A review of single electrode triboelectric nanogenerators
Triboelectric nanogenerators (TENGs) play a prominent role in steadily developing the Internet of Things (IoT) and the Fourth Industrial Revolution (fusion of progression in IoT, artificial intelligence, robotics, and related technologies) by shaping ambiance mechanical energy into electricity. Sing...
Saved in:
Published in | Nano energy Vol. 106; p. 108043 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Triboelectric nanogenerators (TENGs) play a prominent role in steadily developing the Internet of Things (IoT) and the Fourth Industrial Revolution (fusion of progression in IoT, artificial intelligence, robotics, and related technologies) by shaping ambiance mechanical energy into electricity. Single electrode mode (SE-mode) of the TENGs has the simplest configuration where the sole electrode is grounded, and the contact separation or sliding of triboelectric surfaces establishes current flow between ground and electrode. Easily operatable, having attached electrode to only one triboelectric surface, prefer them over the paired electrode TENGs, making it easy for them to be integrated into other devices for self-powered sensing. This review provides a summary of the recently developed film and textile-based single electrode triboelectric nanogenerators (SE-TENGs). Their construction, applications, output performances, performance enhancing approaches with fabrication techniques, and measured durabilities are outlined. Film-based SE-TENGs are briefed on the base of metal electrodes, 1D and 2D nanomaterials-based, conductive materials encapsulated in elastic matrices, and conductive hydrogels, while textile-based SE-TENGs are categorized into knitting-based, weaving-based, and conductive fabrics as electrodes for SE-TENGs. Finally, existing challenges and future developments in SE-TENGs are discussed.
[Display omitted]
•Principle, construction, and power generation of single electrode TENGs (SE-TENGs).•Various applications of film and textile-based SE-TENGs.•Strategies for improving the output performance of SE-TENGs.•Challenges and future research directions in SE-TENGs have been proposed. |
---|---|
AbstractList | Triboelectric nanogenerators (TENGs) play a prominent role in steadily developing the Internet of Things (IoT) and the Fourth Industrial Revolution (fusion of progression in IoT, artificial intelligence, robotics, and related technologies) by shaping ambiance mechanical energy into electricity. Single electrode mode (SE-mode) of the TENGs has the simplest configuration where the sole electrode is grounded, and the contact separation or sliding of triboelectric surfaces establishes current flow between ground and electrode. Easily operatable, having attached electrode to only one triboelectric surface, prefer them over the paired electrode TENGs, making it easy for them to be integrated into other devices for self-powered sensing. This review provides a summary of the recently developed film and textile-based single electrode triboelectric nanogenerators (SE-TENGs). Their construction, applications, output performances, performance enhancing approaches with fabrication techniques, and measured durabilities are outlined. Film-based SE-TENGs are briefed on the base of metal electrodes, 1D and 2D nanomaterials-based, conductive materials encapsulated in elastic matrices, and conductive hydrogels, while textile-based SE-TENGs are categorized into knitting-based, weaving-based, and conductive fabrics as electrodes for SE-TENGs. Finally, existing challenges and future developments in SE-TENGs are discussed.
[Display omitted]
•Principle, construction, and power generation of single electrode TENGs (SE-TENGs).•Various applications of film and textile-based SE-TENGs.•Strategies for improving the output performance of SE-TENGs.•Challenges and future research directions in SE-TENGs have been proposed. |
ArticleNumber | 108043 |
Author | Xia, Guangbo Akram, Wasim Fang, Jian Chen, Qian |
Author_xml | – sequence: 1 givenname: Wasim surname: Akram fullname: Akram, Wasim organization: College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China – sequence: 2 givenname: Qian surname: Chen fullname: Chen, Qian organization: College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China – sequence: 3 givenname: Guangbo surname: Xia fullname: Xia, Guangbo organization: College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China – sequence: 4 givenname: Jian surname: Fang fullname: Fang, Jian email: jian.fang@suda.edu.cn organization: College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China |
BookMark | eNqFkMtKxDAUhrMYwXGcN3CRF2jNvY0LYRi8wYAbXYc0PR1SaiJJUHx7O9SVCz2bwznw_fD9F2gVYgCEriipKaHqeqyDDRFCzQhj86slgq_QmjFKK9ZKeY62OY9kHiVpQ9ka6R1O8OHhE8cBZx-OE2CYwJUUe8Al-S4up3f4lH2EAMmWmPIlOhvslGH7szfo9f7uZf9YHZ4fnva7Q-V4w0qlWau1BNLJVnKrWAuaqEE7EFyDUiA7JTvpHGF9o3sOTAhrrWgGzUXTdpRvkFhyXYo5JxjMe_JvNn0ZSszJ2oxmsTYna7NYz9jNL8z5YouPoSTrp__g2wWGWWxuJ5nsPAQHvU9zGaaP_u-Aby9NeRc |
CitedBy_id | crossref_primary_10_1016_j_nwnano_2024_100057 crossref_primary_10_1021_acssensors_4c00319 crossref_primary_10_1021_jacs_4c07446 crossref_primary_10_1142_S1793292024300068 crossref_primary_10_1007_s12598_023_02518_3 crossref_primary_10_1007_s40820_024_01432_2 crossref_primary_10_1016_j_mtphys_2024_101496 crossref_primary_10_1016_j_mtsust_2024_100801 crossref_primary_10_3390_mi16030313 crossref_primary_10_35848_1882_0786_ad1f06 crossref_primary_10_1002_aelm_202400950 crossref_primary_10_1016_j_jallcom_2023_170693 crossref_primary_10_1002_smll_202403052 crossref_primary_10_1016_j_nanoen_2024_109808 crossref_primary_10_1016_j_nanoen_2024_109928 crossref_primary_10_1016_j_cej_2024_156601 crossref_primary_10_1021_acsaelm_4c01107 crossref_primary_10_1016_j_nanoen_2024_110191 crossref_primary_10_1002_cssc_202400366 crossref_primary_10_1016_j_nanoen_2024_109888 crossref_primary_10_1016_j_nanoen_2024_109521 crossref_primary_10_1002_advs_202404019 crossref_primary_10_1016_j_nanoen_2024_110620 crossref_primary_10_3390_polym15051295 crossref_primary_10_1016_j_nanoen_2024_110469 crossref_primary_10_1016_j_ijbiomac_2024_130335 crossref_primary_10_1002_smll_202401846 crossref_primary_10_1016_j_cej_2023_147317 crossref_primary_10_1039_D4SC01337A crossref_primary_10_1016_j_cej_2025_159842 crossref_primary_10_1002_flm2_12 crossref_primary_10_1016_j_est_2024_110941 crossref_primary_10_1002_smll_202405520 crossref_primary_10_1007_s11431_023_2540_0 crossref_primary_10_1021_acs_jchemed_4c00885 crossref_primary_10_1016_j_aej_2024_11_092 crossref_primary_10_1039_D3TA04710E crossref_primary_10_1007_s42114_023_00807_0 crossref_primary_10_1016_j_ymssp_2025_112515 crossref_primary_10_1016_j_nanoen_2023_108443 crossref_primary_10_1155_2024_5572736 crossref_primary_10_1016_j_nanoen_2024_109633 crossref_primary_10_1016_j_nanoen_2024_109752 crossref_primary_10_1007_s12274_024_6759_2 crossref_primary_10_1021_acsami_3c07857 crossref_primary_10_1016_j_apmt_2025_102661 crossref_primary_10_1021_acsnano_4c12130 crossref_primary_10_1016_j_polymer_2025_128171 crossref_primary_10_1088_1361_665X_ad8c05 crossref_primary_10_1016_j_colsurfb_2024_114078 crossref_primary_10_1002_celc_202300268 crossref_primary_10_1016_j_matlet_2024_137003 crossref_primary_10_1016_j_eurpolymj_2024_113544 crossref_primary_10_1016_j_nanoen_2024_110568 crossref_primary_10_3390_nanoenergyadv4040023 crossref_primary_10_1016_j_cej_2024_156650 crossref_primary_10_1063_5_0252915 crossref_primary_10_55713_jmmm_v35i1_2226 crossref_primary_10_1002_aelm_202400426 crossref_primary_10_3390_s23041868 crossref_primary_10_1016_j_mtener_2024_101698 crossref_primary_10_1007_s42114_024_00841_6 crossref_primary_10_1016_j_nanoen_2023_109046 crossref_primary_10_1002_ep_14564 crossref_primary_10_1016_j_nanoen_2024_110558 crossref_primary_10_1039_D3TA01076G crossref_primary_10_1016_j_nanoen_2024_110275 crossref_primary_10_1088_2631_7990_ad878b crossref_primary_10_1016_j_sna_2024_116046 crossref_primary_10_1021_acsami_4c05359 crossref_primary_10_1002_marc_202400321 crossref_primary_10_1016_j_nanoen_2024_110304 crossref_primary_10_1002_smll_202308531 crossref_primary_10_1002_admt_202400554 crossref_primary_10_3390_bios13040423 crossref_primary_10_3390_nano14040336 crossref_primary_10_4150_KPMI_2023_30_6_528 crossref_primary_10_3390_lubricants12100332 crossref_primary_10_1016_j_device_2025_100726 crossref_primary_10_1002_smll_202404872 crossref_primary_10_1016_j_ensm_2024_103483 crossref_primary_10_1002_aenm_202303298 crossref_primary_10_1016_j_sna_2025_116278 crossref_primary_10_1002_advs_202306574 crossref_primary_10_1039_D4NR01987C crossref_primary_10_1002_adfm_202408708 crossref_primary_10_1016_j_nanoen_2024_110530 crossref_primary_10_1039_D3MH01519J crossref_primary_10_1002_adfm_202414395 crossref_primary_10_1016_j_nanoen_2024_110253 crossref_primary_10_1039_D4NR05170J crossref_primary_10_1016_j_mser_2025_100971 crossref_primary_10_1002_advs_202310017 crossref_primary_10_1016_j_nanoen_2024_110092 crossref_primary_10_1021_acsaelm_3c01386 crossref_primary_10_1002_adfm_202409081 crossref_primary_10_1109_JFLEX_2024_3408001 crossref_primary_10_1002_aelm_202300643 crossref_primary_10_1016_j_nanoen_2024_110489 crossref_primary_10_1002_adfm_202407204 crossref_primary_10_1002_admt_202401744 crossref_primary_10_1088_2515_7655_ad307e crossref_primary_10_1002_admt_202300685 crossref_primary_10_1016_j_mtcomm_2025_112151 crossref_primary_10_1002_smll_202405064 crossref_primary_10_1016_j_nanoen_2024_109818 crossref_primary_10_1039_D4TC02923B |
Cites_doi | 10.1021/acsnano.1c10678 10.1016/j.nanoen.2021.106601 10.1007/s42765-022-00152-9 10.1002/eom2.12062 10.1016/j.nanoen.2021.106175 10.1126/sciadv.1501624 10.1002/eom2.12191 10.1126/sciadv.1700015 10.1007/s12274-022-4409-0 10.1002/aenm.202201288 10.1016/j.nanoen.2022.106956 10.1007/s12274-017-1609-0 10.1002/aisy.201900090 10.1021/acsnano.1c05685 10.1007/s12274-022-4339-x 10.1016/j.nanoen.2021.106058 10.1021/acsami.2c11567 10.1021/nn403838y 10.1016/j.nanoen.2020.105385 10.1016/S1359-835X(99)00067-6 10.1016/j.jobab.2022.05.003 10.1021/nn4043157 10.1016/j.nanoen.2018.08.048 10.1016/j.nanoen.2020.105590 10.1016/j.nanoen.2020.105383 10.1016/j.nanoen.2022.107067 10.1021/acsaelm.2c00118 10.1016/j.nanoen.2019.05.039 10.1002/adfm.201400431 10.1016/j.nanoen.2022.107284 10.1039/D2RA01088G 10.1002/adma.201804944 10.1002/adma.201400373 10.1002/adma.202003897 10.1002/adma.201802953 10.1021/am500864t 10.1021/acsnano.7b05317 10.1002/adma.201603679 10.1021/acsami.2c03056 10.1016/j.nanoen.2019.103948 10.1016/j.nanoen.2021.106086 10.1002/anie.200701812 10.1002/adfm.201500428 10.1002/admt.202100870 10.1002/admt.201800628 10.1016/j.jare.2013.07.006 10.1016/j.nanoen.2015.01.009 10.1016/j.nanoen.2021.106001 10.1088/0022-3727/8/1/013 10.1016/j.nanoen.2019.03.072 10.1039/D2NR01530G 10.1039/D2TA01209J 10.1088/0022-3727/2/11/307 10.1016/j.nanoen.2019.104158 10.1016/j.nanoen.2020.104605 10.1016/j.nanoen.2021.106695 10.1016/S0021-9290(01)00231-7 10.1021/acsnano.1c11096 10.1016/j.nanoen.2021.106787 10.1109/MEMSYS.2016.7421859 10.1007/s10853-019-03428-5 10.1021/nn403021m 10.1038/s41598-021-04100-2 10.1021/acssuschemeng.9b03629 10.1016/j.carbon.2022.03.037 10.1039/C7TA02680C 10.34133/2019/1091632 10.1063/5.0020961 10.1186/s40580-021-00276-5 10.1021/acsami.7b17585 10.1002/adma.202203073 10.1016/j.nanoen.2018.10.036 10.1021/acsnano.5b03567 10.1016/j.nanoen.2022.107168 10.1016/j.nanoen.2020.105027 10.1038/s41467-019-10061-y 10.1016/j.nanoen.2018.01.034 10.1007/s12274-022-4443-y 10.1021/nn501732z 10.1016/j.esci.2022.08.004 10.1002/adfm.201303799 10.1002/admt.201800487 10.1021/nl4001053 10.1016/j.nanoen.2020.105035 10.1021/nn405209u 10.1016/j.nanoen.2022.107324 10.1007/s42765-022-00169-0 10.1016/j.scib.2019.04.011 10.1016/j.nanoen.2019.02.010 10.1038/s41467-018-06759-0 10.1002/adfm.202107143 10.1016/j.nanoen.2012.01.004 10.1016/j.nanoen.2018.11.025 10.1016/j.nanoen.2022.107208 10.1016/j.nanoen.2021.106191 10.1021/acsami.1c02815 10.1016/j.nanoen.2022.107240 10.1021/acsnano.8b02477 10.1016/j.nanoen.2020.104957 10.1002/adfm.201903580 10.1016/j.nanoen.2017.01.008 10.1002/adfm.202004181 10.1002/eom2.12059 10.1007/s40820-022-00831-7 10.1016/j.nanoen.2021.105918 10.1002/smll.201400863 10.1007/s12274-021-3470-4 10.1016/j.nanoen.2020.104863 10.1039/C7RA10285B 10.1016/j.nanoen.2019.104272 10.1016/j.nanoen.2020.105295 10.1021/acsnano.1c10680 10.1002/ente.201700779 10.1038/s41467-019-09461-x 10.1039/D0TA03215H 10.1109/ICASSP.2003.1202718 10.1021/acsami.2c05734 10.1088/1361-6633/ac0a50 10.1109/INFCOM.2000.832252 10.1038/s41467-019-13166-6 10.1016/j.carbpol.2021.118078 10.1016/j.mattod.2019.10.025 10.1002/adma.201705195 10.1039/C9NR01271K 10.1002/aenm.201601529 10.1039/c3ee42311e 10.1038/s41467-020-15926-1 10.1016/j.nanoen.2016.07.009 10.1029/94JC01171 10.1038/s41378-021-00261-2 10.1002/aenm.201701243 10.1007/s42765-022-00181-4 10.1016/j.nanoen.2020.104540 10.1021/acsnano.8b00147 10.1016/j.nanoen.2016.08.014 10.1002/adma.201302453 10.1016/j.jcis.2021.04.001 10.1016/j.nanoen.2017.03.002 10.1016/j.nanoen.2019.104291 10.1016/j.nanoen.2020.105073 10.1038/s41467-020-18471-z 10.1016/j.nanoen.2018.01.004 10.1016/j.nanoen.2018.11.059 10.1016/j.nanoen.2017.07.022 10.1016/j.nanoen.2021.105866 10.1021/nn500695q 10.1016/j.nanoen.2022.107246 10.1021/acsnano.1c04384 10.1016/j.nanoen.2022.107454 10.1007/s40544-020-0390-3 10.1021/acsaelm.1c01246 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nanoen.2022.108043 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_nanoen_2022_108043 S2211285522011211 |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ JARJE KOM M41 MAGPM MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSM SSR SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c372t-928995e0b5853a628e906f9ce439e66e5b65b5cc02d79d3e244aaa47f93478b13 |
IEDL.DBID | .~1 |
ISSN | 2211-2855 |
IngestDate | Thu Apr 24 23:13:24 EDT 2025 Tue Jul 01 00:57:00 EDT 2025 Fri Feb 23 02:39:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Single electrode Flexible TENGs Films based SE-TENGs Textile based SE-TENGs |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-928995e0b5853a628e906f9ce439e66e5b65b5cc02d79d3e244aaa47f93478b13 |
ParticipantIDs | crossref_primary_10_1016_j_nanoen_2022_108043 crossref_citationtrail_10_1016_j_nanoen_2022_108043 elsevier_sciencedirect_doi_10_1016_j_nanoen_2022_108043 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2023 2023-02-00 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
PublicationDecade | 2020 |
PublicationTitle | Nano energy |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Dong, Wang, Deng, Dai, Zhang, Zou, Gu, Sun, Wang (bib145) 2017; 11 Zhu, Lin, Jing, Bai, Pan, Yang, Zhou, Wang (bib57) 2013; 13 Ding, Chen, Farooq, Zhao, Soin, Yu, Jin, Wang, Dong, Luo (bib22) 2018; 46 Feng, Yu, Sun, Dang, Ren, Shao, Sun (bib129) 2022; 98 Li, Liu, Tao, Song (bib165) 2019; 54 Jiang, Long, Pu, Hu, Wang (bib134) 2021; 86 Zou, Zhang, Guo, Wang, He, Dai, Zheng, Chen, Wang, Xu, Wang (bib18) 2019; 10 Liu, Kuang, Deng, Wang, Wang, Ding, Lai, Chen, Wang, Lin, Qi, Sun, Wang (bib38) 2018; 30 Lv, Bu, Zhou, Liu, Chen, Wang, Fu, Lin, Cao, Zhang (bib66) 2022; 14 Yi, Wang, Niu, Li, Yin, Dai, Zhang, Lin, Wen, Guo, Jie, Yeh, Zi, Liao, You, Zhang, Wang (bib114) 2016; 2 Wu, Liu, Lin, Zhu, Ma, Wang (bib154) 2022; 12 Xiong, Lin, Wang, Gaw, Parida, Lee (bib168) 2017; 7 Mule, Dudem, Patnam, Graham, Yu (bib61) 2019; 7 Bai, He, Zhang, Xu, Zhang, Shi, Yang, Zhou, Zhu, Guo, Lee (bib158) 2022; 94 Cao, Pu, Du, Yang, Wang, Guo, Zhao, Yuan, Zhang, Li, Wang (bib170) 2018; 12 Ying, Zuo, Wan, Liu (bib127) 2022; 4 Yang, Zhang, Chen, Jing, Zhou, Wen, Wang (bib43) 2013; 7 Wang (bib14) 2021 Liu, Zhang, Wang, Li (bib104) 2020; 78 Kim, Kim, Kwak, Kim, Choi, Hyung Kim, Lee, Kong, Park, Jung, Lee, Lee, Jung (bib34) 2019; 56 Hao, Jiao, Chen, Wang, Cao (bib69) 2020; 75 Cao, Ouyang, Xin, Chao, Ma, Li, Chen, Ma (bib107) 2020; 30 Zhao, Lu, Zheng, Fang, Zheng, Chen, Wang (bib15) 2021; 87 Su, Zhu, Yang, Yang, Chen, Jing, Wu, Jiang, Wang (bib64) 2014; 8 Wang, Zhai, Wei, Shi, Huo, Li, Wu, Wang (bib79) 2022; 15 Gao, Zhao, Zhang, An, Xu, Xun, Zhao, Ouyang, Zhang, Liao (bib100) 2022; 91 Wu, Luo, Qu, Daoud, Qi (bib120) 2019; 64 Aazem, Mathew, Radhakrishnan, Vijoy, John, Mulvihill, Pillai (bib23) 2022; 12 Bertiger, Bar-Sever, Christensen, Davis, Guinn, Haines, Ibanez-Meier, Jee, Lichten, Melbourne, Muellerschoen, Munson, Vigue, Wu, Yunck, Schutz, Abusali, Rim, Watkins, Willis (bib74) 1994; 99 Xu, Huang, Wong, Chen, Bai, Hao (bib123) 2017; 7 Yang, An, Sun, Zhang, Zu, Li, Jiang, Chen, Wang (bib126) 2022; 9 Niu, Liu, Wang, Lin, Zhou, Hu, Wang (bib5) 2014; 24 . M. Shi, J. Zhang, M. Han, Y. Song, Z. Su, H. Zhang, A single-electrode wearable triboelectric nanogenerator based on conductive & stretchable fabric, In: Proceedings of the 2016 IEEE 29th International Conference Micro Electro Mech. Syst. IEEE 2016 1228–1231. Parida, Thangavel, Cai, Zhou, Park, Xiong, Lee (bib39) 2019; 10 Dudem, Kim, Yu (bib27) 2018; 11 Jiang, An, Liang, Zuo, Yi, Ning, Zhang, Dong, Wang (bib144) 2022; 15 Xiong, Cui, Chen, Wang, Parida, Lin, Lee (bib169) 2018; 9 Shi, Wu, Zhang, Han, Meng, Zhang (bib41) 2017; 32 Yang, Sun, Wen, Cheng, Zheng, Shao, Xia, Chen, Lan, Xie, Zhou, Zhong, Sun, Lee (bib111) 2018; 12 Zhu, Zhang, Wang, Wu, Cao, He, Li, Luo, Li, Mao (bib71) 2022; 15 A. Tarighat, N. Khajehnouri and A.H. Sayed, Improved wireless location accuracy using antenna arrays and interference cancellation, In: Proceedings of the 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing. 2003 IV-616. Niu, Peng, Chen, Liu, Wang, Dong, Pan, Cong, Liu, Jiang (bib143) 2022; 97 Zhao, Yan, Liu, Fu, Peng, Hu, Zheng (bib151) 2016; 28 Salauddin, Rana, Rahman, Sharifuzzaman, Maharjan, Bhatta, Cho, Lee, Park, Shrestha, Sharma, Park (bib171) 2022; 32 Chu, Jang, Lee, Chae, Ahn (bib32) 2016; 27 Sun, Zhao, Wang, Zhou, Yan, Zheng, Huang, Dai, Liu, Shen (bib131) 2020; 76 Luo, Wang (bib3) 2020; 2 Wang, Hu, Wang, Liu, Shi, Wang, Qiao, Li, Yang, Liu (bib80) 2022; 14 Hu, Yang, Jing, Niu, Wu, Wang (bib6) 2013; 7 Shao, Willatzen, Shi, Wang (bib53) 2019; 60 Shankaregowda, Ahmed, Nanjegowda, Wang, Guana, Puttaswamy, Amini, Zhang, Kong, Sannathammegowda, Wang, Cheng (bib33) 2019; 66 Li, Zhu, Zhang, Wang, Luo, Leng, Zhou, Pan, Mao (bib88) 2022; 16 Niu, Cheng, Cao, Wang, Wang, Han, Long, Han (bib106) 2021; 87 Yang, Zhu, Zhang, Chen, Zhong, Lin, Su, Bai, Wen, Wang (bib45) 2013; 7 Jiao, Lu, Lu, Yue, Xu, Xiao, Han (bib122) 2021; 597 Prada, Harnchana, Lakhonchai, Chingsungnoen, Poolcharuansin, Chanlek, Klamchuen, Thongbai, Amornkitbamrung (bib60) 2022; 15 Guo, Fang, Wang, Libanori, Xiao, Wan, Cui, Sang, Zhang, Zhang, Chen (bib125) 2022; 32 Zhang, Chen, Guo, Guo, Pu, Wang (bib37) 2020; 30 Wang, Yang, Wang (bib19) 2017; 10 Lin, Cheng, Lee, Pradel, Wang (bib49) 2014; 26 Hu, Zheng (bib141) 2019; 56 Lee, Kim, Kang, Lee (bib56) 2018; 53 Zou, Guo, Xue, Zhang, Shen, Liu, Wang, He, Dai, Jiang, Zheng, Zhang, Xu, Wang (bib16) 2020; 11 Davies (bib17) 1969; 2 Wu, Dai, Sun, Zhu, Xiong, Liang, Wong, Huang, Qin, Hao (bib156) 2022; 98 Jiang, Li, Ying, Ping (bib30) 2020; 74 Dong, Wu, Deng, Wang, Zou, Chen, Hu, Gu, Sun, Wang (bib25) 2018; 30 Aazem, Mathew, Radhakrishnan, Vijoy, John, Mulvihill, Pillai (bib91) 2022; 12 Wei, Wang, Wu, Wang (bib87) 2022; 34 Jiao, Matin Nazar, Egbe, Barri, Alavi (bib50) 2022; 12 Dong, Wang, Wu, Zhu, Shi, Morikawa (bib124) 2022 Chen, Chen, Wu, Guo, Yu, Du, Wang (bib146) 2020; 32 Choi, Lee, Jun, Kim, Kim, Lee (bib55) 2016; 27 Si, Sun, Qiu, Liu, Yang (bib147) 2022; 27 Shi, Zhang, He, Sun, Wang, Feng, Shan, Salam, Lee (bib68) 2020; 11 Wang, Li, Tao, Yan, Wang, Chen, Huang, Li, Chen, Bian (bib97) 2022; 93 Park, Choi, Lee, Kim, Kim (bib153) 2017; 7 Shrestha, Sharma, Pradhan, Bhatta, Maharjan, Rana, Lee, Seonu, Shin, Park (bib73) 2022; 32 Chen, Ding, Pan, Xuan, Guo, Ye, Yin, Jin, Wang, Dong (bib82) 2017; 34 Chen, Deng, Ouyang, Zheng, Jiang, Bai, Xue (bib159) 2021; 84 Zeng, Xiang, Zheng, Cao, Wang, Wang (bib72) 2022; 91 Zou, Xu, Chen, Chen (bib4) 2021; 6 Chen, Li, Lin, Du, Han, Zhu, Pan, Wang (bib78) 2014; 24 He, Sohn, Ma, Kang (bib164) 2020; 78 Shi, Chen, Li, Sun, Jiang, Bao, Xie, Peng, Liu, Wen, Sun (bib109) 2019; 11 Jiang, Wu, Wang, Wang, He, Wang, Alshareef (bib35) 2018; 45 Luo, Wang, Xu, Wang, Han, Jiang, Lai, Bai, Tang, Fan (bib81) 2019; 10 He, Xie, Yao, Li, Liu, Gao, Lu, Chang, Yu (bib67) 2021; 81 Wu, Luo, Qu, Daoud, Qi (bib113) 2020; 75 Rahman, Rana, Salauddin, Zahed, Lee, Yoon, Park (bib162) 2022; 100 Bao, Wen, Shi, Xie, Jiang, Jiang, Yang, Liao, Sun (bib130) 2020; 8 He, Du, Feng, Li, Wang, Zhang, Yu, Wan, Zhai (bib160) 2021; 86 Wu, Peng (bib105) 2019; 64 Xiao, Li, Zhang, He, Zhang, Liu, Jiang, Duan, Zhang (bib108) 2022 Zhao, Wang, Liu, Yao, Zhang, Zhang, Huang, Zheng, Wang, Li (bib119) 2022; 96 Wang, Zhang, Tang, Zhang, Ning, Tian, Li, Zhang, Mao, Liang (bib63) 2017; 5 Mao, Li, Xie, Liu, Guo, Hu (bib150) 2021; 84 Leong, Ramakrishna, Huang, Bibo (bib142) 2000; 31 Pu, Liu, Chen, Sun, Du, Zhang, Zhai, Hu, Wang (bib136) 2017; 3 Seol, Kim, Cho, Byun, Kim, Kim, Kim, Kim, Jin, Park (bib9) 2018; 30 Lee, Ko, Oh, Lee, Baek, Lee, Sohn, Cha, Kim, Park, Hong (bib167) 2015; 12 Hu, Zhang, Qin, Qian, Zhang, Zhou, Lu (bib133) 2021; 265 Xu, Yang, Lu, Yang, Li, Wen, Cheng, Wang (bib26) 2021; 15 Li, Zhang, Yi, Peng, Cheng, Ning, Sheng, Wang, Dong, Wang (bib148) 2022; 4 Seol, Woo, Lee, Im, Hur, Choi (bib59) 2014; 10 Pan, Zhu (bib138) 2022; 4 Feng, Xia, Sun, Jing, Li, Tao, Mi, Liu (bib161) 2021; 13 Yi, Lin, Niu, Yang, Wang, Chen, Zhou, Zi, Wang, Liao, Zhang, Wang (bib65) 2015; 25 Kang, Zhao, Huang, Ho, Megra, Suk, Sun, Wang, Sun, Cho (bib101) 2019; 29 Ye, Yang, Ren, Dong, Cao, Pei, Ling (bib152) 2022; 16 Zhou, Liu, Wang, Wang (bib8) 2020; 8 Liu, Wen, Lei, Gao, Sun (bib90) 2022; 14 Yun, Tcho, Kim, Kim, Son, Lee, Choi (bib117) 2022; 10 Ahmed (bib121) 2013; 6 Qu, Xue, Liu, Rao, Liu, Li (bib112) 2022; 98 Zhu, Ma, Zhu (bib36) 2018; 6 Šutka, Timusk, Metsik, Ruža, Knite, Mäeorg (bib31) 2017; 51 Park, Oh, Kim, Kim, Lee, Joo, Woo, Bae, Lee (bib137) 2022 Li, Zheng, Zhang, Wang, Cai, Zhang, Yang (bib94) 2020; 70 Fan, Tian, Wang (bib42) 2012; 1 Wang (bib52) 2020; 68 Kim, Yun, Kim (bib116) 2022; 98 Lin, Xu, Xu, Chen, Wang, Zhang, Lin, Yang, Zhao, Wang (bib12) 2019; 31 P. Bahl and V.N. Padmanabhan, "RADAR: an in-building RF-based user location and tracking system, Proceedings IEEE INFOCOM 2000 775–784 vol.2 Li, Liu, Wu, Yao, Gao, Gao, Huang, Wong, Zhou, Li (bib98) 2022 Yang, Zhang, Lin, Zhou, Jing, Su, Yang, Chen, Hu, Wang (bib46) 2013; 7 Ding, Wang, Wu, Guo, Wang (bib84) 2019; 4 (bib128) 2022 Liu, Liu, He, Xia, Guo, Xu, Xia (bib2) 2022; 2 McCarty, Whitesides (bib13) 2008; 47 Wang, Liu, Zhao, Zhang, Zhao, Wan, Zhang, Wang, Li (bib132) 2022; 16 Rao, Chen, Zhao, Ma, Yi, Zhang, Liu, Chen, Yang, Wang (bib96) 2020; 75 Jin, Wang, Sang, Yue, Xu, Mei, Xiao, Lou, Han (bib29) 2022; 14 Zhao, Liu, Wang, Hu, Zhang, Zhang, Wang, Du, Zou, Yuan (bib70) 2022 Wang, Yu, Liu, Liu, Zhang, Zhu, Lei, Jia, Zhai, Wang (bib157) 2020; 71 Shin, Cho, Han, Jung (bib28) 2021; 8 Yang, Ni, Kong, Li, Chen, Zhang, Wang (bib135) 2021; 15 Sahu, Hajra, Panda, Rajaitha, Panigrahi, Rubahn, Mishra, Kim (bib149) 2022; 97 Zhao, Zhang, Xu, Gao, Zhao, Ouyang, Kang, Liao, Zhang (bib86) 2021; 85 Paosangthong, Torah, Beeby (bib140) 2019; 55 Zhang, Olin (bib10) 2020; 2 Cui, Wang, Yi, Yang, Wang, Chen, Liu, Yang (bib40) 2018; 10 Mayagoitia, Nene, Veltnik (bib77) 2002; 35 Wang, Dong, Peng, Pan (bib83) 2019; 1 Cheng, Wallaert, Ardebili, Karim (bib92) 2022; 194 Chen, Cao, Wang, Ma, Zhu, Willander, Jie, Wang (bib7) 2017; 7 Zhao, Soin, Kumar, Shi, Guan, Tsonos, Yu, Ray, McLaughlin, Zhu, Zhou, Luo (bib21) 2020; 67 Wang, Li, Cao, Chen, Yuan, Zhu, Cheng, Duan, Liu (bib110) 2022 Shao, Willatzen, Wang (bib51) 2020; 128 Pratap, Gogurla, Kim (bib102) 2022; 4 Yang, Zhou, Zhang, Liu, Lee, Wang (bib48) 2013; 25 Shin, Barnes, Walsh, Dimov, Tian, Neves, Wright, Yu, Yoo, Russo, Craciun (bib95) 2018; 30 Yang, Chen, Wen, Jing, Yang, Su, Zhu, Wu, Wang (bib47) 2014; 6 Shabana, Mohamed, Ibrahim, Abbas, Mohie, Elhusseiny, Gamal, Ahmed, Ahmed, Khaled (bib54) 2020; 835 Wang, Yin, Yi, Dai, Niu, Han, Zhang, You (bib115) 2017; 39 Kou, Wang, Cheng, Liao, Shi, Luo, Li, Wang (bib89) 2022; 14 Wang, Liu, Yan, Wang, Wang (bib118) 2020 Lowell (bib11) 1975; 8 Hu, Chang, Xiao, Lu, Gao, Zhang, Tao (bib99) 2022; 7 Wen, Sun, Huang, Huang, Su, Wang, Han, Kim, Brugger, Zhang, Zhang (bib1) 2021; 7 Zhong, Zhang, Zhong, Hu, Hu, Wang, Zhou (bib62) 2014; 8 Liu, Gu, Cui, Xu, Qin, Yang (bib139) 2019 Lee, Kim, Choi, Jeon, Yoon, Choi, Lee, Lee, Wie (bib20) 2019; 66 Ma, Wu, Liu, Patil, Gong, Yi, Sheng, Zhang, Wang, Wang, Guo, Wang, Machine-Fabricated (bib155) 2020; 32 Xu, Lu, Takei (b Chen (10.1016/j.nanoen.2022.108043_bib7) 2017; 7 Xiao (10.1016/j.nanoen.2022.108043_bib108) 2022 Davies (10.1016/j.nanoen.2022.108043_bib17) 1969; 2 Seol (10.1016/j.nanoen.2022.108043_bib59) 2014; 10 Zhang (10.1016/j.nanoen.2022.108043_bib37) 2020; 30 Li (10.1016/j.nanoen.2022.108043_bib98) 2022 Wang (10.1016/j.nanoen.2022.108043_bib132) 2022; 16 10.1016/j.nanoen.2022.108043_bib75 Xu (10.1016/j.nanoen.2022.108043_bib26) 2021; 15 Yi (10.1016/j.nanoen.2022.108043_bib114) 2016; 2 Wu (10.1016/j.nanoen.2022.108043_bib120) 2019; 64 Li (10.1016/j.nanoen.2022.108043_bib94) 2020; 70 Zhao (10.1016/j.nanoen.2022.108043_bib119) 2022; 96 Lv (10.1016/j.nanoen.2022.108043_bib66) 2022; 14 Jiang (10.1016/j.nanoen.2022.108043_bib144) 2022; 15 Dong (10.1016/j.nanoen.2022.108043_bib145) 2017; 11 He (10.1016/j.nanoen.2022.108043_bib160) 2021; 86 Yang (10.1016/j.nanoen.2022.108043_bib48) 2013; 25 Parida (10.1016/j.nanoen.2022.108043_bib39) 2019; 10 Jiao (10.1016/j.nanoen.2022.108043_bib122) 2021; 597 Liu (10.1016/j.nanoen.2022.108043_bib2) 2022; 2 Zhu (10.1016/j.nanoen.2022.108043_bib36) 2018; 6 10.1016/j.nanoen.2022.108043_bib76 Wang (10.1016/j.nanoen.2022.108043_bib97) 2022; 93 Wang (10.1016/j.nanoen.2022.108043_bib110) 2022 Wei (10.1016/j.nanoen.2022.108043_bib87) 2022; 34 Kou (10.1016/j.nanoen.2022.108043_bib89) 2022; 14 Pratap (10.1016/j.nanoen.2022.108043_bib102) 2022; 4 Zhao (10.1016/j.nanoen.2022.108043_bib151) 2016; 28 Shabana (10.1016/j.nanoen.2022.108043_bib54) 2020; 835 Liu (10.1016/j.nanoen.2022.108043_bib139) 2019 Lin (10.1016/j.nanoen.2022.108043_bib49) 2014; 26 Ding (10.1016/j.nanoen.2022.108043_bib22) 2018; 46 Cao (10.1016/j.nanoen.2022.108043_bib107) 2020; 30 Pan (10.1016/j.nanoen.2022.108043_bib138) 2022; 4 Shi (10.1016/j.nanoen.2022.108043_bib109) 2019; 11 Chen (10.1016/j.nanoen.2022.108043_bib146) 2020; 32 Zhou (10.1016/j.nanoen.2022.108043_bib8) 2020; 8 Sun (10.1016/j.nanoen.2022.108043_bib131) 2020; 76 Wu (10.1016/j.nanoen.2022.108043_bib113) 2020; 75 Feng (10.1016/j.nanoen.2022.108043_bib161) 2021; 13 Bai (10.1016/j.nanoen.2022.108043_bib158) 2022; 94 Jiao (10.1016/j.nanoen.2022.108043_bib50) 2022; 12 Su (10.1016/j.nanoen.2022.108043_bib64) 2014; 8 Kim (10.1016/j.nanoen.2022.108043_bib116) 2022; 98 Cao (10.1016/j.nanoen.2022.108043_bib170) 2018; 12 Dong (10.1016/j.nanoen.2022.108043_bib124) 2022 Shin (10.1016/j.nanoen.2022.108043_bib28) 2021; 8 Ying (10.1016/j.nanoen.2022.108043_bib127) 2022; 4 Jiang (10.1016/j.nanoen.2022.108043_bib134) 2021; 86 Shin (10.1016/j.nanoen.2022.108043_bib95) 2018; 30 Zhu (10.1016/j.nanoen.2022.108043_bib71) 2022; 15 Chu (10.1016/j.nanoen.2022.108043_bib32) 2016; 27 Wang (10.1016/j.nanoen.2022.108043_bib80) 2022; 14 Xiong (10.1016/j.nanoen.2022.108043_bib169) 2018; 9 Salauddin (10.1016/j.nanoen.2022.108043_bib171) 2022; 32 Hao (10.1016/j.nanoen.2022.108043_bib69) 2020; 75 Yang (10.1016/j.nanoen.2022.108043_bib47) 2014; 6 Prada (10.1016/j.nanoen.2022.108043_bib60) 2022; 15 Wang (10.1016/j.nanoen.2022.108043_bib83) 2019; 1 Aazem (10.1016/j.nanoen.2022.108043_bib91) 2022; 12 Lee (10.1016/j.nanoen.2022.108043_bib20) 2019; 66 Guo (10.1016/j.nanoen.2022.108043_bib125) 2022; 32 Liu (10.1016/j.nanoen.2022.108043_bib104) 2020; 78 Yang (10.1016/j.nanoen.2022.108043_bib43) 2013; 7 Shao (10.1016/j.nanoen.2022.108043_bib53) 2019; 60 Shi (10.1016/j.nanoen.2022.108043_bib41) 2017; 32 Zhang (10.1016/j.nanoen.2022.108043_bib10) 2020; 2 Wang (10.1016/j.nanoen.2022.108043_bib19) 2017; 10 Lin (10.1016/j.nanoen.2022.108043_bib12) 2019; 31 Zhu (10.1016/j.nanoen.2022.108043_bib57) 2013; 13 (10.1016/j.nanoen.2022.108043_bib128) 2022 Li (10.1016/j.nanoen.2022.108043_bib148) 2022; 4 Hu (10.1016/j.nanoen.2022.108043_bib99) 2022; 7 Yang (10.1016/j.nanoen.2022.108043_bib45) 2013; 7 Mule (10.1016/j.nanoen.2022.108043_bib61) 2019; 7 Wu (10.1016/j.nanoen.2022.108043_bib105) 2019; 64 Yang (10.1016/j.nanoen.2022.108043_bib111) 2018; 12 Zhao (10.1016/j.nanoen.2022.108043_bib70) 2022 Mao (10.1016/j.nanoen.2022.108043_bib150) 2021; 84 Dudem (10.1016/j.nanoen.2022.108043_bib27) 2018; 11 Zou (10.1016/j.nanoen.2022.108043_bib18) 2019; 10 Luo (10.1016/j.nanoen.2022.108043_bib81) 2019; 10 Niu (10.1016/j.nanoen.2022.108043_bib5) 2014; 24 Niu (10.1016/j.nanoen.2022.108043_bib106) 2021; 87 Chen (10.1016/j.nanoen.2022.108043_bib78) 2014; 24 Paosangthong (10.1016/j.nanoen.2022.108043_bib140) 2019; 55 Jin (10.1016/j.nanoen.2022.108043_bib29) 2022; 14 Shao (10.1016/j.nanoen.2022.108043_bib51) 2020; 128 Lee (10.1016/j.nanoen.2022.108043_bib167) 2015; 12 Chen (10.1016/j.nanoen.2022.108043_bib82) 2017; 34 Gao (10.1016/j.nanoen.2022.108043_bib100) 2022; 91 Shankaregowda (10.1016/j.nanoen.2022.108043_bib33) 2019; 66 Cheng (10.1016/j.nanoen.2022.108043_bib92) 2022; 194 Yang (10.1016/j.nanoen.2022.108043_bib135) 2021; 15 Park (10.1016/j.nanoen.2022.108043_bib153) 2017; 7 Tang (10.1016/j.nanoen.2022.108043_bib58) 2015; 9 Wang (10.1016/j.nanoen.2022.108043_bib157) 2020; 71 Hu (10.1016/j.nanoen.2022.108043_bib133) 2021; 265 Wu (10.1016/j.nanoen.2022.108043_bib156) 2022; 98 Dong (10.1016/j.nanoen.2022.108043_bib25) 2018; 30 Ye (10.1016/j.nanoen.2022.108043_bib152) 2022; 16 Yang (10.1016/j.nanoen.2022.108043_bib46) 2013; 7 Zou (10.1016/j.nanoen.2022.108043_bib16) 2020; 11 Wang (10.1016/j.nanoen.2022.108043_bib79) 2022; 15 Pu (10.1016/j.nanoen.2022.108043_bib136) 2017; 3 Rahman (10.1016/j.nanoen.2022.108043_bib162) 2022; 100 Shi (10.1016/j.nanoen.2022.108043_bib68) 2020; 11 Zhao (10.1016/j.nanoen.2022.108043_bib21) 2020; 67 Wang (10.1016/j.nanoen.2022.108043_bib63) 2017; 5 Qu (10.1016/j.nanoen.2022.108043_bib112) 2022; 98 Leong (10.1016/j.nanoen.2022.108043_bib142) 2000; 31 Feng (10.1016/j.nanoen.2022.108043_bib129) 2022; 98 McCarty (10.1016/j.nanoen.2022.108043_bib13) 2008; 47 Xiong (10.1016/j.nanoen.2022.108043_bib168) 2017; 7 Meng (10.1016/j.nanoen.2022.108043_bib44) 2013; 6 Aazem (10.1016/j.nanoen.2022.108043_bib23) 2022; 12 Ding (10.1016/j.nanoen.2022.108043_bib84) 2019; 4 Zeng (10.1016/j.nanoen.2022.108043_bib72) 2022; 91 Xu (10.1016/j.nanoen.2022.108043_bib123) 2017; 7 Seol (10.1016/j.nanoen.2022.108043_bib9) 2018; 30 Lee (10.1016/j.nanoen.2022.108043_bib103) 2019; 62 Lowell (10.1016/j.nanoen.2022.108043_bib11) 1975; 8 Qiu (10.1016/j.nanoen.2022.108043_bib163) 2019; 58 Zhong (10.1016/j.nanoen.2022.108043_bib62) 2014; 8 Luo (10.1016/j.nanoen.2022.108043_bib3) 2020; 2 Hu (10.1016/j.nanoen.2022.108043_bib6) 2013; 7 Lee (10.1016/j.nanoen.2022.108043_bib56) 2018; 53 Mayagoitia (10.1016/j.nanoen.2022.108043_bib77) 2002; 35 Yun (10.1016/j.nanoen.2022.108043_bib117) 2022; 10 Park (10.1016/j.nanoen.2022.108043_bib137) 2022 Wang (10.1016/j.nanoen.2022.108043_bib118) 2020 Bao (10.1016/j.nanoen.2022.108043_bib130) 2020; 8 Niu (10.1016/j.nanoen.2022.108043_bib143) 2022; 97 Wang (10.1016/j.nanoen.2022.108043_bib14) 2021 Wang (10.1016/j.nanoen.2022.108043_bib52) 2020; 68 Yang (10.1016/j.nanoen.2022.108043_bib126) 2022; 9 Xu (10.1016/j.nanoen.2022.108043_bib85) 2019; 4 Wang (10.1016/j.nanoen.2022.108043_bib115) 2017; 39 Rao (10.1016/j.nanoen.2022.108043_bib96) 2020; 75 Wen (10.1016/j.nanoen.2022.108043_bib1) 2021; 7 Zou (10.1016/j.nanoen.2022.108043_bib4) 2021; 6 Choi (10.1016/j.nanoen.2022.108043_bib55) 2016; 27 He (10.1016/j.nanoen.2022.108043_bib67) 2021; 81 Kim (10.1016/j.nanoen.2022.108043_bib34) 2019; 56 Fan (10.1016/j.nanoen.2022.108043_bib42) 2012; 1 Li (10.1016/j.nanoen.2022.108043_bib165) 2019; 54 Zhao (10.1016/j.nanoen.2022.108043_bib86) 2021; 85 Liu (10.1016/j.nanoen.2022.108043_bib38) 2018; 30 Hu (10.1016/j.nanoen.2022.108043_bib141) 2019; 56 Ma (10.1016/j.nanoen.2022.108043_bib155) 2020; 32 Si (10.1016/j.nanoen.2022.108043_bib147) 2022; 27 Chen (10.1016/j.nanoen.2022.108043_bib159) 2021; 84 Zhao (10.1016/j.nanoen.2022.108043_bib15) 2021; 87 Šutka (10.1016/j.nanoen.2022.108043_bib31) 2017; 51 Dong (10.1016/j.nanoen.2022.108043_bib93) 2022; 4 Sahu (10.1016/j.nanoen.2022.108043_bib149) 2022; 97 Bertiger (10.1016/j.nanoen.2022.108043_bib74) 1994; 99 Shrestha (10.1016/j.nanoen.2022.108043_bib73) 2022; 32 Ahmed (10.1016/j.nanoen.2022.108043_bib121) 2013; 6 Li (10.1016/j.nanoen.2022.108043_bib88) 2022; 16 He (10.1016/j.nanoen.2022.108043_bib164) 2020; 78 Jiang (10.1016/j.nanoen.2022.108043_bib30) 2020; 74 Kang (10.1016/j.nanoen.2022.108043_bib101) 2019; 29 An (10.1016/j.nanoen.2022.108043_bib24) 2020; 77 Jiang (10.1016/j.nanoen.2022.108043_bib35) 2018; 45 10.1016/j.nanoen.2022.108043_bib166 Cui (10.1016/j.nanoen.2022.108043_bib40) 2018; 10 Yi (10.1016/j.nanoen.2022.108043_bib65) 2015; 25 Liu (10.1016/j.nanoen.2022.108043_bib90) 2022; 14 Wu (10.1016/j.nanoen.2022.108043_bib154) 2022; 12 |
References_xml | – volume: 8 start-page: 1 year: 2021 end-page: 10 ident: bib28 article-title: Omni-directional wind-driven triboelectric nanogenerator with cross-shaped dielectric film publication-title: Nano Converg. – volume: 29 year: 2019 ident: bib101 article-title: Fingerprint‐inspired conducting hierarchical wrinkles for energy‐harvesting E‐skin publication-title: Adv. Funct. Mater. – volume: 75 year: 2020 ident: bib113 article-title: Sustainable and shape-adaptable liquid single-electrode triboelectric nanogenerator for biomechanical energy harvesting publication-title: Nano Energy – volume: 98 year: 2022 ident: bib116 article-title: Robust and flexible triboelectric nanogenerator using non-Newtonian fluid characteristics towards smart traffic and human-motion detecting system publication-title: Nano Energy – volume: 76 year: 2020 ident: bib131 article-title: Ultra-stretchable, durable and conductive hydrogel with hybrid double network as high performance strain sensor and stretchable triboelectric nanogenerator publication-title: Nano Energy – reference: M. Shi, J. Zhang, M. Han, Y. Song, Z. Su, H. Zhang, A single-electrode wearable triboelectric nanogenerator based on conductive & stretchable fabric, In: Proceedings of the 2016 IEEE 29th International Conference Micro Electro Mech. Syst. IEEE 2016 1228–1231. – volume: 74 year: 2020 ident: bib30 article-title: A multifunctional TENG yarn integrated into agrotextile for building intelligent agriculture publication-title: Nano Energy – volume: 100 year: 2022 ident: bib162 article-title: Silicone-incorporated nanoporous cobalt oxide and MXene nanocomposite-coated stretchable fabric for wearable triboelectric nanogenerator and self-powered sensing applications publication-title: Nano Energy – volume: 2 year: 2016 ident: bib114 article-title: A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring publication-title: Sci. Adv. – year: 2022 ident: bib70 article-title: Highly-stretchable rope-like triboelectric nanogenerator for self-powered monitoring in marine structures publication-title: Nano Energy – year: 2022 ident: bib110 article-title: Liquid metal fibers publication-title: Adv. Fiber Mater. – volume: 4 year: 2022 ident: bib148 article-title: Large-scale fabrication of core-shell triboelectric braided fibers and power textiles for energy harvesting and plantar pressure monitoring publication-title: EcoMat – volume: 32 start-page: 479 year: 2017 end-page: 487 ident: bib41 article-title: Self-powered wireless smart patch for healthcare monitoring publication-title: Nano Energy – volume: 85 year: 2021 ident: bib86 article-title: Fingerprint-inspired electronic skin based on triboelectric nanogenerator for fine texture recognition publication-title: Nano Energy – volume: 194 start-page: 81 year: 2022 end-page: 103 ident: bib92 article-title: Advanced triboelectric nanogenerators based on low-dimension carbon materials: a review publication-title: Carbon – volume: 96 year: 2022 ident: bib119 article-title: Anti-freezing and stretchable triboelectric nanogenerator based on liquid electrode for biomechanical sensing in extreme environment publication-title: Nano Energy – volume: 12 start-page: 5190 year: 2018 end-page: 5196 ident: bib170 article-title: Screen-printed washable electronic textiles as self-powered touch/gesture tribo-sensors for intelligent human–machine interaction publication-title: ACS Nano – volume: 77 year: 2020 ident: bib24 article-title: Self-powered gold nanowire tattoo triboelectric sensors for soft wearable human-machine interface publication-title: Nano Energy – volume: 25 start-page: 3688 year: 2015 end-page: 3696 ident: bib65 article-title: Stretchable‐rubber‐based triboelectric nanogenerator and its application as self‐powered body motion sensors publication-title: Adv. Funct. Mater. – volume: 11 start-page: 2093 year: 2020 ident: bib16 article-title: Quantifying and understanding the triboelectric series of inorganic non-metallic materials publication-title: Nat. Commun. – volume: 12 start-page: 10545 year: 2022 end-page: 10572 ident: bib23 article-title: Electrode materials for stretchable triboelectric nanogenerator in wearable electronics publication-title: RSC Adv. – volume: 39 start-page: 429 year: 2017 end-page: 436 ident: bib115 article-title: Bioinspired stretchable triboelectric nanogenerator as energy-harvesting skin for self-powered electronics publication-title: Nano Energy – volume: 47 start-page: 2188 year: 2008 end-page: 2207 ident: bib13 article-title: Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets publication-title: Angew. Chem. Int. Ed. – volume: 15 start-page: 8435 year: 2022 end-page: 8441 ident: bib79 article-title: A self-powered and concealed sensor based on triboelectric nanogenerators for cultural-relic anti-theft systems publication-title: Nano Res. – volume: 34 start-page: 442 year: 2017 end-page: 448 ident: bib82 article-title: Self-powered transparent glass-based single electrode triboelectric motion tracking sensor array publication-title: Nano Energy – volume: 32 year: 2020 ident: bib155 article-title: 3D honeycomb-structured flame-retardant triboelectric fabric for fire escape and rescue publication-title: Adv. Mater. – volume: 597 start-page: 171 year: 2021 end-page: 181 ident: bib122 article-title: Highly stretchable and self-healing cellulose nanofiber-mediated conductive hydrogel towards strain sensing application publication-title: J. Colloid Interface Sci. – volume: 12 start-page: 2027 year: 2018 end-page: 2034 ident: bib111 article-title: Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics publication-title: ACS Nano – volume: 28 start-page: 10267 year: 2016 end-page: 10274 ident: bib151 article-title: Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns publication-title: Adv. Mater. – year: 2022 ident: bib108 article-title: Nanocellulose and its derived composite electrodes toward supercapacitors: fabrication, properties, and challenges publication-title: J. Bioresour. Bioprod. – volume: 51 start-page: 446 year: 2017 end-page: 451 ident: bib31 article-title: PEDOT electrodes for triboelectric generator devices publication-title: Org. Electron. Phys. Mater. Appl. – volume: 4 year: 2019 ident: bib85 article-title: Multifunctional skin‐inspired flexible sensor systems for wearable electronics publication-title: Adv. Mater. Technol. – volume: 30 start-page: 1802953 year: 2018 ident: bib95 article-title: A new facile route to flexible and semi-transparent electrodes based on water exfoliated graphene and their single-electrode triboelectric nanogenerator publication-title: Adv. Mater. – volume: 7 start-page: 7342 year: 2013 end-page: 7351 ident: bib43 article-title: Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system publication-title: ACS Nano – volume: 91 year: 2022 ident: bib100 article-title: A stretching-insensitive, self-powered and wearable pressure sensor publication-title: Nano Energy – volume: 55 start-page: 401 year: 2019 end-page: 423 ident: bib140 article-title: Recent progress on textile-based triboelectric nanogenerators publication-title: Nano Energy – volume: 68 year: 2020 ident: bib52 article-title: On the first principle theory of nanogenerators from Maxwell's equations publication-title: Nano Energy – volume: 30 start-page: 1705195 year: 2018 ident: bib38 article-title: Shape memory polymers for body motion energy harvesting and self-powered mechanosensing publication-title: Adv. Mater. – volume: 10 start-page: 3652 year: 2018 end-page: 3659 ident: bib40 article-title: Flexible single-electrode triboelectric nanogenerator and body moving sensor based on porous Na2CO3/polydimethylsiloxane film publication-title: ACS Appl. Mater. Interfaces – volume: 7 year: 2017 ident: bib168 article-title: Wearable all-fabric-based triboelectric generator for water energy harvesting publication-title: Adv. Energy Mater. – year: 2022 ident: bib137 article-title: Plasticized PVC-gel single layer-based stretchable triboelectric nanogenerator for harvesting mechanical energy and tactile sensing publication-title: Adv. Sci. – volume: 10 start-page: 3887 year: 2014 end-page: 3894 ident: bib59 article-title: Nature‐replicated nano‐in‐micro structures for triboelectric energy harvesting publication-title: Small – volume: 6 year: 2021 ident: bib4 article-title: Advances in nanostructures for high‐performance triboelectric nanogenerators publication-title: Adv. Mater. Technol. – volume: 4 start-page: 1124 year: 2022 end-page: 1131 ident: bib102 article-title: Elastic and skin-contact triboelectric nanogenerators and their applicability in energy harvesting and tactile sensing publication-title: ACS Appl. Electron. Mater. – volume: 11 start-page: 9490 year: 2017 end-page: 9499 ident: bib145 article-title: A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors publication-title: ACS Nano – volume: 9 start-page: 4280 year: 2018 ident: bib169 article-title: Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting publication-title: Nat. Commun. – volume: 70 year: 2020 ident: bib94 article-title: Electron transfer mechanism of graphene/Cu heterostructure for improving the stability of triboelectric nanogenerators publication-title: Nano Energy – year: 2020 ident: bib118 article-title: Stretchable and shape‐adaptable triboelectric nanogenerator based on biocompatible liquid electrolyte for biomechanical energy harvesting and wearable human–machine interaction publication-title: Adv. Funct. Mater. – volume: 11 start-page: 101 year: 2018 end-page: 113 ident: bib27 article-title: Triboelectric nanogenerators with gold-thin-film-coated conductive textile as floating electrode for scavenging wind energy publication-title: Nano Res. – volume: 2 start-page: 453 year: 2022 end-page: 466 ident: bib2 article-title: Advanced polymer-based electrolytes in zinc–air batteries publication-title: eScience – volume: 1 year: 2019 ident: bib83 article-title: Tactile sensors for advanced intelligent systems publication-title: Adv. Intell. Syst. – volume: 27 year: 2022 ident: bib147 article-title: Knitting integral conformal all-textile strain sensor with commercial apparel characteristics for smart textiles publication-title: Appl. Mater. Today – volume: 10 start-page: 2158 year: 2019 ident: bib39 article-title: Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator publication-title: Nat. Commun. – volume: 30 year: 2018 ident: bib9 article-title: Triboelectric series of 2D layered materials publication-title: Adv. Mater. – volume: 25 start-page: 6594 year: 2013 end-page: 6601 ident: bib48 article-title: A single‐electrode based triboelectric nanogenerator as self‐powered tracking system publication-title: Adv. Mater. – volume: 9 year: 2022 ident: bib126 article-title: Transparent self-powered triboelectric sensor based on PVA/PA hydrogel for promoting human-machine interaction in nursing and patient safety publication-title: Nano Energy – volume: 6 start-page: 105 year: 2013 end-page: 121 ident: bib121 article-title: Hydrogel: Preparation, characterization, and applications: a review publication-title: J. Adv. Res. – volume: 27 start-page: 595 year: 2016 end-page: 601 ident: bib55 article-title: High-performance triboelectric nanogenerators with artificially well-tailored interlocked interfaces publication-title: Nano Energy – volume: 30 year: 2020 ident: bib37 article-title: Stretchable, transparent, and thermally stable triboelectric nanogenerators based on solvent-free ion-conducting elastomer Electrodes publication-title: Adv. Funct. Mater. – volume: 66 year: 2019 ident: bib20 article-title: Rational molecular design of polymeric materials toward efficient triboelectric energy harvesting publication-title: Nano Energy – volume: 7 start-page: 9213 year: 2013 end-page: 9222 ident: bib46 article-title: Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system publication-title: ACS Nano – volume: 30 year: 2020 ident: bib107 article-title: A stretchable highoutput triboelectric nanogenerator improved by MXene liquid electrode with high electronegativity publication-title: Adv. Funct. Mater. – volume: 2 start-page: 1533 year: 1969 end-page: 1537 ident: bib17 article-title: Charge generation on dielectric surfaces publication-title: J. Phys. D: Appl. Phys. – volume: 13 start-page: 847 year: 2013 end-page: 853 ident: bib57 article-title: Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator publication-title: Nano Lett. – volume: 16 start-page: 4415 year: 2022 end-page: 4425 ident: bib152 article-title: Electroassisted core-spun triboelectric nanogenerator fabrics for intellisense and artificial intelligence perception publication-title: ACS Nano – volume: 7 start-page: 35 year: 2021 ident: bib1 article-title: Recent progress in silk fibroin-based flexible electronics publication-title: Micro Nanoeng. – volume: 98 year: 2022 ident: bib129 article-title: Extreme environment-adaptable and fast self-healable eutectogel triboelectric nanogenerator for energy harvesting and self-powered sensing publication-title: Nano Energy – volume: 97 year: 2022 ident: bib149 article-title: Waste textiles as the versatile triboelectric energy-harvesting platform for self-powered applications in sports and athletics publication-title: Nano Energy – volume: 78 year: 2020 ident: bib164 article-title: Flexible single-electrode triboelectric nanogenerators with MXene/PDMS composite film for biomechanical motion sensors publication-title: Nano Energy – volume: 30 year: 2018 ident: bib25 article-title: A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing publication-title: Adv. Mater. – volume: 16 start-page: 1661 year: 2022 end-page: 1670 ident: bib132 article-title: Stretchable unsymmetrical piezoelectric Batio publication-title: ACS Nano – volume: 15 start-page: 16368 year: 2021 end-page: 16375 ident: bib26 article-title: Triboelectric nanogenerator for ocean wave graded energy harvesting and condition monitoring publication-title: ACS Nano – volume: 98 year: 2022 ident: bib156 article-title: Highly integrated, scalable manufacturing and stretchable conductive core/shell fibers for strain sensing and self-powered smart textiles publication-title: Nano Energy – volume: 94 year: 2022 ident: bib158 article-title: Constructing highly tribopositive elastic yarn through interfacial design and assembly for efficient energy harvesting and human-interactive sensing publication-title: Nano Energy – volume: 32 year: 2022 ident: bib171 article-title: Fabric‐assisted MXene/silicone nanocomposite‐based triboelectric nanogenerators for self‐powered sensors and wearable electronics publication-title: Adv. Funct. Mater. – volume: 75 year: 2020 ident: bib69 article-title: Natural wood-based triboelectric nanogenerator as self-powered sensing for smart homes and floors publication-title: Nano Energy – volume: 86 year: 2021 ident: bib134 article-title: A stretchable, harsh condition-resistant and ambient-stable hydrogel and its applications in triboelectric nanogenerator publication-title: Nano Energy – volume: 14 start-page: 24832 year: 2022 end-page: 24839 ident: bib80 article-title: Deep learning-assisted triboelectric smart mats for personnel comprehensive monitoring toward maritime safety publication-title: ACS Appl. Mater. Interfaces – volume: 2 year: 2020 ident: bib10 article-title: Material choices for triboelectric nanogenerators: a critical review publication-title: EcoMat – volume: 3 year: 2017 ident: bib136 article-title: Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing publication-title: Sci. Adv. – volume: 32 year: 2022 ident: bib73 article-title: A siloxene/ecoflex nanocomposite‐based triboelectric nanogenerator with enhanced charge retention by MoS2/LIG for self‐powered touchless sensor applications publication-title: Adv. Funct. Mater. – volume: 62 start-page: 259 year: 2019 end-page: 267 ident: bib103 article-title: Graphene-based stretchable/wearable self-powered touch sensor publication-title: Nano Energy – volume: 12 start-page: 10545 year: 2022 end-page: 10572 ident: bib91 article-title: Electrode materials for stretchable triboelectric nanogenerator in wearable electronics publication-title: RSC Adv. – volume: 93 year: 2022 ident: bib97 article-title: Fully biodegradable water-soluble triboelectric nanogenerator for human physiological monitoring publication-title: Nano Energy – volume: 58 start-page: 750 year: 2019 end-page: 758 ident: bib163 article-title: Highly flexible, breathable, tailorable and washable power generation fabrics for wearable electronics publication-title: Nano Energy – volume: 24 start-page: 5059 year: 2014 end-page: 5066 ident: bib78 article-title: Triboelectric nanogenerators as a self‐powered motion tracking system publication-title: Adv. Funct. Mater. – volume: 8 start-page: 481 year: 2020 end-page: 506 ident: bib8 article-title: Triboelectric nanogenerators: fundamental physics and potential applications publication-title: Friction – volume: 128 year: 2020 ident: bib51 article-title: Theoretical modeling of triboelectric nanogenerators (TENGs) publication-title: J. Appl. Phys. – volume: 10 start-page: 1 year: 2017 end-page: 10 ident: bib19 article-title: Triboelectric nanogenerators as flexible power sources publication-title: npj Flex. Electron. – volume: 87 year: 2021 ident: bib15 article-title: Studying of contact electrification and electron transfer at liquid-liquid interface publication-title: Nano Energy – volume: 12 year: 2022 ident: bib154 article-title: Industrial fabrication of 3D braided stretchable hierarchical interlocked fancy-yarn triboelectric nanogenerator for self-powered smart fitness system publication-title: Adv. Energy Mater. – volume: 7 year: 2017 ident: bib7 article-title: An ultrathin flexible single-electrode triboelectric-nanogenerator for mechanical energy harvesting and instantaneous force sensing publication-title: Adv. Energy Mater. – volume: 10 start-page: 10383 year: 2022 end-page: 10390 ident: bib117 article-title: Mechanically robust triboelectric nanogenerator with a shear thickening fluid for impact monitoring publication-title: J. Mater. Chem. A – volume: 6 start-page: 7479 year: 2014 end-page: 7484 ident: bib47 article-title: Triboelectrification based motion sensor for human-machine interfacing publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 410 year: 2015 end-page: 418 ident: bib167 article-title: Triboelectric energy harvester based on wearable textile platforms employing various surface morphologies publication-title: Nano Energy – volume: 8 start-page: 3843 year: 2014 end-page: 3850 ident: bib64 article-title: Triboelectric sensor for self-powered tracking of object motion inside tubing publication-title: ACS Nano – volume: 64 start-page: 634 year: 2019 end-page: 640 ident: bib105 article-title: Polymer-based flexible bioelectronics publication-title: Sci. Bull. – volume: 75 year: 2020 ident: bib96 article-title: Tactile electronic skin to simultaneously detect and distinguish between temperature and pressure based on a triboelectric nanogenerator publication-title: Nano Energy – volume: 53 start-page: 152 year: 2018 end-page: 159 ident: bib56 article-title: Transparent and flexible high power triboelectric nanogenerator with metallic nanowire-embedded tribonegative conducting polymer publication-title: Nano Energy – volume: 14 start-page: 88 year: 2022 ident: bib90 article-title: A liquid–solid interface-based triboelectric tactile sensor with ultrahigh sensitivity of 21.48 kPa publication-title: Nano-Micro Lett. – volume: 7 start-page: 2100870 year: 2022 ident: bib99 article-title: A stretchable multimode triboelectric nanogenerator for energy harvesting and self‐powered sensing publication-title: Adv. Mater. Technol. – volume: 71 year: 2020 ident: bib157 article-title: Large-scale fabrication of robust textile triboelectric nanogenerators publication-title: Nano Energy – volume: 265 year: 2021 ident: bib133 article-title: Transparent, conductive cellulose hydrogel for flexible sensor and triboelectric nanogenerator at subzero temperature publication-title: Carbohydr. Polym. – volume: 34 year: 2022 ident: bib87 article-title: Open‐environment tactile sensing system: towards simple and efficient material identification publication-title: Adv. Mater. – volume: 11 start-page: 7513 year: 2019 end-page: 7519 ident: bib109 article-title: A liquid PEDOT:PSS electrode-based stretchable triboelectric nanogenerator for a portable self-charging power source publication-title: Nanoscale – volume: 35 start-page: 542 year: 2002 ident: bib77 article-title: Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternative to optical motion analysis systems publication-title: J. Biomech. – year: 2021 ident: bib14 article-title: From contact-electrification to triboelectric nanogenerators publication-title: Rep. Prog. Phys. – volume: 66 year: 2019 ident: bib33 article-title: Single-electrode triboelectric nanogenerator based on economical graphite coated paper for harvesting waste environmental energy publication-title: Nano Energy – volume: 5 start-page: 12252 year: 2017 end-page: 12257 ident: bib63 article-title: Single-electrode triboelectric nanogenerators based on sponge-like porous PTFE thin films for mechanical energy harvesting and self-powered electronics publication-title: J. Mater. Chem. A – volume: 78 year: 2020 ident: bib104 article-title: Highly stretchable and transparent triboelectric nanogenerator based on multilayer structured stable electrode for self-powered wearable sensor publication-title: Nano Energy – year: 2022 ident: bib98 article-title: Thin, soft, 3D printing enabled crosstalk minimized triboelectric nanogenerator arrays for tactile sensing publication-title: Fundam. Res. – volume: 15 start-page: 14653 year: 2021 end-page: 14661 ident: bib135 article-title: Self-healing and elastic triboelectric nanogenerators for muscle motion monitoring and photothermal treatment publication-title: ACS Nano – volume: 14 start-page: 23998 year: 2022 end-page: 24007 ident: bib89 article-title: Smart pillow based on flexible and breathable triboelectric nanogenerator arrays for head movement monitoring during sleep publication-title: ACS Appl. Mater. Interfaces – volume: 60 start-page: 630 year: 2019 end-page: 640 ident: bib53 article-title: 3D mathematical model of contact-separation and single-electrode mode triboelectric nanogenerators publication-title: Nano Energy – volume: 26 start-page: 4690 year: 2014 end-page: 4696 ident: bib49 article-title: Harvesting water drop energy by a sequential contact‐electrification and electrostatic‐induction process publication-title: Adv. Mater. – volume: 98 year: 2022 ident: bib112 article-title: Fingerprint-shaped triboelectric tactile sensor publication-title: Nano Energy – volume: 46 start-page: 63 year: 2018 end-page: 72 ident: bib22 article-title: Realizing the potential of polyethylene oxide as new positive tribo-material: over 40 W/m2 high power flat surface triboelectric nanogenerators publication-title: Nano Energy – volume: 56 start-page: 338 year: 2019 end-page: 346 ident: bib34 article-title: Microwave-welded single-walled carbon nanotubes as suitable electrodes for triboelectric energy harvesting from biomaterials and bioproducts publication-title: Nano Energy – volume: 99 start-page: 24449 year: 1994 end-page: 24464 ident: bib74 article-title: GPS precise tracking of TOPEX/POSEIDON: results and implications publication-title: J. Geophys. Res – volume: 13 start-page: 16916 year: 2021 end-page: 16927 ident: bib161 article-title: Enhancing the performance of fabric-based triboelectric nanogenerators by structural and chemical modification publication-title: ACS Appl. Mater. Interfaces – volume: 16 start-page: 5909 year: 2022 end-page: 5919 ident: bib88 article-title: A self-supporting, conductor-exposing, stretchable, ultrathin, and recyclable kirigami-structured liquid metal paper for multifunctional E-skin publication-title: ACS Nano – volume: 87 year: 2021 ident: bib106 article-title: Recent advances in cellulose-based flexible triboelectric nanogenerators publication-title: Nano Energy – volume: 6 start-page: 1112 year: 2018 end-page: 1118 ident: bib36 article-title: Single-electrode, nylon-fiber-enhanced polytetrafluoroethylene electret film with hollow cylinder structure for mechanical energy harvesting publication-title: Energy Technol. – volume: 7 start-page: 10424 year: 2013 end-page: 10432 ident: bib6 article-title: Triboelectric nanogenerator built on suspended 3D spiral structure as vibration and positioning sensor and wave energy harvester publication-title: ACS Nano – volume: 84 year: 2021 ident: bib159 article-title: 3D printed stretchable smart fibers and textiles for self-powered e-skin publication-title: Nano Energy – volume: 24 start-page: 3332 year: 2014 end-page: 3340 ident: bib5 article-title: Theoretical investigation and structural optimization of single‐electrode triboelectric nanogenerators publication-title: Adv. Funct. Mater. – volume: 27 start-page: 298 year: 2016 end-page: 305 ident: bib32 article-title: Conformal, graphene-based triboelectric nanogenerator for self-powered wearable electronics publication-title: Nano Energy – volume: 15 start-page: 7460 year: 2022 end-page: 7467 ident: bib71 article-title: 3D printed triboelectric nanogenerator as self-powered human-machine interactive sensor for breathing-based language expression publication-title: Nano Res. – volume: 67 year: 2020 ident: bib21 article-title: Expanding the portfolio of tribo-positive materials: aniline formaldehyde condensates for high charge density triboelectric nanogenerators publication-title: Nano Energy – volume: 56 start-page: 16 year: 2019 end-page: 24 ident: bib141 article-title: Progress in textile-based triboelectric nanogenerators for smart fabrics publication-title: Nano Energy – volume: 64 year: 2019 ident: bib120 article-title: Liquid single-electrode triboelectric nanogenerator based on graphene oxide dispersion for wearable electronics publication-title: Nano Energy – volume: 4 year: 2019 ident: bib84 article-title: Human–machine interfacing enabled by triboelectric nanogenerators and tribotronics publication-title: Adv. Mater. Technol. – volume: 15 start-page: 8389 year: 2022 end-page: 8397 ident: bib144 article-title: Knitted self-powered sensing textiles for machine learning-assisted sitting posture monitoring and correction publication-title: Nano Res. – volume: 91 year: 2022 ident: bib72 article-title: Flexible triboelectric nanogenerator for human motion tracking and gesture recognition publication-title: Nano Energy – year: 2019 ident: bib139 article-title: Fabric-based triboelectric nanogenerators publication-title: Research – volume: 7 start-page: 9461 year: 2013 end-page: 9468 ident: bib45 article-title: Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system publication-title: ACS Nano – volume: 14 start-page: 7906 year: 2022 end-page: 7912 ident: bib66 article-title: An ultraweak mechanical stimuli actuated single electrode triboelectric nanogenerator with high energy conversion efficiency publication-title: Nanoscale – volume: 45 start-page: 266 year: 2018 end-page: 272 ident: bib35 article-title: MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit publication-title: Nano Energy – volume: 11 start-page: 1 year: 2020 end-page: 11 ident: bib68 article-title: Deep learning enabled smart mats as a scalable floor monitoring system publication-title: Nat. Commun. – start-page: 281 year: 2022 end-page: 295 ident: bib128 article-title: Sustainable Strategies in Organic Electronics – volume: 4 start-page: 321 year: 2022 end-page: 323 ident: bib138 article-title: Fiber electronics bring a new generation of acoustic fabrics publication-title: Adv. Fiber Mater. – volume: 31 year: 2019 ident: bib12 article-title: Electron transfer in nanoscale contact electrification: effect of temperature in the metal–dielectric case publication-title: Adv. Mater. – volume: 10 start-page: 1427 year: 2019 ident: bib18 article-title: Quantifying the triboelectric series publication-title: Nat. Commun. – volume: 84 year: 2021 ident: bib150 article-title: Triboelectric nanogenerator/supercapacitor in-one self-powered textile based on PTFE yarn wrapped PDMS/MnO publication-title: Nano Energy – volume: 8 start-page: 53 year: 1975 ident: bib11 article-title: Contact electrification of metals publication-title: J. Electrost., J. Phys. D: Appl. Phys. – volume: 6 start-page: 3235 year: 2013 end-page: 3240 ident: bib44 article-title: A transparent single-friction-surface triboelectric generator and self-powered touch sensor publication-title: Energy Environ. Sci. – volume: 12 start-page: 1 year: 2022 end-page: 10 ident: bib50 article-title: Magnetic capsulate triboelectric nanogenerators publication-title: Sci. Rep. – volume: 81 year: 2021 ident: bib67 article-title: Trampoline inspired stretchable triboelectric nanogenerators as tactile sensors for epidermal electronics publication-title: Nano Energy – year: 2022 ident: bib124 article-title: Deformable textile-structured triboelectric nanogenerator knitted with multifunctional sensing fibers for biomechanical energy harvesting publication-title: Adv. Fiber Mater. – volume: 835 start-page: 335 year: 2020 end-page: 346 ident: bib54 article-title: Thin films in triboelectric nanogenerators for blue energy harvesting: fabrication, characterization, and modeling publication-title: InKey Eng. Mater. – volume: 2 year: 2020 ident: bib3 article-title: Recent progress of triboelectric nanogenerators: from fundamental theory to practical applications publication-title: EcoMat – volume: 8 start-page: 6273 year: 2014 end-page: 6280 ident: bib62 article-title: Fiber-based generator for wearable electronics and mobile medication publication-title: ACS Nano – volume: 14 start-page: 35040 year: 2022 end-page: 35052 ident: bib29 article-title: Patternable nanocellulose/Ti publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 54829 year: 2017 end-page: 54834 ident: bib153 article-title: Highly stretchable fiber-based single-electrode triboelectric nanogenerator for wearable devices publication-title: RSC Adv. – volume: 86 year: 2021 ident: bib160 article-title: Flexible and stretchable triboelectric nanogenerator fabric for biomechanical energy harvesting and self-powered dual-mode human motion monitoring publication-title: Nano Energy – reference: A. Tarighat, N. Khajehnouri and A.H. Sayed, Improved wireless location accuracy using antenna arrays and interference cancellation, In: Proceedings of the 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing. 2003 IV-616. – volume: 4 start-page: 885 year: 2022 end-page: 893 ident: bib93 article-title: Silk fibroin based conductive film for multifunctional sensing and energy harvesting publication-title: Adv. Fiber Mater. – volume: 32 start-page: 84 year: 2020 end-page: 93 ident: bib146 article-title: 3D double-faced interlock fabric triboelectric nanogenerator for bio-motion energy harvesting and as self-powered stretching and 3D tactile sensors publication-title: Mater. Today – reference: . – volume: 10 start-page: 5147 year: 2019 ident: bib81 article-title: Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics publication-title: Nat. Commun. – volume: 97 year: 2022 ident: bib143 article-title: Industrial production of bionic scales knitting fabric-based triboelectric nanogenerator for outdoor rescue and human protection publication-title: Nano Energy – volume: 1 start-page: 328 year: 2012 end-page: 334 ident: bib42 article-title: Flexible triboelectric generator publication-title: Nano Energy – volume: 7 year: 2017 ident: bib123 article-title: Environmentally friendly hydrogel-based triboelectric nanogenerators for versatile energy harvesting and self-powered sensors publication-title: Adv. Energy Mater. – volume: 31 start-page: 197 year: 2000 end-page: 220 ident: bib142 article-title: The potential of knitting for engineering composites – a review publication-title: Compos., Part A – volume: 4 start-page: 1930 year: 2022 end-page: 1938 ident: bib127 article-title: An ionic hydrogel-based antifreezing triboelectric nanogenerator publication-title: ACS Appl. Electron. Mater. – volume: 54 start-page: 7823 year: 2019 end-page: 7833 ident: bib165 article-title: Triboelectric performances of self-powered, ultra-flexible and large-area poly(dimethylsiloxane)/Ag-coated chinlon composites with a sandpaper-assisted surface microstructure publication-title: J. Mater. Sci. – volume: 7 start-page: 16450 year: 2019 end-page: 16458 ident: bib61 article-title: Wearable single-electrode-mode triboelectric nanogenerator via conductive polymer-coated textiles for self-power electronics publication-title: ACS Sustain. Chem. Eng. – volume: 8 start-page: 13787 year: 2020 end-page: 13794 ident: bib130 article-title: An anti-freezing hydrogel based stretchable triboelectric nanogenerator for biomechanical energy harvesting at sub-zero temperature publication-title: J. Mater. Chem. A – volume: 9 start-page: 7867 year: 2015 end-page: 7873 ident: bib58 article-title: Implantable self-powered low-level laser cure system for mouse embryonic osteoblasts’ proliferation and differentiation publication-title: ACS Nano – reference: P. Bahl and V.N. Padmanabhan, "RADAR: an in-building RF-based user location and tracking system, Proceedings IEEE INFOCOM 2000 775–784 vol.2, – volume: 15 start-page: 272 year: 2022 end-page: 279 ident: bib60 article-title: Enhancement of output power density in a modified polytetrafluoroethylene surface using a sequential O2/Ar plasma etching for triboelectric nanogenerator applications publication-title: Nano Res. – volume: 32 year: 2022 ident: bib125 article-title: Deep learning assisted body area triboelectric hydrogel sensor network for infant care publication-title: Adv. Funct. Mater. – volume: 16 start-page: 1661 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib132 article-title: Stretchable unsymmetrical piezoelectric Batio3 composite hydrogel for triboelectric nanogenerators and multimodal sensors publication-title: ACS Nano doi: 10.1021/acsnano.1c10678 – volume: 91 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib72 article-title: Flexible triboelectric nanogenerator for human motion tracking and gesture recognition publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106601 – volume: 30 year: 2018 ident: 10.1016/j.nanoen.2022.108043_bib9 article-title: Triboelectric series of 2D layered materials publication-title: Adv. Mater. – volume: 4 start-page: 885 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib93 article-title: Silk fibroin based conductive film for multifunctional sensing and energy harvesting publication-title: Adv. Fiber Mater. doi: 10.1007/s42765-022-00152-9 – volume: 2 year: 2020 ident: 10.1016/j.nanoen.2022.108043_bib10 article-title: Material choices for triboelectric nanogenerators: a critical review publication-title: EcoMat doi: 10.1002/eom2.12062 – volume: 87 year: 2021 ident: 10.1016/j.nanoen.2022.108043_bib106 article-title: Recent advances in cellulose-based flexible triboelectric nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106175 – volume: 2 year: 2016 ident: 10.1016/j.nanoen.2022.108043_bib114 article-title: A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring publication-title: Sci. Adv. doi: 10.1126/sciadv.1501624 – year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib110 article-title: Liquid metal fibers publication-title: Adv. Fiber Mater. – volume: 4 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib148 article-title: Large-scale fabrication of core-shell triboelectric braided fibers and power textiles for energy harvesting and plantar pressure monitoring publication-title: EcoMat doi: 10.1002/eom2.12191 – volume: 3 year: 2017 ident: 10.1016/j.nanoen.2022.108043_bib136 article-title: Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing publication-title: Sci. Adv. doi: 10.1126/sciadv.1700015 – volume: 835 start-page: 335 year: 2020 ident: 10.1016/j.nanoen.2022.108043_bib54 article-title: Thin films in triboelectric nanogenerators for blue energy harvesting: fabrication, characterization, and modeling publication-title: InKey Eng. Mater. – volume: 15 start-page: 8389 issue: 9 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib144 article-title: Knitted self-powered sensing textiles for machine learning-assisted sitting posture monitoring and correction publication-title: Nano Res. doi: 10.1007/s12274-022-4409-0 – volume: 12 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib154 article-title: Industrial fabrication of 3D braided stretchable hierarchical interlocked fancy-yarn triboelectric nanogenerator for self-powered smart fitness system publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202201288 – volume: 94 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib158 article-title: Constructing highly tribopositive elastic yarn through interfacial design and assembly for efficient energy harvesting and human-interactive sensing publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.106956 – volume: 11 start-page: 101 year: 2018 ident: 10.1016/j.nanoen.2022.108043_bib27 article-title: Triboelectric nanogenerators with gold-thin-film-coated conductive textile as floating electrode for scavenging wind energy publication-title: Nano Res. doi: 10.1007/s12274-017-1609-0 – volume: 1 year: 2019 ident: 10.1016/j.nanoen.2022.108043_bib83 article-title: Tactile sensors for advanced intelligent systems publication-title: Adv. Intell. Syst. doi: 10.1002/aisy.201900090 – volume: 15 start-page: 16368 issue: 10 year: 2021 ident: 10.1016/j.nanoen.2022.108043_bib26 article-title: Triboelectric nanogenerator for ocean wave graded energy harvesting and condition monitoring publication-title: ACS Nano doi: 10.1021/acsnano.1c05685 – volume: 15 start-page: 7460 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib71 article-title: 3D printed triboelectric nanogenerator as self-powered human-machine interactive sensor for breathing-based language expression publication-title: Nano Res. doi: 10.1007/s12274-022-4339-x – volume: 86 year: 2021 ident: 10.1016/j.nanoen.2022.108043_bib160 article-title: Flexible and stretchable triboelectric nanogenerator fabric for biomechanical energy harvesting and self-powered dual-mode human motion monitoring publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106058 – volume: 14 start-page: 35040 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib29 article-title: Patternable nanocellulose/Ti3C2Tx flexible films with tunable photoresponsive and electromagnetic interference shielding performances publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c11567 – volume: 7 start-page: 9213 year: 2013 ident: 10.1016/j.nanoen.2022.108043_bib46 article-title: Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system publication-title: ACS Nano doi: 10.1021/nn403838y – volume: 78 year: 2020 ident: 10.1016/j.nanoen.2022.108043_bib104 article-title: Highly stretchable and transparent triboelectric nanogenerator based on multilayer structured stable electrode for self-powered wearable sensor publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105385 – volume: 30 year: 2020 ident: 10.1016/j.nanoen.2022.108043_bib37 article-title: Stretchable, transparent, and thermally stable triboelectric nanogenerators based on solvent-free ion-conducting elastomer Electrodes publication-title: Adv. Funct. Mater. – volume: 31 start-page: 197 year: 2000 ident: 10.1016/j.nanoen.2022.108043_bib142 article-title: The potential of knitting for engineering composites – a review publication-title: Compos., Part A doi: 10.1016/S1359-835X(99)00067-6 – year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib108 article-title: Nanocellulose and its derived composite electrodes toward supercapacitors: fabrication, properties, and challenges publication-title: J. Bioresour. Bioprod. doi: 10.1016/j.jobab.2022.05.003 – volume: 7 start-page: 9461 year: 2013 ident: 10.1016/j.nanoen.2022.108043_bib45 article-title: Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system publication-title: ACS Nano doi: 10.1021/nn4043157 – volume: 53 start-page: 152 year: 2018 ident: 10.1016/j.nanoen.2022.108043_bib56 article-title: Transparent and flexible high power triboelectric nanogenerator with metallic nanowire-embedded tribonegative conducting polymer publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.08.048 – volume: 81 year: 2021 ident: 10.1016/j.nanoen.2022.108043_bib67 article-title: Trampoline inspired stretchable triboelectric nanogenerators as tactile sensors for epidermal electronics publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105590 – year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib137 article-title: Plasticized PVC-gel single layer-based stretchable triboelectric nanogenerator for harvesting mechanical energy and tactile sensing publication-title: Adv. Sci. – volume: 78 year: 2020 ident: 10.1016/j.nanoen.2022.108043_bib164 article-title: Flexible single-electrode triboelectric nanogenerators with MXene/PDMS composite film for biomechanical motion sensors publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105383 – volume: 96 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib119 article-title: Anti-freezing and stretchable triboelectric nanogenerator based on liquid electrode for biomechanical sensing in extreme environment publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107067 – volume: 4 start-page: 1930 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib127 article-title: An ionic hydrogel-based antifreezing triboelectric nanogenerator publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.2c00118 – volume: 62 start-page: 259 year: 2019 ident: 10.1016/j.nanoen.2022.108043_bib103 article-title: Graphene-based stretchable/wearable self-powered touch sensor publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.05.039 – start-page: 281 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib128 – volume: 24 start-page: 5059 year: 2014 ident: 10.1016/j.nanoen.2022.108043_bib78 article-title: Triboelectric nanogenerators as a self‐powered motion tracking system publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201400431 – volume: 98 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib129 article-title: Extreme environment-adaptable and fast self-healable eutectogel triboelectric nanogenerator for energy harvesting and self-powered sensing publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107284 – volume: 12 start-page: 10545 issue: 17 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib23 article-title: Electrode materials for stretchable triboelectric nanogenerator in wearable electronics publication-title: RSC Adv. doi: 10.1039/D2RA01088G – volume: 30 year: 2018 ident: 10.1016/j.nanoen.2022.108043_bib25 article-title: A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing publication-title: Adv. Mater. doi: 10.1002/adma.201804944 – volume: 26 start-page: 4690 year: 2014 ident: 10.1016/j.nanoen.2022.108043_bib49 article-title: Harvesting water drop energy by a sequential contact‐electrification and electrostatic‐induction process publication-title: Adv. Mater. doi: 10.1002/adma.201400373 – volume: 32 year: 2020 ident: 10.1016/j.nanoen.2022.108043_bib155 article-title: 3D honeycomb-structured flame-retardant triboelectric fabric for fire escape and rescue publication-title: Adv. Mater. doi: 10.1002/adma.202003897 – volume: 31 year: 2019 ident: 10.1016/j.nanoen.2022.108043_bib12 article-title: Electron transfer in nanoscale contact electrification: effect of temperature in the metal–dielectric case publication-title: Adv. Mater. – volume: 30 start-page: 1802953 year: 2018 ident: 10.1016/j.nanoen.2022.108043_bib95 article-title: A new facile route to flexible and semi-transparent electrodes based on water exfoliated graphene and their single-electrode triboelectric nanogenerator publication-title: Adv. Mater. doi: 10.1002/adma.201802953 – volume: 6 start-page: 7479 year: 2014 ident: 10.1016/j.nanoen.2022.108043_bib47 article-title: Triboelectrification based motion sensor for human-machine interfacing publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am500864t – volume: 11 start-page: 9490 year: 2017 ident: 10.1016/j.nanoen.2022.108043_bib145 article-title: A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors publication-title: ACS Nano doi: 10.1021/acsnano.7b05317 – volume: 28 start-page: 10267 year: 2016 ident: 10.1016/j.nanoen.2022.108043_bib151 article-title: Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns publication-title: Adv. Mater. doi: 10.1002/adma.201603679 – volume: 14 start-page: 23998 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib89 article-title: Smart pillow based on flexible and breathable triboelectric nanogenerator arrays for head movement monitoring during sleep publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c03056 – volume: 64 year: 2019 ident: 10.1016/j.nanoen.2022.108043_bib120 article-title: Liquid single-electrode triboelectric nanogenerator based on graphene oxide dispersion for wearable electronics publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.103948 – volume: 86 year: 2021 ident: 10.1016/j.nanoen.2022.108043_bib134 article-title: A stretchable, harsh condition-resistant and ambient-stable hydrogel and its applications in triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106086 – volume: 47 start-page: 2188 year: 2008 ident: 10.1016/j.nanoen.2022.108043_bib13 article-title: Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200701812 – volume: 25 start-page: 3688 year: 2015 ident: 10.1016/j.nanoen.2022.108043_bib65 article-title: Stretchable‐rubber‐based triboelectric nanogenerator and its application as self‐powered body motion sensors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201500428 – volume: 7 start-page: 2100870 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib99 article-title: A stretchable multimode triboelectric nanogenerator for energy harvesting and self‐powered sensing publication-title: Adv. Mater. Technol. doi: 10.1002/admt.202100870 – volume: 4 year: 2019 ident: 10.1016/j.nanoen.2022.108043_bib85 article-title: Multifunctional skin‐inspired flexible sensor systems for wearable electronics publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201800628 – volume: 66 year: 2019 ident: 10.1016/j.nanoen.2022.108043_bib33 article-title: Single-electrode triboelectric nanogenerator based on economical graphite coated paper for harvesting waste environmental energy publication-title: Nano Energy – volume: 6 start-page: 105 year: 2013 ident: 10.1016/j.nanoen.2022.108043_bib121 article-title: Hydrogel: Preparation, characterization, and applications: a review publication-title: J. Adv. Res. doi: 10.1016/j.jare.2013.07.006 – volume: 12 start-page: 410 year: 2015 ident: 10.1016/j.nanoen.2022.108043_bib167 article-title: Triboelectric energy harvester based on wearable textile platforms employing various surface morphologies publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.01.009 – volume: 85 year: 2021 ident: 10.1016/j.nanoen.2022.108043_bib86 article-title: Fingerprint-inspired electronic skin based on triboelectric nanogenerator for fine texture recognition publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106001 – volume: 8 start-page: 53 year: 1975 ident: 10.1016/j.nanoen.2022.108043_bib11 article-title: Contact electrification of metals publication-title: J. Electrost., J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/8/1/013 – volume: 60 start-page: 630 year: 2019 ident: 10.1016/j.nanoen.2022.108043_bib53 article-title: 3D mathematical model of contact-separation and single-electrode mode triboelectric nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.072 – volume: 14 start-page: 7906 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib66 article-title: An ultraweak mechanical stimuli actuated single electrode triboelectric nanogenerator with high energy conversion efficiency publication-title: Nanoscale doi: 10.1039/D2NR01530G – volume: 10 start-page: 10383 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib117 article-title: Mechanically robust triboelectric nanogenerator with a shear thickening fluid for impact monitoring publication-title: J. Mater. Chem. A doi: 10.1039/D2TA01209J – volume: 2 start-page: 1533 year: 1969 ident: 10.1016/j.nanoen.2022.108043_bib17 article-title: Charge generation on dielectric surfaces publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/2/11/307 – volume: 66 year: 2019 ident: 10.1016/j.nanoen.2022.108043_bib20 article-title: Rational molecular design of polymeric materials toward efficient triboelectric energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104158 – volume: 71 year: 2020 ident: 10.1016/j.nanoen.2022.108043_bib157 article-title: Large-scale fabrication of robust textile triboelectric nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104605 – volume: 91 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib100 article-title: A stretching-insensitive, self-powered and wearable pressure sensor publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106695 – volume: 35 start-page: 542 year: 2002 ident: 10.1016/j.nanoen.2022.108043_bib77 article-title: Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternative to optical motion analysis systems publication-title: J. Biomech. doi: 10.1016/S0021-9290(01)00231-7 – volume: 16 start-page: 5909 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib88 article-title: A self-supporting, conductor-exposing, stretchable, ultrathin, and recyclable kirigami-structured liquid metal paper for multifunctional E-skin publication-title: ACS Nano doi: 10.1021/acsnano.1c11096 – volume: 93 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib97 article-title: Fully biodegradable water-soluble triboelectric nanogenerator for human physiological monitoring publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106787 – volume: 32 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib125 article-title: Deep learning assisted body area triboelectric hydrogel sensor network for infant care publication-title: Adv. Funct. Mater. – ident: 10.1016/j.nanoen.2022.108043_bib166 doi: 10.1109/MEMSYS.2016.7421859 – volume: 54 start-page: 7823 issue: 10 year: 2019 ident: 10.1016/j.nanoen.2022.108043_bib165 article-title: Triboelectric performances of self-powered, ultra-flexible and large-area poly(dimethylsiloxane)/Ag-coated chinlon composites with a sandpaper-assisted surface microstructure publication-title: J. Mater. Sci. doi: 10.1007/s10853-019-03428-5 – volume: 7 start-page: 7342 year: 2013 ident: 10.1016/j.nanoen.2022.108043_bib43 article-title: Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system publication-title: ACS Nano doi: 10.1021/nn403021m – volume: 12 start-page: 1 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib50 article-title: Magnetic capsulate triboelectric nanogenerators publication-title: Sci. Rep. doi: 10.1038/s41598-021-04100-2 – volume: 7 start-page: 16450 year: 2019 ident: 10.1016/j.nanoen.2022.108043_bib61 article-title: Wearable single-electrode-mode triboelectric nanogenerator via conductive polymer-coated textiles for self-power electronics publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b03629 – volume: 194 start-page: 81 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib92 article-title: Advanced triboelectric nanogenerators based on low-dimension carbon materials: a review publication-title: Carbon doi: 10.1016/j.carbon.2022.03.037 – volume: 5 start-page: 12252 year: 2017 ident: 10.1016/j.nanoen.2022.108043_bib63 article-title: Single-electrode triboelectric nanogenerators based on sponge-like porous PTFE thin films for mechanical energy harvesting and self-powered electronics publication-title: J. Mater. Chem. A doi: 10.1039/C7TA02680C – year: 2019 ident: 10.1016/j.nanoen.2022.108043_bib139 article-title: Fabric-based triboelectric nanogenerators publication-title: Research doi: 10.34133/2019/1091632 – volume: 128 year: 2020 ident: 10.1016/j.nanoen.2022.108043_bib51 article-title: Theoretical modeling of triboelectric nanogenerators (TENGs) publication-title: J. Appl. Phys. doi: 10.1063/5.0020961 – volume: 8 start-page: 1 year: 2021 ident: 10.1016/j.nanoen.2022.108043_bib28 article-title: Omni-directional wind-driven triboelectric nanogenerator with cross-shaped dielectric film publication-title: Nano Converg. doi: 10.1186/s40580-021-00276-5 – volume: 10 start-page: 3652 year: 2018 ident: 10.1016/j.nanoen.2022.108043_bib40 article-title: Flexible single-electrode triboelectric nanogenerator and body moving sensor based on porous Na2CO3/polydimethylsiloxane film publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b17585 – volume: 34 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib87 article-title: Open‐environment tactile sensing system: towards simple and efficient material identification publication-title: Adv. Mater. doi: 10.1002/adma.202203073 – volume: 55 start-page: 401 year: 2019 ident: 10.1016/j.nanoen.2022.108043_bib140 article-title: Recent progress on textile-based triboelectric nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.10.036 – volume: 9 start-page: 7867 year: 2015 ident: 10.1016/j.nanoen.2022.108043_bib58 article-title: Implantable self-powered low-level laser cure system for mouse embryonic osteoblasts’ proliferation and differentiation publication-title: ACS Nano doi: 10.1021/acsnano.5b03567 – volume: 12 start-page: 10545 issue: 17 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib91 article-title: Electrode materials for stretchable triboelectric nanogenerator in wearable electronics publication-title: RSC Adv. doi: 10.1039/D2RA01088G – volume: 97 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib143 article-title: Industrial production of bionic scales knitting fabric-based triboelectric nanogenerator for outdoor rescue and human protection publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107168 – volume: 75 year: 2020 ident: 10.1016/j.nanoen.2022.108043_bib113 article-title: Sustainable and shape-adaptable liquid single-electrode triboelectric nanogenerator for biomechanical energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105027 – year: 2020 ident: 10.1016/j.nanoen.2022.108043_bib118 article-title: Stretchable and shape‐adaptable triboelectric nanogenerator based on biocompatible liquid electrolyte for biomechanical energy harvesting and wearable human–machine interaction publication-title: Adv. Funct. Mater. – volume: 51 start-page: 446 year: 2017 ident: 10.1016/j.nanoen.2022.108043_bib31 article-title: PEDOT electrodes for triboelectric generator devices publication-title: Org. Electron. Phys. Mater. Appl. – volume: 10 start-page: 2158 year: 2019 ident: 10.1016/j.nanoen.2022.108043_bib39 article-title: Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator publication-title: Nat. Commun. doi: 10.1038/s41467-019-10061-y – volume: 46 start-page: 63 year: 2018 ident: 10.1016/j.nanoen.2022.108043_bib22 article-title: Realizing the potential of polyethylene oxide as new positive tribo-material: over 40 W/m2 high power flat surface triboelectric nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.01.034 – volume: 15 start-page: 8435 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib79 article-title: A self-powered and concealed sensor based on triboelectric nanogenerators for cultural-relic anti-theft systems publication-title: Nano Res. doi: 10.1007/s12274-022-4443-y – volume: 8 start-page: 6273 year: 2014 ident: 10.1016/j.nanoen.2022.108043_bib62 article-title: Fiber-based generator for wearable electronics and mobile medication publication-title: ACS Nano doi: 10.1021/nn501732z – volume: 2 start-page: 453 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib2 article-title: Advanced polymer-based electrolytes in zinc–air batteries publication-title: eScience doi: 10.1016/j.esci.2022.08.004 – volume: 24 start-page: 3332 year: 2014 ident: 10.1016/j.nanoen.2022.108043_bib5 article-title: Theoretical investigation and structural optimization of single‐electrode triboelectric nanogenerators publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201303799 – volume: 4 year: 2019 ident: 10.1016/j.nanoen.2022.108043_bib84 article-title: Human–machine interfacing enabled by triboelectric nanogenerators and tribotronics publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201800487 – volume: 13 start-page: 847 year: 2013 ident: 10.1016/j.nanoen.2022.108043_bib57 article-title: Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator publication-title: Nano Lett. doi: 10.1021/nl4001053 – volume: 76 year: 2020 ident: 10.1016/j.nanoen.2022.108043_bib131 article-title: Ultra-stretchable, durable and conductive hydrogel with hybrid double network as high performance strain sensor and stretchable triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105035 – volume: 7 start-page: 10424 year: 2013 ident: 10.1016/j.nanoen.2022.108043_bib6 article-title: Triboelectric nanogenerator built on suspended 3D spiral structure as vibration and positioning sensor and wave energy harvester publication-title: ACS Nano doi: 10.1021/nn405209u – volume: 98 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib112 article-title: Fingerprint-shaped triboelectric tactile sensor publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107324 – volume: 4 start-page: 321 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib138 article-title: Fiber electronics bring a new generation of acoustic fabrics publication-title: Adv. Fiber Mater. doi: 10.1007/s42765-022-00169-0 – volume: 64 start-page: 634 year: 2019 ident: 10.1016/j.nanoen.2022.108043_bib105 article-title: Polymer-based flexible bioelectronics publication-title: Sci. Bull. doi: 10.1016/j.scib.2019.04.011 – volume: 58 start-page: 750 year: 2019 ident: 10.1016/j.nanoen.2022.108043_bib163 article-title: Highly flexible, breathable, tailorable and washable power generation fabrics for wearable electronics publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.02.010 – volume: 9 start-page: 4280 year: 2018 ident: 10.1016/j.nanoen.2022.108043_bib169 article-title: Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting publication-title: Nat. Commun. doi: 10.1038/s41467-018-06759-0 – volume: 32 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib171 article-title: Fabric‐assisted MXene/silicone nanocomposite‐based triboelectric nanogenerators for self‐powered sensors and wearable electronics publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202107143 – volume: 1 start-page: 328 year: 2012 ident: 10.1016/j.nanoen.2022.108043_bib42 article-title: Flexible triboelectric generator publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.01.004 – volume: 56 start-page: 16 year: 2019 ident: 10.1016/j.nanoen.2022.108043_bib141 article-title: Progress in textile-based triboelectric nanogenerators for smart fabrics publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.11.025 – volume: 27 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib147 article-title: Knitting integral conformal all-textile strain sensor with commercial apparel characteristics for smart textiles publication-title: Appl. Mater. Today – volume: 6 year: 2021 ident: 10.1016/j.nanoen.2022.108043_bib4 article-title: Advances in nanostructures for high‐performance triboelectric nanogenerators publication-title: Adv. Mater. Technol. – volume: 97 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib149 article-title: Waste textiles as the versatile triboelectric energy-harvesting platform for self-powered applications in sports and athletics publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107208 – volume: 87 year: 2021 ident: 10.1016/j.nanoen.2022.108043_bib15 article-title: Studying of contact electrification and electron transfer at liquid-liquid interface publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106191 – volume: 13 start-page: 16916 year: 2021 ident: 10.1016/j.nanoen.2022.108043_bib161 article-title: Enhancing the performance of fabric-based triboelectric nanogenerators by structural and chemical modification publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c02815 – volume: 98 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib156 article-title: Highly integrated, scalable manufacturing and stretchable conductive core/shell fibers for strain sensing and self-powered smart textiles publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107240 – volume: 12 start-page: 5190 year: 2018 ident: 10.1016/j.nanoen.2022.108043_bib170 article-title: Screen-printed washable electronic textiles as self-powered touch/gesture tribo-sensors for intelligent human–machine interaction publication-title: ACS Nano doi: 10.1021/acsnano.8b02477 – volume: 75 year: 2020 ident: 10.1016/j.nanoen.2022.108043_bib69 article-title: Natural wood-based triboelectric nanogenerator as self-powered sensing for smart homes and floors publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104957 – volume: 29 year: 2019 ident: 10.1016/j.nanoen.2022.108043_bib101 article-title: Fingerprint‐inspired conducting hierarchical wrinkles for energy‐harvesting E‐skin publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201903580 – volume: 32 start-page: 479 year: 2017 ident: 10.1016/j.nanoen.2022.108043_bib41 article-title: Self-powered wireless smart patch for healthcare monitoring publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.01.008 – volume: 30 year: 2020 ident: 10.1016/j.nanoen.2022.108043_bib107 article-title: A stretchable highoutput triboelectric nanogenerator improved by MXene liquid electrode with high electronegativity publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202004181 – volume: 2 year: 2020 ident: 10.1016/j.nanoen.2022.108043_bib3 article-title: Recent progress of triboelectric nanogenerators: from fundamental theory to practical applications publication-title: EcoMat doi: 10.1002/eom2.12059 – volume: 14 start-page: 88 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib90 article-title: A liquid–solid interface-based triboelectric tactile sensor with ultrahigh sensitivity of 21.48 kPa−1 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-022-00831-7 – volume: 84 year: 2021 ident: 10.1016/j.nanoen.2022.108043_bib150 article-title: Triboelectric nanogenerator/supercapacitor in-one self-powered textile based on PTFE yarn wrapped PDMS/MnO2 NW hybrid elastomer publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105918 – volume: 10 start-page: 3887 year: 2014 ident: 10.1016/j.nanoen.2022.108043_bib59 article-title: Nature‐replicated nano‐in‐micro structures for triboelectric energy harvesting publication-title: Small doi: 10.1002/smll.201400863 – volume: 15 start-page: 272 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib60 article-title: Enhancement of output power density in a modified polytetrafluoroethylene surface using a sequential O2/Ar plasma etching for triboelectric nanogenerator applications publication-title: Nano Res. doi: 10.1007/s12274-021-3470-4 – volume: 74 year: 2020 ident: 10.1016/j.nanoen.2022.108043_bib30 article-title: A multifunctional TENG yarn integrated into agrotextile for building intelligent agriculture publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104863 – year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib98 article-title: Thin, soft, 3D printing enabled crosstalk minimized triboelectric nanogenerator arrays for tactile sensing publication-title: Fundam. Res. – volume: 7 start-page: 54829 year: 2017 ident: 10.1016/j.nanoen.2022.108043_bib153 article-title: Highly stretchable fiber-based single-electrode triboelectric nanogenerator for wearable devices publication-title: RSC Adv. doi: 10.1039/C7RA10285B – volume: 68 year: 2020 ident: 10.1016/j.nanoen.2022.108043_bib52 article-title: On the first principle theory of nanogenerators from Maxwell's equations publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104272 – volume: 77 year: 2020 ident: 10.1016/j.nanoen.2022.108043_bib24 article-title: Self-powered gold nanowire tattoo triboelectric sensors for soft wearable human-machine interface publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105295 – volume: 16 start-page: 4415 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib152 article-title: Electroassisted core-spun triboelectric nanogenerator fabrics for intellisense and artificial intelligence perception publication-title: ACS Nano doi: 10.1021/acsnano.1c10680 – volume: 6 start-page: 1112 year: 2018 ident: 10.1016/j.nanoen.2022.108043_bib36 article-title: Single-electrode, nylon-fiber-enhanced polytetrafluoroethylene electret film with hollow cylinder structure for mechanical energy harvesting publication-title: Energy Technol. doi: 10.1002/ente.201700779 – volume: 10 start-page: 1427 year: 2019 ident: 10.1016/j.nanoen.2022.108043_bib18 article-title: Quantifying the triboelectric series publication-title: Nat. Commun. doi: 10.1038/s41467-019-09461-x – volume: 8 start-page: 13787 year: 2020 ident: 10.1016/j.nanoen.2022.108043_bib130 article-title: An anti-freezing hydrogel based stretchable triboelectric nanogenerator for biomechanical energy harvesting at sub-zero temperature publication-title: J. Mater. Chem. A doi: 10.1039/D0TA03215H – ident: 10.1016/j.nanoen.2022.108043_bib75 doi: 10.1109/ICASSP.2003.1202718 – volume: 14 start-page: 24832 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib80 article-title: Deep learning-assisted triboelectric smart mats for personnel comprehensive monitoring toward maritime safety publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c05734 – year: 2021 ident: 10.1016/j.nanoen.2022.108043_bib14 article-title: From contact-electrification to triboelectric nanogenerators publication-title: Rep. Prog. Phys. doi: 10.1088/1361-6633/ac0a50 – ident: 10.1016/j.nanoen.2022.108043_bib76 doi: 10.1109/INFCOM.2000.832252 – volume: 10 start-page: 5147 year: 2019 ident: 10.1016/j.nanoen.2022.108043_bib81 article-title: Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics publication-title: Nat. Commun. doi: 10.1038/s41467-019-13166-6 – volume: 265 year: 2021 ident: 10.1016/j.nanoen.2022.108043_bib133 article-title: Transparent, conductive cellulose hydrogel for flexible sensor and triboelectric nanogenerator at subzero temperature publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2021.118078 – volume: 32 start-page: 84 year: 2020 ident: 10.1016/j.nanoen.2022.108043_bib146 article-title: 3D double-faced interlock fabric triboelectric nanogenerator for bio-motion energy harvesting and as self-powered stretching and 3D tactile sensors publication-title: Mater. Today doi: 10.1016/j.mattod.2019.10.025 – volume: 30 start-page: 1705195 year: 2018 ident: 10.1016/j.nanoen.2022.108043_bib38 article-title: Shape memory polymers for body motion energy harvesting and self-powered mechanosensing publication-title: Adv. Mater. doi: 10.1002/adma.201705195 – volume: 11 start-page: 7513 year: 2019 ident: 10.1016/j.nanoen.2022.108043_bib109 article-title: A liquid PEDOT:PSS electrode-based stretchable triboelectric nanogenerator for a portable self-charging power source publication-title: Nanoscale doi: 10.1039/C9NR01271K – volume: 32 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib73 article-title: A siloxene/ecoflex nanocomposite‐based triboelectric nanogenerator with enhanced charge retention by MoS2/LIG for self‐powered touchless sensor applications publication-title: Adv. Funct. Mater. – volume: 7 year: 2017 ident: 10.1016/j.nanoen.2022.108043_bib123 article-title: Environmentally friendly hydrogel-based triboelectric nanogenerators for versatile energy harvesting and self-powered sensors publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601529 – volume: 6 start-page: 3235 year: 2013 ident: 10.1016/j.nanoen.2022.108043_bib44 article-title: A transparent single-friction-surface triboelectric generator and self-powered touch sensor publication-title: Energy Environ. Sci. doi: 10.1039/c3ee42311e – volume: 11 start-page: 2093 year: 2020 ident: 10.1016/j.nanoen.2022.108043_bib16 article-title: Quantifying and understanding the triboelectric series of inorganic non-metallic materials publication-title: Nat. Commun. doi: 10.1038/s41467-020-15926-1 – volume: 27 start-page: 298 year: 2016 ident: 10.1016/j.nanoen.2022.108043_bib32 article-title: Conformal, graphene-based triboelectric nanogenerator for self-powered wearable electronics publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.07.009 – volume: 99 start-page: 24449 year: 1994 ident: 10.1016/j.nanoen.2022.108043_bib74 article-title: GPS precise tracking of TOPEX/POSEIDON: results and implications publication-title: J. Geophys. Res doi: 10.1029/94JC01171 – volume: 7 start-page: 35 year: 2021 ident: 10.1016/j.nanoen.2022.108043_bib1 article-title: Recent progress in silk fibroin-based flexible electronics publication-title: Micro Nanoeng. doi: 10.1038/s41378-021-00261-2 – volume: 7 year: 2017 ident: 10.1016/j.nanoen.2022.108043_bib168 article-title: Wearable all-fabric-based triboelectric generator for water energy harvesting publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701243 – year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib124 article-title: Deformable textile-structured triboelectric nanogenerator knitted with multifunctional sensing fibers for biomechanical energy harvesting publication-title: Adv. Fiber Mater. doi: 10.1007/s42765-022-00181-4 – volume: 70 year: 2020 ident: 10.1016/j.nanoen.2022.108043_bib94 article-title: Electron transfer mechanism of graphene/Cu heterostructure for improving the stability of triboelectric nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104540 – volume: 12 start-page: 2027 year: 2018 ident: 10.1016/j.nanoen.2022.108043_bib111 article-title: Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics publication-title: ACS Nano doi: 10.1021/acsnano.8b00147 – volume: 10 start-page: 1 year: 2017 ident: 10.1016/j.nanoen.2022.108043_bib19 article-title: Triboelectric nanogenerators as flexible power sources publication-title: npj Flex. Electron. – year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib70 article-title: Highly-stretchable rope-like triboelectric nanogenerator for self-powered monitoring in marine structures publication-title: Nano Energy – volume: 27 start-page: 595 year: 2016 ident: 10.1016/j.nanoen.2022.108043_bib55 article-title: High-performance triboelectric nanogenerators with artificially well-tailored interlocked interfaces publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.08.014 – volume: 25 start-page: 6594 year: 2013 ident: 10.1016/j.nanoen.2022.108043_bib48 article-title: A single‐electrode based triboelectric nanogenerator as self‐powered tracking system publication-title: Adv. Mater. doi: 10.1002/adma.201302453 – volume: 597 start-page: 171 year: 2021 ident: 10.1016/j.nanoen.2022.108043_bib122 article-title: Highly stretchable and self-healing cellulose nanofiber-mediated conductive hydrogel towards strain sensing application publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.04.001 – volume: 34 start-page: 442 year: 2017 ident: 10.1016/j.nanoen.2022.108043_bib82 article-title: Self-powered transparent glass-based single electrode triboelectric motion tracking sensor array publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.03.002 – volume: 7 year: 2017 ident: 10.1016/j.nanoen.2022.108043_bib7 article-title: An ultrathin flexible single-electrode triboelectric-nanogenerator for mechanical energy harvesting and instantaneous force sensing publication-title: Adv. Energy Mater. – volume: 67 year: 2020 ident: 10.1016/j.nanoen.2022.108043_bib21 article-title: Expanding the portfolio of tribo-positive materials: aniline formaldehyde condensates for high charge density triboelectric nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104291 – volume: 75 year: 2020 ident: 10.1016/j.nanoen.2022.108043_bib96 article-title: Tactile electronic skin to simultaneously detect and distinguish between temperature and pressure based on a triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105073 – volume: 11 start-page: 1 year: 2020 ident: 10.1016/j.nanoen.2022.108043_bib68 article-title: Deep learning enabled smart mats as a scalable floor monitoring system publication-title: Nat. Commun. doi: 10.1038/s41467-020-18471-z – volume: 45 start-page: 266 year: 2018 ident: 10.1016/j.nanoen.2022.108043_bib35 article-title: MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.01.004 – volume: 9 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib126 article-title: Transparent self-powered triboelectric sensor based on PVA/PA hydrogel for promoting human-machine interaction in nursing and patient safety publication-title: Nano Energy – volume: 56 start-page: 338 year: 2019 ident: 10.1016/j.nanoen.2022.108043_bib34 article-title: Microwave-welded single-walled carbon nanotubes as suitable electrodes for triboelectric energy harvesting from biomaterials and bioproducts publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.11.059 – volume: 39 start-page: 429 year: 2017 ident: 10.1016/j.nanoen.2022.108043_bib115 article-title: Bioinspired stretchable triboelectric nanogenerator as energy-harvesting skin for self-powered electronics publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.07.022 – volume: 84 year: 2021 ident: 10.1016/j.nanoen.2022.108043_bib159 article-title: 3D printed stretchable smart fibers and textiles for self-powered e-skin publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105866 – volume: 8 start-page: 3843 year: 2014 ident: 10.1016/j.nanoen.2022.108043_bib64 article-title: Triboelectric sensor for self-powered tracking of object motion inside tubing publication-title: ACS Nano doi: 10.1021/nn500695q – volume: 98 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib116 article-title: Robust and flexible triboelectric nanogenerator using non-Newtonian fluid characteristics towards smart traffic and human-motion detecting system publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107246 – volume: 15 start-page: 14653 year: 2021 ident: 10.1016/j.nanoen.2022.108043_bib135 article-title: Self-healing and elastic triboelectric nanogenerators for muscle motion monitoring and photothermal treatment publication-title: ACS Nano doi: 10.1021/acsnano.1c04384 – volume: 100 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib162 article-title: Silicone-incorporated nanoporous cobalt oxide and MXene nanocomposite-coated stretchable fabric for wearable triboelectric nanogenerator and self-powered sensing applications publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107454 – volume: 8 start-page: 481 year: 2020 ident: 10.1016/j.nanoen.2022.108043_bib8 article-title: Triboelectric nanogenerators: fundamental physics and potential applications publication-title: Friction doi: 10.1007/s40544-020-0390-3 – volume: 4 start-page: 1124 issue: 3 year: 2022 ident: 10.1016/j.nanoen.2022.108043_bib102 article-title: Elastic and skin-contact triboelectric nanogenerators and their applicability in energy harvesting and tactile sensing publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.1c01246 |
SSID | ssj0000651712 |
Score | 2.6392293 |
SecondaryResourceType | review_article |
Snippet | Triboelectric nanogenerators (TENGs) play a prominent role in steadily developing the Internet of Things (IoT) and the Fourth Industrial Revolution (fusion of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 108043 |
SubjectTerms | Films based SE-TENGs Flexible TENGs Single electrode Textile based SE-TENGs |
Title | A review of single electrode triboelectric nanogenerators |
URI | https://dx.doi.org/10.1016/j.nanoen.2022.108043 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lBy8rk32kc0eS7FUhV600FvYx0QqJS1Sr_5295GUCqLgMctOWL4d5pF8M4PQrWFaZlZprIVNMWMWsLKcYG0rQwoOvIDA8p3mkxl7nPN5B43aWhhPq2xsf7TpwVo3K4MGzcF6sRg8E5e7uNe5AMLpKAn1vYwJr-V3n9n2O4tzsZkIPz39fuwF2gq6QPOqVb0C3wiVkMC3Y_RnD7XjdcZH6LAJF5NhPNEx6kB9gg52mgieIjlMYv1JsqoSn_kvIWmG21hI_ECrVXxcmMQf4zU0mvZDds7QbHz_MprgZiACNlSQDZY-O-KQahfjU5WTAmSaV9KAiyogz4HrnGtuTEqskJaCc91KKSYqSZkodEbPUbde1XCBEm5EBgUXykpgUOSSU1lpt0QrWzCte4i2IJSm6Rbuh1Ysy5YW9lZG6EoPXRmh6yG8lVrHbhl_7BctvuW3Wy-dQf9V8vLfkldo34-Mj8zra9TdvH_AjQssNrofNKeP9oYPT5PpF3yRzO4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JasMwEBUhObQ9lK40XX3oVcTWYlnHEBqSJs2lCeQmLGlcUoIdSvr_lbyEFEoLPVp4jHgWs9gz7yH0aJiWkU011sKGmDELOLWcYG0zQxIOPIGyy3cWjxbsecmXLTRoZmF8W2Xt-yufXnrreqVXo9nbrFa9V-JqF_c4l0C4M0r8fG_Hs1PxNur0x5PRbPepxUXZSJT_Pb0J9jbNEF3Z6ZWneQGeC5WQsuWO0Z-D1F7gGZ6g4zpjDPrVpk5RC_IzdLTHI3iOZD-oRlCCIgt88b-GoNa3sRB4TauiulyZwG_jreSa9jo7F2gxfJoPRrjWRMCGCrLF0hdIHELt0nyaxiQBGcaZNOASC4hj4DrmmhsTEiukpeCid5qmTGSSMpHoiF6idl7kcIUCbkQECReplcAgiSWnMtNuiWY2YVp3EW1AUKYmDPe6FWvVdIa9qwo65aFTFXRdhHdWm4ow44_7RYOv-vbilfPpv1pe_9vyAR2M5i9TNR3PJjfo0CvIV43Yt6i9_fiEO5dnbPV9fY6-AJgBz58 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+single+electrode+triboelectric+nanogenerators&rft.jtitle=Nano+energy&rft.au=Akram%2C+Wasim&rft.au=Chen%2C+Qian&rft.au=Xia%2C+Guangbo&rft.au=Fang%2C+Jian&rft.date=2023-02-01&rft.pub=Elsevier+Ltd&rft.issn=2211-2855&rft.volume=106&rft_id=info:doi/10.1016%2Fj.nanoen.2022.108043&rft.externalDocID=S2211285522011211 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon |