Solution-synthesized chiral piezoelectric selenium nanowires for wearable self-powered human-integrated monitoring
Smart sensing devices with high stretchability and self-powered characteristics are essential in future generation wearable human-integrated applications. Here we report for the first time scalable synthesis and integration of selenium (Se) nanowires into wearable piezoelectric devices, and explore...
Saved in:
Published in | Nano energy Vol. 56; pp. 693 - 699 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Smart sensing devices with high stretchability and self-powered characteristics are essential in future generation wearable human-integrated applications. Here we report for the first time scalable synthesis and integration of selenium (Se) nanowires into wearable piezoelectric devices, and explore the feasibility of such devices for self-powered sensing applications, e.g., physiological monitoring. The ultrathin device can be conformably worn onto the human body, effectively converting the imperceptible time-variant mechanical vibration from the human body into distinguishable electrical signals, e.g., gesture, vocal movement, and radial artery pulse, through straining the piezoelectric Se nanowires. Our results suggest the potential of solution-synthesized Se nanowire a new class of piezoelectric nanomaterial for self-powered biomedical devices and opens doors to new technologies in energy, electronics, and sensor applications.
A wearable self-powered human-integrated sensor is developed using solution-synthesized piezoelectric selenium (Se) nanowires. [Display omitted]
•Wearable piezoelectric nanogenerator is fabricated using solution-grown selenium nanowires as the active layer.•The nanogenerator has reliable durability.•The device is cable of being applied as self-powered sensors for human-integrated sensing and monitoring. |
---|---|
AbstractList | Smart sensing devices with high stretchability and self-powered characteristics are essential in future generation wearable human-integrated applications. Here we report for the first time scalable synthesis and integration of selenium (Se) nanowires into wearable piezoelectric devices, and explore the feasibility of such devices for self-powered sensing applications, e.g., physiological monitoring. The ultrathin device can be conformably worn onto the human body, effectively converting the imperceptible time-variant mechanical vibration from the human body into distinguishable electrical signals, e.g., gesture, vocal movement, and radial artery pulse, through straining the piezoelectric Se nanowires. Our results suggest the potential of solution-synthesized Se nanowire a new class of piezoelectric nanomaterial for self-powered biomedical devices and opens doors to new technologies in energy, electronics, and sensor applications.
A wearable self-powered human-integrated sensor is developed using solution-synthesized piezoelectric selenium (Se) nanowires. [Display omitted]
•Wearable piezoelectric nanogenerator is fabricated using solution-grown selenium nanowires as the active layer.•The nanogenerator has reliable durability.•The device is cable of being applied as self-powered sensors for human-integrated sensing and monitoring. |
Author | Wu, Min Wang, Ruoxing Wu, Wenzhuo Fan, Fengru Gao, Shengjie Wu, Wenxuan Tang, Zhiyuan Ma, Chenxiang Wang, Yixiu Bao, Ning |
Author_xml | – sequence: 1 givenname: Min surname: Wu fullname: Wu, Min organization: School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA – sequence: 2 givenname: Yixiu surname: Wang fullname: Wang, Yixiu organization: School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA – sequence: 3 givenname: Shengjie surname: Gao fullname: Gao, Shengjie organization: School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA – sequence: 4 givenname: Ruoxing surname: Wang fullname: Wang, Ruoxing organization: School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA – sequence: 5 givenname: Chenxiang surname: Ma fullname: Ma, Chenxiang organization: School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA – sequence: 6 givenname: Zhiyuan surname: Tang fullname: Tang, Zhiyuan organization: Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China – sequence: 7 givenname: Ning surname: Bao fullname: Bao, Ning organization: School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China – sequence: 8 givenname: Wenxuan surname: Wu fullname: Wu, Wenxuan email: wxwu@mail.ustc.edu.cn organization: Shenzhen Broadthink Advanced Materials Technologies Co., Ltd., Shenzhen, Guangdong 518117, China – sequence: 9 givenname: Fengru surname: Fan fullname: Fan, Fengru email: fengrufan@ucsb.edu organization: Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA 93106, USA – sequence: 10 givenname: Wenzhuo surname: Wu fullname: Wu, Wenzhuo email: wenzhuowu@purdue.edu organization: School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA |
BookMark | eNqFkE1OwzAQhb0oEgV6Axa5QILHSRPDAglV_EmVWABry3HGravErmyXqj09jsqKBcxmRjN6b_S-CzKxziIh10ALoFDfbAorrUNbMAq8AFZQWk7IlDGAnPH5_JzMQtjQVPUcGmBT4t9dv4vG2TwcbFxjMEfsMrU2XvbZ1uDRYY8qeqOykCZrdkM2_tgbjyHTzmd7lF62PY53nW_dHn1yWO8GaXNjI668jGkxOGui88aursiZln3A2U-_JJ9Pjx-Ll3z59vy6eFjmqmxYzHnXdpLrSnNWK6V42UIjZV12qqYNypbdAijOuQZa1pJqXiJIVtXAGGoGVXlJ7k6-yrsQPGqhTJRj1uil6QVQMUITG3GCJkZoAphI0JK4-iXeejNIf_hPdn-SYQr2ZdCLoAxahV3ipaLonPnb4BtS7ZDr |
CitedBy_id | crossref_primary_10_1002_adom_202203014 crossref_primary_10_3762_bjnano_13_14 crossref_primary_10_1063_5_0159073 crossref_primary_10_1007_s11705_022_2271_y crossref_primary_10_1016_j_dsp_2021_103038 crossref_primary_10_1021_acsphotonics_1c01435 crossref_primary_10_1016_j_mtsust_2024_100847 crossref_primary_10_1039_D0TA09506K crossref_primary_10_1002_aelm_202200108 crossref_primary_10_1088_1361_6528_ad32d3 crossref_primary_10_1002_smll_201905703 crossref_primary_10_1007_s40820_020_00493_3 crossref_primary_10_1002_adma_202206425 crossref_primary_10_1021_acs_chemmater_1c01459 crossref_primary_10_1016_j_nanoen_2019_05_033 crossref_primary_10_1002_adma_202313127 crossref_primary_10_1002_adma_201901924 crossref_primary_10_1021_acsnano_9b02233 crossref_primary_10_1016_j_cossms_2024_101211 crossref_primary_10_1016_j_nanoen_2023_108680 crossref_primary_10_1016_j_compscitech_2024_110881 crossref_primary_10_1016_j_sna_2024_115924 crossref_primary_10_1002_adfm_202300701 crossref_primary_10_1002_chem_202304067 crossref_primary_10_1007_s00542_022_05331_7 crossref_primary_10_1007_s40684_019_00144_y crossref_primary_10_34133_2020_8710686 crossref_primary_10_1002_adfm_202008347 crossref_primary_10_1007_s11431_023_2535_0 crossref_primary_10_1016_j_jallcom_2024_175578 crossref_primary_10_1039_D1CS00858G crossref_primary_10_1002_inf2_12064 crossref_primary_10_1002_inf2_12262 crossref_primary_10_1016_j_nanoen_2024_109876 crossref_primary_10_1016_j_nanoen_2019_104346 crossref_primary_10_1016_j_compositesb_2020_107792 crossref_primary_10_1016_j_nanoen_2019_104278 crossref_primary_10_20517_ss_2023_13 crossref_primary_10_1016_j_dsp_2022_103570 crossref_primary_10_1007_s40684_022_00432_0 crossref_primary_10_1016_j_radphyschem_2021_109863 crossref_primary_10_1016_j_nxnano_2024_100047 crossref_primary_10_1002_admt_202000771 crossref_primary_10_1016_j_matpr_2023_05_213 crossref_primary_10_1016_j_nanoen_2019_104390 crossref_primary_10_1080_23746149_2024_2357809 crossref_primary_10_1002_adfm_202009602 crossref_primary_10_1016_j_nanoen_2019_103909 crossref_primary_10_1016_j_nanoen_2020_105303 crossref_primary_10_1002_aelm_202400456 crossref_primary_10_1021_acsapm_4c01731 crossref_primary_10_3390_ma14216366 crossref_primary_10_1016_j_nanoen_2022_107008 crossref_primary_10_1039_D4MH00794H crossref_primary_10_3390_bios12080651 crossref_primary_10_1002_adfm_202003301 crossref_primary_10_1021_acsaem_2c00703 crossref_primary_10_1038_s41598_022_23005_2 crossref_primary_10_1002_advs_202400615 crossref_primary_10_1016_j_nanoen_2022_107246 crossref_primary_10_1016_j_nanoen_2020_105582 crossref_primary_10_1007_s10854_024_13372_z crossref_primary_10_1021_acsanm_0c02513 crossref_primary_10_1039_C9TA09395H crossref_primary_10_1002_adma_202004832 crossref_primary_10_1002_admt_202000889 crossref_primary_10_1039_D2TA04210J crossref_primary_10_1038_s41598_020_70182_z crossref_primary_10_3390_nano14100826 crossref_primary_10_1002_aisy_202000117 crossref_primary_10_1002_admt_201900819 crossref_primary_10_1021_acsaelm_0c01142 crossref_primary_10_1039_D2MH01221A crossref_primary_10_1016_j_ijpharm_2024_124535 crossref_primary_10_1002_cplu_201900043 crossref_primary_10_1002_adma_202408969 crossref_primary_10_1002_adma_202105697 crossref_primary_10_1016_j_apmt_2020_100699 crossref_primary_10_31613_ceramist_2019_22_2_02 crossref_primary_10_1002_adfm_202300927 crossref_primary_10_1155_2022_8312564 |
Cites_doi | 10.1016/j.nanoen.2011.09.001 10.1016/j.mattod.2016.12.001 10.1002/adma.201300657 10.1088/0957-4484/22/47/475401 10.1021/nl103203u 10.1038/ncomms13566 10.1016/0375-9601(76)90329-7 10.1021/ic50054a037 10.1002/adma.200703236 10.1021/nl903377u 10.1002/adfm.201301379 10.1039/C8TA05887C 10.1021/acsnano.7b02975 10.1021/acsami.7b13767 10.1021/nl803904b 10.1021/nl9040719 10.1016/0735-1097(93)90772-S 10.1002/adfm.201604378 10.1021/nn406481k 10.1002/anie.201201656 10.1038/ncomms2832 10.1080/17458080903055666 10.1088/0957-4484/26/16/165403 10.1021/nl204043y 10.1103/PhysRev.105.1233 10.1016/j.nanoen.2014.11.034 10.1002/advs.201500257 10.1021/nn100845b 10.1016/j.nanoen.2014.11.038 10.1021/cm034193b 10.1016/S0002-8703(99)70313-3 10.1088/1361-6641/aa8605 10.1063/1.2831901 10.1063/1.326485 10.1021/nn300951d 10.1143/JJAP.9.631 10.1021/nl202208n 10.1021/cg800064a 10.1021/cg050493p 10.1002/adma.201200150 10.1021/nl102959k 10.1016/j.nanoen.2014.11.028 10.1126/science.1124005 10.1126/sciadv.1500661 10.1021/ja909863a 10.1039/c3ta13035e 10.1038/nnano.2010.132 10.1021/nl201505c 10.1021/nl5029182 10.1016/j.amjhyper.2004.10.009 10.1002/adma.201201886 10.1016/0038-1098(67)90534-0 10.1016/j.nanoen.2018.05.012 10.1016/0375-9601(71)90337-9 10.1088/0967-3334/31/1/R01 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd |
Copyright_xml | – notice: 2018 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nanoen.2018.12.003 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 699 |
ExternalDocumentID | 10_1016_j_nanoen_2018_12_003 S2211285518309078 |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ JARJE KOM M41 MAGPM MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSM SSR SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c372t-8dbda8f4f826ccc83b17aa63dc607eab2911c888f1036a0f83e1a246122ef2143 |
IEDL.DBID | .~1 |
ISSN | 2211-2855 |
IngestDate | Thu Apr 24 23:04:23 EDT 2025 Tue Jul 01 01:56:05 EDT 2025 Fri Feb 23 02:27:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Piezoelectric device Self-powered sensor Human physiological monitoring Wearable electronics Selenium nanowires |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-8dbda8f4f826ccc83b17aa63dc607eab2911c888f1036a0f83e1a246122ef2143 |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1016_j_nanoen_2018_12_003 crossref_primary_10_1016_j_nanoen_2018_12_003 elsevier_sciencedirect_doi_10_1016_j_nanoen_2018_12_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2019 2019-02-00 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: February 2019 |
PublicationDecade | 2010 |
PublicationTitle | Nano energy |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Mayers, Liu, Sunderland, Xia (bib28) 2003; 15 Yang, Qin, Li, Zhu, Wang (bib45) 2009; 9 Park, Xu, Liu, Hwang, Kang, Wang, Lee (bib7) 2010; 10 Hu, Zhang, Xu, Lin, Snyder, Wang (bib23) 2011; 11 Huan, Zhang, Song, Zhao, Wei, Zhang, Wang (bib15) 2018; 50 Wang, Wang, Wang (bib29) 2008; 8 Junginger (bib32) 1967; 5 Wang, Song (bib1) 2006; 312 Niu, Wang (bib42) 2015; 14 Lin, Chen, Li, Zhou, Meng, Wei, Yang, Wang (bib53) 2017; 11 Xie, Dai, Huang, Zhang, Ma, Hu, Qian (bib55) 2006; 6 Reitz (bib33) 1957; 105 Avolio, Butlin, Walsh (bib51) 2009; 31 Alam, Ghosh, Sultana, Mandal (bib12) 2015; 26 Lin, Song, Ding, Lu, Wang (bib6) 2008; 20 Cha, Kim, Kim, Ku, Sohn, Park, Song, Jung, Lee, Choi, Park, Wang, Kim, Kim (bib17) 2011; 11 Cherin, Unger (bib27) 1967; 6 Schwartz, Tee, Mei, Appleton, Kim, Wang, Bao (bib48) 2013; 4 Wang, Wu (bib46) 2012; 51 Wang (bib24) 2012; 1 Hu, Wang (bib26) 2015; 14 Lee, Lee, Lee, Sohn, Lee, Lee, Moon, Kim, Kim, Myoung, Wang (bib31) 2013; 25 Bae, Kim, Lee, Xu, Park, Zheng, Balakrishnan, Lei, Kim, Song (bib37) 2010; 5 Xu, Zhu (bib41) 2012; 24 Lee, Chen, Wang, Cha, Park, Kim, Chou, Wang (bib18) 2012; 24 Chen, Parida, Wang, Xiong, Lin, Shao, Lee (bib44) 2017; 9 Zhang, Gao, Wang, Liao, Qiu, Xue, Shi, Xiong, Chen (bib10) 2015; 11 Gao, Wang, Wang, Wu (bib36) 2017; 32 Shin, Kim, Lee, Jung, Nah (bib8) 2014; 8 London, Guerin (bib50) 1999; 138 Chang, Tran, Wang, Fuh, Lin (bib16) 2010; 10 Qi, Jafferis, Lyons, Lee, Ahmad, McAlpine (bib20) 2010; 10 Pradel, Wu, Ding, Wang (bib47) 2014; 14 Huang, Song, Lee, Ding, Gao, Hao, Chen, Wang (bib2) 2010; 132 Nichols (bib52) 2005; 18 Lin, Song, Ding, Lu, Wang (bib5) 2008; 92 Wang (bib19) 2017; 20 Wu, Xu, Zhang, Wang (bib11) 2012; 6 Lee, Kim, Lee, Kim, Gupta, Kim (bib13) 2014; 24 Kumar (bib34) 2009; 4 He, Zi, Guo, Zheng, Xi, Wu, Wang, Zhang, Lu, Wang (bib43) 2017; 27 Minary-Jolandan, Bernal, Kuljanishvili, Parpoil, Espinosa (bib4) 2012; 12 Hu, Zhang, Xu, Zhu, Wang (bib21) 2010; 10 Lin, Lai, Hu, Zhang, Wang, Xu, Snyder, Chen, Wang (bib3) 2011; 22 Saba, Roman, Pini, Spitzer, Ganau, Devereux (bib54) 1993; 22 Li, Zheng, Zhang, Teng, Huang, Chen, Lu (bib30) 2013; 1 Bouat, Thuillier (bib38) 1971; 37 Shiosaki, Kawabata, Tanaka (bib39) 1970; 9 Hansen, Liu, Yang, Wang (bib25) 2010; 4 Wu, Zheng, Zheng, Li, Wang, Zhu, Li, Yue, Gu, Wu (bib14) 2018; 6 Royer, Dieulesaint (bib35) 1979; 50 Kunigelis, Royer, Dieulesaint, Thuillier (bib40) 1976; 56 Park, Kim, Lee, Lee, Ko (bib49) 2015; 1 Nguyen, Zhu, Jenkins, Yang (bib22) 2016; 7 Zhang, Liao, Zhang, Liang, Zhao, Zheng, Zhang (bib9) 2016; 3 Cherin (10.1016/j.nanoen.2018.12.003_bib27) 1967; 6 Nichols (10.1016/j.nanoen.2018.12.003_bib52) 2005; 18 Zhang (10.1016/j.nanoen.2018.12.003_bib9) 2016; 3 Saba (10.1016/j.nanoen.2018.12.003_bib54) 1993; 22 Huan (10.1016/j.nanoen.2018.12.003_bib15) 2018; 50 Junginger (10.1016/j.nanoen.2018.12.003_bib32) 1967; 5 Shiosaki (10.1016/j.nanoen.2018.12.003_bib39) 1970; 9 Wang (10.1016/j.nanoen.2018.12.003_bib1) 2006; 312 Shin (10.1016/j.nanoen.2018.12.003_bib8) 2014; 8 Wu (10.1016/j.nanoen.2018.12.003_bib14) 2018; 6 Kumar (10.1016/j.nanoen.2018.12.003_bib34) 2009; 4 Royer (10.1016/j.nanoen.2018.12.003_bib35) 1979; 50 Niu (10.1016/j.nanoen.2018.12.003_bib42) 2015; 14 Hansen (10.1016/j.nanoen.2018.12.003_bib25) 2010; 4 Alam (10.1016/j.nanoen.2018.12.003_bib12) 2015; 26 Park (10.1016/j.nanoen.2018.12.003_bib49) 2015; 1 Huang (10.1016/j.nanoen.2018.12.003_bib2) 2010; 132 Wang (10.1016/j.nanoen.2018.12.003_bib24) 2012; 1 Lin (10.1016/j.nanoen.2018.12.003_bib5) 2008; 92 Schwartz (10.1016/j.nanoen.2018.12.003_bib48) 2013; 4 Wang (10.1016/j.nanoen.2018.12.003_bib46) 2012; 51 Hu (10.1016/j.nanoen.2018.12.003_bib21) 2010; 10 Chen (10.1016/j.nanoen.2018.12.003_bib44) 2017; 9 Minary-Jolandan (10.1016/j.nanoen.2018.12.003_bib4) 2012; 12 Kunigelis (10.1016/j.nanoen.2018.12.003_bib40) 1976; 56 Gao (10.1016/j.nanoen.2018.12.003_bib36) 2017; 32 Lee (10.1016/j.nanoen.2018.12.003_bib31) 2013; 25 Chang (10.1016/j.nanoen.2018.12.003_bib16) 2010; 10 Qi (10.1016/j.nanoen.2018.12.003_bib20) 2010; 10 Hu (10.1016/j.nanoen.2018.12.003_bib26) 2015; 14 Park (10.1016/j.nanoen.2018.12.003_bib7) 2010; 10 Hu (10.1016/j.nanoen.2018.12.003_bib23) 2011; 11 Mayers (10.1016/j.nanoen.2018.12.003_bib28) 2003; 15 Xu (10.1016/j.nanoen.2018.12.003_bib41) 2012; 24 Cha (10.1016/j.nanoen.2018.12.003_bib17) 2011; 11 Lee (10.1016/j.nanoen.2018.12.003_bib18) 2012; 24 Yang (10.1016/j.nanoen.2018.12.003_bib45) 2009; 9 Wu (10.1016/j.nanoen.2018.12.003_bib11) 2012; 6 Lin (10.1016/j.nanoen.2018.12.003_bib6) 2008; 20 Xie (10.1016/j.nanoen.2018.12.003_bib55) 2006; 6 Lin (10.1016/j.nanoen.2018.12.003_bib3) 2011; 22 Nguyen (10.1016/j.nanoen.2018.12.003_bib22) 2016; 7 Wang (10.1016/j.nanoen.2018.12.003_bib29) 2008; 8 Pradel (10.1016/j.nanoen.2018.12.003_bib47) 2014; 14 Lee (10.1016/j.nanoen.2018.12.003_bib13) 2014; 24 Bae (10.1016/j.nanoen.2018.12.003_bib37) 2010; 5 Li (10.1016/j.nanoen.2018.12.003_bib30) 2013; 1 London (10.1016/j.nanoen.2018.12.003_bib50) 1999; 138 Avolio (10.1016/j.nanoen.2018.12.003_bib51) 2009; 31 Zhang (10.1016/j.nanoen.2018.12.003_bib10) 2015; 11 Wang (10.1016/j.nanoen.2018.12.003_bib19) 2017; 20 Reitz (10.1016/j.nanoen.2018.12.003_bib33) 1957; 105 Bouat (10.1016/j.nanoen.2018.12.003_bib38) 1971; 37 He (10.1016/j.nanoen.2018.12.003_bib43) 2017; 27 Lin (10.1016/j.nanoen.2018.12.003_bib53) 2017; 11 |
References_xml | – volume: 18 start-page: 3S year: 2005 end-page: 10S ident: bib52 article-title: Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms publication-title: Am. J. Hypertens. – volume: 4 start-page: 341 year: 2009 end-page: 346 ident: bib34 article-title: Synthesis and characterisation of selenium nanowires using template synthesis publication-title: J. Exp. Nanosci. – volume: 12 start-page: 970 year: 2012 end-page: 976 ident: bib4 article-title: Individual GaN nanowires exhibit strong piezoelectricity in 3D publication-title: Nano Lett. – volume: 10 start-page: 4939 year: 2010 end-page: 4943 ident: bib7 article-title: Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates publication-title: Nano Lett. – volume: 9 start-page: 1201 year: 2009 end-page: 1205 ident: bib45 article-title: Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator publication-title: Nano Lett. – volume: 26 start-page: 165403 year: 2015 ident: bib12 article-title: Lead-free ZnSnO3/MWCNTs-based self-poled flexible hybrid nanogenerator for piezoelectric power generation publication-title: Nanotechnology – volume: 4 start-page: 3647 year: 2010 end-page: 3652 ident: bib25 article-title: Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy publication-title: ACS Nano – volume: 312 start-page: 242 year: 2006 end-page: 246 ident: bib1 article-title: Piezoelectric nanogenerators based on zinc oxide nanowire arrays publication-title: Science – volume: 11 start-page: 8830 year: 2017 end-page: 8837 ident: bib53 article-title: Triboelectric nanogenerator enabled body sensor network for self-powered human heart-rate monitoring publication-title: ACS Nano – volume: 1 start-page: 13 year: 2012 end-page: 24 ident: bib24 article-title: Piezoelectric nanogenerators—harvesting ambient mechanical energy at the nanometer scale publication-title: Nano Energy – volume: 24 start-page: 1759 year: 2012 end-page: 1764 ident: bib18 article-title: A hybrid piezoelectric structure for wearable nanogenerators publication-title: Adv. Mater. – volume: 4 start-page: 1859 year: 2013 ident: bib48 article-title: Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring publication-title: Nat. Commun. – volume: 25 start-page: 2920 year: 2013 end-page: 2925 ident: bib31 article-title: High-power density piezoelectric energy harvesting using radially strained ultrathin trigonal tellurium nanowire assembly publication-title: Adv. Mater. – volume: 56 start-page: 331 year: 1976 end-page: 332 ident: bib40 article-title: Determination of the piezoelectric constant d14 of trigonal selenium crystals publication-title: Phys. Lett. A – volume: 92 start-page: 022105 year: 2008 ident: bib5 article-title: Piezoelectric nanogenerator using CdS nanowires publication-title: Appl. Phys. Lett. – volume: 31 start-page: R1 year: 2009 ident: bib51 article-title: Arterial blood pressure measurement and pulse wave analysis—their role in enhancing cardiovascular assessment publication-title: Physiol. Meas. – volume: 7 start-page: 13566 year: 2016 ident: bib22 article-title: Self-assembly of diphenylalanine peptide with controlled polarization for power generation publication-title: Nat. Commun. – volume: 5 start-page: 509 year: 1967 end-page: 511 ident: bib32 article-title: Electronic band structure of tellurium publication-title: Solid State Commun. – volume: 20 start-page: 3127 year: 2008 end-page: 3130 ident: bib6 article-title: Alternating the output of a CdS nanowire nanogenerator by a white‐light‐stimulated optoelectronic effect publication-title: Adv. Mater. – volume: 37 start-page: 71 year: 1971 end-page: 72 ident: bib38 article-title: Electromechanical resonance in selenium determination of the piezoelectric coefficient d11 publication-title: Phys. Lett. A – volume: 138 start-page: S220 year: 1999 end-page: S224 ident: bib50 article-title: Influence of arterial pulse and reflected waves on blood pressure and cardiac function publication-title: Am. Heart J. – volume: 9 start-page: 631 year: 1970 ident: bib39 article-title: Piezoelectric properties of Se film deposited on Te crystal publication-title: Jpn. J. Appl. Phys. – volume: 14 start-page: 6897 year: 2014 end-page: 6905 ident: bib47 article-title: Solution-derived ZnO homojunction nanowire films on wearable substrates for energy conversion and self-powered gesture recognition publication-title: Nano Lett. – volume: 14 start-page: 161 year: 2015 end-page: 192 ident: bib42 article-title: Theoretical systems of triboelectric nanogenerators publication-title: Nano Energy – volume: 22 start-page: 1873 year: 1993 end-page: 1880 ident: bib54 article-title: Relation of arterial pressure waveform to left ventricular and carotid anatomy in normotensive subjects publication-title: J. Am. Coll. Cardiol. – volume: 105 start-page: 1233 year: 1957 end-page: 1240 ident: bib33 article-title: Electronic band structure of selenium and tellurium publication-title: Phys. Rev. – volume: 9 start-page: 42200 year: 2017 end-page: 42209 ident: bib44 article-title: A stretchable and transparent nanocomposite nanogenerator for self-powered physiological monitoring publication-title: ACS Appl. Mater. Interfaces – volume: 51 start-page: 11700 year: 2012 end-page: 11721 ident: bib46 article-title: Nanotechnology‐enabled energy harvesting for self‐powered micro‐/nanosystems publication-title: Angew. Chem. Int. Ed. – volume: 24 start-page: 5117 year: 2012 end-page: 5122 ident: bib41 article-title: Highly conductive and stretchable silver nanowire conductors publication-title: Adv. Mater. – volume: 6 start-page: 1589 year: 1967 end-page: 1591 ident: bib27 article-title: The crystal structure of trigonal selenium publication-title: Inorg. Chem. – volume: 14 start-page: 3 year: 2015 end-page: 14 ident: bib26 article-title: Recent progress in piezoelectric nanogenerators as a sustainable power source in self-powered systems and active sensors publication-title: Nano Energy – volume: 10 start-page: 524 year: 2010 end-page: 528 ident: bib20 article-title: Piezoelectric ribbons printed onto rubber for flexible energy conversion publication-title: Nano Lett. – volume: 10 start-page: 726 year: 2010 end-page: 731 ident: bib16 article-title: Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency publication-title: Nano Lett. – volume: 15 start-page: 3852 year: 2003 end-page: 3858 ident: bib28 article-title: Sonochemical synthesis of trigonal selenium nanowires publication-title: Chem. Mater. – volume: 132 start-page: 4766 year: 2010 end-page: 4771 ident: bib2 article-title: GaN nanowire arrays for high-output nanogenerators publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 2572 year: 2011 end-page: 2577 ident: bib23 article-title: Self-powered system with wireless data transmission publication-title: Nano Lett. – volume: 50 start-page: 62 year: 2018 end-page: 69 ident: bib15 article-title: High-performance piezoelectric composite nanogenerator based on Ag/(K,Na)NbO3 heterostructure publication-title: Nano Energy – volume: 1 start-page: 15046 year: 2013 end-page: 15052 ident: bib30 article-title: Controlled synthesis of tellurium nanowires and nanotubes via a facile, efficient, and relatively green solution phase method publication-title: J. Mater. Chem. A – volume: 3 start-page: 1500257 year: 2016 ident: bib9 article-title: Novel piezoelectric paper‐based flexible nanogenerators composed of BaTiO3 nanoparticles and bacterial cellulose publication-title: Adv. Sci. – volume: 6 start-page: 4335 year: 2012 end-page: 4340 ident: bib11 article-title: Lead-free nanogenerator made from single ZnSnO3 microbelt publication-title: ACS Nano – volume: 11 start-page: 5142 year: 2011 end-page: 5147 ident: bib17 article-title: Porous PVDF As effective sonic wave driven nanogenerators publication-title: Nano Lett. – volume: 22 start-page: 475401 year: 2011 ident: bib3 article-title: High output nanogenerator based on assembly of GaN nanowires publication-title: Nanotechnology – volume: 24 start-page: 37 year: 2014 end-page: 43 ident: bib13 article-title: Unidirectional high‐power generation via stress‐induced dipole alignment from ZnSnO3 nanocubes/polymer hybrid piezoelectric nanogenerator publication-title: Adv. Funct. Mater. – volume: 20 start-page: 74 year: 2017 end-page: 82 ident: bib19 article-title: On Maxwell's displacement current for energy and sensors: the origin of nanogenerators publication-title: Mater. Today – volume: 6 start-page: 1514 year: 2006 end-page: 1517 ident: bib55 article-title: Large-scale Synthesis and growth mechanism of single-crystal Se nanobelts publication-title: Cryst. Growth Des. – volume: 1 start-page: e1500661 year: 2015 ident: bib49 article-title: Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli publication-title: Sci. Adv. – volume: 27 start-page: 1604378 year: 2017 ident: bib43 article-title: A highly stretchable fiber‐based triboelectric nanogenerator for self‐powered wearable electronics publication-title: Adv. Funct. Mater. – volume: 11 start-page: 510 year: 2015 end-page: 517 ident: bib10 article-title: Single BaTiO3 nanowires-polymer fiber based nanogenerator publication-title: Nano Energy – volume: 10 start-page: 5025 year: 2010 end-page: 5031 ident: bib21 article-title: High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display publication-title: Nano Lett. – volume: 32 start-page: 104004 year: 2017 ident: bib36 article-title: Piezotronic effect in 1D van der Waals solid of elemental tellurium nanobelt for smart adaptive electronics publication-title: Semicond. Sci. Technol. – volume: 5 start-page: 574 year: 2010 ident: bib37 article-title: Roll-to-roll production of 30-inch graphene films for transparent electrodes publication-title: Nat. Nanotechnol. – volume: 8 start-page: 2766 year: 2014 end-page: 2773 ident: bib8 article-title: Hemispherically aggregated BaTiO3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator publication-title: ACS nano – volume: 8 start-page: 4415 year: 2008 end-page: 4419 ident: bib29 article-title: PEG-mediated hydrothermal growth of single-crystal tellurium nanotubes publication-title: Cryst. Growth Des. – volume: 50 start-page: 4042 year: 1979 end-page: 4045 ident: bib35 article-title: Elastic and piezoelectric constants of trigonal selenium and tellurium crystals publication-title: J. Appl. Phys. – volume: 6 start-page: 16439 year: 2018 end-page: 16449 ident: bib14 article-title: High-performance piezoelectric-energy-harvester and self-powered mechanosensing using lead-free potassium–sodium niobate flexible piezoelectric composites publication-title: J. Mater. Chem. A – volume: 1 start-page: 13 issue: 1 year: 2012 ident: 10.1016/j.nanoen.2018.12.003_bib24 article-title: Piezoelectric nanogenerators—harvesting ambient mechanical energy at the nanometer scale publication-title: Nano Energy doi: 10.1016/j.nanoen.2011.09.001 – volume: 20 start-page: 74 issue: 2 year: 2017 ident: 10.1016/j.nanoen.2018.12.003_bib19 article-title: On Maxwell's displacement current for energy and sensors: the origin of nanogenerators publication-title: Mater. Today doi: 10.1016/j.mattod.2016.12.001 – volume: 25 start-page: 2920 issue: 21 year: 2013 ident: 10.1016/j.nanoen.2018.12.003_bib31 article-title: High-power density piezoelectric energy harvesting using radially strained ultrathin trigonal tellurium nanowire assembly publication-title: Adv. Mater. doi: 10.1002/adma.201300657 – volume: 22 start-page: 475401 issue: 47 year: 2011 ident: 10.1016/j.nanoen.2018.12.003_bib3 article-title: High output nanogenerator based on assembly of GaN nanowires publication-title: Nanotechnology doi: 10.1088/0957-4484/22/47/475401 – volume: 10 start-page: 5025 issue: 12 year: 2010 ident: 10.1016/j.nanoen.2018.12.003_bib21 article-title: High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display publication-title: Nano Lett. doi: 10.1021/nl103203u – volume: 7 start-page: 13566 year: 2016 ident: 10.1016/j.nanoen.2018.12.003_bib22 article-title: Self-assembly of diphenylalanine peptide with controlled polarization for power generation publication-title: Nat. Commun. doi: 10.1038/ncomms13566 – volume: 56 start-page: 331 issue: 4 year: 1976 ident: 10.1016/j.nanoen.2018.12.003_bib40 article-title: Determination of the piezoelectric constant d14 of trigonal selenium crystals publication-title: Phys. Lett. A doi: 10.1016/0375-9601(76)90329-7 – volume: 6 start-page: 1589 issue: 8 year: 1967 ident: 10.1016/j.nanoen.2018.12.003_bib27 article-title: The crystal structure of trigonal selenium publication-title: Inorg. Chem. doi: 10.1021/ic50054a037 – volume: 20 start-page: 3127 issue: 16 year: 2008 ident: 10.1016/j.nanoen.2018.12.003_bib6 article-title: Alternating the output of a CdS nanowire nanogenerator by a white‐light‐stimulated optoelectronic effect publication-title: Adv. Mater. doi: 10.1002/adma.200703236 – volume: 10 start-page: 524 issue: 2 year: 2010 ident: 10.1016/j.nanoen.2018.12.003_bib20 article-title: Piezoelectric ribbons printed onto rubber for flexible energy conversion publication-title: Nano Lett. doi: 10.1021/nl903377u – volume: 24 start-page: 37 issue: 1 year: 2014 ident: 10.1016/j.nanoen.2018.12.003_bib13 article-title: Unidirectional high‐power generation via stress‐induced dipole alignment from ZnSnO3 nanocubes/polymer hybrid piezoelectric nanogenerator publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201301379 – volume: 6 start-page: 16439 issue: 34 year: 2018 ident: 10.1016/j.nanoen.2018.12.003_bib14 article-title: High-performance piezoelectric-energy-harvester and self-powered mechanosensing using lead-free potassium–sodium niobate flexible piezoelectric composites publication-title: J. Mater. Chem. A doi: 10.1039/C8TA05887C – volume: 11 start-page: 8830 issue: 9 year: 2017 ident: 10.1016/j.nanoen.2018.12.003_bib53 article-title: Triboelectric nanogenerator enabled body sensor network for self-powered human heart-rate monitoring publication-title: ACS Nano doi: 10.1021/acsnano.7b02975 – volume: 9 start-page: 42200 issue: 48 year: 2017 ident: 10.1016/j.nanoen.2018.12.003_bib44 article-title: A stretchable and transparent nanocomposite nanogenerator for self-powered physiological monitoring publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b13767 – volume: 9 start-page: 1201 issue: 3 year: 2009 ident: 10.1016/j.nanoen.2018.12.003_bib45 article-title: Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator publication-title: Nano Lett. doi: 10.1021/nl803904b – volume: 10 start-page: 726 issue: 2 year: 2010 ident: 10.1016/j.nanoen.2018.12.003_bib16 article-title: Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency publication-title: Nano Lett. doi: 10.1021/nl9040719 – volume: 22 start-page: 1873 issue: 7 year: 1993 ident: 10.1016/j.nanoen.2018.12.003_bib54 article-title: Relation of arterial pressure waveform to left ventricular and carotid anatomy in normotensive subjects publication-title: J. Am. Coll. Cardiol. doi: 10.1016/0735-1097(93)90772-S – volume: 27 start-page: 1604378 issue: 4 year: 2017 ident: 10.1016/j.nanoen.2018.12.003_bib43 article-title: A highly stretchable fiber‐based triboelectric nanogenerator for self‐powered wearable electronics publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604378 – volume: 8 start-page: 2766 issue: 3 year: 2014 ident: 10.1016/j.nanoen.2018.12.003_bib8 article-title: Hemispherically aggregated BaTiO3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator publication-title: ACS nano doi: 10.1021/nn406481k – volume: 51 start-page: 11700 issue: 47 year: 2012 ident: 10.1016/j.nanoen.2018.12.003_bib46 article-title: Nanotechnology‐enabled energy harvesting for self‐powered micro‐/nanosystems publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201201656 – volume: 4 start-page: 1859 year: 2013 ident: 10.1016/j.nanoen.2018.12.003_bib48 article-title: Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring publication-title: Nat. Commun. doi: 10.1038/ncomms2832 – volume: 4 start-page: 341 issue: 4 year: 2009 ident: 10.1016/j.nanoen.2018.12.003_bib34 article-title: Synthesis and characterisation of selenium nanowires using template synthesis publication-title: J. Exp. Nanosci. doi: 10.1080/17458080903055666 – volume: 26 start-page: 165403 issue: 16 year: 2015 ident: 10.1016/j.nanoen.2018.12.003_bib12 article-title: Lead-free ZnSnO3/MWCNTs-based self-poled flexible hybrid nanogenerator for piezoelectric power generation publication-title: Nanotechnology doi: 10.1088/0957-4484/26/16/165403 – volume: 12 start-page: 970 issue: 2 year: 2012 ident: 10.1016/j.nanoen.2018.12.003_bib4 article-title: Individual GaN nanowires exhibit strong piezoelectricity in 3D publication-title: Nano Lett. doi: 10.1021/nl204043y – volume: 105 start-page: 1233 issue: 4 year: 1957 ident: 10.1016/j.nanoen.2018.12.003_bib33 article-title: Electronic band structure of selenium and tellurium publication-title: Phys. Rev. doi: 10.1103/PhysRev.105.1233 – volume: 14 start-page: 161 year: 2015 ident: 10.1016/j.nanoen.2018.12.003_bib42 article-title: Theoretical systems of triboelectric nanogenerators publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.11.034 – volume: 3 start-page: 1500257 issue: 2 year: 2016 ident: 10.1016/j.nanoen.2018.12.003_bib9 article-title: Novel piezoelectric paper‐based flexible nanogenerators composed of BaTiO3 nanoparticles and bacterial cellulose publication-title: Adv. Sci. doi: 10.1002/advs.201500257 – volume: 4 start-page: 3647 issue: 7 year: 2010 ident: 10.1016/j.nanoen.2018.12.003_bib25 article-title: Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy publication-title: ACS Nano doi: 10.1021/nn100845b – volume: 14 start-page: 3 year: 2015 ident: 10.1016/j.nanoen.2018.12.003_bib26 article-title: Recent progress in piezoelectric nanogenerators as a sustainable power source in self-powered systems and active sensors publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.11.038 – volume: 15 start-page: 3852 issue: 20 year: 2003 ident: 10.1016/j.nanoen.2018.12.003_bib28 article-title: Sonochemical synthesis of trigonal selenium nanowires publication-title: Chem. Mater. doi: 10.1021/cm034193b – volume: 138 start-page: S220 issue: 3 year: 1999 ident: 10.1016/j.nanoen.2018.12.003_bib50 article-title: Influence of arterial pulse and reflected waves on blood pressure and cardiac function publication-title: Am. Heart J. doi: 10.1016/S0002-8703(99)70313-3 – volume: 32 start-page: 104004 issue: 10 year: 2017 ident: 10.1016/j.nanoen.2018.12.003_bib36 article-title: Piezotronic effect in 1D van der Waals solid of elemental tellurium nanobelt for smart adaptive electronics publication-title: Semicond. Sci. Technol. doi: 10.1088/1361-6641/aa8605 – volume: 92 start-page: 022105 issue: 2 year: 2008 ident: 10.1016/j.nanoen.2018.12.003_bib5 article-title: Piezoelectric nanogenerator using CdS nanowires publication-title: Appl. Phys. Lett. doi: 10.1063/1.2831901 – volume: 50 start-page: 4042 issue: 6 year: 1979 ident: 10.1016/j.nanoen.2018.12.003_bib35 article-title: Elastic and piezoelectric constants of trigonal selenium and tellurium crystals publication-title: J. Appl. Phys. doi: 10.1063/1.326485 – volume: 6 start-page: 4335 issue: 5 year: 2012 ident: 10.1016/j.nanoen.2018.12.003_bib11 article-title: Lead-free nanogenerator made from single ZnSnO3 microbelt publication-title: ACS Nano doi: 10.1021/nn300951d – volume: 9 start-page: 631 issue: 6 year: 1970 ident: 10.1016/j.nanoen.2018.12.003_bib39 article-title: Piezoelectric properties of Se film deposited on Te crystal publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.9.631 – volume: 11 start-page: 5142 issue: 12 year: 2011 ident: 10.1016/j.nanoen.2018.12.003_bib17 article-title: Porous PVDF As effective sonic wave driven nanogenerators publication-title: Nano Lett. doi: 10.1021/nl202208n – volume: 8 start-page: 4415 issue: 12 year: 2008 ident: 10.1016/j.nanoen.2018.12.003_bib29 article-title: PEG-mediated hydrothermal growth of single-crystal tellurium nanotubes publication-title: Cryst. Growth Des. doi: 10.1021/cg800064a – volume: 6 start-page: 1514 issue: 6 year: 2006 ident: 10.1016/j.nanoen.2018.12.003_bib55 article-title: Large-scale Synthesis and growth mechanism of single-crystal Se nanobelts publication-title: Cryst. Growth Des. doi: 10.1021/cg050493p – volume: 24 start-page: 1759 issue: 13 year: 2012 ident: 10.1016/j.nanoen.2018.12.003_bib18 article-title: A hybrid piezoelectric structure for wearable nanogenerators publication-title: Adv. Mater. doi: 10.1002/adma.201200150 – volume: 10 start-page: 4939 issue: 12 year: 2010 ident: 10.1016/j.nanoen.2018.12.003_bib7 article-title: Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates publication-title: Nano Lett. doi: 10.1021/nl102959k – volume: 11 start-page: 510 year: 2015 ident: 10.1016/j.nanoen.2018.12.003_bib10 article-title: Single BaTiO3 nanowires-polymer fiber based nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.11.028 – volume: 312 start-page: 242 issue: 5771 year: 2006 ident: 10.1016/j.nanoen.2018.12.003_bib1 article-title: Piezoelectric nanogenerators based on zinc oxide nanowire arrays publication-title: Science doi: 10.1126/science.1124005 – volume: 1 start-page: e1500661 issue: 9 year: 2015 ident: 10.1016/j.nanoen.2018.12.003_bib49 article-title: Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli publication-title: Sci. Adv. doi: 10.1126/sciadv.1500661 – volume: 132 start-page: 4766 issue: 13 year: 2010 ident: 10.1016/j.nanoen.2018.12.003_bib2 article-title: GaN nanowire arrays for high-output nanogenerators publication-title: J. Am. Chem. Soc. doi: 10.1021/ja909863a – volume: 1 start-page: 15046 issue: 47 year: 2013 ident: 10.1016/j.nanoen.2018.12.003_bib30 article-title: Controlled synthesis of tellurium nanowires and nanotubes via a facile, efficient, and relatively green solution phase method publication-title: J. Mater. Chem. A doi: 10.1039/c3ta13035e – volume: 5 start-page: 574 issue: 8 year: 2010 ident: 10.1016/j.nanoen.2018.12.003_bib37 article-title: Roll-to-roll production of 30-inch graphene films for transparent electrodes publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.132 – volume: 11 start-page: 2572 issue: 6 year: 2011 ident: 10.1016/j.nanoen.2018.12.003_bib23 article-title: Self-powered system with wireless data transmission publication-title: Nano Lett. doi: 10.1021/nl201505c – volume: 14 start-page: 6897 issue: 12 year: 2014 ident: 10.1016/j.nanoen.2018.12.003_bib47 article-title: Solution-derived ZnO homojunction nanowire films on wearable substrates for energy conversion and self-powered gesture recognition publication-title: Nano Lett. doi: 10.1021/nl5029182 – volume: 18 start-page: 3S issue: S1 year: 2005 ident: 10.1016/j.nanoen.2018.12.003_bib52 article-title: Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms publication-title: Am. J. Hypertens. doi: 10.1016/j.amjhyper.2004.10.009 – volume: 24 start-page: 5117 issue: 37 year: 2012 ident: 10.1016/j.nanoen.2018.12.003_bib41 article-title: Highly conductive and stretchable silver nanowire conductors publication-title: Adv. Mater. doi: 10.1002/adma.201201886 – volume: 5 start-page: 509 issue: 7 year: 1967 ident: 10.1016/j.nanoen.2018.12.003_bib32 article-title: Electronic band structure of tellurium publication-title: Solid State Commun. doi: 10.1016/0038-1098(67)90534-0 – volume: 50 start-page: 62 year: 2018 ident: 10.1016/j.nanoen.2018.12.003_bib15 article-title: High-performance piezoelectric composite nanogenerator based on Ag/(K,Na)NbO3 heterostructure publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.05.012 – volume: 37 start-page: 71 issue: 1 year: 1971 ident: 10.1016/j.nanoen.2018.12.003_bib38 article-title: Electromechanical resonance in selenium determination of the piezoelectric coefficient d11 publication-title: Phys. Lett. A doi: 10.1016/0375-9601(71)90337-9 – volume: 31 start-page: R1 issue: 1 year: 2009 ident: 10.1016/j.nanoen.2018.12.003_bib51 article-title: Arterial blood pressure measurement and pulse wave analysis—their role in enhancing cardiovascular assessment publication-title: Physiol. Meas. doi: 10.1088/0967-3334/31/1/R01 |
SSID | ssj0000651712 |
Score | 2.501782 |
Snippet | Smart sensing devices with high stretchability and self-powered characteristics are essential in future generation wearable human-integrated applications. Here... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 693 |
SubjectTerms | Human physiological monitoring Piezoelectric device Selenium nanowires Self-powered sensor Wearable electronics |
Title | Solution-synthesized chiral piezoelectric selenium nanowires for wearable self-powered human-integrated monitoring |
URI | https://dx.doi.org/10.1016/j.nanoen.2018.12.003 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lBy8rs0-msexFEtV7EULvYXN7gYjNg19IPbgb3cmj1I9KHhMspMsk8m8MvMNIde-q7pSxYayxHAqY8-lSkpBdcxCI0PXMg8bhR9H3nAs7yfdSYP0614YLKusdH-p0wttXZ3pVNzs5GnaeeIQu_AAEcWECyEeNvxK6aOU33yyTZ4FTCzzi5-euJ4iQd1BV5R5ZSqbWQRCZUGRF6ynZ_20UFtWZ3BA9it30emVOzokDZsdkb0tEMFjMq8zW3TxkYE7t0jX1jj6JZ0DYZ7a9awcdZNqBycrZelq6uB2EKR44YDP6ryDtGMHFV5PaI5z0-AOxfQ-uoGTMM60-PzxoSdkPLh97g9pNUmBauHzJQ1MbFSQyASCCa11IGLmK-UJoz3XtyrmoPI0xMIJA4Om3CQQlilEmuPcJhxcqlPSzGaZPSOOlIoFKhRWCzBsWinpKh4aA24UjxPGWkTU3It0BTOO0y7eorqe7DUqeR4hzyPGEZ60ReiGKi9hNv5Y79cvJvomLhFYgl8pz_9NeUF24SgsS7YvSXM5X9kr8EiWcbsQuTbZ6d09DEdf4eTj3A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgHIADYhVlzYGrabw0yxFVoLJeaCVulmM7IoimVRcheuDbmclSAQeQuMaZxJrYszgz7xFyFvq6LXViKUstpzIJfKqlFNQkLLYy9h0LsFH4_iHo9uXNU_tpiXTqXhgsq6xsf2nTC2tdXWlV2myNsqz1yCF34REiigkfUrxomaxI2L5IY3D-wRYHLeBjWVj89UQBihJ1C11R55XrfOgQCZVFxcFgTZ_100V9cTtXm2Sjihe9i3JKW2TJ5dtk_QuK4A4Z10dbdPKeQzw3yebOeuY5G4PgKHPzYcl1kxkPqZXybDbwcDqIUjzxIGj13mC5YwsVjqd0hMRp8ISCvo8u8CSsNyj2P750l_SvLnudLq2oFKgRIZ_SyCZWR6lMIZswxkQiYaHWgbAm8EOnEw42z0AynDLwaNpPI-GYRqg5zl3KIabaI418mLt94kmpWaRj4YwAz2a0lr7msbUQR_EkZaxJRK09ZSqccaS7eFV1QdmLKnWuUOeKccQnbRK6kBqVOBt_3B_WH0Z9Wy8KXMGvkgf_ljwlq93e_Z26u364PSRrMBKX9dtHpDEdz9wxhCfT5KRYfp8pUuVq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solution-synthesized+chiral+piezoelectric+selenium+nanowires+for+wearable+self-powered+human-integrated+monitoring&rft.jtitle=Nano+energy&rft.au=Wu%2C+Min&rft.au=Wang%2C+Yixiu&rft.au=Gao%2C+Shengjie&rft.au=Wang%2C+Ruoxing&rft.date=2019-02-01&rft.issn=2211-2855&rft.volume=56&rft.spage=693&rft.epage=699&rft_id=info:doi/10.1016%2Fj.nanoen.2018.12.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nanoen_2018_12_003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon |