1016/0304-386X(90)90082-D – volume: 140 year: 2019 ident: 10.1016/j.mineng.2020.106689_b0005 article-title: Comparative investigations on sulfidic gold ore processing: A novel biooxidation process option publication-title: Miner. Eng. doi: 10.1016/j.mineng.2019.105864 – volume: 113–114 start-page: 1 year: 2012 ident: 10.1016/j.mineng.2020.106689_b0225 article-title: Thiocyanate hydrometallurgy for the recovery of gold. Part I: Chemical and thermodynamic considerations publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2011.11.005 – volume: 69 start-page: 1 year: 2003 ident: 10.1016/j.mineng.2020.106689_b0140 article-title: Leaching and recovery of gold using ammoniacal thiosulfate leach liquors (a review) publication-title: Hydrometallurgy doi: 10.1016/S0304-386X(02)00169-X – year: 1975 ident: 10.1016/j.mineng.2020.106689_b0285 – volume: 115–116 start-page: 30 year: 2012 ident: 10.1016/j.mineng.2020.106689_b0350 article-title: Recovery of gold from secondary sources-a review publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2011.12.012 – year: 1974 ident: 10.1016/j.mineng.2020.106689_b0260 – volume: 45 start-page: 494 year: 2016 ident: 10.1016/j.mineng.2020.106689_b0085 article-title: Recent advances in the chemistry of organic thiocyanates publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00532A – volume: 103 start-page: C117 year: 1994 ident: 10.1016/j.mineng.2020.106689_b0045 article-title: Leaching of gold in thiocyanate solutions. Part 3: rates and mechanism of gold dissolution publication-title: Trans. Min. Metall. – volume: 14 start-page: 1158 year: 2006 ident: 10.1016/j.mineng.2020.106689_b0160 article-title: Alternatives to cyanide in the gold mining industry: what prospects for the future? publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2004.09.005 – year: 1986 ident: 10.1016/j.mineng.2020.106689_b0165 – volume: vol. 17 start-page: 231 year: 1975 ident: 10.1016/j.mineng.2020.106689_b0290 publication-title: Advances in Inorganic Chemistry and Radiochemistry doi: 10.1016/S0065-2792(08)60064-3 – volume: 788 start-page: 194 year: 2006 ident: 10.1016/j.mineng.2020.106689_b0400 article-title: Syntheses and structures of three cobalt (II) complexes with thiocyanate and 1, 2-bis (benzotriazol-1-yl) ethane publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2005.11.036 – volume: 1333 year: 2019 ident: 10.1016/j.mineng.2020.106689_b0100 article-title: Development and identification of a mathematical model of the process of continuous autoclave desorption of noble metals in moving-bed apparatus publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1333/3/032053 – volume: 69 start-page: 169 year: 2003 ident: 10.1016/j.mineng.2020.106689_b0125 article-title: Leaching of finely disseminated gold ore with cyanide and thiourea solutions publication-title: Hydrometallurgy doi: 10.1016/S0304-386X(03)00005-7 – volume: 32 start-page: 317 year: 1993 ident: 10.1016/j.mineng.2020.106689_b0070 article-title: A thermodynamic study of the dissolution of gold in an acidic aqueous thiocyanate medium using iron (III) sulphate as an oxidant publication-title: Hydrometallurgy doi: 10.1016/0304-386X(93)90045-F – ident: 10.1016/j.mineng.2020.106689_b0175 – volume: 75 start-page: 169 year: 2003 ident: 10.1016/j.mineng.2020.106689_b0135 article-title: Degradation mechanisms in a dye-sensitized solar cell studied by UV – VIS and IR spectroscopy publication-title: Sol. Energy doi: 10.1016/S0038-092X(03)00248-2 – volume: 4 start-page: 1257 year: 1991 ident: 10.1016/j.mineng.2020.106689_b0315 article-title: Modern trends in gold processing – overview publication-title: Miner. Eng. doi: 10.1016/0892-6875(91)90171-Q – year: 1991 ident: 10.1016/j.mineng.2020.106689_b0395 – volume: 149 year: 2020 ident: 10.1016/j.mineng.2020.106689_b0310 article-title: Acidic pretreatment of a copper-silver ore and its beneficial effect on cyanide leaching publication-title: Miner. Eng. doi: 10.1016/j.mineng.2020.106233 – volume: 6 start-page: 109 year: 1905 ident: 10.1016/j.mineng.2020.106689_b0385 article-title: The Solubility of Gold in Thiosulphates and Thiocyanates publication-title: J. Chem. Metall. Min. Soc. South Africa – year: 2012 ident: 10.1016/j.mineng.2020.106689_b0145 – volume: 45 start-page: 965 year: 2005 ident: 10.1016/j.mineng.2020.106689_b0080 article-title: Stability studies of transition-metal linkage isomers using quantum mechanical methods. Groups 11 and 12 transition metals publication-title: J. Chem. Inf. Model. doi: 10.1021/ci050050t – volume: 4 start-page: 95 year: 1988 ident: 10.1016/j.mineng.2020.106689_b0065 article-title: Dissolution chemistry of gold and silver in different lixiviants publication-title: Miner. Procesing Extr. Metall. Rev. doi: 10.1080/08827508808952634 – volume: 5 start-page: 200 year: 1951 ident: 10.1016/j.mineng.2020.106689_b0115 article-title: Oxydation électrochimique de l’ion thiocyanique. Application aux dosages et ä l’étude des réactions publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(00)87531-5 – volume: 81 start-page: 159 year: 2006 ident: 10.1016/j.mineng.2020.106689_b0300 article-title: Biooxidation of thiocyanate-containing refractory gold tailings from Minacalpa, Peru publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2005.11.003 – ident: 10.1016/j.mineng.2020.106689_b0130 – volume: 17 start-page: 198 year: 2000 ident: 10.1016/j.mineng.2020.106689_b0270 article-title: Noncyanide leaching of an auriferous pyrite ore from Ecuador publication-title: Mining Metall. Explor. – volume: 43 start-page: 17 year: 2005 ident: 10.1016/j.mineng.2020.106689_b0195 article-title: Sorption of gold and silver on carbon adsorbents from thiocyanate solutions publication-title: Carbon N. Y. doi: 10.1016/j.carbon.2004.08.021 – volume: 113–114 start-page: 10 year: 2012 ident: 10.1016/j.mineng.2020.106689_b0230 article-title: Thiocyanate hydrometallurgy for the recovery of gold.: Part II: The leaching kinetics publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2011.11.007 – volume: 7 start-page: 555 year: 2017 ident: 10.1016/j.mineng.2020.106689_b0095 article-title: Recovery of gold from pregnant thiosulfate solutions by the resin adsorption technique publication-title: Metals (Basel) doi: 10.3390/met7120555 – volume: 45 start-page: 221 year: 2012 ident: 10.1016/j.mineng.2020.106689_b0245 article-title: N- and S-bonded thiocyanate copper(II) complexes of 2,6-bis- (benzimidazolyl)pyridine - Synthesis, spectroscopic characterization, X-ray structure and DFT calculations publication-title: Polyhedron doi: 10.1016/j.poly.2012.07.008 – volume: 36 start-page: 149 year: 1997 ident: 10.1016/j.mineng.2020.106689_b0215 article-title: Cementation behavior of gold and silver onto Zn, Al, and Fe powders from acid thiourea solutions publication-title: Can. Metall. Q. – volume: 73 start-page: 131 year: 1983 ident: 10.1016/j.mineng.2020.106689_b0200 article-title: NMR relaxation studies in solutions of transition metal complexes. X. The stepwise equilibria in the iron (III)-thiocyanate system studied by NMR relaxation publication-title: Inorg. Chim. Acta doi: 10.1016/S0020-1693(00)90837-5 – volume: 34 start-page: 53 year: 2017 ident: 10.1016/j.mineng.2020.106689_b0250 article-title: Heap leach modeling – a review of approaches to metal production forecasting publication-title: Miner. Metall. Process. |
SSID | ssj0005789 |
Score | 2.4854145 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•Gold leaching by thiocyanate as a promising less toxic lixiviant than cyanide.•Thiocyanate resonances and its coordination with gold using... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106689 |
SubjectTerms | Copper Gold leaching Iron Isothiocyanate Kinetics Thermodynamic Thiocyanate |
Title | A review of thiocyanate gold leaching – Chemistry, thermodynamics, kinetics and processing |
URI | https://dx.doi.org/10.1016/j.mineng.2020.106689 |
Volume | 160 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgPrE-yh48NrbZJLvZYymWqtiLFnoQQjfZrdU2KRoPXsT_4D_0lziTTaSCKHgKLDtL8mWY-WaZByEnTCkWGrB-YpwoCFDaoRNy7jsCrxuAz7s6wELhqwHvD_2LUTCqkW5VC4NplaXttza9sNblSqtEs7WYTlvX7VAyDnSboc5ClIIV7L5ALT99XUrzEMUYPNzs4O6qfK7I8ZoDk0snECUyXOIch73_5J6WXE5vk2yUXJF27OtskZpOt8n6UgfBHXLbobb4hGaG5nfTLH4Zp0Af6SSbJXRWpkrSj7d32q1GuzUpkr55lthh9E9N-gAHYrtmOk4TurClAyC2S4a9s5tu3ykHJjixJ1juSPh-j5lES45PDeTHMFdpoSR3uRDcV0APmBLGuEoqZVwtOCLjhdqAY_L2yEqapXqf0HasZaCVhIAMW7IHSsk45CqIJZzh-7JOvAqnKC67ieNQi1lUpY3dRxbdCNGNLLp14nxJLWw3jT_2i-oXRN-0IgKD_6vkwb8lD8kaw7yV4prliKzkj8_6GIhHrhqFZjXIauf8sj_4BH_217I |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60PagH8Yn1uQePDW02yW72WIqlVduLLfQghG6y0WqbFK0Hb_4H_6G_xJkm8QGi4Cmw7Czh22Hmm2UeAKdca-7HaP3kKNIYoNR9yxfCtSQ9NyCft41HhcLdnmgP3POhN1yCZlELQ2mVue3PbPrCWucrtRzN2mw8rl3VfcUF0m1OOotRyjKUqTuVV4Jyo3PR7n1mesjFJDzab5FAUUG3SPOaIplLbjBQ5LQkBM17_8lDffE6rQ1Yz-kia2R_tAlLJtmCtS9NBLfhusGy-hOWxmx-O07D51GCDJLdpJOITfJsSfb28sqaxXS3KiPeN02jbB79Y5Xd44HUsZmNkojNsuoBFNuBQeus32xb-cwEK3Qkn1vKdaXD48goQV-D_CfmtjZSK2ELKYWrkSFwLePY1krr2DZSEDKOb2L0Tc4ulJI0MXvA6qFRntEKYzLqyu5prUJfaC9UeIbrqgo4BU5BmDcUp7kWk6DIHLsLMnQDQjfI0K2A9SE1yxpq_LFfFlcQfFOMAG3-r5L7_5Y8gZV2v3sZXHZ6FwewyimNZfHqcgil-cOTOUIeMtfHuZ69A-_62mM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+thiocyanate+gold+leaching+%E2%80%93+Chemistry%2C+thermodynamics%2C+kinetics+and+processing&rft.jtitle=Minerals+engineering&rft.au=Azizitorghabeh%2C+Atefeh&rft.au=Wang%2C+Jingxiu&rft.au=Ramsay%2C+Juliana+A.&rft.au=Ghahreman%2C+Ahmad&rft.date=2021-01-01&rft.pub=Elsevier+Ltd&rft.issn=0892-6875&rft.eissn=1872-9444&rft.volume=160&rft_id=info:doi/10.1016%2Fj.mineng.2020.106689&rft.externalDocID=S0892687520305094 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0892-6875&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0892-6875&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0892-6875&client=summon |