Microwave and spark plasma sintering of carbon nanotube and graphene reinforced aluminum matrix composite
Graphene and carbon nanotube due to their outstanding mechanical performance were used as reinforcement in aluminum (Al) based composite through spark plasma sintering (SPS), microwave (MW) and conventional techniques. The initial compositions of Al-1wt% CNT, Al-1wt% GNP and Al-1wt% CNT–1wt% GNP wer...
Saved in:
Published in | Archives of Civil and Mechanical Engineering Vol. 18; no. 4; pp. 1042 - 1054 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Elsevier B.V
01.09.2018
Springer London Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1644-9665 2083-3318 |
DOI | 10.1016/j.acme.2018.02.006 |
Cover
Abstract | Graphene and carbon nanotube due to their outstanding mechanical performance were used as reinforcement in aluminum (Al) based composite through spark plasma sintering (SPS), microwave (MW) and conventional techniques. The initial compositions of Al-1wt% CNT, Al-1wt% GNP and Al-1wt% CNT–1wt% GNP were mixed by a high energy ultrasonic device and mixer mill to achieve homogenous dispersion. The SPS, MW and conventional processes were conducted at almost 450, 600 and 700°C, respectively. The maximum relative density (99.7±0.2% of theoretical density) and bending strength (337±11MPa) obtained by SPS, while maximum microhardness of 221±11 Vickers achieved by microwave for Al-1wt% CNT–1wt% GNP hybrid composite. X-ray diffraction (XRD) examinations identified Al as the only dominant phase accompanied by very low intensity peaks of Al4C3. Field emission scanning electron microscopy (FESEM) micrographs demonstrated uniform distribution of GNP as well as CNT reinforcement in spark plasma sintered samples. |
---|---|
AbstractList | Graphene and carbon nanotube due to their outstanding mechanical performance were used as reinforcement in aluminum (Al) based composite through spark plasma sintering (SPS), microwave (MW) and conventional techniques. The initial compositions of Al-1 wt% CNT, Al-1 wt% GNP and Al-1 wt% CNT-1 wt% GNP were mixed by a high energy ultrasonic device and mixer mill to achieve homogenous dispersion. The SPS, MW and conventional processes were conducted at almost 450, 600 and 700 °C, respectively. The maximum relative density (99.7 ± 0.2% of theoretical density) and bending strength (337 ± 11 MPa) obtained by SPS, while maximum microhardness of 221 ± 11 Vickers achieved by microwave for Al-1 wt% CNT-1 wt% GNP hybrid composite. X-ray diffraction (XRD) examinations identified Al as the only dominant phase accompanied by very low intensity peaks of Al4C3. Field emission scanning electron microscopy (FESEM) micrographs demonstrated uniform distribution of GNP as well as CNT reinforcement in spark plasma sintered samples. Graphene and carbon nanotube due to their outstanding mechanical performance were used as reinforcement in aluminum (Al) based composite through spark plasma sintering (SPS), microwave (MW) and conventional techniques. The initial compositions of Al-1 wt% CNT, Al-1 wt% GNP and Al-1 wt% CNT-1 wt% GNP were mixed by a high energy ultrasonic device and mixer mill to achieve homogenous dispersion. The SPS, MW and conventional processes were conducted at almost 450, 600 and 700 °C, respectively. The maximum relative density (99.7 ± 0.2% of theoretical density) and bending strength (337 ± 11 MPa) obtained by SPS, while maximum microhardness of 221 ± 11 Vickers achieved by microwave for Al-1 wt% CNT-1 wt% GNP hybrid composite. X-ray diffraction (XRD) examinations identified Al as the only dominant phase accompanied by very low intensity peaks of Al 4 C 3 . Field emission scanning electron microscopy (FESEM) micrographs demonstrated uniform distribution of GNP as well as CNT reinforcement in spark plasma sintered samples. Graphene and carbon nanotube due to their outstanding mechanical performance were used as reinforcement in aluminum (Al) based composite through spark plasma sintering (SPS), microwave (MW) and conventional techniques. The initial compositions of Al-1wt% CNT, Al-1wt% GNP and Al-1wt% CNT–1wt% GNP were mixed by a high energy ultrasonic device and mixer mill to achieve homogenous dispersion. The SPS, MW and conventional processes were conducted at almost 450, 600 and 700°C, respectively. The maximum relative density (99.7±0.2% of theoretical density) and bending strength (337±11MPa) obtained by SPS, while maximum microhardness of 221±11 Vickers achieved by microwave for Al-1wt% CNT–1wt% GNP hybrid composite. X-ray diffraction (XRD) examinations identified Al as the only dominant phase accompanied by very low intensity peaks of Al4C3. Field emission scanning electron microscopy (FESEM) micrographs demonstrated uniform distribution of GNP as well as CNT reinforcement in spark plasma sintered samples. |
Author | Jam, Alireza Ghasali, Ehsan Shirvanimoghaddam, Kamyar Sangpour, Parvaneh Rajaei, Hosein Ebadzadeh, Touradj |
Author_xml | – sequence: 1 givenname: Ehsan surname: Ghasali fullname: Ghasali, Ehsan email: Ehsan_ghasali@yahoo.com organization: Ceramic Department, Materials and Energy Research Center, Alborz, Iran – sequence: 2 givenname: Parvaneh surname: Sangpour fullname: Sangpour, Parvaneh organization: Ceramic Department, Materials and Energy Research Center, Alborz, Iran – sequence: 3 givenname: Alireza surname: Jam fullname: Jam, Alireza organization: Ceramic Department, Materials and Energy Research Center, Alborz, Iran – sequence: 4 givenname: Hosein surname: Rajaei fullname: Rajaei, Hosein organization: Ceramic Department, Materials and Energy Research Center, Alborz, Iran – sequence: 5 givenname: Kamyar surname: Shirvanimoghaddam fullname: Shirvanimoghaddam, Kamyar email: kshirvan@deakin.edu.au organization: Carbon Nexus, Institute for Frontier Materials, Deakin University, Vic 3216, Australia – sequence: 6 givenname: Touradj surname: Ebadzadeh fullname: Ebadzadeh, Touradj organization: Ceramic Department, Materials and Energy Research Center, Alborz, Iran |
BookMark | eNp9kE1v1DAQhi3USiylf4CTJc4J_k4scUEVFKQiLr1bE--k9bKxg-0U-u-bVZCQOOxpLu_zzszzhlzEFJGQd5y1nHHz4dCCn7AVjPctEy1j5hXZCdbLRkreX5AdN0o11hj9mlyXcmCMcdYJbvSOhO_B5_QbnpBC3NMyQ_5J5yOUCWgJsWIO8YGmkXrIQ4o0Qkx1Gbb0Q4b5ESPSjCGOKXvcUzguU4jLRCeoOfyhPk1zKqHiW3I5wrHg9d95Re6_fL6_-drc_bj9dvPprvGyE7WxAkD1QluL3IIXptfjwHk_DhbRolamE6is7EbNOxyU6j3CXnOhYVSg5RV5v9XOOf1asFR3SEuO60YnrJTKciO7NdVvqfX5UjKOzocKNaRYM4Sj48yd1LqDO6l1J7WOCbeqXVHxHzrnMEF-Pg_JDSrzSSjmf1edpT5uFK6-nsJKFR8wrppDRl_dPoVz-AsD5qav |
CitedBy_id | crossref_primary_10_1002_sstr_202300539 crossref_primary_10_1016_j_matpr_2021_10_262 crossref_primary_10_1016_j_cej_2018_11_157 crossref_primary_10_3389_fmats_2022_804075 crossref_primary_10_1016_j_jallcom_2019_05_029 crossref_primary_10_3390_met14091057 crossref_primary_10_1007_s11665_021_06011_9 crossref_primary_10_1088_2053_1591_ab96ff crossref_primary_10_1515_rams_2022_0326 crossref_primary_10_1007_s43452_021_00210_w crossref_primary_10_1016_j_matchemphys_2020_123831 crossref_primary_10_3390_fib7040033 crossref_primary_10_1016_j_aiepr_2023_03_004 crossref_primary_10_1016_j_jmapro_2023_02_026 crossref_primary_10_1016_j_jallcom_2020_153675 crossref_primary_10_1088_2053_1591_ab533c crossref_primary_10_1007_s12540_019_00445_6 crossref_primary_10_3390_ma16134635 crossref_primary_10_1016_j_jcis_2018_12_090 crossref_primary_10_1080_10408436_2019_1632792 crossref_primary_10_1155_2022_3449903 crossref_primary_10_1016_j_diamond_2023_110537 crossref_primary_10_1016_j_msea_2022_143446 crossref_primary_10_1007_s13369_019_03924_5 crossref_primary_10_1016_j_compositesb_2021_109121 crossref_primary_10_1016_j_ijlmm_2021_03_002 crossref_primary_10_1007_s42114_024_01074_3 crossref_primary_10_1515_mt_2023_0248 crossref_primary_10_1016_j_msea_2025_148120 crossref_primary_10_15541_jim20210438 crossref_primary_10_1016_j_ceramint_2018_12_136 crossref_primary_10_1007_s40089_021_00328_y crossref_primary_10_1016_j_compositesa_2019_04_010 crossref_primary_10_1177_14644207211028969 crossref_primary_10_1016_j_mtcomm_2023_106022 crossref_primary_10_1016_j_ceramint_2019_07_236 crossref_primary_10_1016_j_jallcom_2024_176097 crossref_primary_10_1016_j_triboint_2022_107434 crossref_primary_10_17073_1997_308X_2020_4_76_84 crossref_primary_10_1016_j_mtcomm_2020_101245 crossref_primary_10_2139_ssrn_4092381 crossref_primary_10_1016_j_powtec_2019_09_026 crossref_primary_10_1515_rams_2020_0007 crossref_primary_10_1039_D4NA00646A crossref_primary_10_3103_S1067821221030081 crossref_primary_10_2139_ssrn_3977633 crossref_primary_10_1007_s40962_023_01235_y crossref_primary_10_1016_j_matchemphys_2019_01_007 crossref_primary_10_1080_10426914_2021_1914845 crossref_primary_10_1016_j_jmrt_2024_03_237 crossref_primary_10_1016_j_jallcom_2023_169550 crossref_primary_10_1016_j_surfcoat_2020_126280 crossref_primary_10_1007_s40033_021_00322_w crossref_primary_10_1016_j_ceramint_2018_07_104 crossref_primary_10_1016_j_ceramint_2019_05_154 crossref_primary_10_1080_10426914_2020_1718698 crossref_primary_10_1016_j_polymer_2018_04_079 crossref_primary_10_1007_s41779_021_00635_9 crossref_primary_10_1016_j_jallcom_2019_151682 crossref_primary_10_1016_j_jallcom_2018_12_150 crossref_primary_10_1016_j_ceramint_2018_04_171 crossref_primary_10_5937_fme2102414N crossref_primary_10_1080_23311916_2024_2324030 crossref_primary_10_1016_j_msea_2020_139662 crossref_primary_10_1016_j_jmrt_2023_01_134 crossref_primary_10_1063_5_0008786 crossref_primary_10_1080_09243046_2020_1811929 crossref_primary_10_1002_mgea_81 crossref_primary_10_3390_ma15207232 crossref_primary_10_1016_j_ceramint_2019_04_104 crossref_primary_10_1007_s43452_022_00374_z crossref_primary_10_1016_j_mtchem_2020_100334 crossref_primary_10_1016_j_ceramint_2019_05_101 crossref_primary_10_1016_j_jaap_2021_105415 crossref_primary_10_1016_j_pmatsci_2022_100948 |
Cites_doi | 10.1016/S1003-6326(08)60429-X 10.1016/j.jallcom.2010.01.068 10.1177/0021998310361990 10.1016/j.tws.2005.07.003 10.1016/j.matchar.2013.05.018 10.1155/2012/983470 10.1016/j.carbon.2015.08.014 10.1016/j.carbon.2008.10.041 10.1179/095066009X12572530170543 10.1016/j.compstruct.2015.03.032 10.1155/2013/370785 10.1590/1980-5373-MR-2015-0799 10.1016/j.msea.2013.02.041 10.1007/s40097-015-0175-9 10.1016/j.proeng.2014.12.381 10.1016/j.matchar.2015.12.031 10.1016/j.msea.2013.10.046 10.1016/j.jallcom.2016.08.145 10.1016/j.matdes.2014.06.025 10.1016/S1359-6454(01)00221-X 10.1016/j.jascer.2017.10.004 10.1016/j.mser.2013.08.001 10.1016/j.actamat.2006.06.031 10.3390/ma10111255 10.1016/j.compositesa.2017.01.023 10.1186/s40712-014-0006-7 10.1016/j.ceramint.2017.10.189 10.1016/S0924-0136(02)00234-0 10.1016/j.compscitech.2016.11.017 10.1016/j.jallcom.2016.12.146 10.1016/j.jallcom.2016.07.063 10.1016/j.jallcom.2017.02.144 10.1590/1516-1439.027115 10.1007/s11661-014-2185-5 10.1590/1980-5373-mr-2016-0390 10.1016/j.jmrt.2015.05.003 10.1016/j.compscitech.2010.05.004 10.1590/1980-5373-MR-2016-0395 10.1016/j.matpr.2015.07.248 10.1007/s10853-006-6555-2 10.1016/j.jallcom.2009.03.055 10.1016/j.mtcomm.2017.10.005 10.1016/j.msea.2017.04.009 10.1016/j.jallcom.2009.10.099 10.1016/j.matlet.2011.05.067 10.1007/s11661-998-0325-5 10.1016/j.matdes.2013.01.018 10.1016/j.compositesa.2016.10.032 |
ContentType | Journal Article |
Copyright | 2018 Politechnika Wrocławska University of Wroclaw Science and Technology 2018 Copyright Springer Nature B.V. Dec 2018 |
Copyright_xml | – notice: 2018 Politechnika Wrocławska – notice: University of Wroclaw Science and Technology 2018 – notice: Copyright Springer Nature B.V. Dec 2018 |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1016/j.acme.2018.02.006 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Database Suite (ProQuest) Technology Collection ProQuest One ProQuest Central Korea SciTech Collection (ProQuest) ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
DatabaseTitleList | Engineering Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2083-3318 |
EndPage | 1054 |
ExternalDocumentID | 10_1016_j_acme_2018_02_006 S1644966518300244 |
GroupedDBID | --M .~1 0R~ 1~. 23M 2JY 4.4 406 457 4G. 5GY 7-5 8P~ AACDK AACTN AAEDT AAEPC AAHNG AAIKJ AAJBT AALRI AAOAW AASML AATNV AAUYE AAXUO ABAKF ABDBF ABECU ABJCF ABMQK ABTEG ABTKH ABTMW ABXRA ACAOD ACDAQ ACDTI ACGFS ACHSB ACUHS ACZOJ ADBBV ADEZE ADTZH AECPX AEFQL AEKER AEMSY AENEX AESKC AFBBN AFKRA AFQWF AFTJW AGHFR AGMZJ AGQEE AGUBO AGYEJ AIGIU AILAN AITUG AJOXV AJZVZ AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMXSW AMYLF BENPR BGLVJ BLXMC CCPQU DPUIP EBLON EBS EJD EN8 ESX FDB FEDTE FIGPU FIRID FNPLU GBLVA HCIFZ HVGLF HZ~ I-F IKXTQ IWAJR JJJVA LLZTM M41 M7S MAGPM MK~ ML~ MO0 NPVJJ NQJWS O-L O9- OAUVE P-8 P-9 P2P PC. PT4 PTHSS Q38 ROL RSV SDF SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW SSZ T5K TUS Y2W ~8M ~G- ABJNI ACPIV AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION JZLTJ PHGZM PHGZT 8FE 8FG DWQXO L6V PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c372t-92aa482599e19ac2685fb118fb9ee9e54672e4937f517eb448cead5125af4a53 |
IEDL.DBID | 8FG |
ISSN | 1644-9665 |
IngestDate | Fri Jul 25 11:48:04 EDT 2025 Tue Jul 01 01:17:35 EDT 2025 Thu Apr 24 22:58:28 EDT 2025 Fri Feb 21 02:36:15 EST 2025 Sat Dec 28 15:51:59 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Carbon nanotube Microwave Spark plasma sintering Graphene |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-92aa482599e19ac2685fb118fb9ee9e54672e4937f517eb448cead5125af4a53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2933491637 |
PQPubID | 6587200 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2933491637 crossref_citationtrail_10_1016_j_acme_2018_02_006 crossref_primary_10_1016_j_acme_2018_02_006 springer_journals_10_1016_j_acme_2018_02_006 elsevier_sciencedirect_doi_10_1016_j_acme_2018_02_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-01 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Wrocław |
PublicationTitle | Archives of Civil and Mechanical Engineering |
PublicationTitleAbbrev | Archiv.Civ.Mech.Eng |
PublicationYear | 2018 |
Publisher | Elsevier B.V Springer London Springer Nature B.V |
Publisher_xml | – name: Elsevier B.V – name: Springer London – name: Springer Nature B.V |
References | Shin, Bae (bib0435) 2013; 83 Oghbaei, Mirzaee (bib0490) 2010; 494 Torralba, Da Costa, Velasco (bib0270) 2003; 133 Ghasali, Yazdani-rad, Asadian, Ebadzadeh (bib0385) 2017; 690 Ghasali, Alizadeh, Pakseresht, Ebadzadeh (bib0450) 2017; 5 Ghasali, Pakseresht, Agheli, Marzbanpour, Ebadzadeh (bib0275) 2015; 18 Ghasali, Ebadzadeh, Alizadeh, Razavi (bib0495) 2018; 44 Ghasali, Fazili, Alizadeh, Shirvanimoghaddam, Ebadzadeh (bib0500) 2017; 10 Yue, Cai, Wang, Sun, Chen (bib0345) 2013 Singla, Amulya, Murtaza (bib0320) 2015; 2 Desai, Haque (bib0365) 2005; 43 Saheb, Iqbal, Khalil, Hakeem, Al Aqeeli, Laoui, Al-Qutub, Kirchner (bib0305) 2012; 2012 Shirvanimoghaddam, Hamim, Karbalaei Akbari, Fakhrhoseini, Khayyam, Pakseresht, Ghasali, Zabet, Munir, Jia, Davim, Naebe (bib0260) 2017; 92 Ci, Ryu, Jin-Phillipp, Rühle (bib0475) 2006; 54 Ghasali, Palizdar, Jam, Rajaei, Ebadzadeh (bib0510) 2017; 13 Shirvanimoghaddam, Abolhasani, Li, Khayyam, Naebe (bib0335) 2017; 95 Wang, Shozaki, Yamamoto, Kagawa (bib0380) 2015; 66 Ghasali, Nouranian, Rahbari, Majidian, Alizadeh, Ebadzadeh (bib0295) 2016; 19 Bakshi, Lahiri, Agarwal (bib0395) 2010; 55 Kumar, Xavior (bib0400) 2014; 97 Li, Fan, Guo, Li, Su, Zhang (bib0405) 2015; 95 Kwon, Saarna, Yoon, Weidenkaff, Leparoux (bib0505) 2014; 590 Ghasali, Yazdani-rad, Rahbari, Ebadzadeh (bib0310) 2016; 19 Liao, Tan (bib0325) 2011; 65 Ghasali, Alizadeh, Niazmand, Ebadzadeh (bib0410) 2017; 697 Majidian, Ghasali, Ebadzadeh, Razavi, Division (bib0285) 2016; 19 Bisht, Srivastava, Kumar, Lahiri, Lahiri (bib0485) 2017; 695 Yan, Tan, Ji, Li, Fan, Schryvers, Shan, Zhang (bib0360) 2016; 112 Tham, Gupta, Cheng (bib0480) 2001; 49 Kim, Babu, Kang (bib0425) 2013; 573 Bakshi, Lahiri, Agarwal (bib0300) 2010; 55 Tjong (bib0340) 2013; 74 Munir, Anselmi-Tamburini, Ohyanagi (bib0420) 2006; 41 Al-Aqeeli (bib0455) 2013; 2013 Ghasali, Pakseresht, Alizadeh, Shirvanimoghaddam, Ebadzadeh (bib0415) 2016; 688 Abolhasani, Shirvanimoghaddam, Naebe (bib0330) 2017; 138 Fatemi, Foroutan (bib0430) 2016; 6 Morsi, Esawi, Borah, Lanka, Sayed (bib0350) 2010; 44 Bodunrin, Alaneme, Chown (bib0315) 2015; 4 Pérez-Bustamante, Estrada-Guel, Amézaga-Madrid, Miki-Yoshida, Herrera-Ramírez, Martínez-Sánchez (bib0355) 2010; 495 Kwon, Estili, Takagi, Miyazaki, Kawasaki (bib0440) 2009; 47 Bakshi, Keshri, Singh, Seal, Agarwal (bib0445) 2009; 481 Miracle, Donaldson, Henry, Moosbrugger, Anton, Sanders, Hrivnak, Terman, Kinson, Muldoon (bib0370) 2001 Pang, Zhang, Jing, Sun (bib0465) 2009; 19 Ghasali, Shirvanimoghaddam, Pakseresht, Alizadeh, Ebadzadeh (bib0265) 2017; 705 Kim, Babu, Kang (bib0390) 2014; 45 Le, Godfrey, Hansen (bib0470) 2013; 49 Das, Mishra, Singh, Pattanaik (bib0280) 2014; 9 Chawla, Jones, Andres, Allison (bib0290) 1998; 29 Esawi, Morsi, Sayed, Taher, Lanka (bib0460) 2010; 70 Alfonso, Navarro, Vargas, Beltrán, Aguilar, González, Figueroa (bib0375) 2015; 127 Ghasali (10.1016/j.acme.2018.02.006_bib0450) 2017; 5 Wang (10.1016/j.acme.2018.02.006_bib0380) 2015; 66 Li (10.1016/j.acme.2018.02.006_bib0405) 2015; 95 Fatemi (10.1016/j.acme.2018.02.006_bib0430) 2016; 6 Ci (10.1016/j.acme.2018.02.006_bib0475) 2006; 54 Abolhasani (10.1016/j.acme.2018.02.006_bib0330) 2017; 138 Pang (10.1016/j.acme.2018.02.006_bib0465) 2009; 19 Alfonso (10.1016/j.acme.2018.02.006_bib0375) 2015; 127 Tjong (10.1016/j.acme.2018.02.006_bib0340) 2013; 74 Tham (10.1016/j.acme.2018.02.006_bib0480) 2001; 49 Ghasali (10.1016/j.acme.2018.02.006_bib0410) 2017; 697 Kwon (10.1016/j.acme.2018.02.006_bib0505) 2014; 590 Bakshi (10.1016/j.acme.2018.02.006_bib0300) 2010; 55 Shirvanimoghaddam (10.1016/j.acme.2018.02.006_bib0260) 2017; 92 Munir (10.1016/j.acme.2018.02.006_bib0420) 2006; 41 Saheb (10.1016/j.acme.2018.02.006_bib0305) 2012; 2012 Yan (10.1016/j.acme.2018.02.006_bib0360) 2016; 112 Kim (10.1016/j.acme.2018.02.006_bib0390) 2014; 45 Ghasali (10.1016/j.acme.2018.02.006_bib0295) 2016; 19 Bisht (10.1016/j.acme.2018.02.006_bib0485) 2017; 695 Shirvanimoghaddam (10.1016/j.acme.2018.02.006_bib0335) 2017; 95 Pérez-Bustamante (10.1016/j.acme.2018.02.006_bib0355) 2010; 495 Das (10.1016/j.acme.2018.02.006_bib0280) 2014; 9 Desai (10.1016/j.acme.2018.02.006_bib0365) 2005; 43 Ghasali (10.1016/j.acme.2018.02.006_bib0495) 2018; 44 Torralba (10.1016/j.acme.2018.02.006_bib0270) 2003; 133 Ghasali (10.1016/j.acme.2018.02.006_bib0385) 2017; 690 Ghasali (10.1016/j.acme.2018.02.006_bib0415) 2016; 688 Al-Aqeeli (10.1016/j.acme.2018.02.006_bib0455) 2013; 2013 Bodunrin (10.1016/j.acme.2018.02.006_bib0315) 2015; 4 Kwon (10.1016/j.acme.2018.02.006_bib0440) 2009; 47 Kim (10.1016/j.acme.2018.02.006_bib0425) 2013; 573 Le (10.1016/j.acme.2018.02.006_bib0470) 2013; 49 Miracle (10.1016/j.acme.2018.02.006_bib0370) 2001 Majidian (10.1016/j.acme.2018.02.006_bib0285) 2016; 19 Ghasali (10.1016/j.acme.2018.02.006_bib0275) 2015; 18 Ghasali (10.1016/j.acme.2018.02.006_bib0510) 2017; 13 Esawi (10.1016/j.acme.2018.02.006_bib0460) 2010; 70 Singla (10.1016/j.acme.2018.02.006_bib0320) 2015; 2 Yue (10.1016/j.acme.2018.02.006_bib0345) 2013 Kumar (10.1016/j.acme.2018.02.006_bib0400) 2014; 97 Ghasali (10.1016/j.acme.2018.02.006_bib0265) 2017; 705 Ghasali (10.1016/j.acme.2018.02.006_bib0310) 2016; 19 Morsi (10.1016/j.acme.2018.02.006_bib0350) 2010; 44 Bakshi (10.1016/j.acme.2018.02.006_bib0445) 2009; 481 Oghbaei (10.1016/j.acme.2018.02.006_bib0490) 2010; 494 Ghasali (10.1016/j.acme.2018.02.006_bib0500) 2017; 10 Liao (10.1016/j.acme.2018.02.006_bib0325) 2011; 65 Bakshi (10.1016/j.acme.2018.02.006_bib0395) 2010; 55 Shin (10.1016/j.acme.2018.02.006_bib0435) 2013; 83 Chawla (10.1016/j.acme.2018.02.006_bib0290) 1998; 29 |
References_xml | – start-page: 90 year: 2013 end-page: 94 ident: bib0345 article-title: Interface reaction of CNTs/Al composites fabricated by high energy ball milling publication-title: Adv. Mater. Res. Trans. Tech. Publ. – volume: 9 start-page: 6 year: 2014 ident: bib0280 article-title: Fabrication and heat treatment of ceramic-reinforced aluminium matrix composites-a review publication-title: Int. J. Mech. Mater. Eng. – volume: 495 start-page: 399 year: 2010 end-page: 402 ident: bib0355 article-title: Microstructural characterization of Al-MWCNT composites produced by mechanical milling and hot extrusion publication-title: J. Alloys Compd. – volume: 4 start-page: 434 year: 2015 end-page: 445 ident: bib0315 article-title: Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics publication-title: J. Mater. Res. Technol. – volume: 55 start-page: 41 year: 2010 end-page: 64 ident: bib0395 article-title: Carbon nanotube reinforced metal matrix composites – a review publication-title: Int. Mater. Rev. – volume: 690 start-page: 512 year: 2017 end-page: 518 ident: bib0385 article-title: Production of Al-SiC-TiC hybrid composites using pure and 1056 aluminum powders prepared through microwave and conventional heating methods publication-title: J. Alloys Compd. – volume: 2013 start-page: 125 year: 2013 ident: bib0455 article-title: Processing of CNTs reinforced Al-based nanocomposites using different consolidation techniques publication-title: J. Nanomater. – volume: 133 start-page: 203 year: 2003 end-page: 206 ident: bib0270 article-title: P/M aluminum matrix composites: an overview publication-title: J. Mater. Process. Technol. – volume: 494 start-page: 175 year: 2010 end-page: 189 ident: bib0490 article-title: Microwave versus conventional sintering: a review of fundamentals, advantages and applications publication-title: J. Alloys Compd. – volume: 55 start-page: 41 year: 2010 end-page: 64 ident: bib0300 article-title: Carbon nanotube reinforced metal matrix composites – a review publication-title: Int. Mater. Rev. – volume: 2012 start-page: 18 year: 2012 ident: bib0305 article-title: Spark plasma sintering of metals and metal matrix nanocomposites: a review publication-title: J. Nanomater. – volume: 697 start-page: 200 year: 2017 end-page: 207 ident: bib0410 article-title: Fabrication of magnesium-boron carbide metal matrix composite by powder metallurgy route: comparison between microwave and spark plasma sintering publication-title: J. Alloys Compd. – volume: 92 year: 2017 ident: bib0260 article-title: Carbon fiber reinforced metal matrix composites: fabrication processes and properties publication-title: Compos. A Appl. Sci. Manuf. – volume: 2 start-page: 2886 year: 2015 end-page: 2895 ident: bib0320 article-title: CNT reinforced aluminium matrix composite – a review publication-title: Mater. Today Proc. – volume: 481 start-page: 207 year: 2009 end-page: 213 ident: bib0445 article-title: Interface in carbon nanotube reinforced aluminum silicon composites: thermodynamic analysis and experimental verification publication-title: J. Alloys Compd. – volume: 41 start-page: 763 year: 2006 end-page: 777 ident: bib0420 article-title: The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method publication-title: J. Mater. Sci. – volume: 83 start-page: 170 year: 2013 end-page: 177 ident: bib0435 article-title: Strengthening behavior of chopped multi-walled carbon nanotube reinforced aluminum matrix composites publication-title: Mater. Charact. – volume: 43 start-page: 1787 year: 2005 end-page: 1803 ident: bib0365 article-title: Mechanics of the interface for carbon nanotube–polymer composites publication-title: Thin-Walled Struct. – volume: 66 start-page: 498 year: 2015 end-page: 503 ident: bib0380 article-title: Synergy effect of reinforcement particle, fiber and matrix on wear resistance of hybrid metal matrix composite fabricated by low pressure infiltration process publication-title: Mater. Des. – volume: 19 start-page: 1201 year: 2009 end-page: 1205 ident: bib0465 article-title: Effect of adding carbon nanotubes on stress of Fe publication-title: Trans. Nonferrous Met. Soc. China – volume: 18 start-page: 1197 year: 2015 end-page: 1202 ident: bib0275 article-title: WC-Co particles reinforced aluminum matrix by conventional and microwave sintering publication-title: Mater. Res. – volume: 65 start-page: 2742 year: 2011 end-page: 2744 ident: bib0325 article-title: A simple approach to prepare Al/CNT composite: Spread–Dispersion (SD) method publication-title: Mater. Lett. – volume: 573 start-page: 92 year: 2013 end-page: 99 ident: bib0425 article-title: Fabrication of A356 aluminum alloy matrix composite with CNTs/Al publication-title: Mater. Sci. Eng. A – volume: 6 start-page: 29 year: 2016 end-page: 40 ident: bib0430 article-title: Recent developments concerning the dispersion of carbon nanotubes in surfactant/polymer systems by MD simulation publication-title: J. Nanostruct. Chem. – volume: 49 start-page: 3243 year: 2001 end-page: 3253 ident: bib0480 article-title: Effect of limited matrix–reinforcement interfacial reaction on enhancing the mechanical properties of aluminium–silicon carbide composites publication-title: Acta Mater. – volume: 47 start-page: 570 year: 2009 end-page: 577 ident: bib0440 article-title: Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites publication-title: Carbon N.Y. – volume: 19 start-page: 1443 year: 2016 end-page: 1448 ident: bib0285 article-title: Effect of heating method on microstructure and mechanical properties of zircon reinforced aluminum composites publication-title: Mater. Res. – volume: 112 start-page: 213 year: 2016 end-page: 218 ident: bib0360 article-title: A quantitative method to characterize the Al 4C 3-formed interfacial reaction: the case study of MWCNT/Al composites publication-title: Mater. Charact. – volume: 695 start-page: 20 year: 2017 end-page: 28 ident: bib0485 article-title: Strengthening mechanism in graphene nanoplatelets reinforced aluminum composite fabricated through spark plasma sintering publication-title: Mater. Sci. Eng. A – volume: 19 start-page: 1189 year: 2016 end-page: 1192 ident: bib0295 article-title: Low temperature sintering of aluminum-zircon metal matrix composite prepared by spark plasma sintering publication-title: Mater. Res. – volume: 44 start-page: 1991 year: 2010 end-page: 2003 ident: bib0350 article-title: Characterization and spark plasma sintering of mechanically milled aluminum-carbon nanotube (CNT) composite powders publication-title: J. Compos. Mater. – volume: 45 start-page: 2636 year: 2014 end-page: 2645 ident: bib0390 article-title: Hot extrusion of A356 aluminum metal matrix composite with carbon nanotube/Al publication-title: Metall. Mater. Trans. A – volume: 49 start-page: 360 year: 2013 end-page: 367 ident: bib0470 article-title: Structure and strength of aluminum with sub-micrometer/micrometer grain size prepared by spark plasma sintering publication-title: Mater. Des. – volume: 590 start-page: 338 year: 2014 end-page: 345 ident: bib0505 article-title: Effect of milling time on dual-nanoparticulate-reinforced aluminum alloy matrix composite materials publication-title: Mater. Sci. Eng. A – volume: 138 start-page: 49 year: 2017 end-page: 56 ident: bib0330 article-title: PVDF/graphene composite nanofibers with enhanced piezoelectric performance for development of robust nanogenerators publication-title: Compos. Sci. Technol. – year: 2001 ident: bib0370 article-title: ASM Handbook – volume: 13 start-page: 221 year: 2017 end-page: 231 ident: bib0510 article-title: Effect of Al and Mo addition on phase formation, mechanical and microstructure properties of spark plasma sintered iron alloy publication-title: Mater. Today Commun. – volume: 95 start-page: 304 year: 2017 end-page: 314 ident: bib0335 article-title: Cheetah skin structure: a new approach for carbon-nano-patterning of carbon nanotubes publication-title: Compos. A Appl. Sci. Manuf. – volume: 74 start-page: 281 year: 2013 end-page: 350 ident: bib0340 article-title: Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets publication-title: Mater. Sci. Eng. R Rep. – volume: 10 start-page: 1255 year: 2017 ident: bib0500 article-title: Evaluation of microstructure and mechanical properties of Al-TiC metal matrix composite prepared by conventional, microwave and spark plasma sintering methods publication-title: Materials (Basel) – volume: 5 year: 2017 ident: bib0450 article-title: Preparation of silicon carbide/carbon fiber composites through high-temperature spark plasma sintering publication-title: J. Asian Ceram. Soc. – volume: 70 start-page: 2237 year: 2010 end-page: 2241 ident: bib0460 article-title: Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites publication-title: Compos. Sci. Technol. – volume: 44 start-page: 2283 year: 2018 end-page: 2291 ident: bib0495 article-title: Mechanical and microstructural properties of WC-based cermets: a comparative study on the effect of Ni and Mo binder phases publication-title: Ceram. Int. – volume: 705 start-page: 283 year: 2017 end-page: 289 ident: bib0265 article-title: Evaluation of microstructure and mechanical properties of Al-TaC composites prepared by spark plasma sintering process publication-title: J. Alloys Compd. – volume: 29 start-page: 2843 year: 1998 end-page: 2854 ident: bib0290 article-title: Effect of SiC volume fraction and particle size on the fatigue resistance of a 2080 Al/SiCp composite publication-title: Metall. Mater. Trans. A – volume: 97 start-page: 1033 year: 2014 end-page: 1040 ident: bib0400 article-title: Graphene reinforced metal matrix composite (GRMMC): a review publication-title: Proc. Eng. – volume: 19 start-page: 765 year: 2016 end-page: 769 ident: bib0310 article-title: Microwave sintering of aluminum-ZrB publication-title: Mater. Res. – volume: 127 start-page: 420 year: 2015 end-page: 425 ident: bib0375 article-title: FEA evaluation of the Al publication-title: Compos. Struct. – volume: 95 start-page: 419 year: 2015 end-page: 427 ident: bib0405 article-title: Synergistic strengthening effect of graphene-carbon nanotube hybrid structure in aluminum matrix composites publication-title: Carbon N. Y. – volume: 688 start-page: 527 year: 2016 end-page: 533 ident: bib0415 article-title: Vanadium carbide reinforced aluminum matrix composite prepared by conventional, microwave and spark plasma sintering publication-title: J. Alloys Compd. – volume: 54 start-page: 5367 year: 2006 end-page: 5375 ident: bib0475 article-title: Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum publication-title: Acta Mater. – volume: 19 start-page: 1201 year: 2009 ident: 10.1016/j.acme.2018.02.006_bib0465 article-title: Effect of adding carbon nanotubes on stress of Fe3Al intermetallics publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(08)60429-X – volume: 494 start-page: 175 year: 2010 ident: 10.1016/j.acme.2018.02.006_bib0490 article-title: Microwave versus conventional sintering: a review of fundamentals, advantages and applications publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2010.01.068 – volume: 44 start-page: 1991 year: 2010 ident: 10.1016/j.acme.2018.02.006_bib0350 article-title: Characterization and spark plasma sintering of mechanically milled aluminum-carbon nanotube (CNT) composite powders publication-title: J. Compos. Mater. doi: 10.1177/0021998310361990 – volume: 43 start-page: 1787 year: 2005 ident: 10.1016/j.acme.2018.02.006_bib0365 article-title: Mechanics of the interface for carbon nanotube–polymer composites publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2005.07.003 – volume: 83 start-page: 170 year: 2013 ident: 10.1016/j.acme.2018.02.006_bib0435 article-title: Strengthening behavior of chopped multi-walled carbon nanotube reinforced aluminum matrix composites publication-title: Mater. Charact. doi: 10.1016/j.matchar.2013.05.018 – volume: 2012 start-page: 18 year: 2012 ident: 10.1016/j.acme.2018.02.006_bib0305 article-title: Spark plasma sintering of metals and metal matrix nanocomposites: a review publication-title: J. Nanomater. doi: 10.1155/2012/983470 – volume: 95 start-page: 419 year: 2015 ident: 10.1016/j.acme.2018.02.006_bib0405 article-title: Synergistic strengthening effect of graphene-carbon nanotube hybrid structure in aluminum matrix composites publication-title: Carbon N. Y. doi: 10.1016/j.carbon.2015.08.014 – volume: 47 start-page: 570 year: 2009 ident: 10.1016/j.acme.2018.02.006_bib0440 article-title: Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites publication-title: Carbon N.Y. doi: 10.1016/j.carbon.2008.10.041 – volume: 55 start-page: 41 year: 2010 ident: 10.1016/j.acme.2018.02.006_bib0395 article-title: Carbon nanotube reinforced metal matrix composites – a review publication-title: Int. Mater. Rev. doi: 10.1179/095066009X12572530170543 – volume: 127 start-page: 420 year: 2015 ident: 10.1016/j.acme.2018.02.006_bib0375 article-title: FEA evaluation of the Al4C3 formation effect on the Young's modulus of carbon nanotube reinforced aluminum matrix composites publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2015.03.032 – volume: 2013 start-page: 125 year: 2013 ident: 10.1016/j.acme.2018.02.006_bib0455 article-title: Processing of CNTs reinforced Al-based nanocomposites using different consolidation techniques publication-title: J. Nanomater. doi: 10.1155/2013/370785 – volume: 19 start-page: 765 year: 2016 ident: 10.1016/j.acme.2018.02.006_bib0310 article-title: Microwave sintering of aluminum-ZrB2 composite: focusing on microstructure and mechanical properties publication-title: Mater. Res. doi: 10.1590/1980-5373-MR-2015-0799 – volume: 573 start-page: 92 year: 2013 ident: 10.1016/j.acme.2018.02.006_bib0425 article-title: Fabrication of A356 aluminum alloy matrix composite with CNTs/Al2O3 hybrid reinforcements publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2013.02.041 – volume: 6 start-page: 29 year: 2016 ident: 10.1016/j.acme.2018.02.006_bib0430 article-title: Recent developments concerning the dispersion of carbon nanotubes in surfactant/polymer systems by MD simulation publication-title: J. Nanostruct. Chem. doi: 10.1007/s40097-015-0175-9 – volume: 97 start-page: 1033 year: 2014 ident: 10.1016/j.acme.2018.02.006_bib0400 article-title: Graphene reinforced metal matrix composite (GRMMC): a review publication-title: Proc. Eng. doi: 10.1016/j.proeng.2014.12.381 – volume: 112 start-page: 213 year: 2016 ident: 10.1016/j.acme.2018.02.006_bib0360 article-title: A quantitative method to characterize the Al 4C 3-formed interfacial reaction: the case study of MWCNT/Al composites publication-title: Mater. Charact. doi: 10.1016/j.matchar.2015.12.031 – volume: 590 start-page: 338 year: 2014 ident: 10.1016/j.acme.2018.02.006_bib0505 article-title: Effect of milling time on dual-nanoparticulate-reinforced aluminum alloy matrix composite materials publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2013.10.046 – volume: 690 start-page: 512 year: 2017 ident: 10.1016/j.acme.2018.02.006_bib0385 article-title: Production of Al-SiC-TiC hybrid composites using pure and 1056 aluminum powders prepared through microwave and conventional heating methods publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.08.145 – volume: 66 start-page: 498 year: 2015 ident: 10.1016/j.acme.2018.02.006_bib0380 article-title: Synergy effect of reinforcement particle, fiber and matrix on wear resistance of hybrid metal matrix composite fabricated by low pressure infiltration process publication-title: Mater. Des. doi: 10.1016/j.matdes.2014.06.025 – volume: 49 start-page: 3243 year: 2001 ident: 10.1016/j.acme.2018.02.006_bib0480 article-title: Effect of limited matrix–reinforcement interfacial reaction on enhancing the mechanical properties of aluminium–silicon carbide composites publication-title: Acta Mater. doi: 10.1016/S1359-6454(01)00221-X – volume: 5 year: 2017 ident: 10.1016/j.acme.2018.02.006_bib0450 article-title: Preparation of silicon carbide/carbon fiber composites through high-temperature spark plasma sintering publication-title: J. Asian Ceram. Soc. doi: 10.1016/j.jascer.2017.10.004 – volume: 74 start-page: 281 year: 2013 ident: 10.1016/j.acme.2018.02.006_bib0340 article-title: Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets publication-title: Mater. Sci. Eng. R Rep. doi: 10.1016/j.mser.2013.08.001 – volume: 54 start-page: 5367 year: 2006 ident: 10.1016/j.acme.2018.02.006_bib0475 article-title: Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum publication-title: Acta Mater. doi: 10.1016/j.actamat.2006.06.031 – volume: 10 start-page: 1255 year: 2017 ident: 10.1016/j.acme.2018.02.006_bib0500 article-title: Evaluation of microstructure and mechanical properties of Al-TiC metal matrix composite prepared by conventional, microwave and spark plasma sintering methods publication-title: Materials (Basel) doi: 10.3390/ma10111255 – year: 2001 ident: 10.1016/j.acme.2018.02.006_bib0370 – volume: 95 start-page: 304 year: 2017 ident: 10.1016/j.acme.2018.02.006_bib0335 article-title: Cheetah skin structure: a new approach for carbon-nano-patterning of carbon nanotubes publication-title: Compos. A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2017.01.023 – volume: 9 start-page: 6 year: 2014 ident: 10.1016/j.acme.2018.02.006_bib0280 article-title: Fabrication and heat treatment of ceramic-reinforced aluminium matrix composites-a review publication-title: Int. J. Mech. Mater. Eng. doi: 10.1186/s40712-014-0006-7 – volume: 44 start-page: 2283 year: 2018 ident: 10.1016/j.acme.2018.02.006_bib0495 article-title: Mechanical and microstructural properties of WC-based cermets: a comparative study on the effect of Ni and Mo binder phases publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.10.189 – volume: 133 start-page: 203 year: 2003 ident: 10.1016/j.acme.2018.02.006_bib0270 article-title: P/M aluminum matrix composites: an overview publication-title: J. Mater. Process. Technol. doi: 10.1016/S0924-0136(02)00234-0 – start-page: 90 year: 2013 ident: 10.1016/j.acme.2018.02.006_bib0345 article-title: Interface reaction of CNTs/Al composites fabricated by high energy ball milling publication-title: Adv. Mater. Res. Trans. Tech. Publ. – volume: 55 start-page: 41 year: 2010 ident: 10.1016/j.acme.2018.02.006_bib0300 article-title: Carbon nanotube reinforced metal matrix composites – a review publication-title: Int. Mater. Rev. doi: 10.1179/095066009X12572530170543 – volume: 138 start-page: 49 year: 2017 ident: 10.1016/j.acme.2018.02.006_bib0330 article-title: PVDF/graphene composite nanofibers with enhanced piezoelectric performance for development of robust nanogenerators publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2016.11.017 – volume: 697 start-page: 200 year: 2017 ident: 10.1016/j.acme.2018.02.006_bib0410 article-title: Fabrication of magnesium-boron carbide metal matrix composite by powder metallurgy route: comparison between microwave and spark plasma sintering publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.12.146 – volume: 688 start-page: 527 year: 2016 ident: 10.1016/j.acme.2018.02.006_bib0415 article-title: Vanadium carbide reinforced aluminum matrix composite prepared by conventional, microwave and spark plasma sintering publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.07.063 – volume: 705 start-page: 283 year: 2017 ident: 10.1016/j.acme.2018.02.006_bib0265 article-title: Evaluation of microstructure and mechanical properties of Al-TaC composites prepared by spark plasma sintering process publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.02.144 – volume: 18 start-page: 1197 year: 2015 ident: 10.1016/j.acme.2018.02.006_bib0275 article-title: WC-Co particles reinforced aluminum matrix by conventional and microwave sintering publication-title: Mater. Res. doi: 10.1590/1516-1439.027115 – volume: 45 start-page: 2636 year: 2014 ident: 10.1016/j.acme.2018.02.006_bib0390 article-title: Hot extrusion of A356 aluminum metal matrix composite with carbon nanotube/Al2O3 hybrid reinforcement publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-014-2185-5 – volume: 19 start-page: 1443 year: 2016 ident: 10.1016/j.acme.2018.02.006_bib0285 article-title: Effect of heating method on microstructure and mechanical properties of zircon reinforced aluminum composites publication-title: Mater. Res. doi: 10.1590/1980-5373-mr-2016-0390 – volume: 4 start-page: 434 year: 2015 ident: 10.1016/j.acme.2018.02.006_bib0315 article-title: Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2015.05.003 – volume: 70 start-page: 2237 year: 2010 ident: 10.1016/j.acme.2018.02.006_bib0460 article-title: Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2010.05.004 – volume: 19 start-page: 1189 year: 2016 ident: 10.1016/j.acme.2018.02.006_bib0295 article-title: Low temperature sintering of aluminum-zircon metal matrix composite prepared by spark plasma sintering publication-title: Mater. Res. doi: 10.1590/1980-5373-MR-2016-0395 – volume: 2 start-page: 2886 year: 2015 ident: 10.1016/j.acme.2018.02.006_bib0320 article-title: CNT reinforced aluminium matrix composite – a review publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2015.07.248 – volume: 41 start-page: 763 year: 2006 ident: 10.1016/j.acme.2018.02.006_bib0420 article-title: The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method publication-title: J. Mater. Sci. doi: 10.1007/s10853-006-6555-2 – volume: 481 start-page: 207 year: 2009 ident: 10.1016/j.acme.2018.02.006_bib0445 article-title: Interface in carbon nanotube reinforced aluminum silicon composites: thermodynamic analysis and experimental verification publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2009.03.055 – volume: 13 start-page: 221 year: 2017 ident: 10.1016/j.acme.2018.02.006_bib0510 article-title: Effect of Al and Mo addition on phase formation, mechanical and microstructure properties of spark plasma sintered iron alloy publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2017.10.005 – volume: 695 start-page: 20 year: 2017 ident: 10.1016/j.acme.2018.02.006_bib0485 article-title: Strengthening mechanism in graphene nanoplatelets reinforced aluminum composite fabricated through spark plasma sintering publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2017.04.009 – volume: 495 start-page: 399 year: 2010 ident: 10.1016/j.acme.2018.02.006_bib0355 article-title: Microstructural characterization of Al-MWCNT composites produced by mechanical milling and hot extrusion publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2009.10.099 – volume: 65 start-page: 2742 year: 2011 ident: 10.1016/j.acme.2018.02.006_bib0325 article-title: A simple approach to prepare Al/CNT composite: Spread–Dispersion (SD) method publication-title: Mater. Lett. doi: 10.1016/j.matlet.2011.05.067 – volume: 29 start-page: 2843 year: 1998 ident: 10.1016/j.acme.2018.02.006_bib0290 article-title: Effect of SiC volume fraction and particle size on the fatigue resistance of a 2080 Al/SiCp composite publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-998-0325-5 – volume: 49 start-page: 360 year: 2013 ident: 10.1016/j.acme.2018.02.006_bib0470 article-title: Structure and strength of aluminum with sub-micrometer/micrometer grain size prepared by spark plasma sintering publication-title: Mater. Des. doi: 10.1016/j.matdes.2013.01.018 – volume: 92 year: 2017 ident: 10.1016/j.acme.2018.02.006_bib0260 article-title: Carbon fiber reinforced metal matrix composites: fabrication processes and properties publication-title: Compos. A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2016.10.032 |
SSID | ssj0001072165 |
Score | 2.3953288 |
Snippet | Graphene and carbon nanotube due to their outstanding mechanical performance were used as reinforcement in aluminum (Al) based composite through spark plasma... |
SourceID | proquest crossref springer elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1042 |
SubjectTerms | Aluminum Aluminum base alloys Aluminum carbide Aluminum matrix composites Bend strength Carbon nanotube Carbon nanotubes Civil Engineering Engineering Field emission microscopy Graphene Hybrid composites Mechanical Engineering Mechanical properties Microwave Original Research Article Photomicrographs Plasma sintering Spark plasma sintering Specific gravity Structural Materials Theoretical density |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT4MwFG4WT3ow_ozTaXrwprgBLYyjWVwWE704k92aFtoEdbAwpp78230Pipsm28Ej8ErIe4_3vsLXr4RcJkHQk76nHOMymKDoXuL0XeM6KtLcJMoHkF2xfB-D0TO7n_BJiwyatTBIq7S1v67pVbW2Z7rWm91ZmnafAOgzAOsckhI7DWqCMhZirt98ucvvLCgAVu0oifYoRsnt2pma5iXjKapluv1aujNY159W8OefX6ZVJxrukV0LIelt_ZT7pKWzA7KzIix4SNIH5Nl9yHdNZZZQqBrFK50BUJ5KOkeFCDSjuaGxLFSe0UxmeblQtXWlYQ0lkBa6klUFH1EJNSzNFlM6RUn_T4pMdKR76SMyHt6NByPHbqrgxH7olU7kSclgWhhF2o1k7AV9bhTMMgxER0OAoHB6mgFoMdwNtYLZWwzJBrCAS8Mk94_JVpZn-oRQmZhAm9hnMePMJABsfK4CrUzoa6NC3SZu40kRW8Fx3PfiTTTMsheB3hfofdHzBHi_Ta5-xsxquY2N1rwJkPiVNAL6wcZxnSaawr6ycwG4BzIT4GnYJtdNhJeX19_t9J9PcUa28agmrHXIVlks9DkgnFJdVCn8DbKc-do priority: 102 providerName: Elsevier |
Title | Microwave and spark plasma sintering of carbon nanotube and graphene reinforced aluminum matrix composite |
URI | https://dx.doi.org/10.1016/j.acme.2018.02.006 https://link.springer.com/article/10.1016/j.acme.2018.02.006 https://www.proquest.com/docview/2933491637 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3R9gIHVGgRC-3KB26Qsk7sZHOqWtSlQqJCqJV6s2xnLBXYZNkP6Km_vTOJw1ZI3XPGPsw4M2-clzcA76o8H9ksdUmQihoUHFXJWAaZuBJ1qFxGILtl-V7k51fqy7W-jhdui0ir7HNim6irxvMd-UcqS7SQ0ENxPPud8NQo_roaR2hswY6kSsPnfDz5vL5jYfGvdpokNQWKhSh1_G-mo3hZP2WlTDnuZDvzx2rTA-z53-fStgpNduF5hI_ipIv3C3iC9Ut49kBUcA9uvjLH7q_9g8LWlaCMMf8pZgSSp1YsWB2CzUQThLdz19SitnWzXLnOutWvpvQn5thKqnqshKX8dVOvpmLKcv63glnoTPXCfbicnF1-Ok_iQIXEZ0W6TMrUWkUtYVmiLK1P87EOjjqMQJFBCg4lzRQVAZagZYGOOjdPB40ggbZBWZ29gu26qfE1CFuFHIPPlFdahYpATaZdji4UGQZX4ABk70njo9g4z7z4ZXpW2Q_D3jfsfTNKDXl_AO__rZl1UhsbrXUfIBPBQgcCDNWCjesO-mia-LouzPpwDeBDH-H148d3e7N5t7fwlI07TtoBbC_nKzwkELN0Q9g6upPD9rwOYef07OLb93toZvOt |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V20PhgKAFsdCCD-VUIjaJnWwOVcWj1Za2K4QWqTfLdsZSgU2WffTxo_iPzOTBVpW6t57jsazxZOYbe_wNwG6eJD0TRzbwoaQEBXt50A99GNgMlc9tTCC7qvIdJoMf8uu5Ol-Dv-1bGC6rbH1i5ajz0vEZ-QcKSyRI6CE9mPwJuGsU3662LTRqszjBmytK2Wb7x19of99F0dHh6PMgaLoKBC5Oo3mQRcZIyouyDMPMuCjpK28JZntaHtIKyXNEKClqexWmaCl9caRtiovKeGm4SQR5_HXJD1o7sP7pcPjt-_JQh9nGqvaVlIVIZr5UzUOduqbMuDFTc4b9mic0uS8Y3gK7d-5nq7B39BSeNHhVfKwN7BmsYbEJj2-xGG7BxRkX9V2ZSxSmyAW5qOkvMSFUPjZixnQUPEyUXjgztWUhClOU84WtR1eE2eRvxRQrDleHuTDkMC-KxViMuX_AteCyd64tw-cweghdv4BOURb4EoTJfYLexdJJJX1OKCpWNkHr0xi9TbELYatJ7Rp2c26y8Vu3ZWw_NWtfs_Z1L9Kk_S7s_ZeZ1NweK0erdoN0g05q1KEp-KyU2253Uzf-YaaX1tyF9-0OLz_fP9ur1bO9hY3B6OxUnx4PT17DIxasC-K2oTOfLnCHENTcvmnsVoB-4D_lH1nZLq0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microwave+and+spark+plasma+sintering+of+carbon+nanotube+and+graphene+reinforced+aluminum+matrix+composite&rft.jtitle=Archives+of+Civil+and+Mechanical+Engineering&rft.date=2018-09-01&rft.pub=Springer+Nature+B.V&rft.issn=1644-9665&rft.eissn=2083-3318&rft.volume=18&rft.issue=4&rft.spage=1042&rft.epage=1054&rft_id=info:doi/10.1016%2Fj.acme.2018.02.006 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1644-9665&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1644-9665&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1644-9665&client=summon |