A review of single electrode triboelectric nanogenerators

Triboelectric nanogenerators (TENGs) play a prominent role in steadily developing the Internet of Things (IoT) and the Fourth Industrial Revolution (fusion of progression in IoT, artificial intelligence, robotics, and related technologies) by shaping ambiance mechanical energy into electricity. Sing...

Full description

Saved in:
Bibliographic Details
Published inNano energy Vol. 106; p. 108043
Main Authors Akram, Wasim, Chen, Qian, Xia, Guangbo, Fang, Jian
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Triboelectric nanogenerators (TENGs) play a prominent role in steadily developing the Internet of Things (IoT) and the Fourth Industrial Revolution (fusion of progression in IoT, artificial intelligence, robotics, and related technologies) by shaping ambiance mechanical energy into electricity. Single electrode mode (SE-mode) of the TENGs has the simplest configuration where the sole electrode is grounded, and the contact separation or sliding of triboelectric surfaces establishes current flow between ground and electrode. Easily operatable, having attached electrode to only one triboelectric surface, prefer them over the paired electrode TENGs, making it easy for them to be integrated into other devices for self-powered sensing. This review provides a summary of the recently developed film and textile-based single electrode triboelectric nanogenerators (SE-TENGs). Their construction, applications, output performances, performance enhancing approaches with fabrication techniques, and measured durabilities are outlined. Film-based SE-TENGs are briefed on the base of metal electrodes, 1D and 2D nanomaterials-based, conductive materials encapsulated in elastic matrices, and conductive hydrogels, while textile-based SE-TENGs are categorized into knitting-based, weaving-based, and conductive fabrics as electrodes for SE-TENGs. Finally, existing challenges and future developments in SE-TENGs are discussed. [Display omitted] •Principle, construction, and power generation of single electrode TENGs (SE-TENGs).•Various applications of film and textile-based SE-TENGs.•Strategies for improving the output performance of SE-TENGs.•Challenges and future research directions in SE-TENGs have been proposed.
AbstractList Triboelectric nanogenerators (TENGs) play a prominent role in steadily developing the Internet of Things (IoT) and the Fourth Industrial Revolution (fusion of progression in IoT, artificial intelligence, robotics, and related technologies) by shaping ambiance mechanical energy into electricity. Single electrode mode (SE-mode) of the TENGs has the simplest configuration where the sole electrode is grounded, and the contact separation or sliding of triboelectric surfaces establishes current flow between ground and electrode. Easily operatable, having attached electrode to only one triboelectric surface, prefer them over the paired electrode TENGs, making it easy for them to be integrated into other devices for self-powered sensing. This review provides a summary of the recently developed film and textile-based single electrode triboelectric nanogenerators (SE-TENGs). Their construction, applications, output performances, performance enhancing approaches with fabrication techniques, and measured durabilities are outlined. Film-based SE-TENGs are briefed on the base of metal electrodes, 1D and 2D nanomaterials-based, conductive materials encapsulated in elastic matrices, and conductive hydrogels, while textile-based SE-TENGs are categorized into knitting-based, weaving-based, and conductive fabrics as electrodes for SE-TENGs. Finally, existing challenges and future developments in SE-TENGs are discussed. [Display omitted] •Principle, construction, and power generation of single electrode TENGs (SE-TENGs).•Various applications of film and textile-based SE-TENGs.•Strategies for improving the output performance of SE-TENGs.•Challenges and future research directions in SE-TENGs have been proposed.
ArticleNumber 108043
Author Xia, Guangbo
Akram, Wasim
Fang, Jian
Chen, Qian
Author_xml – sequence: 1
  givenname: Wasim
  surname: Akram
  fullname: Akram, Wasim
  organization: College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
– sequence: 2
  givenname: Qian
  surname: Chen
  fullname: Chen, Qian
  organization: College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
– sequence: 3
  givenname: Guangbo
  surname: Xia
  fullname: Xia, Guangbo
  organization: College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
– sequence: 4
  givenname: Jian
  surname: Fang
  fullname: Fang, Jian
  email: jian.fang@suda.edu.cn
  organization: College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
BookMark eNqFkMtKxDAUhrMYwXGcN3CRF2jNvY0LYRi8wYAbXYc0PR1SaiJJUHx7O9SVCz2bwznw_fD9F2gVYgCEriipKaHqeqyDDRFCzQhj86slgq_QmjFKK9ZKeY62OY9kHiVpQ9ka6R1O8OHhE8cBZx-OE2CYwJUUe8Al-S4up3f4lH2EAMmWmPIlOhvslGH7szfo9f7uZf9YHZ4fnva7Q-V4w0qlWau1BNLJVnKrWAuaqEE7EFyDUiA7JTvpHGF9o3sOTAhrrWgGzUXTdpRvkFhyXYo5JxjMe_JvNn0ZSszJ2oxmsTYna7NYz9jNL8z5YouPoSTrp__g2wWGWWxuJ5nsPAQHvU9zGaaP_u-Aby9NeRc
CitedBy_id crossref_primary_10_1016_j_nwnano_2024_100057
crossref_primary_10_1021_acssensors_4c00319
crossref_primary_10_1021_jacs_4c07446
crossref_primary_10_1142_S1793292024300068
crossref_primary_10_1007_s12598_023_02518_3
crossref_primary_10_1007_s40820_024_01432_2
crossref_primary_10_1016_j_mtphys_2024_101496
crossref_primary_10_1016_j_mtsust_2024_100801
crossref_primary_10_3390_mi16030313
crossref_primary_10_35848_1882_0786_ad1f06
crossref_primary_10_1002_aelm_202400950
crossref_primary_10_1016_j_jallcom_2023_170693
crossref_primary_10_1002_smll_202403052
crossref_primary_10_1016_j_nanoen_2024_109808
crossref_primary_10_1016_j_nanoen_2024_109928
crossref_primary_10_1016_j_cej_2024_156601
crossref_primary_10_1021_acsaelm_4c01107
crossref_primary_10_1016_j_nanoen_2024_110191
crossref_primary_10_1002_cssc_202400366
crossref_primary_10_1016_j_nanoen_2024_109888
crossref_primary_10_1016_j_nanoen_2024_109521
crossref_primary_10_1002_advs_202404019
crossref_primary_10_1016_j_nanoen_2024_110620
crossref_primary_10_3390_polym15051295
crossref_primary_10_1016_j_nanoen_2024_110469
crossref_primary_10_1016_j_ijbiomac_2024_130335
crossref_primary_10_1002_smll_202401846
crossref_primary_10_1016_j_cej_2023_147317
crossref_primary_10_1039_D4SC01337A
crossref_primary_10_1016_j_cej_2025_159842
crossref_primary_10_1002_flm2_12
crossref_primary_10_1016_j_est_2024_110941
crossref_primary_10_1002_smll_202405520
crossref_primary_10_1007_s11431_023_2540_0
crossref_primary_10_1021_acs_jchemed_4c00885
crossref_primary_10_1016_j_aej_2024_11_092
crossref_primary_10_1039_D3TA04710E
crossref_primary_10_1007_s42114_023_00807_0
crossref_primary_10_1016_j_ymssp_2025_112515
crossref_primary_10_1016_j_nanoen_2023_108443
crossref_primary_10_1155_2024_5572736
crossref_primary_10_1016_j_nanoen_2024_109633
crossref_primary_10_1016_j_nanoen_2024_109752
crossref_primary_10_1007_s12274_024_6759_2
crossref_primary_10_1021_acsami_3c07857
crossref_primary_10_1016_j_apmt_2025_102661
crossref_primary_10_1021_acsnano_4c12130
crossref_primary_10_1016_j_polymer_2025_128171
crossref_primary_10_1088_1361_665X_ad8c05
crossref_primary_10_1016_j_colsurfb_2024_114078
crossref_primary_10_1002_celc_202300268
crossref_primary_10_1016_j_matlet_2024_137003
crossref_primary_10_1016_j_eurpolymj_2024_113544
crossref_primary_10_1016_j_nanoen_2024_110568
crossref_primary_10_3390_nanoenergyadv4040023
crossref_primary_10_1016_j_cej_2024_156650
crossref_primary_10_1063_5_0252915
crossref_primary_10_55713_jmmm_v35i1_2226
crossref_primary_10_1002_aelm_202400426
crossref_primary_10_3390_s23041868
crossref_primary_10_1016_j_mtener_2024_101698
crossref_primary_10_1007_s42114_024_00841_6
crossref_primary_10_1016_j_nanoen_2023_109046
crossref_primary_10_1002_ep_14564
crossref_primary_10_1016_j_nanoen_2024_110558
crossref_primary_10_1039_D3TA01076G
crossref_primary_10_1016_j_nanoen_2024_110275
crossref_primary_10_1088_2631_7990_ad878b
crossref_primary_10_1016_j_sna_2024_116046
crossref_primary_10_1021_acsami_4c05359
crossref_primary_10_1002_marc_202400321
crossref_primary_10_1016_j_nanoen_2024_110304
crossref_primary_10_1002_smll_202308531
crossref_primary_10_1002_admt_202400554
crossref_primary_10_3390_bios13040423
crossref_primary_10_3390_nano14040336
crossref_primary_10_4150_KPMI_2023_30_6_528
crossref_primary_10_3390_lubricants12100332
crossref_primary_10_1016_j_device_2025_100726
crossref_primary_10_1002_smll_202404872
crossref_primary_10_1016_j_ensm_2024_103483
crossref_primary_10_1002_aenm_202303298
crossref_primary_10_1016_j_sna_2025_116278
crossref_primary_10_1002_advs_202306574
crossref_primary_10_1039_D4NR01987C
crossref_primary_10_1002_adfm_202408708
crossref_primary_10_1016_j_nanoen_2024_110530
crossref_primary_10_1039_D3MH01519J
crossref_primary_10_1002_adfm_202414395
crossref_primary_10_1016_j_nanoen_2024_110253
crossref_primary_10_1039_D4NR05170J
crossref_primary_10_1016_j_mser_2025_100971
crossref_primary_10_1002_advs_202310017
crossref_primary_10_1016_j_nanoen_2024_110092
crossref_primary_10_1021_acsaelm_3c01386
crossref_primary_10_1002_adfm_202409081
crossref_primary_10_1109_JFLEX_2024_3408001
crossref_primary_10_1002_aelm_202300643
crossref_primary_10_1016_j_nanoen_2024_110489
crossref_primary_10_1002_adfm_202407204
crossref_primary_10_1002_admt_202401744
crossref_primary_10_1088_2515_7655_ad307e
crossref_primary_10_1002_admt_202300685
crossref_primary_10_1016_j_mtcomm_2025_112151
crossref_primary_10_1002_smll_202405064
crossref_primary_10_1016_j_nanoen_2024_109818
crossref_primary_10_1039_D4TC02923B
Cites_doi 10.1021/acsnano.1c10678
10.1016/j.nanoen.2021.106601
10.1007/s42765-022-00152-9
10.1002/eom2.12062
10.1016/j.nanoen.2021.106175
10.1126/sciadv.1501624
10.1002/eom2.12191
10.1126/sciadv.1700015
10.1007/s12274-022-4409-0
10.1002/aenm.202201288
10.1016/j.nanoen.2022.106956
10.1007/s12274-017-1609-0
10.1002/aisy.201900090
10.1021/acsnano.1c05685
10.1007/s12274-022-4339-x
10.1016/j.nanoen.2021.106058
10.1021/acsami.2c11567
10.1021/nn403838y
10.1016/j.nanoen.2020.105385
10.1016/S1359-835X(99)00067-6
10.1016/j.jobab.2022.05.003
10.1021/nn4043157
10.1016/j.nanoen.2018.08.048
10.1016/j.nanoen.2020.105590
10.1016/j.nanoen.2020.105383
10.1016/j.nanoen.2022.107067
10.1021/acsaelm.2c00118
10.1016/j.nanoen.2019.05.039
10.1002/adfm.201400431
10.1016/j.nanoen.2022.107284
10.1039/D2RA01088G
10.1002/adma.201804944
10.1002/adma.201400373
10.1002/adma.202003897
10.1002/adma.201802953
10.1021/am500864t
10.1021/acsnano.7b05317
10.1002/adma.201603679
10.1021/acsami.2c03056
10.1016/j.nanoen.2019.103948
10.1016/j.nanoen.2021.106086
10.1002/anie.200701812
10.1002/adfm.201500428
10.1002/admt.202100870
10.1002/admt.201800628
10.1016/j.jare.2013.07.006
10.1016/j.nanoen.2015.01.009
10.1016/j.nanoen.2021.106001
10.1088/0022-3727/8/1/013
10.1016/j.nanoen.2019.03.072
10.1039/D2NR01530G
10.1039/D2TA01209J
10.1088/0022-3727/2/11/307
10.1016/j.nanoen.2019.104158
10.1016/j.nanoen.2020.104605
10.1016/j.nanoen.2021.106695
10.1016/S0021-9290(01)00231-7
10.1021/acsnano.1c11096
10.1016/j.nanoen.2021.106787
10.1109/MEMSYS.2016.7421859
10.1007/s10853-019-03428-5
10.1021/nn403021m
10.1038/s41598-021-04100-2
10.1021/acssuschemeng.9b03629
10.1016/j.carbon.2022.03.037
10.1039/C7TA02680C
10.34133/2019/1091632
10.1063/5.0020961
10.1186/s40580-021-00276-5
10.1021/acsami.7b17585
10.1002/adma.202203073
10.1016/j.nanoen.2018.10.036
10.1021/acsnano.5b03567
10.1016/j.nanoen.2022.107168
10.1016/j.nanoen.2020.105027
10.1038/s41467-019-10061-y
10.1016/j.nanoen.2018.01.034
10.1007/s12274-022-4443-y
10.1021/nn501732z
10.1016/j.esci.2022.08.004
10.1002/adfm.201303799
10.1002/admt.201800487
10.1021/nl4001053
10.1016/j.nanoen.2020.105035
10.1021/nn405209u
10.1016/j.nanoen.2022.107324
10.1007/s42765-022-00169-0
10.1016/j.scib.2019.04.011
10.1016/j.nanoen.2019.02.010
10.1038/s41467-018-06759-0
10.1002/adfm.202107143
10.1016/j.nanoen.2012.01.004
10.1016/j.nanoen.2018.11.025
10.1016/j.nanoen.2022.107208
10.1016/j.nanoen.2021.106191
10.1021/acsami.1c02815
10.1016/j.nanoen.2022.107240
10.1021/acsnano.8b02477
10.1016/j.nanoen.2020.104957
10.1002/adfm.201903580
10.1016/j.nanoen.2017.01.008
10.1002/adfm.202004181
10.1002/eom2.12059
10.1007/s40820-022-00831-7
10.1016/j.nanoen.2021.105918
10.1002/smll.201400863
10.1007/s12274-021-3470-4
10.1016/j.nanoen.2020.104863
10.1039/C7RA10285B
10.1016/j.nanoen.2019.104272
10.1016/j.nanoen.2020.105295
10.1021/acsnano.1c10680
10.1002/ente.201700779
10.1038/s41467-019-09461-x
10.1039/D0TA03215H
10.1109/ICASSP.2003.1202718
10.1021/acsami.2c05734
10.1088/1361-6633/ac0a50
10.1109/INFCOM.2000.832252
10.1038/s41467-019-13166-6
10.1016/j.carbpol.2021.118078
10.1016/j.mattod.2019.10.025
10.1002/adma.201705195
10.1039/C9NR01271K
10.1002/aenm.201601529
10.1039/c3ee42311e
10.1038/s41467-020-15926-1
10.1016/j.nanoen.2016.07.009
10.1029/94JC01171
10.1038/s41378-021-00261-2
10.1002/aenm.201701243
10.1007/s42765-022-00181-4
10.1016/j.nanoen.2020.104540
10.1021/acsnano.8b00147
10.1016/j.nanoen.2016.08.014
10.1002/adma.201302453
10.1016/j.jcis.2021.04.001
10.1016/j.nanoen.2017.03.002
10.1016/j.nanoen.2019.104291
10.1016/j.nanoen.2020.105073
10.1038/s41467-020-18471-z
10.1016/j.nanoen.2018.01.004
10.1016/j.nanoen.2018.11.059
10.1016/j.nanoen.2017.07.022
10.1016/j.nanoen.2021.105866
10.1021/nn500695q
10.1016/j.nanoen.2022.107246
10.1021/acsnano.1c04384
10.1016/j.nanoen.2022.107454
10.1007/s40544-020-0390-3
10.1021/acsaelm.1c01246
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nanoen.2022.108043
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_nanoen_2022_108043
S2211285522011211
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
JARJE
KOM
M41
MAGPM
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SPC
SPCBC
SSM
SSR
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c372t-928995e0b5853a628e906f9ce439e66e5b65b5cc02d79d3e244aaa47f93478b13
IEDL.DBID .~1
ISSN 2211-2855
IngestDate Thu Apr 24 23:13:24 EDT 2025
Tue Jul 01 00:57:00 EDT 2025
Fri Feb 23 02:39:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Single electrode
Flexible TENGs
Films based SE-TENGs
Textile based SE-TENGs
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-928995e0b5853a628e906f9ce439e66e5b65b5cc02d79d3e244aaa47f93478b13
ParticipantIDs crossref_primary_10_1016_j_nanoen_2022_108043
crossref_citationtrail_10_1016_j_nanoen_2022_108043
elsevier_sciencedirect_doi_10_1016_j_nanoen_2022_108043
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationTitle Nano energy
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Dong, Wang, Deng, Dai, Zhang, Zou, Gu, Sun, Wang (bib145) 2017; 11
Zhu, Lin, Jing, Bai, Pan, Yang, Zhou, Wang (bib57) 2013; 13
Ding, Chen, Farooq, Zhao, Soin, Yu, Jin, Wang, Dong, Luo (bib22) 2018; 46
Feng, Yu, Sun, Dang, Ren, Shao, Sun (bib129) 2022; 98
Li, Liu, Tao, Song (bib165) 2019; 54
Jiang, Long, Pu, Hu, Wang (bib134) 2021; 86
Zou, Zhang, Guo, Wang, He, Dai, Zheng, Chen, Wang, Xu, Wang (bib18) 2019; 10
Liu, Kuang, Deng, Wang, Wang, Ding, Lai, Chen, Wang, Lin, Qi, Sun, Wang (bib38) 2018; 30
Lv, Bu, Zhou, Liu, Chen, Wang, Fu, Lin, Cao, Zhang (bib66) 2022; 14
Yi, Wang, Niu, Li, Yin, Dai, Zhang, Lin, Wen, Guo, Jie, Yeh, Zi, Liao, You, Zhang, Wang (bib114) 2016; 2
Wu, Liu, Lin, Zhu, Ma, Wang (bib154) 2022; 12
Xiong, Lin, Wang, Gaw, Parida, Lee (bib168) 2017; 7
Mule, Dudem, Patnam, Graham, Yu (bib61) 2019; 7
Bai, He, Zhang, Xu, Zhang, Shi, Yang, Zhou, Zhu, Guo, Lee (bib158) 2022; 94
Cao, Pu, Du, Yang, Wang, Guo, Zhao, Yuan, Zhang, Li, Wang (bib170) 2018; 12
Ying, Zuo, Wan, Liu (bib127) 2022; 4
Yang, Zhang, Chen, Jing, Zhou, Wen, Wang (bib43) 2013; 7
Wang (bib14) 2021
Liu, Zhang, Wang, Li (bib104) 2020; 78
Kim, Kim, Kwak, Kim, Choi, Hyung Kim, Lee, Kong, Park, Jung, Lee, Lee, Jung (bib34) 2019; 56
Hao, Jiao, Chen, Wang, Cao (bib69) 2020; 75
Cao, Ouyang, Xin, Chao, Ma, Li, Chen, Ma (bib107) 2020; 30
Zhao, Lu, Zheng, Fang, Zheng, Chen, Wang (bib15) 2021; 87
Su, Zhu, Yang, Yang, Chen, Jing, Wu, Jiang, Wang (bib64) 2014; 8
Wang, Zhai, Wei, Shi, Huo, Li, Wu, Wang (bib79) 2022; 15
Gao, Zhao, Zhang, An, Xu, Xun, Zhao, Ouyang, Zhang, Liao (bib100) 2022; 91
Wu, Luo, Qu, Daoud, Qi (bib120) 2019; 64
Aazem, Mathew, Radhakrishnan, Vijoy, John, Mulvihill, Pillai (bib23) 2022; 12
Bertiger, Bar-Sever, Christensen, Davis, Guinn, Haines, Ibanez-Meier, Jee, Lichten, Melbourne, Muellerschoen, Munson, Vigue, Wu, Yunck, Schutz, Abusali, Rim, Watkins, Willis (bib74) 1994; 99
Xu, Huang, Wong, Chen, Bai, Hao (bib123) 2017; 7
Yang, An, Sun, Zhang, Zu, Li, Jiang, Chen, Wang (bib126) 2022; 9
Niu, Liu, Wang, Lin, Zhou, Hu, Wang (bib5) 2014; 24
.
M. Shi, J. Zhang, M. Han, Y. Song, Z. Su, H. Zhang, A single-electrode wearable triboelectric nanogenerator based on conductive & stretchable fabric, In: Proceedings of the 2016 IEEE 29th International Conference Micro Electro Mech. Syst. IEEE 2016 1228–1231.
Parida, Thangavel, Cai, Zhou, Park, Xiong, Lee (bib39) 2019; 10
Dudem, Kim, Yu (bib27) 2018; 11
Jiang, An, Liang, Zuo, Yi, Ning, Zhang, Dong, Wang (bib144) 2022; 15
Xiong, Cui, Chen, Wang, Parida, Lin, Lee (bib169) 2018; 9
Shi, Wu, Zhang, Han, Meng, Zhang (bib41) 2017; 32
Yang, Sun, Wen, Cheng, Zheng, Shao, Xia, Chen, Lan, Xie, Zhou, Zhong, Sun, Lee (bib111) 2018; 12
Zhu, Zhang, Wang, Wu, Cao, He, Li, Luo, Li, Mao (bib71) 2022; 15
A. Tarighat, N. Khajehnouri and A.H. Sayed, Improved wireless location accuracy using antenna arrays and interference cancellation, In: Proceedings of the 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing. 2003 IV-616.
Niu, Peng, Chen, Liu, Wang, Dong, Pan, Cong, Liu, Jiang (bib143) 2022; 97
Zhao, Yan, Liu, Fu, Peng, Hu, Zheng (bib151) 2016; 28
Salauddin, Rana, Rahman, Sharifuzzaman, Maharjan, Bhatta, Cho, Lee, Park, Shrestha, Sharma, Park (bib171) 2022; 32
Chu, Jang, Lee, Chae, Ahn (bib32) 2016; 27
Sun, Zhao, Wang, Zhou, Yan, Zheng, Huang, Dai, Liu, Shen (bib131) 2020; 76
Luo, Wang (bib3) 2020; 2
Wang, Hu, Wang, Liu, Shi, Wang, Qiao, Li, Yang, Liu (bib80) 2022; 14
Hu, Yang, Jing, Niu, Wu, Wang (bib6) 2013; 7
Shao, Willatzen, Shi, Wang (bib53) 2019; 60
Shankaregowda, Ahmed, Nanjegowda, Wang, Guana, Puttaswamy, Amini, Zhang, Kong, Sannathammegowda, Wang, Cheng (bib33) 2019; 66
Li, Zhu, Zhang, Wang, Luo, Leng, Zhou, Pan, Mao (bib88) 2022; 16
Niu, Cheng, Cao, Wang, Wang, Han, Long, Han (bib106) 2021; 87
Yang, Zhu, Zhang, Chen, Zhong, Lin, Su, Bai, Wen, Wang (bib45) 2013; 7
Jiao, Lu, Lu, Yue, Xu, Xiao, Han (bib122) 2021; 597
Prada, Harnchana, Lakhonchai, Chingsungnoen, Poolcharuansin, Chanlek, Klamchuen, Thongbai, Amornkitbamrung (bib60) 2022; 15
Guo, Fang, Wang, Libanori, Xiao, Wan, Cui, Sang, Zhang, Zhang, Chen (bib125) 2022; 32
Zhang, Chen, Guo, Guo, Pu, Wang (bib37) 2020; 30
Wang, Yang, Wang (bib19) 2017; 10
Lin, Cheng, Lee, Pradel, Wang (bib49) 2014; 26
Hu, Zheng (bib141) 2019; 56
Lee, Kim, Kang, Lee (bib56) 2018; 53
Zou, Guo, Xue, Zhang, Shen, Liu, Wang, He, Dai, Jiang, Zheng, Zhang, Xu, Wang (bib16) 2020; 11
Davies (bib17) 1969; 2
Wu, Dai, Sun, Zhu, Xiong, Liang, Wong, Huang, Qin, Hao (bib156) 2022; 98
Jiang, Li, Ying, Ping (bib30) 2020; 74
Dong, Wu, Deng, Wang, Zou, Chen, Hu, Gu, Sun, Wang (bib25) 2018; 30
Aazem, Mathew, Radhakrishnan, Vijoy, John, Mulvihill, Pillai (bib91) 2022; 12
Wei, Wang, Wu, Wang (bib87) 2022; 34
Jiao, Matin Nazar, Egbe, Barri, Alavi (bib50) 2022; 12
Dong, Wang, Wu, Zhu, Shi, Morikawa (bib124) 2022
Chen, Chen, Wu, Guo, Yu, Du, Wang (bib146) 2020; 32
Choi, Lee, Jun, Kim, Kim, Lee (bib55) 2016; 27
Si, Sun, Qiu, Liu, Yang (bib147) 2022; 27
Shi, Zhang, He, Sun, Wang, Feng, Shan, Salam, Lee (bib68) 2020; 11
Wang, Li, Tao, Yan, Wang, Chen, Huang, Li, Chen, Bian (bib97) 2022; 93
Park, Choi, Lee, Kim, Kim (bib153) 2017; 7
Shrestha, Sharma, Pradhan, Bhatta, Maharjan, Rana, Lee, Seonu, Shin, Park (bib73) 2022; 32
Chen, Ding, Pan, Xuan, Guo, Ye, Yin, Jin, Wang, Dong (bib82) 2017; 34
Chen, Deng, Ouyang, Zheng, Jiang, Bai, Xue (bib159) 2021; 84
Zeng, Xiang, Zheng, Cao, Wang, Wang (bib72) 2022; 91
Zou, Xu, Chen, Chen (bib4) 2021; 6
Chen, Li, Lin, Du, Han, Zhu, Pan, Wang (bib78) 2014; 24
He, Sohn, Ma, Kang (bib164) 2020; 78
Shi, Chen, Li, Sun, Jiang, Bao, Xie, Peng, Liu, Wen, Sun (bib109) 2019; 11
Jiang, Wu, Wang, Wang, He, Wang, Alshareef (bib35) 2018; 45
Luo, Wang, Xu, Wang, Han, Jiang, Lai, Bai, Tang, Fan (bib81) 2019; 10
He, Xie, Yao, Li, Liu, Gao, Lu, Chang, Yu (bib67) 2021; 81
Wu, Luo, Qu, Daoud, Qi (bib113) 2020; 75
Rahman, Rana, Salauddin, Zahed, Lee, Yoon, Park (bib162) 2022; 100
Bao, Wen, Shi, Xie, Jiang, Jiang, Yang, Liao, Sun (bib130) 2020; 8
He, Du, Feng, Li, Wang, Zhang, Yu, Wan, Zhai (bib160) 2021; 86
Wu, Peng (bib105) 2019; 64
Xiao, Li, Zhang, He, Zhang, Liu, Jiang, Duan, Zhang (bib108) 2022
Zhao, Wang, Liu, Yao, Zhang, Zhang, Huang, Zheng, Wang, Li (bib119) 2022; 96
Wang, Zhang, Tang, Zhang, Ning, Tian, Li, Zhang, Mao, Liang (bib63) 2017; 5
Mao, Li, Xie, Liu, Guo, Hu (bib150) 2021; 84
Leong, Ramakrishna, Huang, Bibo (bib142) 2000; 31
Pu, Liu, Chen, Sun, Du, Zhang, Zhai, Hu, Wang (bib136) 2017; 3
Seol, Kim, Cho, Byun, Kim, Kim, Kim, Kim, Jin, Park (bib9) 2018; 30
Lee, Ko, Oh, Lee, Baek, Lee, Sohn, Cha, Kim, Park, Hong (bib167) 2015; 12
Hu, Zhang, Qin, Qian, Zhang, Zhou, Lu (bib133) 2021; 265
Xu, Yang, Lu, Yang, Li, Wen, Cheng, Wang (bib26) 2021; 15
Li, Zhang, Yi, Peng, Cheng, Ning, Sheng, Wang, Dong, Wang (bib148) 2022; 4
Seol, Woo, Lee, Im, Hur, Choi (bib59) 2014; 10
Pan, Zhu (bib138) 2022; 4
Feng, Xia, Sun, Jing, Li, Tao, Mi, Liu (bib161) 2021; 13
Yi, Lin, Niu, Yang, Wang, Chen, Zhou, Zi, Wang, Liao, Zhang, Wang (bib65) 2015; 25
Kang, Zhao, Huang, Ho, Megra, Suk, Sun, Wang, Sun, Cho (bib101) 2019; 29
Ye, Yang, Ren, Dong, Cao, Pei, Ling (bib152) 2022; 16
Zhou, Liu, Wang, Wang (bib8) 2020; 8
Liu, Wen, Lei, Gao, Sun (bib90) 2022; 14
Yun, Tcho, Kim, Kim, Son, Lee, Choi (bib117) 2022; 10
Ahmed (bib121) 2013; 6
Qu, Xue, Liu, Rao, Liu, Li (bib112) 2022; 98
Zhu, Ma, Zhu (bib36) 2018; 6
Šutka, Timusk, Metsik, Ruža, Knite, Mäeorg (bib31) 2017; 51
Park, Oh, Kim, Kim, Lee, Joo, Woo, Bae, Lee (bib137) 2022
Li, Zheng, Zhang, Wang, Cai, Zhang, Yang (bib94) 2020; 70
Fan, Tian, Wang (bib42) 2012; 1
Wang (bib52) 2020; 68
Kim, Yun, Kim (bib116) 2022; 98
Lin, Xu, Xu, Chen, Wang, Zhang, Lin, Yang, Zhao, Wang (bib12) 2019; 31
P. Bahl and V.N. Padmanabhan, "RADAR: an in-building RF-based user location and tracking system, Proceedings IEEE INFOCOM 2000 775–784 vol.2
Li, Liu, Wu, Yao, Gao, Gao, Huang, Wong, Zhou, Li (bib98) 2022
Yang, Zhang, Lin, Zhou, Jing, Su, Yang, Chen, Hu, Wang (bib46) 2013; 7
Ding, Wang, Wu, Guo, Wang (bib84) 2019; 4
(bib128) 2022
Liu, Liu, He, Xia, Guo, Xu, Xia (bib2) 2022; 2
McCarty, Whitesides (bib13) 2008; 47
Wang, Liu, Zhao, Zhang, Zhao, Wan, Zhang, Wang, Li (bib132) 2022; 16
Rao, Chen, Zhao, Ma, Yi, Zhang, Liu, Chen, Yang, Wang (bib96) 2020; 75
Jin, Wang, Sang, Yue, Xu, Mei, Xiao, Lou, Han (bib29) 2022; 14
Zhao, Liu, Wang, Hu, Zhang, Zhang, Wang, Du, Zou, Yuan (bib70) 2022
Wang, Yu, Liu, Liu, Zhang, Zhu, Lei, Jia, Zhai, Wang (bib157) 2020; 71
Shin, Cho, Han, Jung (bib28) 2021; 8
Yang, Ni, Kong, Li, Chen, Zhang, Wang (bib135) 2021; 15
Sahu, Hajra, Panda, Rajaitha, Panigrahi, Rubahn, Mishra, Kim (bib149) 2022; 97
Zhao, Zhang, Xu, Gao, Zhao, Ouyang, Kang, Liao, Zhang (bib86) 2021; 85
Paosangthong, Torah, Beeby (bib140) 2019; 55
Zhang, Olin (bib10) 2020; 2
Cui, Wang, Yi, Yang, Wang, Chen, Liu, Yang (bib40) 2018; 10
Mayagoitia, Nene, Veltnik (bib77) 2002; 35
Wang, Dong, Peng, Pan (bib83) 2019; 1
Cheng, Wallaert, Ardebili, Karim (bib92) 2022; 194
Chen, Cao, Wang, Ma, Zhu, Willander, Jie, Wang (bib7) 2017; 7
Zhao, Soin, Kumar, Shi, Guan, Tsonos, Yu, Ray, McLaughlin, Zhu, Zhou, Luo (bib21) 2020; 67
Wang, Li, Cao, Chen, Yuan, Zhu, Cheng, Duan, Liu (bib110) 2022
Shao, Willatzen, Wang (bib51) 2020; 128
Pratap, Gogurla, Kim (bib102) 2022; 4
Yang, Zhou, Zhang, Liu, Lee, Wang (bib48) 2013; 25
Shin, Barnes, Walsh, Dimov, Tian, Neves, Wright, Yu, Yoo, Russo, Craciun (bib95) 2018; 30
Yang, Chen, Wen, Jing, Yang, Su, Zhu, Wu, Wang (bib47) 2014; 6
Shabana, Mohamed, Ibrahim, Abbas, Mohie, Elhusseiny, Gamal, Ahmed, Ahmed, Khaled (bib54) 2020; 835
Wang, Yin, Yi, Dai, Niu, Han, Zhang, You (bib115) 2017; 39
Kou, Wang, Cheng, Liao, Shi, Luo, Li, Wang (bib89) 2022; 14
Wang, Liu, Yan, Wang, Wang (bib118) 2020
Lowell (bib11) 1975; 8
Hu, Chang, Xiao, Lu, Gao, Zhang, Tao (bib99) 2022; 7
Wen, Sun, Huang, Huang, Su, Wang, Han, Kim, Brugger, Zhang, Zhang (bib1) 2021; 7
Zhong, Zhang, Zhong, Hu, Hu, Wang, Zhou (bib62) 2014; 8
Liu, Gu, Cui, Xu, Qin, Yang (bib139) 2019
Lee, Kim, Choi, Jeon, Yoon, Choi, Lee, Lee, Wie (bib20) 2019; 66
Ma, Wu, Liu, Patil, Gong, Yi, Sheng, Zhang, Wang, Wang, Guo, Wang, Machine-Fabricated (bib155) 2020; 32
Xu, Lu, Takei (b
Chen (10.1016/j.nanoen.2022.108043_bib7) 2017; 7
Xiao (10.1016/j.nanoen.2022.108043_bib108) 2022
Davies (10.1016/j.nanoen.2022.108043_bib17) 1969; 2
Seol (10.1016/j.nanoen.2022.108043_bib59) 2014; 10
Zhang (10.1016/j.nanoen.2022.108043_bib37) 2020; 30
Li (10.1016/j.nanoen.2022.108043_bib98) 2022
Wang (10.1016/j.nanoen.2022.108043_bib132) 2022; 16
10.1016/j.nanoen.2022.108043_bib75
Xu (10.1016/j.nanoen.2022.108043_bib26) 2021; 15
Yi (10.1016/j.nanoen.2022.108043_bib114) 2016; 2
Wu (10.1016/j.nanoen.2022.108043_bib120) 2019; 64
Li (10.1016/j.nanoen.2022.108043_bib94) 2020; 70
Zhao (10.1016/j.nanoen.2022.108043_bib119) 2022; 96
Lv (10.1016/j.nanoen.2022.108043_bib66) 2022; 14
Jiang (10.1016/j.nanoen.2022.108043_bib144) 2022; 15
Dong (10.1016/j.nanoen.2022.108043_bib145) 2017; 11
He (10.1016/j.nanoen.2022.108043_bib160) 2021; 86
Yang (10.1016/j.nanoen.2022.108043_bib48) 2013; 25
Parida (10.1016/j.nanoen.2022.108043_bib39) 2019; 10
Jiao (10.1016/j.nanoen.2022.108043_bib122) 2021; 597
Liu (10.1016/j.nanoen.2022.108043_bib2) 2022; 2
Zhu (10.1016/j.nanoen.2022.108043_bib36) 2018; 6
10.1016/j.nanoen.2022.108043_bib76
Wang (10.1016/j.nanoen.2022.108043_bib97) 2022; 93
Wang (10.1016/j.nanoen.2022.108043_bib110) 2022
Wei (10.1016/j.nanoen.2022.108043_bib87) 2022; 34
Kou (10.1016/j.nanoen.2022.108043_bib89) 2022; 14
Pratap (10.1016/j.nanoen.2022.108043_bib102) 2022; 4
Zhao (10.1016/j.nanoen.2022.108043_bib151) 2016; 28
Shabana (10.1016/j.nanoen.2022.108043_bib54) 2020; 835
Liu (10.1016/j.nanoen.2022.108043_bib139) 2019
Lin (10.1016/j.nanoen.2022.108043_bib49) 2014; 26
Ding (10.1016/j.nanoen.2022.108043_bib22) 2018; 46
Cao (10.1016/j.nanoen.2022.108043_bib107) 2020; 30
Pan (10.1016/j.nanoen.2022.108043_bib138) 2022; 4
Shi (10.1016/j.nanoen.2022.108043_bib109) 2019; 11
Chen (10.1016/j.nanoen.2022.108043_bib146) 2020; 32
Zhou (10.1016/j.nanoen.2022.108043_bib8) 2020; 8
Sun (10.1016/j.nanoen.2022.108043_bib131) 2020; 76
Wu (10.1016/j.nanoen.2022.108043_bib113) 2020; 75
Feng (10.1016/j.nanoen.2022.108043_bib161) 2021; 13
Bai (10.1016/j.nanoen.2022.108043_bib158) 2022; 94
Jiao (10.1016/j.nanoen.2022.108043_bib50) 2022; 12
Su (10.1016/j.nanoen.2022.108043_bib64) 2014; 8
Kim (10.1016/j.nanoen.2022.108043_bib116) 2022; 98
Cao (10.1016/j.nanoen.2022.108043_bib170) 2018; 12
Dong (10.1016/j.nanoen.2022.108043_bib124) 2022
Shin (10.1016/j.nanoen.2022.108043_bib28) 2021; 8
Ying (10.1016/j.nanoen.2022.108043_bib127) 2022; 4
Jiang (10.1016/j.nanoen.2022.108043_bib134) 2021; 86
Shin (10.1016/j.nanoen.2022.108043_bib95) 2018; 30
Zhu (10.1016/j.nanoen.2022.108043_bib71) 2022; 15
Chu (10.1016/j.nanoen.2022.108043_bib32) 2016; 27
Wang (10.1016/j.nanoen.2022.108043_bib80) 2022; 14
Xiong (10.1016/j.nanoen.2022.108043_bib169) 2018; 9
Salauddin (10.1016/j.nanoen.2022.108043_bib171) 2022; 32
Hao (10.1016/j.nanoen.2022.108043_bib69) 2020; 75
Yang (10.1016/j.nanoen.2022.108043_bib47) 2014; 6
Prada (10.1016/j.nanoen.2022.108043_bib60) 2022; 15
Wang (10.1016/j.nanoen.2022.108043_bib83) 2019; 1
Aazem (10.1016/j.nanoen.2022.108043_bib91) 2022; 12
Lee (10.1016/j.nanoen.2022.108043_bib20) 2019; 66
Guo (10.1016/j.nanoen.2022.108043_bib125) 2022; 32
Liu (10.1016/j.nanoen.2022.108043_bib104) 2020; 78
Yang (10.1016/j.nanoen.2022.108043_bib43) 2013; 7
Shao (10.1016/j.nanoen.2022.108043_bib53) 2019; 60
Shi (10.1016/j.nanoen.2022.108043_bib41) 2017; 32
Zhang (10.1016/j.nanoen.2022.108043_bib10) 2020; 2
Wang (10.1016/j.nanoen.2022.108043_bib19) 2017; 10
Lin (10.1016/j.nanoen.2022.108043_bib12) 2019; 31
Zhu (10.1016/j.nanoen.2022.108043_bib57) 2013; 13
(10.1016/j.nanoen.2022.108043_bib128) 2022
Li (10.1016/j.nanoen.2022.108043_bib148) 2022; 4
Hu (10.1016/j.nanoen.2022.108043_bib99) 2022; 7
Yang (10.1016/j.nanoen.2022.108043_bib45) 2013; 7
Mule (10.1016/j.nanoen.2022.108043_bib61) 2019; 7
Wu (10.1016/j.nanoen.2022.108043_bib105) 2019; 64
Yang (10.1016/j.nanoen.2022.108043_bib111) 2018; 12
Zhao (10.1016/j.nanoen.2022.108043_bib70) 2022
Mao (10.1016/j.nanoen.2022.108043_bib150) 2021; 84
Dudem (10.1016/j.nanoen.2022.108043_bib27) 2018; 11
Zou (10.1016/j.nanoen.2022.108043_bib18) 2019; 10
Luo (10.1016/j.nanoen.2022.108043_bib81) 2019; 10
Niu (10.1016/j.nanoen.2022.108043_bib5) 2014; 24
Niu (10.1016/j.nanoen.2022.108043_bib106) 2021; 87
Chen (10.1016/j.nanoen.2022.108043_bib78) 2014; 24
Paosangthong (10.1016/j.nanoen.2022.108043_bib140) 2019; 55
Jin (10.1016/j.nanoen.2022.108043_bib29) 2022; 14
Shao (10.1016/j.nanoen.2022.108043_bib51) 2020; 128
Lee (10.1016/j.nanoen.2022.108043_bib167) 2015; 12
Chen (10.1016/j.nanoen.2022.108043_bib82) 2017; 34
Gao (10.1016/j.nanoen.2022.108043_bib100) 2022; 91
Shankaregowda (10.1016/j.nanoen.2022.108043_bib33) 2019; 66
Cheng (10.1016/j.nanoen.2022.108043_bib92) 2022; 194
Yang (10.1016/j.nanoen.2022.108043_bib135) 2021; 15
Park (10.1016/j.nanoen.2022.108043_bib153) 2017; 7
Tang (10.1016/j.nanoen.2022.108043_bib58) 2015; 9
Wang (10.1016/j.nanoen.2022.108043_bib157) 2020; 71
Hu (10.1016/j.nanoen.2022.108043_bib133) 2021; 265
Wu (10.1016/j.nanoen.2022.108043_bib156) 2022; 98
Dong (10.1016/j.nanoen.2022.108043_bib25) 2018; 30
Ye (10.1016/j.nanoen.2022.108043_bib152) 2022; 16
Yang (10.1016/j.nanoen.2022.108043_bib46) 2013; 7
Zou (10.1016/j.nanoen.2022.108043_bib16) 2020; 11
Wang (10.1016/j.nanoen.2022.108043_bib79) 2022; 15
Pu (10.1016/j.nanoen.2022.108043_bib136) 2017; 3
Rahman (10.1016/j.nanoen.2022.108043_bib162) 2022; 100
Shi (10.1016/j.nanoen.2022.108043_bib68) 2020; 11
Zhao (10.1016/j.nanoen.2022.108043_bib21) 2020; 67
Wang (10.1016/j.nanoen.2022.108043_bib63) 2017; 5
Qu (10.1016/j.nanoen.2022.108043_bib112) 2022; 98
Leong (10.1016/j.nanoen.2022.108043_bib142) 2000; 31
Feng (10.1016/j.nanoen.2022.108043_bib129) 2022; 98
McCarty (10.1016/j.nanoen.2022.108043_bib13) 2008; 47
Xiong (10.1016/j.nanoen.2022.108043_bib168) 2017; 7
Meng (10.1016/j.nanoen.2022.108043_bib44) 2013; 6
Aazem (10.1016/j.nanoen.2022.108043_bib23) 2022; 12
Ding (10.1016/j.nanoen.2022.108043_bib84) 2019; 4
Zeng (10.1016/j.nanoen.2022.108043_bib72) 2022; 91
Xu (10.1016/j.nanoen.2022.108043_bib123) 2017; 7
Seol (10.1016/j.nanoen.2022.108043_bib9) 2018; 30
Lee (10.1016/j.nanoen.2022.108043_bib103) 2019; 62
Lowell (10.1016/j.nanoen.2022.108043_bib11) 1975; 8
Qiu (10.1016/j.nanoen.2022.108043_bib163) 2019; 58
Zhong (10.1016/j.nanoen.2022.108043_bib62) 2014; 8
Luo (10.1016/j.nanoen.2022.108043_bib3) 2020; 2
Hu (10.1016/j.nanoen.2022.108043_bib6) 2013; 7
Lee (10.1016/j.nanoen.2022.108043_bib56) 2018; 53
Mayagoitia (10.1016/j.nanoen.2022.108043_bib77) 2002; 35
Yun (10.1016/j.nanoen.2022.108043_bib117) 2022; 10
Park (10.1016/j.nanoen.2022.108043_bib137) 2022
Wang (10.1016/j.nanoen.2022.108043_bib118) 2020
Bao (10.1016/j.nanoen.2022.108043_bib130) 2020; 8
Niu (10.1016/j.nanoen.2022.108043_bib143) 2022; 97
Wang (10.1016/j.nanoen.2022.108043_bib14) 2021
Wang (10.1016/j.nanoen.2022.108043_bib52) 2020; 68
Yang (10.1016/j.nanoen.2022.108043_bib126) 2022; 9
Xu (10.1016/j.nanoen.2022.108043_bib85) 2019; 4
Wang (10.1016/j.nanoen.2022.108043_bib115) 2017; 39
Rao (10.1016/j.nanoen.2022.108043_bib96) 2020; 75
Wen (10.1016/j.nanoen.2022.108043_bib1) 2021; 7
Zou (10.1016/j.nanoen.2022.108043_bib4) 2021; 6
Choi (10.1016/j.nanoen.2022.108043_bib55) 2016; 27
He (10.1016/j.nanoen.2022.108043_bib67) 2021; 81
Kim (10.1016/j.nanoen.2022.108043_bib34) 2019; 56
Fan (10.1016/j.nanoen.2022.108043_bib42) 2012; 1
Li (10.1016/j.nanoen.2022.108043_bib165) 2019; 54
Zhao (10.1016/j.nanoen.2022.108043_bib86) 2021; 85
Liu (10.1016/j.nanoen.2022.108043_bib38) 2018; 30
Hu (10.1016/j.nanoen.2022.108043_bib141) 2019; 56
Ma (10.1016/j.nanoen.2022.108043_bib155) 2020; 32
Si (10.1016/j.nanoen.2022.108043_bib147) 2022; 27
Chen (10.1016/j.nanoen.2022.108043_bib159) 2021; 84
Zhao (10.1016/j.nanoen.2022.108043_bib15) 2021; 87
Šutka (10.1016/j.nanoen.2022.108043_bib31) 2017; 51
Dong (10.1016/j.nanoen.2022.108043_bib93) 2022; 4
Sahu (10.1016/j.nanoen.2022.108043_bib149) 2022; 97
Bertiger (10.1016/j.nanoen.2022.108043_bib74) 1994; 99
Shrestha (10.1016/j.nanoen.2022.108043_bib73) 2022; 32
Ahmed (10.1016/j.nanoen.2022.108043_bib121) 2013; 6
Li (10.1016/j.nanoen.2022.108043_bib88) 2022; 16
He (10.1016/j.nanoen.2022.108043_bib164) 2020; 78
Jiang (10.1016/j.nanoen.2022.108043_bib30) 2020; 74
Kang (10.1016/j.nanoen.2022.108043_bib101) 2019; 29
An (10.1016/j.nanoen.2022.108043_bib24) 2020; 77
Jiang (10.1016/j.nanoen.2022.108043_bib35) 2018; 45
10.1016/j.nanoen.2022.108043_bib166
Cui (10.1016/j.nanoen.2022.108043_bib40) 2018; 10
Yi (10.1016/j.nanoen.2022.108043_bib65) 2015; 25
Liu (10.1016/j.nanoen.2022.108043_bib90) 2022; 14
Wu (10.1016/j.nanoen.2022.108043_bib154) 2022; 12
References_xml – volume: 8
  start-page: 1
  year: 2021
  end-page: 10
  ident: bib28
  article-title: Omni-directional wind-driven triboelectric nanogenerator with cross-shaped dielectric film
  publication-title: Nano Converg.
– volume: 29
  year: 2019
  ident: bib101
  article-title: Fingerprint‐inspired conducting hierarchical wrinkles for energy‐harvesting E‐skin
  publication-title: Adv. Funct. Mater.
– volume: 75
  year: 2020
  ident: bib113
  article-title: Sustainable and shape-adaptable liquid single-electrode triboelectric nanogenerator for biomechanical energy harvesting
  publication-title: Nano Energy
– volume: 98
  year: 2022
  ident: bib116
  article-title: Robust and flexible triboelectric nanogenerator using non-Newtonian fluid characteristics towards smart traffic and human-motion detecting system
  publication-title: Nano Energy
– volume: 76
  year: 2020
  ident: bib131
  article-title: Ultra-stretchable, durable and conductive hydrogel with hybrid double network as high performance strain sensor and stretchable triboelectric nanogenerator
  publication-title: Nano Energy
– reference: M. Shi, J. Zhang, M. Han, Y. Song, Z. Su, H. Zhang, A single-electrode wearable triboelectric nanogenerator based on conductive & stretchable fabric, In: Proceedings of the 2016 IEEE 29th International Conference Micro Electro Mech. Syst. IEEE 2016 1228–1231.
– volume: 74
  year: 2020
  ident: bib30
  article-title: A multifunctional TENG yarn integrated into agrotextile for building intelligent agriculture
  publication-title: Nano Energy
– volume: 100
  year: 2022
  ident: bib162
  article-title: Silicone-incorporated nanoporous cobalt oxide and MXene nanocomposite-coated stretchable fabric for wearable triboelectric nanogenerator and self-powered sensing applications
  publication-title: Nano Energy
– volume: 2
  year: 2016
  ident: bib114
  article-title: A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring
  publication-title: Sci. Adv.
– year: 2022
  ident: bib70
  article-title: Highly-stretchable rope-like triboelectric nanogenerator for self-powered monitoring in marine structures
  publication-title: Nano Energy
– year: 2022
  ident: bib110
  article-title: Liquid metal fibers
  publication-title: Adv. Fiber Mater.
– volume: 4
  year: 2022
  ident: bib148
  article-title: Large-scale fabrication of core-shell triboelectric braided fibers and power textiles for energy harvesting and plantar pressure monitoring
  publication-title: EcoMat
– volume: 32
  start-page: 479
  year: 2017
  end-page: 487
  ident: bib41
  article-title: Self-powered wireless smart patch for healthcare monitoring
  publication-title: Nano Energy
– volume: 85
  year: 2021
  ident: bib86
  article-title: Fingerprint-inspired electronic skin based on triboelectric nanogenerator for fine texture recognition
  publication-title: Nano Energy
– volume: 194
  start-page: 81
  year: 2022
  end-page: 103
  ident: bib92
  article-title: Advanced triboelectric nanogenerators based on low-dimension carbon materials: a review
  publication-title: Carbon
– volume: 96
  year: 2022
  ident: bib119
  article-title: Anti-freezing and stretchable triboelectric nanogenerator based on liquid electrode for biomechanical sensing in extreme environment
  publication-title: Nano Energy
– volume: 12
  start-page: 5190
  year: 2018
  end-page: 5196
  ident: bib170
  article-title: Screen-printed washable electronic textiles as self-powered touch/gesture tribo-sensors for intelligent human–machine interaction
  publication-title: ACS Nano
– volume: 77
  year: 2020
  ident: bib24
  article-title: Self-powered gold nanowire tattoo triboelectric sensors for soft wearable human-machine interface
  publication-title: Nano Energy
– volume: 25
  start-page: 3688
  year: 2015
  end-page: 3696
  ident: bib65
  article-title: Stretchable‐rubber‐based triboelectric nanogenerator and its application as self‐powered body motion sensors
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 2093
  year: 2020
  ident: bib16
  article-title: Quantifying and understanding the triboelectric series of inorganic non-metallic materials
  publication-title: Nat. Commun.
– volume: 12
  start-page: 10545
  year: 2022
  end-page: 10572
  ident: bib23
  article-title: Electrode materials for stretchable triboelectric nanogenerator in wearable electronics
  publication-title: RSC Adv.
– volume: 39
  start-page: 429
  year: 2017
  end-page: 436
  ident: bib115
  article-title: Bioinspired stretchable triboelectric nanogenerator as energy-harvesting skin for self-powered electronics
  publication-title: Nano Energy
– volume: 47
  start-page: 2188
  year: 2008
  end-page: 2207
  ident: bib13
  article-title: Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets
  publication-title: Angew. Chem. Int. Ed.
– volume: 15
  start-page: 8435
  year: 2022
  end-page: 8441
  ident: bib79
  article-title: A self-powered and concealed sensor based on triboelectric nanogenerators for cultural-relic anti-theft systems
  publication-title: Nano Res.
– volume: 34
  start-page: 442
  year: 2017
  end-page: 448
  ident: bib82
  article-title: Self-powered transparent glass-based single electrode triboelectric motion tracking sensor array
  publication-title: Nano Energy
– volume: 32
  year: 2020
  ident: bib155
  article-title: 3D honeycomb-structured flame-retardant triboelectric fabric for fire escape and rescue
  publication-title: Adv. Mater.
– volume: 597
  start-page: 171
  year: 2021
  end-page: 181
  ident: bib122
  article-title: Highly stretchable and self-healing cellulose nanofiber-mediated conductive hydrogel towards strain sensing application
  publication-title: J. Colloid Interface Sci.
– volume: 12
  start-page: 2027
  year: 2018
  end-page: 2034
  ident: bib111
  article-title: Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics
  publication-title: ACS Nano
– volume: 28
  start-page: 10267
  year: 2016
  end-page: 10274
  ident: bib151
  article-title: Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns
  publication-title: Adv. Mater.
– year: 2022
  ident: bib108
  article-title: Nanocellulose and its derived composite electrodes toward supercapacitors: fabrication, properties, and challenges
  publication-title: J. Bioresour. Bioprod.
– volume: 51
  start-page: 446
  year: 2017
  end-page: 451
  ident: bib31
  article-title: PEDOT electrodes for triboelectric generator devices
  publication-title: Org. Electron. Phys. Mater. Appl.
– volume: 4
  year: 2019
  ident: bib85
  article-title: Multifunctional skin‐inspired flexible sensor systems for wearable electronics
  publication-title: Adv. Mater. Technol.
– volume: 30
  start-page: 1802953
  year: 2018
  ident: bib95
  article-title: A new facile route to flexible and semi-transparent electrodes based on water exfoliated graphene and their single-electrode triboelectric nanogenerator
  publication-title: Adv. Mater.
– volume: 7
  start-page: 7342
  year: 2013
  end-page: 7351
  ident: bib43
  article-title: Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system
  publication-title: ACS Nano
– volume: 91
  year: 2022
  ident: bib100
  article-title: A stretching-insensitive, self-powered and wearable pressure sensor
  publication-title: Nano Energy
– volume: 55
  start-page: 401
  year: 2019
  end-page: 423
  ident: bib140
  article-title: Recent progress on textile-based triboelectric nanogenerators
  publication-title: Nano Energy
– volume: 68
  year: 2020
  ident: bib52
  article-title: On the first principle theory of nanogenerators from Maxwell's equations
  publication-title: Nano Energy
– volume: 30
  start-page: 1705195
  year: 2018
  ident: bib38
  article-title: Shape memory polymers for body motion energy harvesting and self-powered mechanosensing
  publication-title: Adv. Mater.
– volume: 10
  start-page: 3652
  year: 2018
  end-page: 3659
  ident: bib40
  article-title: Flexible single-electrode triboelectric nanogenerator and body moving sensor based on porous Na2CO3/polydimethylsiloxane film
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  year: 2017
  ident: bib168
  article-title: Wearable all-fabric-based triboelectric generator for water energy harvesting
  publication-title: Adv. Energy Mater.
– year: 2022
  ident: bib137
  article-title: Plasticized PVC-gel single layer-based stretchable triboelectric nanogenerator for harvesting mechanical energy and tactile sensing
  publication-title: Adv. Sci.
– volume: 10
  start-page: 3887
  year: 2014
  end-page: 3894
  ident: bib59
  article-title: Nature‐replicated nano‐in‐micro structures for triboelectric energy harvesting
  publication-title: Small
– volume: 6
  year: 2021
  ident: bib4
  article-title: Advances in nanostructures for high‐performance triboelectric nanogenerators
  publication-title: Adv. Mater. Technol.
– volume: 4
  start-page: 1124
  year: 2022
  end-page: 1131
  ident: bib102
  article-title: Elastic and skin-contact triboelectric nanogenerators and their applicability in energy harvesting and tactile sensing
  publication-title: ACS Appl. Electron. Mater.
– volume: 11
  start-page: 9490
  year: 2017
  end-page: 9499
  ident: bib145
  article-title: A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors
  publication-title: ACS Nano
– volume: 9
  start-page: 4280
  year: 2018
  ident: bib169
  article-title: Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting
  publication-title: Nat. Commun.
– volume: 70
  year: 2020
  ident: bib94
  article-title: Electron transfer mechanism of graphene/Cu heterostructure for improving the stability of triboelectric nanogenerators
  publication-title: Nano Energy
– year: 2020
  ident: bib118
  article-title: Stretchable and shape‐adaptable triboelectric nanogenerator based on biocompatible liquid electrolyte for biomechanical energy harvesting and wearable human–machine interaction
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 101
  year: 2018
  end-page: 113
  ident: bib27
  article-title: Triboelectric nanogenerators with gold-thin-film-coated conductive textile as floating electrode for scavenging wind energy
  publication-title: Nano Res.
– volume: 2
  start-page: 453
  year: 2022
  end-page: 466
  ident: bib2
  article-title: Advanced polymer-based electrolytes in zinc–air batteries
  publication-title: eScience
– volume: 1
  year: 2019
  ident: bib83
  article-title: Tactile sensors for advanced intelligent systems
  publication-title: Adv. Intell. Syst.
– volume: 27
  year: 2022
  ident: bib147
  article-title: Knitting integral conformal all-textile strain sensor with commercial apparel characteristics for smart textiles
  publication-title: Appl. Mater. Today
– volume: 10
  start-page: 2158
  year: 2019
  ident: bib39
  article-title: Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator
  publication-title: Nat. Commun.
– volume: 30
  year: 2018
  ident: bib9
  article-title: Triboelectric series of 2D layered materials
  publication-title: Adv. Mater.
– volume: 25
  start-page: 6594
  year: 2013
  end-page: 6601
  ident: bib48
  article-title: A single‐electrode based triboelectric nanogenerator as self‐powered tracking system
  publication-title: Adv. Mater.
– volume: 9
  year: 2022
  ident: bib126
  article-title: Transparent self-powered triboelectric sensor based on PVA/PA hydrogel for promoting human-machine interaction in nursing and patient safety
  publication-title: Nano Energy
– volume: 6
  start-page: 105
  year: 2013
  end-page: 121
  ident: bib121
  article-title: Hydrogel: Preparation, characterization, and applications: a review
  publication-title: J. Adv. Res.
– volume: 27
  start-page: 595
  year: 2016
  end-page: 601
  ident: bib55
  article-title: High-performance triboelectric nanogenerators with artificially well-tailored interlocked interfaces
  publication-title: Nano Energy
– volume: 30
  year: 2020
  ident: bib37
  article-title: Stretchable, transparent, and thermally stable triboelectric nanogenerators based on solvent-free ion-conducting elastomer Electrodes
  publication-title: Adv. Funct. Mater.
– volume: 66
  year: 2019
  ident: bib20
  article-title: Rational molecular design of polymeric materials toward efficient triboelectric energy harvesting
  publication-title: Nano Energy
– volume: 7
  start-page: 9213
  year: 2013
  end-page: 9222
  ident: bib46
  article-title: Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system
  publication-title: ACS Nano
– volume: 30
  year: 2020
  ident: bib107
  article-title: A stretchable highoutput triboelectric nanogenerator improved by MXene liquid electrode with high electronegativity
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 1533
  year: 1969
  end-page: 1537
  ident: bib17
  article-title: Charge generation on dielectric surfaces
  publication-title: J. Phys. D: Appl. Phys.
– volume: 13
  start-page: 847
  year: 2013
  end-page: 853
  ident: bib57
  article-title: Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator
  publication-title: Nano Lett.
– volume: 16
  start-page: 4415
  year: 2022
  end-page: 4425
  ident: bib152
  article-title: Electroassisted core-spun triboelectric nanogenerator fabrics for intellisense and artificial intelligence perception
  publication-title: ACS Nano
– volume: 7
  start-page: 35
  year: 2021
  ident: bib1
  article-title: Recent progress in silk fibroin-based flexible electronics
  publication-title: Micro Nanoeng.
– volume: 98
  year: 2022
  ident: bib129
  article-title: Extreme environment-adaptable and fast self-healable eutectogel triboelectric nanogenerator for energy harvesting and self-powered sensing
  publication-title: Nano Energy
– volume: 97
  year: 2022
  ident: bib149
  article-title: Waste textiles as the versatile triboelectric energy-harvesting platform for self-powered applications in sports and athletics
  publication-title: Nano Energy
– volume: 78
  year: 2020
  ident: bib164
  article-title: Flexible single-electrode triboelectric nanogenerators with MXene/PDMS composite film for biomechanical motion sensors
  publication-title: Nano Energy
– volume: 30
  year: 2018
  ident: bib25
  article-title: A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing
  publication-title: Adv. Mater.
– volume: 16
  start-page: 1661
  year: 2022
  end-page: 1670
  ident: bib132
  article-title: Stretchable unsymmetrical piezoelectric Batio
  publication-title: ACS Nano
– volume: 15
  start-page: 16368
  year: 2021
  end-page: 16375
  ident: bib26
  article-title: Triboelectric nanogenerator for ocean wave graded energy harvesting and condition monitoring
  publication-title: ACS Nano
– volume: 98
  year: 2022
  ident: bib156
  article-title: Highly integrated, scalable manufacturing and stretchable conductive core/shell fibers for strain sensing and self-powered smart textiles
  publication-title: Nano Energy
– volume: 94
  year: 2022
  ident: bib158
  article-title: Constructing highly tribopositive elastic yarn through interfacial design and assembly for efficient energy harvesting and human-interactive sensing
  publication-title: Nano Energy
– volume: 32
  year: 2022
  ident: bib171
  article-title: Fabric‐assisted MXene/silicone nanocomposite‐based triboelectric nanogenerators for self‐powered sensors and wearable electronics
  publication-title: Adv. Funct. Mater.
– volume: 75
  year: 2020
  ident: bib69
  article-title: Natural wood-based triboelectric nanogenerator as self-powered sensing for smart homes and floors
  publication-title: Nano Energy
– volume: 86
  year: 2021
  ident: bib134
  article-title: A stretchable, harsh condition-resistant and ambient-stable hydrogel and its applications in triboelectric nanogenerator
  publication-title: Nano Energy
– volume: 14
  start-page: 24832
  year: 2022
  end-page: 24839
  ident: bib80
  article-title: Deep learning-assisted triboelectric smart mats for personnel comprehensive monitoring toward maritime safety
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  year: 2020
  ident: bib10
  article-title: Material choices for triboelectric nanogenerators: a critical review
  publication-title: EcoMat
– volume: 3
  year: 2017
  ident: bib136
  article-title: Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing
  publication-title: Sci. Adv.
– volume: 32
  year: 2022
  ident: bib73
  article-title: A siloxene/ecoflex nanocomposite‐based triboelectric nanogenerator with enhanced charge retention by MoS2/LIG for self‐powered touchless sensor applications
  publication-title: Adv. Funct. Mater.
– volume: 62
  start-page: 259
  year: 2019
  end-page: 267
  ident: bib103
  article-title: Graphene-based stretchable/wearable self-powered touch sensor
  publication-title: Nano Energy
– volume: 12
  start-page: 10545
  year: 2022
  end-page: 10572
  ident: bib91
  article-title: Electrode materials for stretchable triboelectric nanogenerator in wearable electronics
  publication-title: RSC Adv.
– volume: 93
  year: 2022
  ident: bib97
  article-title: Fully biodegradable water-soluble triboelectric nanogenerator for human physiological monitoring
  publication-title: Nano Energy
– volume: 58
  start-page: 750
  year: 2019
  end-page: 758
  ident: bib163
  article-title: Highly flexible, breathable, tailorable and washable power generation fabrics for wearable electronics
  publication-title: Nano Energy
– volume: 24
  start-page: 5059
  year: 2014
  end-page: 5066
  ident: bib78
  article-title: Triboelectric nanogenerators as a self‐powered motion tracking system
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 481
  year: 2020
  end-page: 506
  ident: bib8
  article-title: Triboelectric nanogenerators: fundamental physics and potential applications
  publication-title: Friction
– volume: 128
  year: 2020
  ident: bib51
  article-title: Theoretical modeling of triboelectric nanogenerators (TENGs)
  publication-title: J. Appl. Phys.
– volume: 10
  start-page: 1
  year: 2017
  end-page: 10
  ident: bib19
  article-title: Triboelectric nanogenerators as flexible power sources
  publication-title: npj Flex. Electron.
– volume: 87
  year: 2021
  ident: bib15
  article-title: Studying of contact electrification and electron transfer at liquid-liquid interface
  publication-title: Nano Energy
– volume: 12
  year: 2022
  ident: bib154
  article-title: Industrial fabrication of 3D braided stretchable hierarchical interlocked fancy-yarn triboelectric nanogenerator for self-powered smart fitness system
  publication-title: Adv. Energy Mater.
– volume: 7
  year: 2017
  ident: bib7
  article-title: An ultrathin flexible single-electrode triboelectric-nanogenerator for mechanical energy harvesting and instantaneous force sensing
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 10383
  year: 2022
  end-page: 10390
  ident: bib117
  article-title: Mechanically robust triboelectric nanogenerator with a shear thickening fluid for impact monitoring
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 7479
  year: 2014
  end-page: 7484
  ident: bib47
  article-title: Triboelectrification based motion sensor for human-machine interfacing
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 410
  year: 2015
  end-page: 418
  ident: bib167
  article-title: Triboelectric energy harvester based on wearable textile platforms employing various surface morphologies
  publication-title: Nano Energy
– volume: 8
  start-page: 3843
  year: 2014
  end-page: 3850
  ident: bib64
  article-title: Triboelectric sensor for self-powered tracking of object motion inside tubing
  publication-title: ACS Nano
– volume: 64
  start-page: 634
  year: 2019
  end-page: 640
  ident: bib105
  article-title: Polymer-based flexible bioelectronics
  publication-title: Sci. Bull.
– volume: 75
  year: 2020
  ident: bib96
  article-title: Tactile electronic skin to simultaneously detect and distinguish between temperature and pressure based on a triboelectric nanogenerator
  publication-title: Nano Energy
– volume: 53
  start-page: 152
  year: 2018
  end-page: 159
  ident: bib56
  article-title: Transparent and flexible high power triboelectric nanogenerator with metallic nanowire-embedded tribonegative conducting polymer
  publication-title: Nano Energy
– volume: 14
  start-page: 88
  year: 2022
  ident: bib90
  article-title: A liquid–solid interface-based triboelectric tactile sensor with ultrahigh sensitivity of 21.48 kPa
  publication-title: Nano-Micro Lett.
– volume: 7
  start-page: 2100870
  year: 2022
  ident: bib99
  article-title: A stretchable multimode triboelectric nanogenerator for energy harvesting and self‐powered sensing
  publication-title: Adv. Mater. Technol.
– volume: 71
  year: 2020
  ident: bib157
  article-title: Large-scale fabrication of robust textile triboelectric nanogenerators
  publication-title: Nano Energy
– volume: 265
  year: 2021
  ident: bib133
  article-title: Transparent, conductive cellulose hydrogel for flexible sensor and triboelectric nanogenerator at subzero temperature
  publication-title: Carbohydr. Polym.
– volume: 34
  year: 2022
  ident: bib87
  article-title: Open‐environment tactile sensing system: towards simple and efficient material identification
  publication-title: Adv. Mater.
– volume: 11
  start-page: 7513
  year: 2019
  end-page: 7519
  ident: bib109
  article-title: A liquid PEDOT:PSS electrode-based stretchable triboelectric nanogenerator for a portable self-charging power source
  publication-title: Nanoscale
– volume: 35
  start-page: 542
  year: 2002
  ident: bib77
  article-title: Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternative to optical motion analysis systems
  publication-title: J. Biomech.
– year: 2021
  ident: bib14
  article-title: From contact-electrification to triboelectric nanogenerators
  publication-title: Rep. Prog. Phys.
– volume: 66
  year: 2019
  ident: bib33
  article-title: Single-electrode triboelectric nanogenerator based on economical graphite coated paper for harvesting waste environmental energy
  publication-title: Nano Energy
– volume: 5
  start-page: 12252
  year: 2017
  end-page: 12257
  ident: bib63
  article-title: Single-electrode triboelectric nanogenerators based on sponge-like porous PTFE thin films for mechanical energy harvesting and self-powered electronics
  publication-title: J. Mater. Chem. A
– volume: 78
  year: 2020
  ident: bib104
  article-title: Highly stretchable and transparent triboelectric nanogenerator based on multilayer structured stable electrode for self-powered wearable sensor
  publication-title: Nano Energy
– year: 2022
  ident: bib98
  article-title: Thin, soft, 3D printing enabled crosstalk minimized triboelectric nanogenerator arrays for tactile sensing
  publication-title: Fundam. Res.
– volume: 15
  start-page: 14653
  year: 2021
  end-page: 14661
  ident: bib135
  article-title: Self-healing and elastic triboelectric nanogenerators for muscle motion monitoring and photothermal treatment
  publication-title: ACS Nano
– volume: 14
  start-page: 23998
  year: 2022
  end-page: 24007
  ident: bib89
  article-title: Smart pillow based on flexible and breathable triboelectric nanogenerator arrays for head movement monitoring during sleep
  publication-title: ACS Appl. Mater. Interfaces
– volume: 60
  start-page: 630
  year: 2019
  end-page: 640
  ident: bib53
  article-title: 3D mathematical model of contact-separation and single-electrode mode triboelectric nanogenerators
  publication-title: Nano Energy
– volume: 26
  start-page: 4690
  year: 2014
  end-page: 4696
  ident: bib49
  article-title: Harvesting water drop energy by a sequential contact‐electrification and electrostatic‐induction process
  publication-title: Adv. Mater.
– volume: 98
  year: 2022
  ident: bib112
  article-title: Fingerprint-shaped triboelectric tactile sensor
  publication-title: Nano Energy
– volume: 46
  start-page: 63
  year: 2018
  end-page: 72
  ident: bib22
  article-title: Realizing the potential of polyethylene oxide as new positive tribo-material: over 40 W/m2 high power flat surface triboelectric nanogenerators
  publication-title: Nano Energy
– volume: 56
  start-page: 338
  year: 2019
  end-page: 346
  ident: bib34
  article-title: Microwave-welded single-walled carbon nanotubes as suitable electrodes for triboelectric energy harvesting from biomaterials and bioproducts
  publication-title: Nano Energy
– volume: 99
  start-page: 24449
  year: 1994
  end-page: 24464
  ident: bib74
  article-title: GPS precise tracking of TOPEX/POSEIDON: results and implications
  publication-title: J. Geophys. Res
– volume: 13
  start-page: 16916
  year: 2021
  end-page: 16927
  ident: bib161
  article-title: Enhancing the performance of fabric-based triboelectric nanogenerators by structural and chemical modification
  publication-title: ACS Appl. Mater. Interfaces
– volume: 16
  start-page: 5909
  year: 2022
  end-page: 5919
  ident: bib88
  article-title: A self-supporting, conductor-exposing, stretchable, ultrathin, and recyclable kirigami-structured liquid metal paper for multifunctional E-skin
  publication-title: ACS Nano
– volume: 87
  year: 2021
  ident: bib106
  article-title: Recent advances in cellulose-based flexible triboelectric nanogenerators
  publication-title: Nano Energy
– volume: 6
  start-page: 1112
  year: 2018
  end-page: 1118
  ident: bib36
  article-title: Single-electrode, nylon-fiber-enhanced polytetrafluoroethylene electret film with hollow cylinder structure for mechanical energy harvesting
  publication-title: Energy Technol.
– volume: 7
  start-page: 10424
  year: 2013
  end-page: 10432
  ident: bib6
  article-title: Triboelectric nanogenerator built on suspended 3D spiral structure as vibration and positioning sensor and wave energy harvester
  publication-title: ACS Nano
– volume: 84
  year: 2021
  ident: bib159
  article-title: 3D printed stretchable smart fibers and textiles for self-powered e-skin
  publication-title: Nano Energy
– volume: 24
  start-page: 3332
  year: 2014
  end-page: 3340
  ident: bib5
  article-title: Theoretical investigation and structural optimization of single‐electrode triboelectric nanogenerators
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 298
  year: 2016
  end-page: 305
  ident: bib32
  article-title: Conformal, graphene-based triboelectric nanogenerator for self-powered wearable electronics
  publication-title: Nano Energy
– volume: 15
  start-page: 7460
  year: 2022
  end-page: 7467
  ident: bib71
  article-title: 3D printed triboelectric nanogenerator as self-powered human-machine interactive sensor for breathing-based language expression
  publication-title: Nano Res.
– volume: 67
  year: 2020
  ident: bib21
  article-title: Expanding the portfolio of tribo-positive materials: aniline formaldehyde condensates for high charge density triboelectric nanogenerators
  publication-title: Nano Energy
– volume: 56
  start-page: 16
  year: 2019
  end-page: 24
  ident: bib141
  article-title: Progress in textile-based triboelectric nanogenerators for smart fabrics
  publication-title: Nano Energy
– volume: 64
  year: 2019
  ident: bib120
  article-title: Liquid single-electrode triboelectric nanogenerator based on graphene oxide dispersion for wearable electronics
  publication-title: Nano Energy
– volume: 4
  year: 2019
  ident: bib84
  article-title: Human–machine interfacing enabled by triboelectric nanogenerators and tribotronics
  publication-title: Adv. Mater. Technol.
– volume: 15
  start-page: 8389
  year: 2022
  end-page: 8397
  ident: bib144
  article-title: Knitted self-powered sensing textiles for machine learning-assisted sitting posture monitoring and correction
  publication-title: Nano Res.
– volume: 91
  year: 2022
  ident: bib72
  article-title: Flexible triboelectric nanogenerator for human motion tracking and gesture recognition
  publication-title: Nano Energy
– year: 2019
  ident: bib139
  article-title: Fabric-based triboelectric nanogenerators
  publication-title: Research
– volume: 7
  start-page: 9461
  year: 2013
  end-page: 9468
  ident: bib45
  article-title: Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system
  publication-title: ACS Nano
– volume: 14
  start-page: 7906
  year: 2022
  end-page: 7912
  ident: bib66
  article-title: An ultraweak mechanical stimuli actuated single electrode triboelectric nanogenerator with high energy conversion efficiency
  publication-title: Nanoscale
– volume: 45
  start-page: 266
  year: 2018
  end-page: 272
  ident: bib35
  article-title: MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit
  publication-title: Nano Energy
– volume: 11
  start-page: 1
  year: 2020
  end-page: 11
  ident: bib68
  article-title: Deep learning enabled smart mats as a scalable floor monitoring system
  publication-title: Nat. Commun.
– start-page: 281
  year: 2022
  end-page: 295
  ident: bib128
  article-title: Sustainable Strategies in Organic Electronics
– volume: 4
  start-page: 321
  year: 2022
  end-page: 323
  ident: bib138
  article-title: Fiber electronics bring a new generation of acoustic fabrics
  publication-title: Adv. Fiber Mater.
– volume: 31
  year: 2019
  ident: bib12
  article-title: Electron transfer in nanoscale contact electrification: effect of temperature in the metal–dielectric case
  publication-title: Adv. Mater.
– volume: 10
  start-page: 1427
  year: 2019
  ident: bib18
  article-title: Quantifying the triboelectric series
  publication-title: Nat. Commun.
– volume: 84
  year: 2021
  ident: bib150
  article-title: Triboelectric nanogenerator/supercapacitor in-one self-powered textile based on PTFE yarn wrapped PDMS/MnO
  publication-title: Nano Energy
– volume: 8
  start-page: 53
  year: 1975
  ident: bib11
  article-title: Contact electrification of metals
  publication-title: J. Electrost., J. Phys. D: Appl. Phys.
– volume: 6
  start-page: 3235
  year: 2013
  end-page: 3240
  ident: bib44
  article-title: A transparent single-friction-surface triboelectric generator and self-powered touch sensor
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 1
  year: 2022
  end-page: 10
  ident: bib50
  article-title: Magnetic capsulate triboelectric nanogenerators
  publication-title: Sci. Rep.
– volume: 81
  year: 2021
  ident: bib67
  article-title: Trampoline inspired stretchable triboelectric nanogenerators as tactile sensors for epidermal electronics
  publication-title: Nano Energy
– year: 2022
  ident: bib124
  article-title: Deformable textile-structured triboelectric nanogenerator knitted with multifunctional sensing fibers for biomechanical energy harvesting
  publication-title: Adv. Fiber Mater.
– volume: 835
  start-page: 335
  year: 2020
  end-page: 346
  ident: bib54
  article-title: Thin films in triboelectric nanogenerators for blue energy harvesting: fabrication, characterization, and modeling
  publication-title: InKey Eng. Mater.
– volume: 2
  year: 2020
  ident: bib3
  article-title: Recent progress of triboelectric nanogenerators: from fundamental theory to practical applications
  publication-title: EcoMat
– volume: 8
  start-page: 6273
  year: 2014
  end-page: 6280
  ident: bib62
  article-title: Fiber-based generator for wearable electronics and mobile medication
  publication-title: ACS Nano
– volume: 14
  start-page: 35040
  year: 2022
  end-page: 35052
  ident: bib29
  article-title: Patternable nanocellulose/Ti
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 54829
  year: 2017
  end-page: 54834
  ident: bib153
  article-title: Highly stretchable fiber-based single-electrode triboelectric nanogenerator for wearable devices
  publication-title: RSC Adv.
– volume: 86
  year: 2021
  ident: bib160
  article-title: Flexible and stretchable triboelectric nanogenerator fabric for biomechanical energy harvesting and self-powered dual-mode human motion monitoring
  publication-title: Nano Energy
– reference: A. Tarighat, N. Khajehnouri and A.H. Sayed, Improved wireless location accuracy using antenna arrays and interference cancellation, In: Proceedings of the 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing. 2003 IV-616.
– volume: 4
  start-page: 885
  year: 2022
  end-page: 893
  ident: bib93
  article-title: Silk fibroin based conductive film for multifunctional sensing and energy harvesting
  publication-title: Adv. Fiber Mater.
– volume: 32
  start-page: 84
  year: 2020
  end-page: 93
  ident: bib146
  article-title: 3D double-faced interlock fabric triboelectric nanogenerator for bio-motion energy harvesting and as self-powered stretching and 3D tactile sensors
  publication-title: Mater. Today
– reference: .
– volume: 10
  start-page: 5147
  year: 2019
  ident: bib81
  article-title: Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics
  publication-title: Nat. Commun.
– volume: 97
  year: 2022
  ident: bib143
  article-title: Industrial production of bionic scales knitting fabric-based triboelectric nanogenerator for outdoor rescue and human protection
  publication-title: Nano Energy
– volume: 1
  start-page: 328
  year: 2012
  end-page: 334
  ident: bib42
  article-title: Flexible triboelectric generator
  publication-title: Nano Energy
– volume: 7
  year: 2017
  ident: bib123
  article-title: Environmentally friendly hydrogel-based triboelectric nanogenerators for versatile energy harvesting and self-powered sensors
  publication-title: Adv. Energy Mater.
– volume: 31
  start-page: 197
  year: 2000
  end-page: 220
  ident: bib142
  article-title: The potential of knitting for engineering composites – a review
  publication-title: Compos., Part A
– volume: 4
  start-page: 1930
  year: 2022
  end-page: 1938
  ident: bib127
  article-title: An ionic hydrogel-based antifreezing triboelectric nanogenerator
  publication-title: ACS Appl. Electron. Mater.
– volume: 54
  start-page: 7823
  year: 2019
  end-page: 7833
  ident: bib165
  article-title: Triboelectric performances of self-powered, ultra-flexible and large-area poly(dimethylsiloxane)/Ag-coated chinlon composites with a sandpaper-assisted surface microstructure
  publication-title: J. Mater. Sci.
– volume: 7
  start-page: 16450
  year: 2019
  end-page: 16458
  ident: bib61
  article-title: Wearable single-electrode-mode triboelectric nanogenerator via conductive polymer-coated textiles for self-power electronics
  publication-title: ACS Sustain. Chem. Eng.
– volume: 8
  start-page: 13787
  year: 2020
  end-page: 13794
  ident: bib130
  article-title: An anti-freezing hydrogel based stretchable triboelectric nanogenerator for biomechanical energy harvesting at sub-zero temperature
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 7867
  year: 2015
  end-page: 7873
  ident: bib58
  article-title: Implantable self-powered low-level laser cure system for mouse embryonic osteoblasts’ proliferation and differentiation
  publication-title: ACS Nano
– reference: P. Bahl and V.N. Padmanabhan, "RADAR: an in-building RF-based user location and tracking system, Proceedings IEEE INFOCOM 2000 775–784 vol.2,
– volume: 15
  start-page: 272
  year: 2022
  end-page: 279
  ident: bib60
  article-title: Enhancement of output power density in a modified polytetrafluoroethylene surface using a sequential O2/Ar plasma etching for triboelectric nanogenerator applications
  publication-title: Nano Res.
– volume: 32
  year: 2022
  ident: bib125
  article-title: Deep learning assisted body area triboelectric hydrogel sensor network for infant care
  publication-title: Adv. Funct. Mater.
– volume: 16
  start-page: 1661
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib132
  article-title: Stretchable unsymmetrical piezoelectric Batio3 composite hydrogel for triboelectric nanogenerators and multimodal sensors
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c10678
– volume: 91
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib72
  article-title: Flexible triboelectric nanogenerator for human motion tracking and gesture recognition
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106601
– volume: 30
  year: 2018
  ident: 10.1016/j.nanoen.2022.108043_bib9
  article-title: Triboelectric series of 2D layered materials
  publication-title: Adv. Mater.
– volume: 4
  start-page: 885
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib93
  article-title: Silk fibroin based conductive film for multifunctional sensing and energy harvesting
  publication-title: Adv. Fiber Mater.
  doi: 10.1007/s42765-022-00152-9
– volume: 2
  year: 2020
  ident: 10.1016/j.nanoen.2022.108043_bib10
  article-title: Material choices for triboelectric nanogenerators: a critical review
  publication-title: EcoMat
  doi: 10.1002/eom2.12062
– volume: 87
  year: 2021
  ident: 10.1016/j.nanoen.2022.108043_bib106
  article-title: Recent advances in cellulose-based flexible triboelectric nanogenerators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106175
– volume: 2
  year: 2016
  ident: 10.1016/j.nanoen.2022.108043_bib114
  article-title: A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501624
– year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib110
  article-title: Liquid metal fibers
  publication-title: Adv. Fiber Mater.
– volume: 4
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib148
  article-title: Large-scale fabrication of core-shell triboelectric braided fibers and power textiles for energy harvesting and plantar pressure monitoring
  publication-title: EcoMat
  doi: 10.1002/eom2.12191
– volume: 3
  year: 2017
  ident: 10.1016/j.nanoen.2022.108043_bib136
  article-title: Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700015
– volume: 835
  start-page: 335
  year: 2020
  ident: 10.1016/j.nanoen.2022.108043_bib54
  article-title: Thin films in triboelectric nanogenerators for blue energy harvesting: fabrication, characterization, and modeling
  publication-title: InKey Eng. Mater.
– volume: 15
  start-page: 8389
  issue: 9
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib144
  article-title: Knitted self-powered sensing textiles for machine learning-assisted sitting posture monitoring and correction
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-4409-0
– volume: 12
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib154
  article-title: Industrial fabrication of 3D braided stretchable hierarchical interlocked fancy-yarn triboelectric nanogenerator for self-powered smart fitness system
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202201288
– volume: 94
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib158
  article-title: Constructing highly tribopositive elastic yarn through interfacial design and assembly for efficient energy harvesting and human-interactive sensing
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.106956
– volume: 11
  start-page: 101
  year: 2018
  ident: 10.1016/j.nanoen.2022.108043_bib27
  article-title: Triboelectric nanogenerators with gold-thin-film-coated conductive textile as floating electrode for scavenging wind energy
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1609-0
– volume: 1
  year: 2019
  ident: 10.1016/j.nanoen.2022.108043_bib83
  article-title: Tactile sensors for advanced intelligent systems
  publication-title: Adv. Intell. Syst.
  doi: 10.1002/aisy.201900090
– volume: 15
  start-page: 16368
  issue: 10
  year: 2021
  ident: 10.1016/j.nanoen.2022.108043_bib26
  article-title: Triboelectric nanogenerator for ocean wave graded energy harvesting and condition monitoring
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c05685
– volume: 15
  start-page: 7460
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib71
  article-title: 3D printed triboelectric nanogenerator as self-powered human-machine interactive sensor for breathing-based language expression
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-4339-x
– volume: 86
  year: 2021
  ident: 10.1016/j.nanoen.2022.108043_bib160
  article-title: Flexible and stretchable triboelectric nanogenerator fabric for biomechanical energy harvesting and self-powered dual-mode human motion monitoring
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106058
– volume: 14
  start-page: 35040
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib29
  article-title: Patternable nanocellulose/Ti3C2Tx flexible films with tunable photoresponsive and electromagnetic interference shielding performances
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c11567
– volume: 7
  start-page: 9213
  year: 2013
  ident: 10.1016/j.nanoen.2022.108043_bib46
  article-title: Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system
  publication-title: ACS Nano
  doi: 10.1021/nn403838y
– volume: 78
  year: 2020
  ident: 10.1016/j.nanoen.2022.108043_bib104
  article-title: Highly stretchable and transparent triboelectric nanogenerator based on multilayer structured stable electrode for self-powered wearable sensor
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105385
– volume: 30
  year: 2020
  ident: 10.1016/j.nanoen.2022.108043_bib37
  article-title: Stretchable, transparent, and thermally stable triboelectric nanogenerators based on solvent-free ion-conducting elastomer Electrodes
  publication-title: Adv. Funct. Mater.
– volume: 31
  start-page: 197
  year: 2000
  ident: 10.1016/j.nanoen.2022.108043_bib142
  article-title: The potential of knitting for engineering composites – a review
  publication-title: Compos., Part A
  doi: 10.1016/S1359-835X(99)00067-6
– year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib108
  article-title: Nanocellulose and its derived composite electrodes toward supercapacitors: fabrication, properties, and challenges
  publication-title: J. Bioresour. Bioprod.
  doi: 10.1016/j.jobab.2022.05.003
– volume: 7
  start-page: 9461
  year: 2013
  ident: 10.1016/j.nanoen.2022.108043_bib45
  article-title: Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system
  publication-title: ACS Nano
  doi: 10.1021/nn4043157
– volume: 53
  start-page: 152
  year: 2018
  ident: 10.1016/j.nanoen.2022.108043_bib56
  article-title: Transparent and flexible high power triboelectric nanogenerator with metallic nanowire-embedded tribonegative conducting polymer
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.08.048
– volume: 81
  year: 2021
  ident: 10.1016/j.nanoen.2022.108043_bib67
  article-title: Trampoline inspired stretchable triboelectric nanogenerators as tactile sensors for epidermal electronics
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105590
– year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib137
  article-title: Plasticized PVC-gel single layer-based stretchable triboelectric nanogenerator for harvesting mechanical energy and tactile sensing
  publication-title: Adv. Sci.
– volume: 78
  year: 2020
  ident: 10.1016/j.nanoen.2022.108043_bib164
  article-title: Flexible single-electrode triboelectric nanogenerators with MXene/PDMS composite film for biomechanical motion sensors
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105383
– volume: 96
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib119
  article-title: Anti-freezing and stretchable triboelectric nanogenerator based on liquid electrode for biomechanical sensing in extreme environment
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107067
– volume: 4
  start-page: 1930
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib127
  article-title: An ionic hydrogel-based antifreezing triboelectric nanogenerator
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.2c00118
– volume: 62
  start-page: 259
  year: 2019
  ident: 10.1016/j.nanoen.2022.108043_bib103
  article-title: Graphene-based stretchable/wearable self-powered touch sensor
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.05.039
– start-page: 281
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib128
– volume: 24
  start-page: 5059
  year: 2014
  ident: 10.1016/j.nanoen.2022.108043_bib78
  article-title: Triboelectric nanogenerators as a self‐powered motion tracking system
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201400431
– volume: 98
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib129
  article-title: Extreme environment-adaptable and fast self-healable eutectogel triboelectric nanogenerator for energy harvesting and self-powered sensing
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107284
– volume: 12
  start-page: 10545
  issue: 17
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib23
  article-title: Electrode materials for stretchable triboelectric nanogenerator in wearable electronics
  publication-title: RSC Adv.
  doi: 10.1039/D2RA01088G
– volume: 30
  year: 2018
  ident: 10.1016/j.nanoen.2022.108043_bib25
  article-title: A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804944
– volume: 26
  start-page: 4690
  year: 2014
  ident: 10.1016/j.nanoen.2022.108043_bib49
  article-title: Harvesting water drop energy by a sequential contact‐electrification and electrostatic‐induction process
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400373
– volume: 32
  year: 2020
  ident: 10.1016/j.nanoen.2022.108043_bib155
  article-title: 3D honeycomb-structured flame-retardant triboelectric fabric for fire escape and rescue
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003897
– volume: 31
  year: 2019
  ident: 10.1016/j.nanoen.2022.108043_bib12
  article-title: Electron transfer in nanoscale contact electrification: effect of temperature in the metal–dielectric case
  publication-title: Adv. Mater.
– volume: 30
  start-page: 1802953
  year: 2018
  ident: 10.1016/j.nanoen.2022.108043_bib95
  article-title: A new facile route to flexible and semi-transparent electrodes based on water exfoliated graphene and their single-electrode triboelectric nanogenerator
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802953
– volume: 6
  start-page: 7479
  year: 2014
  ident: 10.1016/j.nanoen.2022.108043_bib47
  article-title: Triboelectrification based motion sensor for human-machine interfacing
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am500864t
– volume: 11
  start-page: 9490
  year: 2017
  ident: 10.1016/j.nanoen.2022.108043_bib145
  article-title: A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05317
– volume: 28
  start-page: 10267
  year: 2016
  ident: 10.1016/j.nanoen.2022.108043_bib151
  article-title: Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603679
– volume: 14
  start-page: 23998
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib89
  article-title: Smart pillow based on flexible and breathable triboelectric nanogenerator arrays for head movement monitoring during sleep
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c03056
– volume: 64
  year: 2019
  ident: 10.1016/j.nanoen.2022.108043_bib120
  article-title: Liquid single-electrode triboelectric nanogenerator based on graphene oxide dispersion for wearable electronics
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.103948
– volume: 86
  year: 2021
  ident: 10.1016/j.nanoen.2022.108043_bib134
  article-title: A stretchable, harsh condition-resistant and ambient-stable hydrogel and its applications in triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106086
– volume: 47
  start-page: 2188
  year: 2008
  ident: 10.1016/j.nanoen.2022.108043_bib13
  article-title: Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200701812
– volume: 25
  start-page: 3688
  year: 2015
  ident: 10.1016/j.nanoen.2022.108043_bib65
  article-title: Stretchable‐rubber‐based triboelectric nanogenerator and its application as self‐powered body motion sensors
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201500428
– volume: 7
  start-page: 2100870
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib99
  article-title: A stretchable multimode triboelectric nanogenerator for energy harvesting and self‐powered sensing
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.202100870
– volume: 4
  year: 2019
  ident: 10.1016/j.nanoen.2022.108043_bib85
  article-title: Multifunctional skin‐inspired flexible sensor systems for wearable electronics
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201800628
– volume: 66
  year: 2019
  ident: 10.1016/j.nanoen.2022.108043_bib33
  article-title: Single-electrode triboelectric nanogenerator based on economical graphite coated paper for harvesting waste environmental energy
  publication-title: Nano Energy
– volume: 6
  start-page: 105
  year: 2013
  ident: 10.1016/j.nanoen.2022.108043_bib121
  article-title: Hydrogel: Preparation, characterization, and applications: a review
  publication-title: J. Adv. Res.
  doi: 10.1016/j.jare.2013.07.006
– volume: 12
  start-page: 410
  year: 2015
  ident: 10.1016/j.nanoen.2022.108043_bib167
  article-title: Triboelectric energy harvester based on wearable textile platforms employing various surface morphologies
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.01.009
– volume: 85
  year: 2021
  ident: 10.1016/j.nanoen.2022.108043_bib86
  article-title: Fingerprint-inspired electronic skin based on triboelectric nanogenerator for fine texture recognition
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106001
– volume: 8
  start-page: 53
  year: 1975
  ident: 10.1016/j.nanoen.2022.108043_bib11
  article-title: Contact electrification of metals
  publication-title: J. Electrost., J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/8/1/013
– volume: 60
  start-page: 630
  year: 2019
  ident: 10.1016/j.nanoen.2022.108043_bib53
  article-title: 3D mathematical model of contact-separation and single-electrode mode triboelectric nanogenerators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.03.072
– volume: 14
  start-page: 7906
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib66
  article-title: An ultraweak mechanical stimuli actuated single electrode triboelectric nanogenerator with high energy conversion efficiency
  publication-title: Nanoscale
  doi: 10.1039/D2NR01530G
– volume: 10
  start-page: 10383
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib117
  article-title: Mechanically robust triboelectric nanogenerator with a shear thickening fluid for impact monitoring
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA01209J
– volume: 2
  start-page: 1533
  year: 1969
  ident: 10.1016/j.nanoen.2022.108043_bib17
  article-title: Charge generation on dielectric surfaces
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/2/11/307
– volume: 66
  year: 2019
  ident: 10.1016/j.nanoen.2022.108043_bib20
  article-title: Rational molecular design of polymeric materials toward efficient triboelectric energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104158
– volume: 71
  year: 2020
  ident: 10.1016/j.nanoen.2022.108043_bib157
  article-title: Large-scale fabrication of robust textile triboelectric nanogenerators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104605
– volume: 91
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib100
  article-title: A stretching-insensitive, self-powered and wearable pressure sensor
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106695
– volume: 35
  start-page: 542
  year: 2002
  ident: 10.1016/j.nanoen.2022.108043_bib77
  article-title: Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternative to optical motion analysis systems
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(01)00231-7
– volume: 16
  start-page: 5909
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib88
  article-title: A self-supporting, conductor-exposing, stretchable, ultrathin, and recyclable kirigami-structured liquid metal paper for multifunctional E-skin
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c11096
– volume: 93
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib97
  article-title: Fully biodegradable water-soluble triboelectric nanogenerator for human physiological monitoring
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106787
– volume: 32
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib125
  article-title: Deep learning assisted body area triboelectric hydrogel sensor network for infant care
  publication-title: Adv. Funct. Mater.
– ident: 10.1016/j.nanoen.2022.108043_bib166
  doi: 10.1109/MEMSYS.2016.7421859
– volume: 54
  start-page: 7823
  issue: 10
  year: 2019
  ident: 10.1016/j.nanoen.2022.108043_bib165
  article-title: Triboelectric performances of self-powered, ultra-flexible and large-area poly(dimethylsiloxane)/Ag-coated chinlon composites with a sandpaper-assisted surface microstructure
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-019-03428-5
– volume: 7
  start-page: 7342
  year: 2013
  ident: 10.1016/j.nanoen.2022.108043_bib43
  article-title: Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system
  publication-title: ACS Nano
  doi: 10.1021/nn403021m
– volume: 12
  start-page: 1
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib50
  article-title: Magnetic capsulate triboelectric nanogenerators
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-04100-2
– volume: 7
  start-page: 16450
  year: 2019
  ident: 10.1016/j.nanoen.2022.108043_bib61
  article-title: Wearable single-electrode-mode triboelectric nanogenerator via conductive polymer-coated textiles for self-power electronics
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b03629
– volume: 194
  start-page: 81
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib92
  article-title: Advanced triboelectric nanogenerators based on low-dimension carbon materials: a review
  publication-title: Carbon
  doi: 10.1016/j.carbon.2022.03.037
– volume: 5
  start-page: 12252
  year: 2017
  ident: 10.1016/j.nanoen.2022.108043_bib63
  article-title: Single-electrode triboelectric nanogenerators based on sponge-like porous PTFE thin films for mechanical energy harvesting and self-powered electronics
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA02680C
– year: 2019
  ident: 10.1016/j.nanoen.2022.108043_bib139
  article-title: Fabric-based triboelectric nanogenerators
  publication-title: Research
  doi: 10.34133/2019/1091632
– volume: 128
  year: 2020
  ident: 10.1016/j.nanoen.2022.108043_bib51
  article-title: Theoretical modeling of triboelectric nanogenerators (TENGs)
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0020961
– volume: 8
  start-page: 1
  year: 2021
  ident: 10.1016/j.nanoen.2022.108043_bib28
  article-title: Omni-directional wind-driven triboelectric nanogenerator with cross-shaped dielectric film
  publication-title: Nano Converg.
  doi: 10.1186/s40580-021-00276-5
– volume: 10
  start-page: 3652
  year: 2018
  ident: 10.1016/j.nanoen.2022.108043_bib40
  article-title: Flexible single-electrode triboelectric nanogenerator and body moving sensor based on porous Na2CO3/polydimethylsiloxane film
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b17585
– volume: 34
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib87
  article-title: Open‐environment tactile sensing system: towards simple and efficient material identification
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202203073
– volume: 55
  start-page: 401
  year: 2019
  ident: 10.1016/j.nanoen.2022.108043_bib140
  article-title: Recent progress on textile-based triboelectric nanogenerators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.10.036
– volume: 9
  start-page: 7867
  year: 2015
  ident: 10.1016/j.nanoen.2022.108043_bib58
  article-title: Implantable self-powered low-level laser cure system for mouse embryonic osteoblasts’ proliferation and differentiation
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03567
– volume: 12
  start-page: 10545
  issue: 17
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib91
  article-title: Electrode materials for stretchable triboelectric nanogenerator in wearable electronics
  publication-title: RSC Adv.
  doi: 10.1039/D2RA01088G
– volume: 97
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib143
  article-title: Industrial production of bionic scales knitting fabric-based triboelectric nanogenerator for outdoor rescue and human protection
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107168
– volume: 75
  year: 2020
  ident: 10.1016/j.nanoen.2022.108043_bib113
  article-title: Sustainable and shape-adaptable liquid single-electrode triboelectric nanogenerator for biomechanical energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105027
– year: 2020
  ident: 10.1016/j.nanoen.2022.108043_bib118
  article-title: Stretchable and shape‐adaptable triboelectric nanogenerator based on biocompatible liquid electrolyte for biomechanical energy harvesting and wearable human–machine interaction
  publication-title: Adv. Funct. Mater.
– volume: 51
  start-page: 446
  year: 2017
  ident: 10.1016/j.nanoen.2022.108043_bib31
  article-title: PEDOT electrodes for triboelectric generator devices
  publication-title: Org. Electron. Phys. Mater. Appl.
– volume: 10
  start-page: 2158
  year: 2019
  ident: 10.1016/j.nanoen.2022.108043_bib39
  article-title: Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10061-y
– volume: 46
  start-page: 63
  year: 2018
  ident: 10.1016/j.nanoen.2022.108043_bib22
  article-title: Realizing the potential of polyethylene oxide as new positive tribo-material: over 40 W/m2 high power flat surface triboelectric nanogenerators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.01.034
– volume: 15
  start-page: 8435
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib79
  article-title: A self-powered and concealed sensor based on triboelectric nanogenerators for cultural-relic anti-theft systems
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-4443-y
– volume: 8
  start-page: 6273
  year: 2014
  ident: 10.1016/j.nanoen.2022.108043_bib62
  article-title: Fiber-based generator for wearable electronics and mobile medication
  publication-title: ACS Nano
  doi: 10.1021/nn501732z
– volume: 2
  start-page: 453
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib2
  article-title: Advanced polymer-based electrolytes in zinc–air batteries
  publication-title: eScience
  doi: 10.1016/j.esci.2022.08.004
– volume: 24
  start-page: 3332
  year: 2014
  ident: 10.1016/j.nanoen.2022.108043_bib5
  article-title: Theoretical investigation and structural optimization of single‐electrode triboelectric nanogenerators
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201303799
– volume: 4
  year: 2019
  ident: 10.1016/j.nanoen.2022.108043_bib84
  article-title: Human–machine interfacing enabled by triboelectric nanogenerators and tribotronics
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201800487
– volume: 13
  start-page: 847
  year: 2013
  ident: 10.1016/j.nanoen.2022.108043_bib57
  article-title: Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator
  publication-title: Nano Lett.
  doi: 10.1021/nl4001053
– volume: 76
  year: 2020
  ident: 10.1016/j.nanoen.2022.108043_bib131
  article-title: Ultra-stretchable, durable and conductive hydrogel with hybrid double network as high performance strain sensor and stretchable triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105035
– volume: 7
  start-page: 10424
  year: 2013
  ident: 10.1016/j.nanoen.2022.108043_bib6
  article-title: Triboelectric nanogenerator built on suspended 3D spiral structure as vibration and positioning sensor and wave energy harvester
  publication-title: ACS Nano
  doi: 10.1021/nn405209u
– volume: 98
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib112
  article-title: Fingerprint-shaped triboelectric tactile sensor
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107324
– volume: 4
  start-page: 321
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib138
  article-title: Fiber electronics bring a new generation of acoustic fabrics
  publication-title: Adv. Fiber Mater.
  doi: 10.1007/s42765-022-00169-0
– volume: 64
  start-page: 634
  year: 2019
  ident: 10.1016/j.nanoen.2022.108043_bib105
  article-title: Polymer-based flexible bioelectronics
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2019.04.011
– volume: 58
  start-page: 750
  year: 2019
  ident: 10.1016/j.nanoen.2022.108043_bib163
  article-title: Highly flexible, breathable, tailorable and washable power generation fabrics for wearable electronics
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.02.010
– volume: 9
  start-page: 4280
  year: 2018
  ident: 10.1016/j.nanoen.2022.108043_bib169
  article-title: Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06759-0
– volume: 32
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib171
  article-title: Fabric‐assisted MXene/silicone nanocomposite‐based triboelectric nanogenerators for self‐powered sensors and wearable electronics
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202107143
– volume: 1
  start-page: 328
  year: 2012
  ident: 10.1016/j.nanoen.2022.108043_bib42
  article-title: Flexible triboelectric generator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.01.004
– volume: 56
  start-page: 16
  year: 2019
  ident: 10.1016/j.nanoen.2022.108043_bib141
  article-title: Progress in textile-based triboelectric nanogenerators for smart fabrics
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.11.025
– volume: 27
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib147
  article-title: Knitting integral conformal all-textile strain sensor with commercial apparel characteristics for smart textiles
  publication-title: Appl. Mater. Today
– volume: 6
  year: 2021
  ident: 10.1016/j.nanoen.2022.108043_bib4
  article-title: Advances in nanostructures for high‐performance triboelectric nanogenerators
  publication-title: Adv. Mater. Technol.
– volume: 97
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib149
  article-title: Waste textiles as the versatile triboelectric energy-harvesting platform for self-powered applications in sports and athletics
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107208
– volume: 87
  year: 2021
  ident: 10.1016/j.nanoen.2022.108043_bib15
  article-title: Studying of contact electrification and electron transfer at liquid-liquid interface
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106191
– volume: 13
  start-page: 16916
  year: 2021
  ident: 10.1016/j.nanoen.2022.108043_bib161
  article-title: Enhancing the performance of fabric-based triboelectric nanogenerators by structural and chemical modification
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c02815
– volume: 98
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib156
  article-title: Highly integrated, scalable manufacturing and stretchable conductive core/shell fibers for strain sensing and self-powered smart textiles
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107240
– volume: 12
  start-page: 5190
  year: 2018
  ident: 10.1016/j.nanoen.2022.108043_bib170
  article-title: Screen-printed washable electronic textiles as self-powered touch/gesture tribo-sensors for intelligent human–machine interaction
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b02477
– volume: 75
  year: 2020
  ident: 10.1016/j.nanoen.2022.108043_bib69
  article-title: Natural wood-based triboelectric nanogenerator as self-powered sensing for smart homes and floors
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104957
– volume: 29
  year: 2019
  ident: 10.1016/j.nanoen.2022.108043_bib101
  article-title: Fingerprint‐inspired conducting hierarchical wrinkles for energy‐harvesting E‐skin
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201903580
– volume: 32
  start-page: 479
  year: 2017
  ident: 10.1016/j.nanoen.2022.108043_bib41
  article-title: Self-powered wireless smart patch for healthcare monitoring
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.01.008
– volume: 30
  year: 2020
  ident: 10.1016/j.nanoen.2022.108043_bib107
  article-title: A stretchable highoutput triboelectric nanogenerator improved by MXene liquid electrode with high electronegativity
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202004181
– volume: 2
  year: 2020
  ident: 10.1016/j.nanoen.2022.108043_bib3
  article-title: Recent progress of triboelectric nanogenerators: from fundamental theory to practical applications
  publication-title: EcoMat
  doi: 10.1002/eom2.12059
– volume: 14
  start-page: 88
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib90
  article-title: A liquid–solid interface-based triboelectric tactile sensor with ultrahigh sensitivity of 21.48 kPa−1
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-022-00831-7
– volume: 84
  year: 2021
  ident: 10.1016/j.nanoen.2022.108043_bib150
  article-title: Triboelectric nanogenerator/supercapacitor in-one self-powered textile based on PTFE yarn wrapped PDMS/MnO2 NW hybrid elastomer
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105918
– volume: 10
  start-page: 3887
  year: 2014
  ident: 10.1016/j.nanoen.2022.108043_bib59
  article-title: Nature‐replicated nano‐in‐micro structures for triboelectric energy harvesting
  publication-title: Small
  doi: 10.1002/smll.201400863
– volume: 15
  start-page: 272
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib60
  article-title: Enhancement of output power density in a modified polytetrafluoroethylene surface using a sequential O2/Ar plasma etching for triboelectric nanogenerator applications
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3470-4
– volume: 74
  year: 2020
  ident: 10.1016/j.nanoen.2022.108043_bib30
  article-title: A multifunctional TENG yarn integrated into agrotextile for building intelligent agriculture
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104863
– year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib98
  article-title: Thin, soft, 3D printing enabled crosstalk minimized triboelectric nanogenerator arrays for tactile sensing
  publication-title: Fundam. Res.
– volume: 7
  start-page: 54829
  year: 2017
  ident: 10.1016/j.nanoen.2022.108043_bib153
  article-title: Highly stretchable fiber-based single-electrode triboelectric nanogenerator for wearable devices
  publication-title: RSC Adv.
  doi: 10.1039/C7RA10285B
– volume: 68
  year: 2020
  ident: 10.1016/j.nanoen.2022.108043_bib52
  article-title: On the first principle theory of nanogenerators from Maxwell's equations
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104272
– volume: 77
  year: 2020
  ident: 10.1016/j.nanoen.2022.108043_bib24
  article-title: Self-powered gold nanowire tattoo triboelectric sensors for soft wearable human-machine interface
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105295
– volume: 16
  start-page: 4415
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib152
  article-title: Electroassisted core-spun triboelectric nanogenerator fabrics for intellisense and artificial intelligence perception
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c10680
– volume: 6
  start-page: 1112
  year: 2018
  ident: 10.1016/j.nanoen.2022.108043_bib36
  article-title: Single-electrode, nylon-fiber-enhanced polytetrafluoroethylene electret film with hollow cylinder structure for mechanical energy harvesting
  publication-title: Energy Technol.
  doi: 10.1002/ente.201700779
– volume: 10
  start-page: 1427
  year: 2019
  ident: 10.1016/j.nanoen.2022.108043_bib18
  article-title: Quantifying the triboelectric series
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09461-x
– volume: 8
  start-page: 13787
  year: 2020
  ident: 10.1016/j.nanoen.2022.108043_bib130
  article-title: An anti-freezing hydrogel based stretchable triboelectric nanogenerator for biomechanical energy harvesting at sub-zero temperature
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA03215H
– ident: 10.1016/j.nanoen.2022.108043_bib75
  doi: 10.1109/ICASSP.2003.1202718
– volume: 14
  start-page: 24832
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib80
  article-title: Deep learning-assisted triboelectric smart mats for personnel comprehensive monitoring toward maritime safety
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c05734
– year: 2021
  ident: 10.1016/j.nanoen.2022.108043_bib14
  article-title: From contact-electrification to triboelectric nanogenerators
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/1361-6633/ac0a50
– ident: 10.1016/j.nanoen.2022.108043_bib76
  doi: 10.1109/INFCOM.2000.832252
– volume: 10
  start-page: 5147
  year: 2019
  ident: 10.1016/j.nanoen.2022.108043_bib81
  article-title: Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13166-6
– volume: 265
  year: 2021
  ident: 10.1016/j.nanoen.2022.108043_bib133
  article-title: Transparent, conductive cellulose hydrogel for flexible sensor and triboelectric nanogenerator at subzero temperature
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2021.118078
– volume: 32
  start-page: 84
  year: 2020
  ident: 10.1016/j.nanoen.2022.108043_bib146
  article-title: 3D double-faced interlock fabric triboelectric nanogenerator for bio-motion energy harvesting and as self-powered stretching and 3D tactile sensors
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2019.10.025
– volume: 30
  start-page: 1705195
  year: 2018
  ident: 10.1016/j.nanoen.2022.108043_bib38
  article-title: Shape memory polymers for body motion energy harvesting and self-powered mechanosensing
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705195
– volume: 11
  start-page: 7513
  year: 2019
  ident: 10.1016/j.nanoen.2022.108043_bib109
  article-title: A liquid PEDOT:PSS electrode-based stretchable triboelectric nanogenerator for a portable self-charging power source
  publication-title: Nanoscale
  doi: 10.1039/C9NR01271K
– volume: 32
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib73
  article-title: A siloxene/ecoflex nanocomposite‐based triboelectric nanogenerator with enhanced charge retention by MoS2/LIG for self‐powered touchless sensor applications
  publication-title: Adv. Funct. Mater.
– volume: 7
  year: 2017
  ident: 10.1016/j.nanoen.2022.108043_bib123
  article-title: Environmentally friendly hydrogel-based triboelectric nanogenerators for versatile energy harvesting and self-powered sensors
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601529
– volume: 6
  start-page: 3235
  year: 2013
  ident: 10.1016/j.nanoen.2022.108043_bib44
  article-title: A transparent single-friction-surface triboelectric generator and self-powered touch sensor
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee42311e
– volume: 11
  start-page: 2093
  year: 2020
  ident: 10.1016/j.nanoen.2022.108043_bib16
  article-title: Quantifying and understanding the triboelectric series of inorganic non-metallic materials
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15926-1
– volume: 27
  start-page: 298
  year: 2016
  ident: 10.1016/j.nanoen.2022.108043_bib32
  article-title: Conformal, graphene-based triboelectric nanogenerator for self-powered wearable electronics
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.07.009
– volume: 99
  start-page: 24449
  year: 1994
  ident: 10.1016/j.nanoen.2022.108043_bib74
  article-title: GPS precise tracking of TOPEX/POSEIDON: results and implications
  publication-title: J. Geophys. Res
  doi: 10.1029/94JC01171
– volume: 7
  start-page: 35
  year: 2021
  ident: 10.1016/j.nanoen.2022.108043_bib1
  article-title: Recent progress in silk fibroin-based flexible electronics
  publication-title: Micro Nanoeng.
  doi: 10.1038/s41378-021-00261-2
– volume: 7
  year: 2017
  ident: 10.1016/j.nanoen.2022.108043_bib168
  article-title: Wearable all-fabric-based triboelectric generator for water energy harvesting
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701243
– year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib124
  article-title: Deformable textile-structured triboelectric nanogenerator knitted with multifunctional sensing fibers for biomechanical energy harvesting
  publication-title: Adv. Fiber Mater.
  doi: 10.1007/s42765-022-00181-4
– volume: 70
  year: 2020
  ident: 10.1016/j.nanoen.2022.108043_bib94
  article-title: Electron transfer mechanism of graphene/Cu heterostructure for improving the stability of triboelectric nanogenerators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104540
– volume: 12
  start-page: 2027
  year: 2018
  ident: 10.1016/j.nanoen.2022.108043_bib111
  article-title: Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b00147
– volume: 10
  start-page: 1
  year: 2017
  ident: 10.1016/j.nanoen.2022.108043_bib19
  article-title: Triboelectric nanogenerators as flexible power sources
  publication-title: npj Flex. Electron.
– year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib70
  article-title: Highly-stretchable rope-like triboelectric nanogenerator for self-powered monitoring in marine structures
  publication-title: Nano Energy
– volume: 27
  start-page: 595
  year: 2016
  ident: 10.1016/j.nanoen.2022.108043_bib55
  article-title: High-performance triboelectric nanogenerators with artificially well-tailored interlocked interfaces
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.08.014
– volume: 25
  start-page: 6594
  year: 2013
  ident: 10.1016/j.nanoen.2022.108043_bib48
  article-title: A single‐electrode based triboelectric nanogenerator as self‐powered tracking system
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302453
– volume: 597
  start-page: 171
  year: 2021
  ident: 10.1016/j.nanoen.2022.108043_bib122
  article-title: Highly stretchable and self-healing cellulose nanofiber-mediated conductive hydrogel towards strain sensing application
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.04.001
– volume: 34
  start-page: 442
  year: 2017
  ident: 10.1016/j.nanoen.2022.108043_bib82
  article-title: Self-powered transparent glass-based single electrode triboelectric motion tracking sensor array
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.03.002
– volume: 7
  year: 2017
  ident: 10.1016/j.nanoen.2022.108043_bib7
  article-title: An ultrathin flexible single-electrode triboelectric-nanogenerator for mechanical energy harvesting and instantaneous force sensing
  publication-title: Adv. Energy Mater.
– volume: 67
  year: 2020
  ident: 10.1016/j.nanoen.2022.108043_bib21
  article-title: Expanding the portfolio of tribo-positive materials: aniline formaldehyde condensates for high charge density triboelectric nanogenerators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104291
– volume: 75
  year: 2020
  ident: 10.1016/j.nanoen.2022.108043_bib96
  article-title: Tactile electronic skin to simultaneously detect and distinguish between temperature and pressure based on a triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105073
– volume: 11
  start-page: 1
  year: 2020
  ident: 10.1016/j.nanoen.2022.108043_bib68
  article-title: Deep learning enabled smart mats as a scalable floor monitoring system
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18471-z
– volume: 45
  start-page: 266
  year: 2018
  ident: 10.1016/j.nanoen.2022.108043_bib35
  article-title: MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.01.004
– volume: 9
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib126
  article-title: Transparent self-powered triboelectric sensor based on PVA/PA hydrogel for promoting human-machine interaction in nursing and patient safety
  publication-title: Nano Energy
– volume: 56
  start-page: 338
  year: 2019
  ident: 10.1016/j.nanoen.2022.108043_bib34
  article-title: Microwave-welded single-walled carbon nanotubes as suitable electrodes for triboelectric energy harvesting from biomaterials and bioproducts
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.11.059
– volume: 39
  start-page: 429
  year: 2017
  ident: 10.1016/j.nanoen.2022.108043_bib115
  article-title: Bioinspired stretchable triboelectric nanogenerator as energy-harvesting skin for self-powered electronics
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.07.022
– volume: 84
  year: 2021
  ident: 10.1016/j.nanoen.2022.108043_bib159
  article-title: 3D printed stretchable smart fibers and textiles for self-powered e-skin
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105866
– volume: 8
  start-page: 3843
  year: 2014
  ident: 10.1016/j.nanoen.2022.108043_bib64
  article-title: Triboelectric sensor for self-powered tracking of object motion inside tubing
  publication-title: ACS Nano
  doi: 10.1021/nn500695q
– volume: 98
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib116
  article-title: Robust and flexible triboelectric nanogenerator using non-Newtonian fluid characteristics towards smart traffic and human-motion detecting system
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107246
– volume: 15
  start-page: 14653
  year: 2021
  ident: 10.1016/j.nanoen.2022.108043_bib135
  article-title: Self-healing and elastic triboelectric nanogenerators for muscle motion monitoring and photothermal treatment
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c04384
– volume: 100
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib162
  article-title: Silicone-incorporated nanoporous cobalt oxide and MXene nanocomposite-coated stretchable fabric for wearable triboelectric nanogenerator and self-powered sensing applications
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107454
– volume: 8
  start-page: 481
  year: 2020
  ident: 10.1016/j.nanoen.2022.108043_bib8
  article-title: Triboelectric nanogenerators: fundamental physics and potential applications
  publication-title: Friction
  doi: 10.1007/s40544-020-0390-3
– volume: 4
  start-page: 1124
  issue: 3
  year: 2022
  ident: 10.1016/j.nanoen.2022.108043_bib102
  article-title: Elastic and skin-contact triboelectric nanogenerators and their applicability in energy harvesting and tactile sensing
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.1c01246
SSID ssj0000651712
Score 2.6392293
SecondaryResourceType review_article
Snippet Triboelectric nanogenerators (TENGs) play a prominent role in steadily developing the Internet of Things (IoT) and the Fourth Industrial Revolution (fusion of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108043
SubjectTerms Films based SE-TENGs
Flexible TENGs
Single electrode
Textile based SE-TENGs
Title A review of single electrode triboelectric nanogenerators
URI https://dx.doi.org/10.1016/j.nanoen.2022.108043
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lBy8rk32kc0eS7FUhV600FvYx0QqJS1Sr_5295GUCqLgMctOWL4d5pF8M4PQrWFaZlZprIVNMWMWsLKcYG0rQwoOvIDA8p3mkxl7nPN5B43aWhhPq2xsf7TpwVo3K4MGzcF6sRg8E5e7uNe5AMLpKAn1vYwJr-V3n9n2O4tzsZkIPz39fuwF2gq6QPOqVb0C3wiVkMC3Y_RnD7XjdcZH6LAJF5NhPNEx6kB9gg52mgieIjlMYv1JsqoSn_kvIWmG21hI_ECrVXxcmMQf4zU0mvZDds7QbHz_MprgZiACNlSQDZY-O-KQahfjU5WTAmSaV9KAiyogz4HrnGtuTEqskJaCc91KKSYqSZkodEbPUbde1XCBEm5EBgUXykpgUOSSU1lpt0QrWzCte4i2IJSm6Rbuh1Ysy5YW9lZG6EoPXRmh6yG8lVrHbhl_7BctvuW3Wy-dQf9V8vLfkldo34-Mj8zra9TdvH_AjQssNrofNKeP9oYPT5PpF3yRzO4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JasMwEBUhObQ9lK40XX3oVcTWYlnHEBqSJs2lCeQmLGlcUoIdSvr_lbyEFEoLPVp4jHgWs9gz7yH0aJiWkU011sKGmDELOLWcYG0zQxIOPIGyy3cWjxbsecmXLTRoZmF8W2Xt-yufXnrreqVXo9nbrFa9V-JqF_c4l0C4M0r8fG_Hs1PxNur0x5PRbPepxUXZSJT_Pb0J9jbNEF3Z6ZWneQGeC5WQsuWO0Z-D1F7gGZ6g4zpjDPrVpk5RC_IzdLTHI3iOZD-oRlCCIgt88b-GoNa3sRB4TauiulyZwG_jreSa9jo7F2gxfJoPRrjWRMCGCrLF0hdIHELt0nyaxiQBGcaZNOASC4hj4DrmmhsTEiukpeCid5qmTGSSMpHoiF6idl7kcIUCbkQECReplcAgiSWnMtNuiWY2YVp3EW1AUKYmDPe6FWvVdIa9qwo65aFTFXRdhHdWm4ow44_7RYOv-vbilfPpv1pe_9vyAR2M5i9TNR3PJjfo0CvIV43Yt6i9_fiEO5dnbPV9fY6-AJgBz58
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+single+electrode+triboelectric+nanogenerators&rft.jtitle=Nano+energy&rft.au=Akram%2C+Wasim&rft.au=Chen%2C+Qian&rft.au=Xia%2C+Guangbo&rft.au=Fang%2C+Jian&rft.date=2023-02-01&rft.pub=Elsevier+Ltd&rft.issn=2211-2855&rft.volume=106&rft_id=info:doi/10.1016%2Fj.nanoen.2022.108043&rft.externalDocID=S2211285522011211
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon