Solution-synthesized chiral piezoelectric selenium nanowires for wearable self-powered human-integrated monitoring

Smart sensing devices with high stretchability and self-powered characteristics are essential in future generation wearable human-integrated applications. Here we report for the first time scalable synthesis and integration of selenium (Se) nanowires into wearable piezoelectric devices, and explore...

Full description

Saved in:
Bibliographic Details
Published inNano energy Vol. 56; pp. 693 - 699
Main Authors Wu, Min, Wang, Yixiu, Gao, Shengjie, Wang, Ruoxing, Ma, Chenxiang, Tang, Zhiyuan, Bao, Ning, Wu, Wenxuan, Fan, Fengru, Wu, Wenzhuo
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Smart sensing devices with high stretchability and self-powered characteristics are essential in future generation wearable human-integrated applications. Here we report for the first time scalable synthesis and integration of selenium (Se) nanowires into wearable piezoelectric devices, and explore the feasibility of such devices for self-powered sensing applications, e.g., physiological monitoring. The ultrathin device can be conformably worn onto the human body, effectively converting the imperceptible time-variant mechanical vibration from the human body into distinguishable electrical signals, e.g., gesture, vocal movement, and radial artery pulse, through straining the piezoelectric Se nanowires. Our results suggest the potential of solution-synthesized Se nanowire a new class of piezoelectric nanomaterial for self-powered biomedical devices and opens doors to new technologies in energy, electronics, and sensor applications. A wearable self-powered human-integrated sensor is developed using solution-synthesized piezoelectric selenium (Se) nanowires. [Display omitted] •Wearable piezoelectric nanogenerator is fabricated using solution-grown selenium nanowires as the active layer.•The nanogenerator has reliable durability.•The device is cable of being applied as self-powered sensors for human-integrated sensing and monitoring.
AbstractList Smart sensing devices with high stretchability and self-powered characteristics are essential in future generation wearable human-integrated applications. Here we report for the first time scalable synthesis and integration of selenium (Se) nanowires into wearable piezoelectric devices, and explore the feasibility of such devices for self-powered sensing applications, e.g., physiological monitoring. The ultrathin device can be conformably worn onto the human body, effectively converting the imperceptible time-variant mechanical vibration from the human body into distinguishable electrical signals, e.g., gesture, vocal movement, and radial artery pulse, through straining the piezoelectric Se nanowires. Our results suggest the potential of solution-synthesized Se nanowire a new class of piezoelectric nanomaterial for self-powered biomedical devices and opens doors to new technologies in energy, electronics, and sensor applications. A wearable self-powered human-integrated sensor is developed using solution-synthesized piezoelectric selenium (Se) nanowires. [Display omitted] •Wearable piezoelectric nanogenerator is fabricated using solution-grown selenium nanowires as the active layer.•The nanogenerator has reliable durability.•The device is cable of being applied as self-powered sensors for human-integrated sensing and monitoring.
Author Wu, Min
Wang, Ruoxing
Wu, Wenzhuo
Fan, Fengru
Gao, Shengjie
Wu, Wenxuan
Tang, Zhiyuan
Ma, Chenxiang
Wang, Yixiu
Bao, Ning
Author_xml – sequence: 1
  givenname: Min
  surname: Wu
  fullname: Wu, Min
  organization: School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA
– sequence: 2
  givenname: Yixiu
  surname: Wang
  fullname: Wang, Yixiu
  organization: School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA
– sequence: 3
  givenname: Shengjie
  surname: Gao
  fullname: Gao, Shengjie
  organization: School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA
– sequence: 4
  givenname: Ruoxing
  surname: Wang
  fullname: Wang, Ruoxing
  organization: School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA
– sequence: 5
  givenname: Chenxiang
  surname: Ma
  fullname: Ma, Chenxiang
  organization: School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA
– sequence: 6
  givenname: Zhiyuan
  surname: Tang
  fullname: Tang, Zhiyuan
  organization: Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
– sequence: 7
  givenname: Ning
  surname: Bao
  fullname: Bao, Ning
  organization: School of Public Health, Nantong University, Nantong, Jiangsu, 226019, China
– sequence: 8
  givenname: Wenxuan
  surname: Wu
  fullname: Wu, Wenxuan
  email: wxwu@mail.ustc.edu.cn
  organization: Shenzhen Broadthink Advanced Materials Technologies Co., Ltd., Shenzhen, Guangdong 518117, China
– sequence: 9
  givenname: Fengru
  surname: Fan
  fullname: Fan, Fengru
  email: fengrufan@ucsb.edu
  organization: Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA 93106, USA
– sequence: 10
  givenname: Wenzhuo
  surname: Wu
  fullname: Wu, Wenzhuo
  email: wenzhuowu@purdue.edu
  organization: School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA
BookMark eNqFkE1OwzAQhb0oEgV6Axa5QILHSRPDAglV_EmVWABry3HGravErmyXqj09jsqKBcxmRjN6b_S-CzKxziIh10ALoFDfbAorrUNbMAq8AFZQWk7IlDGAnPH5_JzMQtjQVPUcGmBT4t9dv4vG2TwcbFxjMEfsMrU2XvbZ1uDRYY8qeqOykCZrdkM2_tgbjyHTzmd7lF62PY53nW_dHn1yWO8GaXNjI668jGkxOGui88aursiZln3A2U-_JJ9Pjx-Ll3z59vy6eFjmqmxYzHnXdpLrSnNWK6V42UIjZV12qqYNypbdAijOuQZa1pJqXiJIVtXAGGoGVXlJ7k6-yrsQPGqhTJRj1uil6QVQMUITG3GCJkZoAphI0JK4-iXeejNIf_hPdn-SYQr2ZdCLoAxahV3ipaLonPnb4BtS7ZDr
CitedBy_id crossref_primary_10_1002_adom_202203014
crossref_primary_10_3762_bjnano_13_14
crossref_primary_10_1063_5_0159073
crossref_primary_10_1007_s11705_022_2271_y
crossref_primary_10_1016_j_dsp_2021_103038
crossref_primary_10_1021_acsphotonics_1c01435
crossref_primary_10_1016_j_mtsust_2024_100847
crossref_primary_10_1039_D0TA09506K
crossref_primary_10_1002_aelm_202200108
crossref_primary_10_1088_1361_6528_ad32d3
crossref_primary_10_1002_smll_201905703
crossref_primary_10_1007_s40820_020_00493_3
crossref_primary_10_1002_adma_202206425
crossref_primary_10_1021_acs_chemmater_1c01459
crossref_primary_10_1016_j_nanoen_2019_05_033
crossref_primary_10_1002_adma_202313127
crossref_primary_10_1002_adma_201901924
crossref_primary_10_1021_acsnano_9b02233
crossref_primary_10_1016_j_cossms_2024_101211
crossref_primary_10_1016_j_nanoen_2023_108680
crossref_primary_10_1016_j_compscitech_2024_110881
crossref_primary_10_1016_j_sna_2024_115924
crossref_primary_10_1002_adfm_202300701
crossref_primary_10_1002_chem_202304067
crossref_primary_10_1007_s00542_022_05331_7
crossref_primary_10_1007_s40684_019_00144_y
crossref_primary_10_34133_2020_8710686
crossref_primary_10_1002_adfm_202008347
crossref_primary_10_1007_s11431_023_2535_0
crossref_primary_10_1016_j_jallcom_2024_175578
crossref_primary_10_1039_D1CS00858G
crossref_primary_10_1002_inf2_12064
crossref_primary_10_1002_inf2_12262
crossref_primary_10_1016_j_nanoen_2024_109876
crossref_primary_10_1016_j_nanoen_2019_104346
crossref_primary_10_1016_j_compositesb_2020_107792
crossref_primary_10_1016_j_nanoen_2019_104278
crossref_primary_10_20517_ss_2023_13
crossref_primary_10_1016_j_dsp_2022_103570
crossref_primary_10_1007_s40684_022_00432_0
crossref_primary_10_1016_j_radphyschem_2021_109863
crossref_primary_10_1016_j_nxnano_2024_100047
crossref_primary_10_1002_admt_202000771
crossref_primary_10_1016_j_matpr_2023_05_213
crossref_primary_10_1016_j_nanoen_2019_104390
crossref_primary_10_1080_23746149_2024_2357809
crossref_primary_10_1002_adfm_202009602
crossref_primary_10_1016_j_nanoen_2019_103909
crossref_primary_10_1016_j_nanoen_2020_105303
crossref_primary_10_1002_aelm_202400456
crossref_primary_10_1021_acsapm_4c01731
crossref_primary_10_3390_ma14216366
crossref_primary_10_1016_j_nanoen_2022_107008
crossref_primary_10_1039_D4MH00794H
crossref_primary_10_3390_bios12080651
crossref_primary_10_1002_adfm_202003301
crossref_primary_10_1021_acsaem_2c00703
crossref_primary_10_1038_s41598_022_23005_2
crossref_primary_10_1002_advs_202400615
crossref_primary_10_1016_j_nanoen_2022_107246
crossref_primary_10_1016_j_nanoen_2020_105582
crossref_primary_10_1007_s10854_024_13372_z
crossref_primary_10_1021_acsanm_0c02513
crossref_primary_10_1039_C9TA09395H
crossref_primary_10_1002_adma_202004832
crossref_primary_10_1002_admt_202000889
crossref_primary_10_1039_D2TA04210J
crossref_primary_10_1038_s41598_020_70182_z
crossref_primary_10_3390_nano14100826
crossref_primary_10_1002_aisy_202000117
crossref_primary_10_1002_admt_201900819
crossref_primary_10_1021_acsaelm_0c01142
crossref_primary_10_1039_D2MH01221A
crossref_primary_10_1016_j_ijpharm_2024_124535
crossref_primary_10_1002_cplu_201900043
crossref_primary_10_1002_adma_202408969
crossref_primary_10_1002_adma_202105697
crossref_primary_10_1016_j_apmt_2020_100699
crossref_primary_10_31613_ceramist_2019_22_2_02
crossref_primary_10_1002_adfm_202300927
crossref_primary_10_1155_2022_8312564
Cites_doi 10.1016/j.nanoen.2011.09.001
10.1016/j.mattod.2016.12.001
10.1002/adma.201300657
10.1088/0957-4484/22/47/475401
10.1021/nl103203u
10.1038/ncomms13566
10.1016/0375-9601(76)90329-7
10.1021/ic50054a037
10.1002/adma.200703236
10.1021/nl903377u
10.1002/adfm.201301379
10.1039/C8TA05887C
10.1021/acsnano.7b02975
10.1021/acsami.7b13767
10.1021/nl803904b
10.1021/nl9040719
10.1016/0735-1097(93)90772-S
10.1002/adfm.201604378
10.1021/nn406481k
10.1002/anie.201201656
10.1038/ncomms2832
10.1080/17458080903055666
10.1088/0957-4484/26/16/165403
10.1021/nl204043y
10.1103/PhysRev.105.1233
10.1016/j.nanoen.2014.11.034
10.1002/advs.201500257
10.1021/nn100845b
10.1016/j.nanoen.2014.11.038
10.1021/cm034193b
10.1016/S0002-8703(99)70313-3
10.1088/1361-6641/aa8605
10.1063/1.2831901
10.1063/1.326485
10.1021/nn300951d
10.1143/JJAP.9.631
10.1021/nl202208n
10.1021/cg800064a
10.1021/cg050493p
10.1002/adma.201200150
10.1021/nl102959k
10.1016/j.nanoen.2014.11.028
10.1126/science.1124005
10.1126/sciadv.1500661
10.1021/ja909863a
10.1039/c3ta13035e
10.1038/nnano.2010.132
10.1021/nl201505c
10.1021/nl5029182
10.1016/j.amjhyper.2004.10.009
10.1002/adma.201201886
10.1016/0038-1098(67)90534-0
10.1016/j.nanoen.2018.05.012
10.1016/0375-9601(71)90337-9
10.1088/0967-3334/31/1/R01
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nanoen.2018.12.003
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 699
ExternalDocumentID 10_1016_j_nanoen_2018_12_003
S2211285518309078
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
JARJE
KOM
M41
MAGPM
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SPC
SPCBC
SSM
SSR
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c372t-8dbda8f4f826ccc83b17aa63dc607eab2911c888f1036a0f83e1a246122ef2143
IEDL.DBID .~1
ISSN 2211-2855
IngestDate Thu Apr 24 23:04:23 EDT 2025
Tue Jul 01 01:56:05 EDT 2025
Fri Feb 23 02:27:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Piezoelectric device
Self-powered sensor
Human physiological monitoring
Wearable electronics
Selenium nanowires
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-8dbda8f4f826ccc83b17aa63dc607eab2911c888f1036a0f83e1a246122ef2143
PageCount 7
ParticipantIDs crossref_citationtrail_10_1016_j_nanoen_2018_12_003
crossref_primary_10_1016_j_nanoen_2018_12_003
elsevier_sciencedirect_doi_10_1016_j_nanoen_2018_12_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2019
2019-02-00
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: February 2019
PublicationDecade 2010
PublicationTitle Nano energy
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mayers, Liu, Sunderland, Xia (bib28) 2003; 15
Yang, Qin, Li, Zhu, Wang (bib45) 2009; 9
Park, Xu, Liu, Hwang, Kang, Wang, Lee (bib7) 2010; 10
Hu, Zhang, Xu, Lin, Snyder, Wang (bib23) 2011; 11
Huan, Zhang, Song, Zhao, Wei, Zhang, Wang (bib15) 2018; 50
Wang, Wang, Wang (bib29) 2008; 8
Junginger (bib32) 1967; 5
Wang, Song (bib1) 2006; 312
Niu, Wang (bib42) 2015; 14
Lin, Chen, Li, Zhou, Meng, Wei, Yang, Wang (bib53) 2017; 11
Xie, Dai, Huang, Zhang, Ma, Hu, Qian (bib55) 2006; 6
Reitz (bib33) 1957; 105
Avolio, Butlin, Walsh (bib51) 2009; 31
Alam, Ghosh, Sultana, Mandal (bib12) 2015; 26
Lin, Song, Ding, Lu, Wang (bib6) 2008; 20
Cha, Kim, Kim, Ku, Sohn, Park, Song, Jung, Lee, Choi, Park, Wang, Kim, Kim (bib17) 2011; 11
Cherin, Unger (bib27) 1967; 6
Schwartz, Tee, Mei, Appleton, Kim, Wang, Bao (bib48) 2013; 4
Wang, Wu (bib46) 2012; 51
Wang (bib24) 2012; 1
Hu, Wang (bib26) 2015; 14
Lee, Lee, Lee, Sohn, Lee, Lee, Moon, Kim, Kim, Myoung, Wang (bib31) 2013; 25
Bae, Kim, Lee, Xu, Park, Zheng, Balakrishnan, Lei, Kim, Song (bib37) 2010; 5
Xu, Zhu (bib41) 2012; 24
Lee, Chen, Wang, Cha, Park, Kim, Chou, Wang (bib18) 2012; 24
Chen, Parida, Wang, Xiong, Lin, Shao, Lee (bib44) 2017; 9
Zhang, Gao, Wang, Liao, Qiu, Xue, Shi, Xiong, Chen (bib10) 2015; 11
Gao, Wang, Wang, Wu (bib36) 2017; 32
Shin, Kim, Lee, Jung, Nah (bib8) 2014; 8
London, Guerin (bib50) 1999; 138
Chang, Tran, Wang, Fuh, Lin (bib16) 2010; 10
Qi, Jafferis, Lyons, Lee, Ahmad, McAlpine (bib20) 2010; 10
Pradel, Wu, Ding, Wang (bib47) 2014; 14
Huang, Song, Lee, Ding, Gao, Hao, Chen, Wang (bib2) 2010; 132
Nichols (bib52) 2005; 18
Lin, Song, Ding, Lu, Wang (bib5) 2008; 92
Wang (bib19) 2017; 20
Wu, Xu, Zhang, Wang (bib11) 2012; 6
Lee, Kim, Lee, Kim, Gupta, Kim (bib13) 2014; 24
Kumar (bib34) 2009; 4
He, Zi, Guo, Zheng, Xi, Wu, Wang, Zhang, Lu, Wang (bib43) 2017; 27
Minary-Jolandan, Bernal, Kuljanishvili, Parpoil, Espinosa (bib4) 2012; 12
Hu, Zhang, Xu, Zhu, Wang (bib21) 2010; 10
Lin, Lai, Hu, Zhang, Wang, Xu, Snyder, Chen, Wang (bib3) 2011; 22
Saba, Roman, Pini, Spitzer, Ganau, Devereux (bib54) 1993; 22
Li, Zheng, Zhang, Teng, Huang, Chen, Lu (bib30) 2013; 1
Bouat, Thuillier (bib38) 1971; 37
Shiosaki, Kawabata, Tanaka (bib39) 1970; 9
Hansen, Liu, Yang, Wang (bib25) 2010; 4
Wu, Zheng, Zheng, Li, Wang, Zhu, Li, Yue, Gu, Wu (bib14) 2018; 6
Royer, Dieulesaint (bib35) 1979; 50
Kunigelis, Royer, Dieulesaint, Thuillier (bib40) 1976; 56
Park, Kim, Lee, Lee, Ko (bib49) 2015; 1
Nguyen, Zhu, Jenkins, Yang (bib22) 2016; 7
Zhang, Liao, Zhang, Liang, Zhao, Zheng, Zhang (bib9) 2016; 3
Cherin (10.1016/j.nanoen.2018.12.003_bib27) 1967; 6
Nichols (10.1016/j.nanoen.2018.12.003_bib52) 2005; 18
Zhang (10.1016/j.nanoen.2018.12.003_bib9) 2016; 3
Saba (10.1016/j.nanoen.2018.12.003_bib54) 1993; 22
Huan (10.1016/j.nanoen.2018.12.003_bib15) 2018; 50
Junginger (10.1016/j.nanoen.2018.12.003_bib32) 1967; 5
Shiosaki (10.1016/j.nanoen.2018.12.003_bib39) 1970; 9
Wang (10.1016/j.nanoen.2018.12.003_bib1) 2006; 312
Shin (10.1016/j.nanoen.2018.12.003_bib8) 2014; 8
Wu (10.1016/j.nanoen.2018.12.003_bib14) 2018; 6
Kumar (10.1016/j.nanoen.2018.12.003_bib34) 2009; 4
Royer (10.1016/j.nanoen.2018.12.003_bib35) 1979; 50
Niu (10.1016/j.nanoen.2018.12.003_bib42) 2015; 14
Hansen (10.1016/j.nanoen.2018.12.003_bib25) 2010; 4
Alam (10.1016/j.nanoen.2018.12.003_bib12) 2015; 26
Park (10.1016/j.nanoen.2018.12.003_bib49) 2015; 1
Huang (10.1016/j.nanoen.2018.12.003_bib2) 2010; 132
Wang (10.1016/j.nanoen.2018.12.003_bib24) 2012; 1
Lin (10.1016/j.nanoen.2018.12.003_bib5) 2008; 92
Schwartz (10.1016/j.nanoen.2018.12.003_bib48) 2013; 4
Wang (10.1016/j.nanoen.2018.12.003_bib46) 2012; 51
Hu (10.1016/j.nanoen.2018.12.003_bib21) 2010; 10
Chen (10.1016/j.nanoen.2018.12.003_bib44) 2017; 9
Minary-Jolandan (10.1016/j.nanoen.2018.12.003_bib4) 2012; 12
Kunigelis (10.1016/j.nanoen.2018.12.003_bib40) 1976; 56
Gao (10.1016/j.nanoen.2018.12.003_bib36) 2017; 32
Lee (10.1016/j.nanoen.2018.12.003_bib31) 2013; 25
Chang (10.1016/j.nanoen.2018.12.003_bib16) 2010; 10
Qi (10.1016/j.nanoen.2018.12.003_bib20) 2010; 10
Hu (10.1016/j.nanoen.2018.12.003_bib26) 2015; 14
Park (10.1016/j.nanoen.2018.12.003_bib7) 2010; 10
Hu (10.1016/j.nanoen.2018.12.003_bib23) 2011; 11
Mayers (10.1016/j.nanoen.2018.12.003_bib28) 2003; 15
Xu (10.1016/j.nanoen.2018.12.003_bib41) 2012; 24
Cha (10.1016/j.nanoen.2018.12.003_bib17) 2011; 11
Lee (10.1016/j.nanoen.2018.12.003_bib18) 2012; 24
Yang (10.1016/j.nanoen.2018.12.003_bib45) 2009; 9
Wu (10.1016/j.nanoen.2018.12.003_bib11) 2012; 6
Lin (10.1016/j.nanoen.2018.12.003_bib6) 2008; 20
Xie (10.1016/j.nanoen.2018.12.003_bib55) 2006; 6
Lin (10.1016/j.nanoen.2018.12.003_bib3) 2011; 22
Nguyen (10.1016/j.nanoen.2018.12.003_bib22) 2016; 7
Wang (10.1016/j.nanoen.2018.12.003_bib29) 2008; 8
Pradel (10.1016/j.nanoen.2018.12.003_bib47) 2014; 14
Lee (10.1016/j.nanoen.2018.12.003_bib13) 2014; 24
Bae (10.1016/j.nanoen.2018.12.003_bib37) 2010; 5
Li (10.1016/j.nanoen.2018.12.003_bib30) 2013; 1
London (10.1016/j.nanoen.2018.12.003_bib50) 1999; 138
Avolio (10.1016/j.nanoen.2018.12.003_bib51) 2009; 31
Zhang (10.1016/j.nanoen.2018.12.003_bib10) 2015; 11
Wang (10.1016/j.nanoen.2018.12.003_bib19) 2017; 20
Reitz (10.1016/j.nanoen.2018.12.003_bib33) 1957; 105
Bouat (10.1016/j.nanoen.2018.12.003_bib38) 1971; 37
He (10.1016/j.nanoen.2018.12.003_bib43) 2017; 27
Lin (10.1016/j.nanoen.2018.12.003_bib53) 2017; 11
References_xml – volume: 18
  start-page: 3S
  year: 2005
  end-page: 10S
  ident: bib52
  article-title: Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms
  publication-title: Am. J. Hypertens.
– volume: 4
  start-page: 341
  year: 2009
  end-page: 346
  ident: bib34
  article-title: Synthesis and characterisation of selenium nanowires using template synthesis
  publication-title: J. Exp. Nanosci.
– volume: 12
  start-page: 970
  year: 2012
  end-page: 976
  ident: bib4
  article-title: Individual GaN nanowires exhibit strong piezoelectricity in 3D
  publication-title: Nano Lett.
– volume: 10
  start-page: 4939
  year: 2010
  end-page: 4943
  ident: bib7
  article-title: Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates
  publication-title: Nano Lett.
– volume: 9
  start-page: 1201
  year: 2009
  end-page: 1205
  ident: bib45
  article-title: Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator
  publication-title: Nano Lett.
– volume: 26
  start-page: 165403
  year: 2015
  ident: bib12
  article-title: Lead-free ZnSnO3/MWCNTs-based self-poled flexible hybrid nanogenerator for piezoelectric power generation
  publication-title: Nanotechnology
– volume: 4
  start-page: 3647
  year: 2010
  end-page: 3652
  ident: bib25
  article-title: Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy
  publication-title: ACS Nano
– volume: 312
  start-page: 242
  year: 2006
  end-page: 246
  ident: bib1
  article-title: Piezoelectric nanogenerators based on zinc oxide nanowire arrays
  publication-title: Science
– volume: 11
  start-page: 8830
  year: 2017
  end-page: 8837
  ident: bib53
  article-title: Triboelectric nanogenerator enabled body sensor network for self-powered human heart-rate monitoring
  publication-title: ACS Nano
– volume: 1
  start-page: 13
  year: 2012
  end-page: 24
  ident: bib24
  article-title: Piezoelectric nanogenerators—harvesting ambient mechanical energy at the nanometer scale
  publication-title: Nano Energy
– volume: 24
  start-page: 1759
  year: 2012
  end-page: 1764
  ident: bib18
  article-title: A hybrid piezoelectric structure for wearable nanogenerators
  publication-title: Adv. Mater.
– volume: 4
  start-page: 1859
  year: 2013
  ident: bib48
  article-title: Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring
  publication-title: Nat. Commun.
– volume: 25
  start-page: 2920
  year: 2013
  end-page: 2925
  ident: bib31
  article-title: High-power density piezoelectric energy harvesting using radially strained ultrathin trigonal tellurium nanowire assembly
  publication-title: Adv. Mater.
– volume: 56
  start-page: 331
  year: 1976
  end-page: 332
  ident: bib40
  article-title: Determination of the piezoelectric constant d14 of trigonal selenium crystals
  publication-title: Phys. Lett. A
– volume: 92
  start-page: 022105
  year: 2008
  ident: bib5
  article-title: Piezoelectric nanogenerator using CdS nanowires
  publication-title: Appl. Phys. Lett.
– volume: 31
  start-page: R1
  year: 2009
  ident: bib51
  article-title: Arterial blood pressure measurement and pulse wave analysis—their role in enhancing cardiovascular assessment
  publication-title: Physiol. Meas.
– volume: 7
  start-page: 13566
  year: 2016
  ident: bib22
  article-title: Self-assembly of diphenylalanine peptide with controlled polarization for power generation
  publication-title: Nat. Commun.
– volume: 5
  start-page: 509
  year: 1967
  end-page: 511
  ident: bib32
  article-title: Electronic band structure of tellurium
  publication-title: Solid State Commun.
– volume: 20
  start-page: 3127
  year: 2008
  end-page: 3130
  ident: bib6
  article-title: Alternating the output of a CdS nanowire nanogenerator by a white‐light‐stimulated optoelectronic effect
  publication-title: Adv. Mater.
– volume: 37
  start-page: 71
  year: 1971
  end-page: 72
  ident: bib38
  article-title: Electromechanical resonance in selenium determination of the piezoelectric coefficient d11
  publication-title: Phys. Lett. A
– volume: 138
  start-page: S220
  year: 1999
  end-page: S224
  ident: bib50
  article-title: Influence of arterial pulse and reflected waves on blood pressure and cardiac function
  publication-title: Am. Heart J.
– volume: 9
  start-page: 631
  year: 1970
  ident: bib39
  article-title: Piezoelectric properties of Se film deposited on Te crystal
  publication-title: Jpn. J. Appl. Phys.
– volume: 14
  start-page: 6897
  year: 2014
  end-page: 6905
  ident: bib47
  article-title: Solution-derived ZnO homojunction nanowire films on wearable substrates for energy conversion and self-powered gesture recognition
  publication-title: Nano Lett.
– volume: 14
  start-page: 161
  year: 2015
  end-page: 192
  ident: bib42
  article-title: Theoretical systems of triboelectric nanogenerators
  publication-title: Nano Energy
– volume: 22
  start-page: 1873
  year: 1993
  end-page: 1880
  ident: bib54
  article-title: Relation of arterial pressure waveform to left ventricular and carotid anatomy in normotensive subjects
  publication-title: J. Am. Coll. Cardiol.
– volume: 105
  start-page: 1233
  year: 1957
  end-page: 1240
  ident: bib33
  article-title: Electronic band structure of selenium and tellurium
  publication-title: Phys. Rev.
– volume: 9
  start-page: 42200
  year: 2017
  end-page: 42209
  ident: bib44
  article-title: A stretchable and transparent nanocomposite nanogenerator for self-powered physiological monitoring
  publication-title: ACS Appl. Mater. Interfaces
– volume: 51
  start-page: 11700
  year: 2012
  end-page: 11721
  ident: bib46
  article-title: Nanotechnology‐enabled energy harvesting for self‐powered micro‐/nanosystems
  publication-title: Angew. Chem. Int. Ed.
– volume: 24
  start-page: 5117
  year: 2012
  end-page: 5122
  ident: bib41
  article-title: Highly conductive and stretchable silver nanowire conductors
  publication-title: Adv. Mater.
– volume: 6
  start-page: 1589
  year: 1967
  end-page: 1591
  ident: bib27
  article-title: The crystal structure of trigonal selenium
  publication-title: Inorg. Chem.
– volume: 14
  start-page: 3
  year: 2015
  end-page: 14
  ident: bib26
  article-title: Recent progress in piezoelectric nanogenerators as a sustainable power source in self-powered systems and active sensors
  publication-title: Nano Energy
– volume: 10
  start-page: 524
  year: 2010
  end-page: 528
  ident: bib20
  article-title: Piezoelectric ribbons printed onto rubber for flexible energy conversion
  publication-title: Nano Lett.
– volume: 10
  start-page: 726
  year: 2010
  end-page: 731
  ident: bib16
  article-title: Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency
  publication-title: Nano Lett.
– volume: 15
  start-page: 3852
  year: 2003
  end-page: 3858
  ident: bib28
  article-title: Sonochemical synthesis of trigonal selenium nanowires
  publication-title: Chem. Mater.
– volume: 132
  start-page: 4766
  year: 2010
  end-page: 4771
  ident: bib2
  article-title: GaN nanowire arrays for high-output nanogenerators
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 2572
  year: 2011
  end-page: 2577
  ident: bib23
  article-title: Self-powered system with wireless data transmission
  publication-title: Nano Lett.
– volume: 50
  start-page: 62
  year: 2018
  end-page: 69
  ident: bib15
  article-title: High-performance piezoelectric composite nanogenerator based on Ag/(K,Na)NbO3 heterostructure
  publication-title: Nano Energy
– volume: 1
  start-page: 15046
  year: 2013
  end-page: 15052
  ident: bib30
  article-title: Controlled synthesis of tellurium nanowires and nanotubes via a facile, efficient, and relatively green solution phase method
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 1500257
  year: 2016
  ident: bib9
  article-title: Novel piezoelectric paper‐based flexible nanogenerators composed of BaTiO3 nanoparticles and bacterial cellulose
  publication-title: Adv. Sci.
– volume: 6
  start-page: 4335
  year: 2012
  end-page: 4340
  ident: bib11
  article-title: Lead-free nanogenerator made from single ZnSnO3 microbelt
  publication-title: ACS Nano
– volume: 11
  start-page: 5142
  year: 2011
  end-page: 5147
  ident: bib17
  article-title: Porous PVDF As effective sonic wave driven nanogenerators
  publication-title: Nano Lett.
– volume: 22
  start-page: 475401
  year: 2011
  ident: bib3
  article-title: High output nanogenerator based on assembly of GaN nanowires
  publication-title: Nanotechnology
– volume: 24
  start-page: 37
  year: 2014
  end-page: 43
  ident: bib13
  article-title: Unidirectional high‐power generation via stress‐induced dipole alignment from ZnSnO3 nanocubes/polymer hybrid piezoelectric nanogenerator
  publication-title: Adv. Funct. Mater.
– volume: 20
  start-page: 74
  year: 2017
  end-page: 82
  ident: bib19
  article-title: On Maxwell's displacement current for energy and sensors: the origin of nanogenerators
  publication-title: Mater. Today
– volume: 6
  start-page: 1514
  year: 2006
  end-page: 1517
  ident: bib55
  article-title: Large-scale Synthesis and growth mechanism of single-crystal Se nanobelts
  publication-title: Cryst. Growth Des.
– volume: 1
  start-page: e1500661
  year: 2015
  ident: bib49
  article-title: Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli
  publication-title: Sci. Adv.
– volume: 27
  start-page: 1604378
  year: 2017
  ident: bib43
  article-title: A highly stretchable fiber‐based triboelectric nanogenerator for self‐powered wearable electronics
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 510
  year: 2015
  end-page: 517
  ident: bib10
  article-title: Single BaTiO3 nanowires-polymer fiber based nanogenerator
  publication-title: Nano Energy
– volume: 10
  start-page: 5025
  year: 2010
  end-page: 5031
  ident: bib21
  article-title: High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display
  publication-title: Nano Lett.
– volume: 32
  start-page: 104004
  year: 2017
  ident: bib36
  article-title: Piezotronic effect in 1D van der Waals solid of elemental tellurium nanobelt for smart adaptive electronics
  publication-title: Semicond. Sci. Technol.
– volume: 5
  start-page: 574
  year: 2010
  ident: bib37
  article-title: Roll-to-roll production of 30-inch graphene films for transparent electrodes
  publication-title: Nat. Nanotechnol.
– volume: 8
  start-page: 2766
  year: 2014
  end-page: 2773
  ident: bib8
  article-title: Hemispherically aggregated BaTiO3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator
  publication-title: ACS nano
– volume: 8
  start-page: 4415
  year: 2008
  end-page: 4419
  ident: bib29
  article-title: PEG-mediated hydrothermal growth of single-crystal tellurium nanotubes
  publication-title: Cryst. Growth Des.
– volume: 50
  start-page: 4042
  year: 1979
  end-page: 4045
  ident: bib35
  article-title: Elastic and piezoelectric constants of trigonal selenium and tellurium crystals
  publication-title: J. Appl. Phys.
– volume: 6
  start-page: 16439
  year: 2018
  end-page: 16449
  ident: bib14
  article-title: High-performance piezoelectric-energy-harvester and self-powered mechanosensing using lead-free potassium–sodium niobate flexible piezoelectric composites
  publication-title: J. Mater. Chem. A
– volume: 1
  start-page: 13
  issue: 1
  year: 2012
  ident: 10.1016/j.nanoen.2018.12.003_bib24
  article-title: Piezoelectric nanogenerators—harvesting ambient mechanical energy at the nanometer scale
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2011.09.001
– volume: 20
  start-page: 74
  issue: 2
  year: 2017
  ident: 10.1016/j.nanoen.2018.12.003_bib19
  article-title: On Maxwell's displacement current for energy and sensors: the origin of nanogenerators
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2016.12.001
– volume: 25
  start-page: 2920
  issue: 21
  year: 2013
  ident: 10.1016/j.nanoen.2018.12.003_bib31
  article-title: High-power density piezoelectric energy harvesting using radially strained ultrathin trigonal tellurium nanowire assembly
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201300657
– volume: 22
  start-page: 475401
  issue: 47
  year: 2011
  ident: 10.1016/j.nanoen.2018.12.003_bib3
  article-title: High output nanogenerator based on assembly of GaN nanowires
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/22/47/475401
– volume: 10
  start-page: 5025
  issue: 12
  year: 2010
  ident: 10.1016/j.nanoen.2018.12.003_bib21
  article-title: High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display
  publication-title: Nano Lett.
  doi: 10.1021/nl103203u
– volume: 7
  start-page: 13566
  year: 2016
  ident: 10.1016/j.nanoen.2018.12.003_bib22
  article-title: Self-assembly of diphenylalanine peptide with controlled polarization for power generation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13566
– volume: 56
  start-page: 331
  issue: 4
  year: 1976
  ident: 10.1016/j.nanoen.2018.12.003_bib40
  article-title: Determination of the piezoelectric constant d14 of trigonal selenium crystals
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(76)90329-7
– volume: 6
  start-page: 1589
  issue: 8
  year: 1967
  ident: 10.1016/j.nanoen.2018.12.003_bib27
  article-title: The crystal structure of trigonal selenium
  publication-title: Inorg. Chem.
  doi: 10.1021/ic50054a037
– volume: 20
  start-page: 3127
  issue: 16
  year: 2008
  ident: 10.1016/j.nanoen.2018.12.003_bib6
  article-title: Alternating the output of a CdS nanowire nanogenerator by a white‐light‐stimulated optoelectronic effect
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200703236
– volume: 10
  start-page: 524
  issue: 2
  year: 2010
  ident: 10.1016/j.nanoen.2018.12.003_bib20
  article-title: Piezoelectric ribbons printed onto rubber for flexible energy conversion
  publication-title: Nano Lett.
  doi: 10.1021/nl903377u
– volume: 24
  start-page: 37
  issue: 1
  year: 2014
  ident: 10.1016/j.nanoen.2018.12.003_bib13
  article-title: Unidirectional high‐power generation via stress‐induced dipole alignment from ZnSnO3 nanocubes/polymer hybrid piezoelectric nanogenerator
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201301379
– volume: 6
  start-page: 16439
  issue: 34
  year: 2018
  ident: 10.1016/j.nanoen.2018.12.003_bib14
  article-title: High-performance piezoelectric-energy-harvester and self-powered mechanosensing using lead-free potassium–sodium niobate flexible piezoelectric composites
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA05887C
– volume: 11
  start-page: 8830
  issue: 9
  year: 2017
  ident: 10.1016/j.nanoen.2018.12.003_bib53
  article-title: Triboelectric nanogenerator enabled body sensor network for self-powered human heart-rate monitoring
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b02975
– volume: 9
  start-page: 42200
  issue: 48
  year: 2017
  ident: 10.1016/j.nanoen.2018.12.003_bib44
  article-title: A stretchable and transparent nanocomposite nanogenerator for self-powered physiological monitoring
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b13767
– volume: 9
  start-page: 1201
  issue: 3
  year: 2009
  ident: 10.1016/j.nanoen.2018.12.003_bib45
  article-title: Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator
  publication-title: Nano Lett.
  doi: 10.1021/nl803904b
– volume: 10
  start-page: 726
  issue: 2
  year: 2010
  ident: 10.1016/j.nanoen.2018.12.003_bib16
  article-title: Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency
  publication-title: Nano Lett.
  doi: 10.1021/nl9040719
– volume: 22
  start-page: 1873
  issue: 7
  year: 1993
  ident: 10.1016/j.nanoen.2018.12.003_bib54
  article-title: Relation of arterial pressure waveform to left ventricular and carotid anatomy in normotensive subjects
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/0735-1097(93)90772-S
– volume: 27
  start-page: 1604378
  issue: 4
  year: 2017
  ident: 10.1016/j.nanoen.2018.12.003_bib43
  article-title: A highly stretchable fiber‐based triboelectric nanogenerator for self‐powered wearable electronics
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604378
– volume: 8
  start-page: 2766
  issue: 3
  year: 2014
  ident: 10.1016/j.nanoen.2018.12.003_bib8
  article-title: Hemispherically aggregated BaTiO3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator
  publication-title: ACS nano
  doi: 10.1021/nn406481k
– volume: 51
  start-page: 11700
  issue: 47
  year: 2012
  ident: 10.1016/j.nanoen.2018.12.003_bib46
  article-title: Nanotechnology‐enabled energy harvesting for self‐powered micro‐/nanosystems
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201201656
– volume: 4
  start-page: 1859
  year: 2013
  ident: 10.1016/j.nanoen.2018.12.003_bib48
  article-title: Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2832
– volume: 4
  start-page: 341
  issue: 4
  year: 2009
  ident: 10.1016/j.nanoen.2018.12.003_bib34
  article-title: Synthesis and characterisation of selenium nanowires using template synthesis
  publication-title: J. Exp. Nanosci.
  doi: 10.1080/17458080903055666
– volume: 26
  start-page: 165403
  issue: 16
  year: 2015
  ident: 10.1016/j.nanoen.2018.12.003_bib12
  article-title: Lead-free ZnSnO3/MWCNTs-based self-poled flexible hybrid nanogenerator for piezoelectric power generation
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/26/16/165403
– volume: 12
  start-page: 970
  issue: 2
  year: 2012
  ident: 10.1016/j.nanoen.2018.12.003_bib4
  article-title: Individual GaN nanowires exhibit strong piezoelectricity in 3D
  publication-title: Nano Lett.
  doi: 10.1021/nl204043y
– volume: 105
  start-page: 1233
  issue: 4
  year: 1957
  ident: 10.1016/j.nanoen.2018.12.003_bib33
  article-title: Electronic band structure of selenium and tellurium
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.105.1233
– volume: 14
  start-page: 161
  year: 2015
  ident: 10.1016/j.nanoen.2018.12.003_bib42
  article-title: Theoretical systems of triboelectric nanogenerators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.11.034
– volume: 3
  start-page: 1500257
  issue: 2
  year: 2016
  ident: 10.1016/j.nanoen.2018.12.003_bib9
  article-title: Novel piezoelectric paper‐based flexible nanogenerators composed of BaTiO3 nanoparticles and bacterial cellulose
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500257
– volume: 4
  start-page: 3647
  issue: 7
  year: 2010
  ident: 10.1016/j.nanoen.2018.12.003_bib25
  article-title: Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy
  publication-title: ACS Nano
  doi: 10.1021/nn100845b
– volume: 14
  start-page: 3
  year: 2015
  ident: 10.1016/j.nanoen.2018.12.003_bib26
  article-title: Recent progress in piezoelectric nanogenerators as a sustainable power source in self-powered systems and active sensors
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.11.038
– volume: 15
  start-page: 3852
  issue: 20
  year: 2003
  ident: 10.1016/j.nanoen.2018.12.003_bib28
  article-title: Sonochemical synthesis of trigonal selenium nanowires
  publication-title: Chem. Mater.
  doi: 10.1021/cm034193b
– volume: 138
  start-page: S220
  issue: 3
  year: 1999
  ident: 10.1016/j.nanoen.2018.12.003_bib50
  article-title: Influence of arterial pulse and reflected waves on blood pressure and cardiac function
  publication-title: Am. Heart J.
  doi: 10.1016/S0002-8703(99)70313-3
– volume: 32
  start-page: 104004
  issue: 10
  year: 2017
  ident: 10.1016/j.nanoen.2018.12.003_bib36
  article-title: Piezotronic effect in 1D van der Waals solid of elemental tellurium nanobelt for smart adaptive electronics
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/1361-6641/aa8605
– volume: 92
  start-page: 022105
  issue: 2
  year: 2008
  ident: 10.1016/j.nanoen.2018.12.003_bib5
  article-title: Piezoelectric nanogenerator using CdS nanowires
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2831901
– volume: 50
  start-page: 4042
  issue: 6
  year: 1979
  ident: 10.1016/j.nanoen.2018.12.003_bib35
  article-title: Elastic and piezoelectric constants of trigonal selenium and tellurium crystals
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.326485
– volume: 6
  start-page: 4335
  issue: 5
  year: 2012
  ident: 10.1016/j.nanoen.2018.12.003_bib11
  article-title: Lead-free nanogenerator made from single ZnSnO3 microbelt
  publication-title: ACS Nano
  doi: 10.1021/nn300951d
– volume: 9
  start-page: 631
  issue: 6
  year: 1970
  ident: 10.1016/j.nanoen.2018.12.003_bib39
  article-title: Piezoelectric properties of Se film deposited on Te crystal
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.9.631
– volume: 11
  start-page: 5142
  issue: 12
  year: 2011
  ident: 10.1016/j.nanoen.2018.12.003_bib17
  article-title: Porous PVDF As effective sonic wave driven nanogenerators
  publication-title: Nano Lett.
  doi: 10.1021/nl202208n
– volume: 8
  start-page: 4415
  issue: 12
  year: 2008
  ident: 10.1016/j.nanoen.2018.12.003_bib29
  article-title: PEG-mediated hydrothermal growth of single-crystal tellurium nanotubes
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg800064a
– volume: 6
  start-page: 1514
  issue: 6
  year: 2006
  ident: 10.1016/j.nanoen.2018.12.003_bib55
  article-title: Large-scale Synthesis and growth mechanism of single-crystal Se nanobelts
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg050493p
– volume: 24
  start-page: 1759
  issue: 13
  year: 2012
  ident: 10.1016/j.nanoen.2018.12.003_bib18
  article-title: A hybrid piezoelectric structure for wearable nanogenerators
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201200150
– volume: 10
  start-page: 4939
  issue: 12
  year: 2010
  ident: 10.1016/j.nanoen.2018.12.003_bib7
  article-title: Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates
  publication-title: Nano Lett.
  doi: 10.1021/nl102959k
– volume: 11
  start-page: 510
  year: 2015
  ident: 10.1016/j.nanoen.2018.12.003_bib10
  article-title: Single BaTiO3 nanowires-polymer fiber based nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.11.028
– volume: 312
  start-page: 242
  issue: 5771
  year: 2006
  ident: 10.1016/j.nanoen.2018.12.003_bib1
  article-title: Piezoelectric nanogenerators based on zinc oxide nanowire arrays
  publication-title: Science
  doi: 10.1126/science.1124005
– volume: 1
  start-page: e1500661
  issue: 9
  year: 2015
  ident: 10.1016/j.nanoen.2018.12.003_bib49
  article-title: Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1500661
– volume: 132
  start-page: 4766
  issue: 13
  year: 2010
  ident: 10.1016/j.nanoen.2018.12.003_bib2
  article-title: GaN nanowire arrays for high-output nanogenerators
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja909863a
– volume: 1
  start-page: 15046
  issue: 47
  year: 2013
  ident: 10.1016/j.nanoen.2018.12.003_bib30
  article-title: Controlled synthesis of tellurium nanowires and nanotubes via a facile, efficient, and relatively green solution phase method
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta13035e
– volume: 5
  start-page: 574
  issue: 8
  year: 2010
  ident: 10.1016/j.nanoen.2018.12.003_bib37
  article-title: Roll-to-roll production of 30-inch graphene films for transparent electrodes
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.132
– volume: 11
  start-page: 2572
  issue: 6
  year: 2011
  ident: 10.1016/j.nanoen.2018.12.003_bib23
  article-title: Self-powered system with wireless data transmission
  publication-title: Nano Lett.
  doi: 10.1021/nl201505c
– volume: 14
  start-page: 6897
  issue: 12
  year: 2014
  ident: 10.1016/j.nanoen.2018.12.003_bib47
  article-title: Solution-derived ZnO homojunction nanowire films on wearable substrates for energy conversion and self-powered gesture recognition
  publication-title: Nano Lett.
  doi: 10.1021/nl5029182
– volume: 18
  start-page: 3S
  issue: S1
  year: 2005
  ident: 10.1016/j.nanoen.2018.12.003_bib52
  article-title: Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms
  publication-title: Am. J. Hypertens.
  doi: 10.1016/j.amjhyper.2004.10.009
– volume: 24
  start-page: 5117
  issue: 37
  year: 2012
  ident: 10.1016/j.nanoen.2018.12.003_bib41
  article-title: Highly conductive and stretchable silver nanowire conductors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201201886
– volume: 5
  start-page: 509
  issue: 7
  year: 1967
  ident: 10.1016/j.nanoen.2018.12.003_bib32
  article-title: Electronic band structure of tellurium
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(67)90534-0
– volume: 50
  start-page: 62
  year: 2018
  ident: 10.1016/j.nanoen.2018.12.003_bib15
  article-title: High-performance piezoelectric composite nanogenerator based on Ag/(K,Na)NbO3 heterostructure
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.05.012
– volume: 37
  start-page: 71
  issue: 1
  year: 1971
  ident: 10.1016/j.nanoen.2018.12.003_bib38
  article-title: Electromechanical resonance in selenium determination of the piezoelectric coefficient d11
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(71)90337-9
– volume: 31
  start-page: R1
  issue: 1
  year: 2009
  ident: 10.1016/j.nanoen.2018.12.003_bib51
  article-title: Arterial blood pressure measurement and pulse wave analysis—their role in enhancing cardiovascular assessment
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/31/1/R01
SSID ssj0000651712
Score 2.501782
Snippet Smart sensing devices with high stretchability and self-powered characteristics are essential in future generation wearable human-integrated applications. Here...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 693
SubjectTerms Human physiological monitoring
Piezoelectric device
Selenium nanowires
Self-powered sensor
Wearable electronics
Title Solution-synthesized chiral piezoelectric selenium nanowires for wearable self-powered human-integrated monitoring
URI https://dx.doi.org/10.1016/j.nanoen.2018.12.003
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lBy8rs0-msexFEtV7EULvYXN7gYjNg19IPbgb3cmj1I9KHhMspMsk8m8MvMNIde-q7pSxYayxHAqY8-lSkpBdcxCI0PXMg8bhR9H3nAs7yfdSYP0614YLKusdH-p0wttXZ3pVNzs5GnaeeIQu_AAEcWECyEeNvxK6aOU33yyTZ4FTCzzi5-euJ4iQd1BV5R5ZSqbWQRCZUGRF6ynZ_20UFtWZ3BA9it30emVOzokDZsdkb0tEMFjMq8zW3TxkYE7t0jX1jj6JZ0DYZ7a9awcdZNqBycrZelq6uB2EKR44YDP6ryDtGMHFV5PaI5z0-AOxfQ-uoGTMM60-PzxoSdkPLh97g9pNUmBauHzJQ1MbFSQyASCCa11IGLmK-UJoz3XtyrmoPI0xMIJA4Om3CQQlilEmuPcJhxcqlPSzGaZPSOOlIoFKhRWCzBsWinpKh4aA24UjxPGWkTU3It0BTOO0y7eorqe7DUqeR4hzyPGEZ60ReiGKi9hNv5Y79cvJvomLhFYgl8pz_9NeUF24SgsS7YvSXM5X9kr8EiWcbsQuTbZ6d09DEdf4eTj3A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgHIADYhVlzYGrabw0yxFVoLJeaCVulmM7IoimVRcheuDbmclSAQeQuMaZxJrYszgz7xFyFvq6LXViKUstpzIJfKqlFNQkLLYy9h0LsFH4_iHo9uXNU_tpiXTqXhgsq6xsf2nTC2tdXWlV2myNsqz1yCF34REiigkfUrxomaxI2L5IY3D-wRYHLeBjWVj89UQBihJ1C11R55XrfOgQCZVFxcFgTZ_100V9cTtXm2Sjihe9i3JKW2TJ5dtk_QuK4A4Z10dbdPKeQzw3yebOeuY5G4PgKHPzYcl1kxkPqZXybDbwcDqIUjzxIGj13mC5YwsVjqd0hMRp8ISCvo8u8CSsNyj2P750l_SvLnudLq2oFKgRIZ_SyCZWR6lMIZswxkQiYaHWgbAm8EOnEw42z0AynDLwaNpPI-GYRqg5zl3KIabaI418mLt94kmpWaRj4YwAz2a0lr7msbUQR_EkZaxJRK09ZSqccaS7eFV1QdmLKnWuUOeKccQnbRK6kBqVOBt_3B_WH0Z9Wy8KXMGvkgf_ljwlq93e_Z26u364PSRrMBKX9dtHpDEdz9wxhCfT5KRYfp8pUuVq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solution-synthesized+chiral+piezoelectric+selenium+nanowires+for+wearable+self-powered+human-integrated+monitoring&rft.jtitle=Nano+energy&rft.au=Wu%2C+Min&rft.au=Wang%2C+Yixiu&rft.au=Gao%2C+Shengjie&rft.au=Wang%2C+Ruoxing&rft.date=2019-02-01&rft.issn=2211-2855&rft.volume=56&rft.spage=693&rft.epage=699&rft_id=info:doi/10.1016%2Fj.nanoen.2018.12.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nanoen_2018_12_003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon