Design and performance boost of a MOF-functionalized-wood solar evaporator through tuning the hydrogen-bonding interactions
Interfacial solar evaporation technology is recognized as one of the most promising strategies to address freshwater scarcity issues. To realize the sustainability of this technology for producing potable water from seawater and contaminated water sources, multi-functional photothermal materials nee...
Saved in:
Published in | Nano energy Vol. 95; p. 107016 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Interfacial solar evaporation technology is recognized as one of the most promising strategies to address freshwater scarcity issues. To realize the sustainability of this technology for producing potable water from seawater and contaminated water sources, multi-functional photothermal materials need to be explored to attain higher vapor output at the same solar energy input. Herein, a novel wood-based solar evaporator composed of porous wood substrate, zeolitic imidazolate framework-8 (ZIF-8), and polydopamine (PDA) as a light absorption layer is developed. The in-situ loading of ZIF-8 in the microchannels renders the wood evaporator an important function of reducing the equivalent evaporation enthalpy due to the lowered hydrogen bonding density of water molecules when they pass the wood channels, substantially augmenting solar evaporation efficiency. A superior evaporation rate of 2.70 kg m−2 h−1 is achieved under 1.0 sun irradiation, which exceeds the theoretical limit of a typical 2D photothermal evaporator (~1.46 kg m−2 h−1). The designed wood/ZIF-8@PDA also exhibits a prominent removal efficiency for harmful ions and organic pollutants. This multifunctional wood-based solar evaporator shows great potential for future freshwater production.
[Display omitted]
A MOF functionalized wood-based photothermal evaporator is designed for cost-effective and highly efficient solar steam generation. The MOF grown in wood channel is able to significantly lower the evaporation enthalpy, thus realizing an extremely high evaporation rate of 2.7 kg m−2 h−1 under 1.0 sun irradiation.
•A MOF functionalized wood-based photothermal evaporator is fabricated for highly efficient solar steam generation.•In-situ synthesized MOF in wood channel can lower the hydrogen bonding density, thus lowering the evaporation enthalpy.•An extremely high evaporation rate of 2.7 kg m−2 h−1 is achieved under 1.0 sun.•Scalable and highly efficient photothermal evaporators for practical applications |
---|---|
AbstractList | Interfacial solar evaporation technology is recognized as one of the most promising strategies to address freshwater scarcity issues. To realize the sustainability of this technology for producing potable water from seawater and contaminated water sources, multi-functional photothermal materials need to be explored to attain higher vapor output at the same solar energy input. Herein, a novel wood-based solar evaporator composed of porous wood substrate, zeolitic imidazolate framework-8 (ZIF-8), and polydopamine (PDA) as a light absorption layer is developed. The in-situ loading of ZIF-8 in the microchannels renders the wood evaporator an important function of reducing the equivalent evaporation enthalpy due to the lowered hydrogen bonding density of water molecules when they pass the wood channels, substantially augmenting solar evaporation efficiency. A superior evaporation rate of 2.70 kg m−2 h−1 is achieved under 1.0 sun irradiation, which exceeds the theoretical limit of a typical 2D photothermal evaporator (~1.46 kg m−2 h−1). The designed wood/ZIF-8@PDA also exhibits a prominent removal efficiency for harmful ions and organic pollutants. This multifunctional wood-based solar evaporator shows great potential for future freshwater production.
[Display omitted]
A MOF functionalized wood-based photothermal evaporator is designed for cost-effective and highly efficient solar steam generation. The MOF grown in wood channel is able to significantly lower the evaporation enthalpy, thus realizing an extremely high evaporation rate of 2.7 kg m−2 h−1 under 1.0 sun irradiation.
•A MOF functionalized wood-based photothermal evaporator is fabricated for highly efficient solar steam generation.•In-situ synthesized MOF in wood channel can lower the hydrogen bonding density, thus lowering the evaporation enthalpy.•An extremely high evaporation rate of 2.7 kg m−2 h−1 is achieved under 1.0 sun.•Scalable and highly efficient photothermal evaporators for practical applications |
ArticleNumber | 107016 |
Author | Lu, Yi Shen, Ziyi Zhang, Hao Xu, Haolan Yang, Xiaofei Fan, Deqi |
Author_xml | – sequence: 1 givenname: Yi surname: Lu fullname: Lu, Yi organization: Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China – sequence: 2 givenname: Deqi surname: Fan fullname: Fan, Deqi organization: College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China – sequence: 3 givenname: Ziyi surname: Shen fullname: Shen, Ziyi organization: Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China – sequence: 4 givenname: Hao surname: Zhang fullname: Zhang, Hao organization: Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China – sequence: 5 givenname: Haolan surname: Xu fullname: Xu, Haolan email: haolan.xu@unisa.edu.au organization: Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia – sequence: 6 givenname: Xiaofei surname: Yang fullname: Yang, Xiaofei email: xiaofei.yang@njfu.edu.cn organization: Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China |
BookMark | eNqFkM1OAjEURrvARETewEVfYLDtMH8uTAyKmmDY6LrpdG6HEuglbcGgL--MuHKh3dz0S86Xe88FGTh0QMgVZxPOeH69njjlENxEMCG6qOjCARkKwXkiyiw7J-MQ1qx7ecYLLobk8x6CbR1VrqE78Ab9VjkNtEYMkaKhir4s54nZOx0tOrWxH9Ak74gNDbhRnsJB7dCriJ7Glcd9u6Jx76xruy_Q1bHx2IJLanRNH1oXwavvrnBJzozaBBj_zBF5mz-8zp6SxfLxeXa3SHRaiJiUdVFmUzBpWmZlLgyrWW2mOlVVoXOhOdN5meU6L4woU15ntQBQleAGjKgq1qQjMj31ao8heDBy5-1W-aPkTPbe5FqevMnemzx567CbX5i2UfWbR6_s5j_49gRDd9jBgpdBW-jMNtaDjrJB-3fBF7y2kls |
CitedBy_id | crossref_primary_10_1016_j_indcrop_2024_119793 crossref_primary_10_1016_j_cej_2025_159554 crossref_primary_10_1002_solr_202201014 crossref_primary_10_1021_acssuschemeng_2c06472 crossref_primary_10_3390_bios13060636 crossref_primary_10_1002_advs_202204109 crossref_primary_10_1039_D4SE00617H crossref_primary_10_1016_j_cej_2022_140777 crossref_primary_10_1016_j_susmat_2024_e01022 crossref_primary_10_1021_acs_langmuir_3c03971 crossref_primary_10_1016_j_seppur_2023_124188 crossref_primary_10_1016_j_cej_2023_147680 crossref_primary_10_1007_s40843_022_2467_x crossref_primary_10_1002_adma_202212100 crossref_primary_10_1016_j_desal_2024_117366 crossref_primary_10_1002_adfm_202205790 crossref_primary_10_1016_j_desal_2024_118472 crossref_primary_10_1002_adhm_202400707 crossref_primary_10_1016_j_mtsust_2023_100538 crossref_primary_10_1016_j_solener_2024_112543 crossref_primary_10_1002_eom2_12302 crossref_primary_10_1039_D2EN00312K crossref_primary_10_1016_j_desal_2023_116549 crossref_primary_10_1039_D2MA00927G crossref_primary_10_1016_j_seppur_2023_124195 crossref_primary_10_1039_D2TA09778H crossref_primary_10_1002_adfm_202303656 crossref_primary_10_1039_D3EE03922F crossref_primary_10_1002_adfm_202306806 crossref_primary_10_1016_j_solmat_2024_113342 crossref_primary_10_1002_slct_202404061 crossref_primary_10_1002_ente_202200900 crossref_primary_10_1016_j_seppur_2023_124513 crossref_primary_10_1016_j_desal_2022_115873 crossref_primary_10_1021_acsapm_2c00935 crossref_primary_10_1016_j_mtcomm_2024_111377 crossref_primary_10_1016_j_seppur_2025_132353 crossref_primary_10_1016_j_nantod_2024_102227 crossref_primary_10_1016_j_solener_2024_112333 crossref_primary_10_1039_D3TA02229C crossref_primary_10_1021_acs_energyfuels_5c00552 crossref_primary_10_1016_j_solener_2024_112572 crossref_primary_10_1021_acsapm_3c01202 crossref_primary_10_1039_D4MH00798K crossref_primary_10_1002_adfm_202208965 crossref_primary_10_1039_D4TA07411D crossref_primary_10_1002_aesr_202200158 crossref_primary_10_1002_sus2_231 crossref_primary_10_1039_D4TB02427C crossref_primary_10_1016_j_cej_2023_145357 crossref_primary_10_1016_j_scib_2023_07_011 crossref_primary_10_1016_j_scitotenv_2024_172887 crossref_primary_10_1002_adfm_202214828 crossref_primary_10_1016_j_watres_2024_121707 crossref_primary_10_1016_j_jece_2023_110422 crossref_primary_10_1016_j_cej_2024_157068 crossref_primary_10_1016_j_cej_2023_145919 crossref_primary_10_1021_acsnano_3c01421 crossref_primary_10_1016_j_desal_2024_117954 crossref_primary_10_1016_j_micromeso_2022_112124 crossref_primary_10_1016_j_cej_2023_147891 crossref_primary_10_1016_j_cej_2024_158384 crossref_primary_10_1016_j_mssp_2024_108473 crossref_primary_10_1016_j_cej_2022_138257 crossref_primary_10_1016_j_carbpol_2024_121951 crossref_primary_10_1016_j_mtcomm_2024_108937 crossref_primary_10_1016_j_ijbiomac_2024_135164 crossref_primary_10_1016_j_cej_2024_155796 crossref_primary_10_1007_s40843_022_2407_2 crossref_primary_10_1021_acsnano_4c12228 crossref_primary_10_1016_j_desal_2023_116910 crossref_primary_10_1016_j_coco_2022_101302 crossref_primary_10_1016_j_seppur_2022_122754 crossref_primary_10_1016_j_chemosphere_2024_142048 crossref_primary_10_1002_advs_202206718 crossref_primary_10_1002_advs_202305523 crossref_primary_10_1016_j_seppur_2024_128698 crossref_primary_10_1016_j_fuel_2024_131813 crossref_primary_10_1039_D4GC01486C crossref_primary_10_1016_j_molliq_2023_121409 crossref_primary_10_1016_j_scib_2022_07_004 crossref_primary_10_3390_f15101837 crossref_primary_10_1021_acsami_4c03986 crossref_primary_10_1016_j_susmat_2023_e00800 crossref_primary_10_1021_acs_iecr_3c02036 crossref_primary_10_1016_j_cej_2023_147868 crossref_primary_10_1016_j_cej_2024_150755 crossref_primary_10_1021_acs_iecr_2c03477 crossref_primary_10_1016_j_cej_2023_141763 crossref_primary_10_1002_smm2_1175 crossref_primary_10_1021_acssuschemeng_2c07196 crossref_primary_10_1016_j_seppur_2024_128325 crossref_primary_10_1016_j_nanoen_2024_109307 crossref_primary_10_1016_j_seppur_2023_124322 crossref_primary_10_1002_adfm_202304936 crossref_primary_10_1039_D2NJ05354C crossref_primary_10_1016_j_cej_2024_148671 crossref_primary_10_1016_j_nanoen_2024_109531 crossref_primary_10_1016_j_inoche_2025_114001 crossref_primary_10_1016_j_surfin_2023_103299 crossref_primary_10_1021_acs_iecr_4c04315 crossref_primary_10_1021_acs_chemrev_3c00136 crossref_primary_10_1016_j_cej_2024_156052 crossref_primary_10_1016_j_cej_2024_158111 crossref_primary_10_1016_j_jece_2023_111827 crossref_primary_10_1021_acsnano_4c06339 crossref_primary_10_1016_j_apenergy_2024_122673 crossref_primary_10_1039_D3CS00500C crossref_primary_10_1021_acssuschemeng_3c02154 crossref_primary_10_1002_sus2_96 crossref_primary_10_1016_j_cej_2024_152932 crossref_primary_10_1002_adma_202414045 crossref_primary_10_1016_j_molstruc_2023_137113 crossref_primary_10_1016_j_cej_2024_148680 crossref_primary_10_1007_s10853_023_08849_x crossref_primary_10_1016_j_cej_2023_147298 crossref_primary_10_1039_D2TA03004G crossref_primary_10_1002_adsu_202200215 crossref_primary_10_1002_smll_202204898 crossref_primary_10_1016_j_mtsust_2023_100363 crossref_primary_10_1007_s12274_024_6585_6 crossref_primary_10_1002_adsu_202400349 crossref_primary_10_1016_j_porgcoat_2024_108958 crossref_primary_10_1039_D2ME00163B crossref_primary_10_1016_j_nanoen_2024_110232 crossref_primary_10_1021_acsenergylett_5c00038 crossref_primary_10_1016_j_cej_2024_153694 crossref_primary_10_1007_s12274_022_5348_5 crossref_primary_10_1021_acsami_3c17962 crossref_primary_10_1002_adfm_202406272 crossref_primary_10_1021_acssuschemeng_2c06869 crossref_primary_10_1016_j_cej_2023_147158 crossref_primary_10_26599_NRE_2022_9120014 crossref_primary_10_1016_j_mtphys_2022_100715 crossref_primary_10_1007_s00396_024_05340_0 crossref_primary_10_1021_acs_langmuir_4c02103 crossref_primary_10_1016_j_cej_2023_142944 crossref_primary_10_1016_j_cej_2024_151157 crossref_primary_10_1002_ep_13944 crossref_primary_10_1016_j_est_2024_110665 crossref_primary_10_1016_j_cej_2025_160715 crossref_primary_10_1039_D3RA01938A crossref_primary_10_1021_acsami_2c12073 crossref_primary_10_1002_admt_202202078 crossref_primary_10_1021_acs_langmuir_3c00297 crossref_primary_10_1002_solr_202200202 crossref_primary_10_1016_j_desal_2023_116829 crossref_primary_10_1021_acsami_2c12750 crossref_primary_10_1002_cssc_202400111 crossref_primary_10_1038_s43246_024_00544_x crossref_primary_10_1039_D3TA03128D crossref_primary_10_1016_j_carbon_2024_118976 crossref_primary_10_1016_j_nanoen_2024_110458 crossref_primary_10_1016_j_seppur_2023_123959 crossref_primary_10_1002_smll_202407280 crossref_primary_10_1016_j_indcrop_2024_120040 crossref_primary_10_1016_j_solener_2024_112853 crossref_primary_10_1021_acsmaterialslett_4c00973 crossref_primary_10_1016_j_desal_2024_117668 crossref_primary_10_1016_j_jcis_2023_04_029 crossref_primary_10_1021_acsaem_2c03332 crossref_primary_10_1080_09593330_2022_2082326 crossref_primary_10_1016_j_cej_2023_144421 crossref_primary_10_1002_ente_202300263 crossref_primary_10_1016_j_surfin_2024_104402 crossref_primary_10_1002_smll_202311449 crossref_primary_10_1016_j_cej_2023_141955 crossref_primary_10_1016_j_cej_2023_141716 crossref_primary_10_1016_j_cej_2024_158431 crossref_primary_10_1016_j_carbpol_2022_119539 crossref_primary_10_1016_j_desal_2023_116961 crossref_primary_10_1016_j_nanoen_2022_107996 crossref_primary_10_1016_j_colsurfa_2023_131969 crossref_primary_10_1002_cssc_202401224 crossref_primary_10_1016_j_watres_2022_119011 crossref_primary_10_1038_s41545_024_00408_4 crossref_primary_10_1016_j_xcrp_2022_101020 crossref_primary_10_1007_s12598_023_02430_w crossref_primary_10_1016_j_mtsust_2023_100561 crossref_primary_10_3390_gels10060371 crossref_primary_10_1016_j_cej_2025_159231 crossref_primary_10_20517_energymater_2023_74 crossref_primary_10_1002_adfm_202312613 crossref_primary_10_1016_j_apcatb_2023_122988 crossref_primary_10_1039_D3EN00252G crossref_primary_10_1016_j_desal_2024_117686 crossref_primary_10_1007_s40843_022_2238_6 crossref_primary_10_1016_j_nanoen_2023_108631 crossref_primary_10_1016_j_cej_2023_144761 crossref_primary_10_1016_j_cej_2022_139193 crossref_primary_10_1016_j_jcis_2023_08_168 crossref_primary_10_1007_s42765_024_00408_6 crossref_primary_10_1016_j_colsurfa_2025_136161 crossref_primary_10_1016_j_seppur_2024_130937 crossref_primary_10_1039_D2NJ04579F crossref_primary_10_1002_solr_202300382 crossref_primary_10_1007_s00226_022_01430_w crossref_primary_10_1002_solr_202300026 crossref_primary_10_1016_j_solmat_2022_112052 crossref_primary_10_1016_j_desal_2025_118760 crossref_primary_10_1016_j_applthermaleng_2023_119985 crossref_primary_10_1002_adfm_202425522 crossref_primary_10_1016_j_carbpol_2024_122304 crossref_primary_10_1021_acsami_3c06049 crossref_primary_10_1016_j_cej_2023_144517 crossref_primary_10_1016_j_pmatsci_2023_101164 crossref_primary_10_1016_j_jece_2023_111787 crossref_primary_10_1016_j_seppur_2025_131864 crossref_primary_10_1016_j_cej_2022_138676 crossref_primary_10_1016_j_nanoen_2022_107961 crossref_primary_10_1016_j_cej_2023_147580 crossref_primary_10_3390_ma16041628 crossref_primary_10_1016_j_indcrop_2024_118293 crossref_primary_10_1016_j_seppur_2022_122010 crossref_primary_10_1039_D4TA00069B crossref_primary_10_1007_s00226_023_01496_0 crossref_primary_10_1002_eom2_12289 crossref_primary_10_1002_ente_202300500 crossref_primary_10_1016_j_cej_2025_159221 crossref_primary_10_1016_j_jclepro_2024_143960 crossref_primary_10_1016_j_memsci_2023_121592 crossref_primary_10_1016_j_seppur_2024_130230 crossref_primary_10_1016_j_gee_2022_03_002 crossref_primary_10_1016_j_desal_2024_118208 crossref_primary_10_1016_j_indcrop_2024_118299 crossref_primary_10_1007_s10853_023_08420_8 |
Cites_doi | 10.1021/acs.accounts.8b00521 10.1002/adma.201903378 10.1016/j.nanoen.2018.11.002 10.1038/s41578-020-0182-4 10.1016/j.joule.2021.04.009 10.1016/j.mattod.2020.10.022 10.1039/C9TA04914B 10.1021/acsnano.1c02578 10.1007/s10853-021-06420-0 10.1021/acsnano.1c01900 10.1039/D0TA08539A 10.1016/j.jhazmat.2014.03.048 10.1016/j.nanoen.2020.105322 10.1016/j.nanoen.2020.105477 10.1021/acs.accounts.9b00455 10.1021/acsnano.1c01590 10.1016/j.joule.2019.06.009 10.1002/solr.202000232 10.1002/adfm.202102618 10.1016/j.joule.2017.09.011 10.1016/j.nanoen.2020.104998 10.1039/C9SE00163H 10.1016/j.cej.2020.125174 10.1038/s41467-020-20823-8 10.1002/aenm.202000925 10.1016/j.nanoen.2019.03.039 10.1126/sciadv.abb4696 10.1016/j.nanoen.2018.12.008 10.1002/advs.201903125 10.1016/j.nanoen.2021.106146 10.1016/j.seppur.2021.118527 10.1016/j.joule.2020.02.014 10.1002/cssc.201802485 10.1016/j.scitotenv.2020.144317 10.1002/adsu.201800055 10.1002/adma.202102994 10.1002/adma.202001086 10.1021/acs.est.8b06564 10.1016/j.scib.2019.08.022 10.1016/j.nanoen.2020.105682 10.1039/C8EE01146J 10.1016/j.nanoen.2020.104650 10.1002/anie.201915170 10.1002/advs.202002501 10.1038/s41565-018-0097-z 10.1002/adma.201900498 10.1021/acsami.9b00291 10.1021/acsami.1c03388 10.1039/D1EE01381E 10.1016/j.apcatb.2021.120285 10.1002/adfm.202002867 10.1021/acs.nanolett.0c01088 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nanoen.2022.107016 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_nanoen_2022_107016 S221128552200101X |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ JARJE KOM M41 MAGPM MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSM SSR SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c372t-8b7854ef3385862f0b0bf4c3a97c62c10c6856c67f2831b5b2eea921fef2990d3 |
IEDL.DBID | .~1 |
ISSN | 2211-2855 |
IngestDate | Thu Apr 24 22:59:58 EDT 2025 Tue Jul 01 00:56:52 EDT 2025 Fri Feb 23 02:40:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Polydopamine Photothermal materials MOFs Wood Solar steam generation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-8b7854ef3385862f0b0bf4c3a97c62c10c6856c67f2831b5b2eea921fef2990d3 |
ParticipantIDs | crossref_primary_10_1016_j_nanoen_2022_107016 crossref_citationtrail_10_1016_j_nanoen_2022_107016 elsevier_sciencedirect_doi_10_1016_j_nanoen_2022_107016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2022 2022-05-00 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
PublicationDecade | 2020 |
PublicationTitle | Nano energy |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Guo, Dundas, Zhou, Johnston, Yu (bib31) 2021 Xiao, Jiang (bib35) 2019; 52 Ding, Zhou, Ong, Ho (bib47) 2021; 42 Huang, Hu, Tian, Wang, Tu, Cao, Zhang (bib34) 2019; 3 Chen, Sun, Xiang, Shen, Wang, Jia, Sun, Liu (bib45) 2020; 76 Gao, Peh, Zhu, Yilmaz, Ho (bib50) 2020; 10 Shi, Shi, Zhuo, Zhang, Aldrees, Aleid, Wang (bib48) 2019; 60 Liao, Zhang, Yao, Cheng, Li, Qu (bib7) 2020; 7 Meng, Jiang, Li, Xu, Li, Henzie, Nanjundan, Yamauchi, Bando (bib16) 2021; 87 Li, Wang, Lin, Xu, Li, Liang, Zhao, Lin, Zhu, Liu, Zhou, Zhu, Zhu (bib57) 2020; 4 Wu, Wu, Wang, Gao, Li, Xu (bib3) 2021; 8 Yu, Shapter, Popelka-Filcoff, Bennett, Ellis (bib41) 2014; 273 Wang, Wu, Gao, Lu, Yang, Chen, Owens, Xu (bib28) 2021; 79 Hou, Zhou, Zhang, Chang, Yang, Xue, Hu (bib32) 2021; 759 Li, Li, Liu, Zeng, Feng, Jia, Yu (bib23) 2021; 13 Chen, Li, Song, Yang, Kuang, Hitz, Jia, Gong, Jiang, Zhu, Yang, Xie, Hu (bib14) 2017; 29 Wang, Liu, Chen, Kuang, Song, Xie, Jia, Kronthal, Xu, He, Hu (bib21) 2019; 3 Guo, Cai, Liu, Yang, Meng, Chen, Li, Wang (bib38) 2019; 53 Li, Li, Wang, Qiao, Yu, Murto, Xu (bib2) 2021; 31 Ren, Li, Zhang, Yang (bib24) 2020; 18 Wu, Cao, Wang, Liu, Zhao, Wang, Liu, Huang, Liao, Shao, Kang (bib26) 2021; 12 Tu, Puertolas, Adobes-Vidal, Wang, Sun, Traber, Burgert, Perez-Ramirez, Keplinger (bib39) 2020; 7 Liu, Chen, Chen, Kuang, Zhao, Song, Jia, Xu, Hitz, Xie, Wang, Jiang, Li, Li, Gong, Yang, Das, Hu (bib22) 2018; 8 He, Han, Zhang, Wang, Wu, Zhou, Jiang, Peng, Li (bib27) 2020; 71 Zhou, Guo, Zha, Yu (bib30) 2019; 52 Wu, Gao, Han, Xu, Owens, Xu (bib60) 2019; 64 Zou, Chen, Yang, Liang, Yang, Gu, Li (bib43) 2020; 6 Xu, Li, Chao, Wu, Yan, Li, Cao, Wang (bib36) 2020; 59 Li, Ni, Cooper, Xu, Li, Zhou, Hu, Zhu, Yao, Zhu (bib58) 2019; 3 Wu, Wang, Wu, Zhao, Lu, Yang, Xu (bib5) 2021; 31 Gao, Zhu, Peh, Ho (bib12) 2019; 12 Fan, Lu, Zhang, Xu, Lu, Tang, Yang (bib56) 2021; 295 Wang, Yan, Shen, Jin, Sun, Li (bib40) 2019; 7 Fang, Li, Chen, Lin, Wang, Liu (bib6) 2019; 11 Yao, Zhang, Yang, Liao, Hao, Huang, Zhang, Wang, Lin, Cheng, Yuan, Qu (bib8) 2021; 14 Cui, Xu, Yang, Chen, Qian, Chen, Sun (bib42) 2020; 395 Fan, Min, Zhang, Tang, Lu (bib10) 2021; 56 Lu, Fan, Wang, Xu, Lu, Yang (bib54) 2021; 15 Wu, Robson, Phelps, Tan, Shao, Owens, Xu (bib11) 2019; 56 Shao, Wu, Wang, Gao, Liu, Owens, Xu (bib44) 2020; 8 Zhao, Guo, Zhou, Shi, Yu (bib29) 2020; 5 Zhang, Wang, Song, Yao (bib37) 2021; 266 Kuang, Chen, He, Hitz, Wang, Gan, Mi, Hu (bib25) 2019; 31 Li, Xu, Sheng, Lin, Tang, Pan, Kaneti, Yang, Yamauchi (bib1) 2021; 15 Meng, Gao, Ding, Yilmaz, Ong, Ho (bib51) 2020; 30 Zhao, Zhou, Shi, Qian, Alexander, Zhao, Mendez, Yang, Qu, Yu (bib4) 2018; 13 Yu, Qin, Ma, Gao, Guan, Yang, Yu (bib18) 2021; 33 Zhang, Yang, Dang, Tao, Li, Zhao, Li, Li, Chen, Liu (bib19) 2020; 78 Li, Liu, Zhao, Chen, Dai, Pastel, Jia, Chen, Hitz, Siddhartha, Yang, Hu (bib20) 2018; 28 Zhang, Yang, Dang, Tao, Li, Zhao, Li, Li, Chen, Liu (bib53) 2020; 78 Deng, Miao, Liu, Zhou, Wang, Gu, Wang, Cai, Sun, Tanemura (bib49) 2019; 55 Li, Qiao, He, Wang, Yu, Murto, Li, Xu (bib17) 2020; 31 Liu, Zhou, Wu, Zhang, Zhu, Jin, Zhang, Zhu, Chen (bib59) 2021; 15 Li, Zhang (bib46) 2021; 81 Wang, Wang, Zhang, Li, Jin (bib33) 2019; 12 Guan, Han, Ling, Yang, Yu (bib52) 2020; 20 Jia, Li, Yang, Chen, Yao, Jiang, Kuang, Pastel, Xie, Yang, Das, Hu (bib15) 2017; 1 Gao, Peh, Phan, Zhu, Ho (bib13) 2018; 8 Qi, Wei, Zhao, Zhu, Liu, Wang, Lin, Wang, Li, Zhang, Zhu (bib61) 2019; 31 Wang, Xu, Zhao, Zhou, Zhu, Wang, Zhu, Zhu (bib9) 2021; 5 Lu, Fan, Xu, Min, Lu, Lin, Yang (bib55) 2020; 4 Wu (10.1016/j.nanoen.2022.107016_bib3) 2021; 8 Yao (10.1016/j.nanoen.2022.107016_bib8) 2021; 14 Shao (10.1016/j.nanoen.2022.107016_bib44) 2020; 8 Guo (10.1016/j.nanoen.2022.107016_bib31) 2021 Wu (10.1016/j.nanoen.2022.107016_bib26) 2021; 12 Zhang (10.1016/j.nanoen.2022.107016_bib19) 2020; 78 Liu (10.1016/j.nanoen.2022.107016_bib59) 2021; 15 Xiao (10.1016/j.nanoen.2022.107016_bib35) 2019; 52 Lu (10.1016/j.nanoen.2022.107016_bib54) 2021; 15 Qi (10.1016/j.nanoen.2022.107016_bib61) 2019; 31 He (10.1016/j.nanoen.2022.107016_bib27) 2020; 71 Guo (10.1016/j.nanoen.2022.107016_bib38) 2019; 53 Cui (10.1016/j.nanoen.2022.107016_bib42) 2020; 395 Li (10.1016/j.nanoen.2022.107016_bib46) 2021; 81 Zhou (10.1016/j.nanoen.2022.107016_bib30) 2019; 52 Wang (10.1016/j.nanoen.2022.107016_bib33) 2019; 12 Li (10.1016/j.nanoen.2022.107016_bib58) 2019; 3 Shi (10.1016/j.nanoen.2022.107016_bib48) 2019; 60 Fang (10.1016/j.nanoen.2022.107016_bib6) 2019; 11 Jia (10.1016/j.nanoen.2022.107016_bib15) 2017; 1 Zhang (10.1016/j.nanoen.2022.107016_bib37) 2021; 266 Wang (10.1016/j.nanoen.2022.107016_bib9) 2021; 5 Gao (10.1016/j.nanoen.2022.107016_bib13) 2018; 8 Yu (10.1016/j.nanoen.2022.107016_bib41) 2014; 273 Li (10.1016/j.nanoen.2022.107016_bib23) 2021; 13 Li (10.1016/j.nanoen.2022.107016_bib2) 2021; 31 Li (10.1016/j.nanoen.2022.107016_bib17) 2020; 31 Wu (10.1016/j.nanoen.2022.107016_bib11) 2019; 56 Fan (10.1016/j.nanoen.2022.107016_bib56) 2021; 295 Wang (10.1016/j.nanoen.2022.107016_bib21) 2019; 3 Ren (10.1016/j.nanoen.2022.107016_bib24) 2020; 18 Gao (10.1016/j.nanoen.2022.107016_bib12) 2019; 12 Liu (10.1016/j.nanoen.2022.107016_bib22) 2018; 8 Fan (10.1016/j.nanoen.2022.107016_bib10) 2021; 56 Hou (10.1016/j.nanoen.2022.107016_bib32) 2021; 759 Chen (10.1016/j.nanoen.2022.107016_bib45) 2020; 76 Xu (10.1016/j.nanoen.2022.107016_bib36) 2020; 59 Lu (10.1016/j.nanoen.2022.107016_bib55) 2020; 4 Wu (10.1016/j.nanoen.2022.107016_bib60) 2019; 64 Huang (10.1016/j.nanoen.2022.107016_bib34) 2019; 3 Gao (10.1016/j.nanoen.2022.107016_bib50) 2020; 10 Guan (10.1016/j.nanoen.2022.107016_bib52) 2020; 20 Wu (10.1016/j.nanoen.2022.107016_bib5) 2021; 31 Li (10.1016/j.nanoen.2022.107016_bib57) 2020; 4 Meng (10.1016/j.nanoen.2022.107016_bib51) 2020; 30 Zou (10.1016/j.nanoen.2022.107016_bib43) 2020; 6 Deng (10.1016/j.nanoen.2022.107016_bib49) 2019; 55 Tu (10.1016/j.nanoen.2022.107016_bib39) 2020; 7 Liao (10.1016/j.nanoen.2022.107016_bib7) 2020; 7 Wang (10.1016/j.nanoen.2022.107016_bib28) 2021; 79 Ding (10.1016/j.nanoen.2022.107016_bib47) 2021; 42 Chen (10.1016/j.nanoen.2022.107016_bib14) 2017; 29 Meng (10.1016/j.nanoen.2022.107016_bib16) 2021; 87 Zhang (10.1016/j.nanoen.2022.107016_bib53) 2020; 78 Kuang (10.1016/j.nanoen.2022.107016_bib25) 2019; 31 Wang (10.1016/j.nanoen.2022.107016_bib40) 2019; 7 Li (10.1016/j.nanoen.2022.107016_bib1) 2021; 15 Yu (10.1016/j.nanoen.2022.107016_bib18) 2021; 33 Zhao (10.1016/j.nanoen.2022.107016_bib4) 2018; 13 Li (10.1016/j.nanoen.2022.107016_bib20) 2018; 28 Zhao (10.1016/j.nanoen.2022.107016_bib29) 2020; 5 |
References_xml | – volume: 5 start-page: 388 year: 2020 end-page: 401 ident: bib29 article-title: Materials for solar-powered water evaporation publication-title: Nat. Rev. Mater. – volume: 6 year: 2020 ident: bib43 article-title: Regulating the absorption spectrum of polydopamine publication-title: Sci. Adv. – volume: 15 start-page: 13007 year: 2021 end-page: 13018 ident: bib59 article-title: Hierarchical photothermal fabrics with low evaporation enthalpy as heliotropic evaporators for efficient, continuous, salt-free desalination publication-title: ACS Nano – volume: 4 start-page: 928 year: 2020 end-page: 937 ident: bib57 article-title: Over 10 kg m publication-title: Joule – volume: 15 start-page: 12535 year: 2021 end-page: 12566 ident: bib1 article-title: Solar-powered sustainable water production: state-of-the-art technologies for sunlight-energy-water nexus publication-title: ACS Nano – volume: 31 year: 2021 ident: bib5 article-title: Dual-zone photothermal evaporator for antisalt accumulation and highly efficient solar steam generation publication-title: Adv. Funct. Mater. – volume: 1 start-page: 588 year: 2017 end-page: 599 ident: bib15 article-title: Rich mesostructures derived from natural woods for solar steam generation publication-title: Joule – volume: 8 year: 2018 ident: bib22 article-title: High-performance solar steam device with layered channels: artificial tree with a reversed design publication-title: Adv. Energy Mater. – volume: 79 year: 2021 ident: bib28 article-title: Same materials, bigger output: a reversibly transformable publication-title: Nano Energy – volume: 7 year: 2020 ident: bib39 article-title: Green synthesis of hierarchical metal-organic framework/wood functional composites with superior mechanical properties publication-title: Adv. Sci. – volume: 30 year: 2020 ident: bib51 article-title: Modular deformable steam electricity cogeneration system with photothermal, water, and electrochemical tunable multilayers publication-title: Adv. Funct. Mater. – volume: 78 year: 2020 ident: bib19 article-title: Nature-inspired design: P-toluenesulfonic acid-assisted hydrothermally engineered wood for solar steam generation publication-title: Nano Energy – volume: 266 year: 2021 ident: bib37 article-title: In situ growth of ZIF-8 within wood channels for water pollutants removal publication-title: Sep. Purif. Technol. – volume: 53 start-page: 2705 year: 2019 end-page: 2712 ident: bib38 article-title: In situ growth of metal-organic frameworks in three-dimensional aligned lumen arrays of wood for rapid and highly efficient organic pollutant removal publication-title: Environ. Sci. Technol. – volume: 7 start-page: 20706 year: 2019 end-page: 20712 ident: bib40 article-title: A wood-polypyrrole composite as a photothermal conversion device for solar evaporation enhancement publication-title: J. Mater. Chem. A – volume: 8 year: 2021 ident: bib3 article-title: All-cold evaporation under one sun with zero energy loss by using a heatsink inspired solar evaporator publication-title: Adv. Sci. – volume: 13 start-page: 489 year: 2018 end-page: 495 ident: bib4 article-title: Highly efficient solar vapour generation via hierarchically nanostructured gels publication-title: Nat. Nanotechnol. – volume: 20 start-page: 5699 year: 2020 end-page: 5704 ident: bib52 article-title: Sustainable wood-based hierarchical solar steam generator: a biomimetic design with reduced vaporization enthalpy of water publication-title: Nano Lett. – volume: 31 year: 2020 ident: bib17 article-title: Solar-driven interfacial evaporation and self-powered water wave detection based on an all-cellulose monolithic design publication-title: Adv. Funct. Mater. – volume: 29 year: 2017 ident: bib14 article-title: Highly flexible and efficient solar steam generation device publication-title: Adv. Mater. – volume: 12 start-page: 467 year: 2019 end-page: 472 ident: bib33 article-title: A ternary Pt/Au/TiO publication-title: ChemSusChem – volume: 395 year: 2020 ident: bib42 article-title: Soft foam-like UiO-66/Polydopamine/Bacterial cellulose composite for the removal of aspirin and tetracycline hydrochloride publication-title: Chem. Eng. J. – volume: 15 start-page: 10366 year: 2021 end-page: 10376 ident: bib54 article-title: Surface patterning of two-dimensional nanostructure-embedded photothermal hydrogels for high-yield solar steam generation publication-title: ACS Nano – volume: 12 start-page: 483 year: 2021 ident: bib26 article-title: A metal-free photocatalyst for highly efficient hydrogen peroxide photoproduction in real seawater publication-title: Nat. Commun. – volume: 759 year: 2021 ident: bib32 article-title: Boosting adsorption of heavy metal ions in wastewater through solar-driven interfacial evaporation of chemically-treated carbonized wood publication-title: Sci. Total Environ. – volume: 7 year: 2020 ident: bib7 article-title: Reduced graphene oxide-based spectrally selective absorber with an extremely low thermal emittance and high solar absorptance publication-title: Adv. Sci. – volume: 56 start-page: 18625 year: 2021 end-page: 18635 ident: bib10 article-title: Architecting a bifunctional solar evaporator of perovskite La publication-title: J. Mater. Sci. – volume: 13 start-page: 22845 year: 2021 end-page: 22854 ident: bib23 article-title: Coating of wood with Fe publication-title: ACS Appl. Mater. Interfaces – volume: 28 year: 2018 ident: bib20 article-title: Scalable and highly efficient mesoporous wood-based solar steam generation device: localized heat, rapid water transport publication-title: Adv. Funct. Mater. – volume: 3 start-page: 3000 year: 2019 end-page: 3008 ident: bib34 article-title: Nature-inspired salt resistant polypyrrole-wood for highly efficient solar steam generation publication-title: Sustain. Energ. Fuels – volume: 14 start-page: 5330 year: 2021 end-page: 5338 ident: bib8 article-title: Janus-interface engineering boosting solar steam towards high-efficiency water collection publication-title: Energy Environ. Sci. – volume: 81 year: 2021 ident: bib46 article-title: Highly salt-resistant and all-weather solar-driven interfacial evaporators with photothermal and electrothermal effects based on Janus graphene@silicone sponges publication-title: Nano Energy – volume: 4 year: 2020 ident: bib55 article-title: Implementing hybrid energy harvesting in 3D spherical evaporator for solar steam generation and synergic water purification publication-title: Sol. RRL – volume: 55 start-page: 368 year: 2019 end-page: 376 ident: bib49 article-title: Extremely high water-production created by a nanoink-stained PVA evaporator with embossment structure publication-title: Nano Energy – volume: 31 year: 2021 ident: bib2 article-title: Self-repairing and damage-tolerant hydrogels for efficient solar-powered water purification and desalination publication-title: Adv. Funct. Mater. – volume: 76 year: 2020 ident: bib45 article-title: Plasmonic wooden flower for highly efficient solar vapor generation publication-title: Nano Energy – volume: 295 year: 2021 ident: bib56 article-title: Synergy of photocatalysis and photothermal effect in integrated 0D perovskite oxide/2D MXene heterostructures for simultaneous water purification and solar steam generation publication-title: Appl. Catal. B-Environ. – volume: 64 start-page: 1625 year: 2019 end-page: 1633 ident: bib60 article-title: A photothermal reservoir for highly efficient solar steam generation without bulk water publication-title: Sci. Bull. – volume: 60 start-page: 222 year: 2019 end-page: 230 ident: bib48 article-title: Multi-functional 3D honeycomb ceramic plate for clean water production by heterogeneous photo-Fenton reaction and solar-driven water evaporation publication-title: Nano Energy – volume: 31 year: 2019 ident: bib25 article-title: A high-performance self-regenerating solar evaporator for continuous water desalination publication-title: Adv. Mater. – volume: 273 start-page: 174 year: 2014 end-page: 182 ident: bib41 article-title: Copper removal using bio-inspired polydopamine coated natural zeolites publication-title: J. Hazard. Mater. – volume: 3 start-page: 1798 year: 2019 end-page: 1803 ident: bib58 article-title: Measuring conversion efficiency of solar vapor generation publication-title: Joule – volume: 42 start-page: 178 year: 2021 end-page: 191 ident: bib47 article-title: Hybrid solar-driven interfacial evaporation systems: beyond water production towards high solar energy utilization publication-title: Mater. Today – volume: 3 year: 2019 ident: bib21 article-title: All natural, high efficient groundwater extraction via solar steam/vapor generation publication-title: Adv. Sustain. Syst. – volume: 71 year: 2020 ident: bib27 article-title: A simple, mild and versatile method for preparation of photothermal woods toward highly efficient solar steam generation publication-title: Nano Energy – volume: 52 start-page: 3244 year: 2019 end-page: 3253 ident: bib30 article-title: Hydrogels as an emerging material platform for solar water purification publication-title: Acc. Chem. Res. – volume: 52 start-page: 356 year: 2019 end-page: 366 ident: bib35 article-title: Metal-organic frameworks for photocatalysis and photothermal catalysis publication-title: Acc. Chem. Res. – volume: 33 year: 2021 ident: bib18 article-title: Emerging bioinspired artificial woods publication-title: Adv. Mater. – year: 2021 ident: bib31 article-title: Molecular engineering of hydrogels for rapid water disinfection and sustainable solar vapor generation publication-title: Adv. Mater. – volume: 11 start-page: 10672 year: 2019 end-page: 10679 ident: bib6 article-title: Full biomass-derived solar stills for robust and stable evaporation to collect clean water from various water-bearing media publication-title: ACS Appl. Mater. Interfaces – volume: 78 year: 2020 ident: bib53 article-title: Nature-inspired design: P-toluenesulfonic acid-assisted hydrothermally engineered wood for solar steam generation publication-title: Nano Energy – volume: 59 start-page: 5202 year: 2020 end-page: 5210 ident: bib36 article-title: Efficient solar-driven water harvesting from arid air with metal-organic frameworks modified by hygroscopic salt publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 24703 year: 2020 end-page: 24709 ident: bib44 article-title: A general method for selectively coating photothermal materials on 3D porous substrate surfaces towards cost-effective and highly efficient solar steam generation publication-title: J. Mater. Chem. A – volume: 5 start-page: 1602 year: 2021 end-page: 1612 ident: bib9 article-title: A high-performing single-stage invert-structured solar water purifier through enhanced absorption and condensation publication-title: Joule – volume: 12 start-page: 841 year: 2019 end-page: 864 ident: bib12 article-title: Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production publication-title: Energy Environ. Sci. – volume: 8 year: 2018 ident: bib13 article-title: Solar absorber gel: localized macro-nano heat channeling for efficient plasmonic Au nanoflowers photothermic vaporization and triboelectric generation publication-title: Adv. Energy Mater. – volume: 56 start-page: 708 year: 2019 end-page: 715 ident: bib11 article-title: A flexible photothermal cotton-CuS nanocage-agarose aerogel towards portable solar steam generation publication-title: Nano Energy – volume: 87 year: 2021 ident: bib16 article-title: Programmed design of selectively-functionalized wood aerogel: affordable and mildew-resistant solar-driven evaporator publication-title: Nano Energy – volume: 10 year: 2020 ident: bib50 article-title: Photothermal catalytic gel featuring spectral and thermal management for parallel freshwater and hydrogen production publication-title: Adv. Energy Mater. – volume: 31 year: 2019 ident: bib61 article-title: An interfacial solar-driven atmospheric water generator based on a liquid sorbent with simultaneous adsorption-desorption publication-title: Adv. Mater. – volume: 18 year: 2020 ident: bib24 article-title: Highly efficient solar water evaporation of TiO publication-title: Mater. Today Energy – volume: 52 start-page: 356 year: 2019 ident: 10.1016/j.nanoen.2022.107016_bib35 article-title: Metal-organic frameworks for photocatalysis and photothermal catalysis publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00521 – volume: 31 year: 2019 ident: 10.1016/j.nanoen.2022.107016_bib61 article-title: An interfacial solar-driven atmospheric water generator based on a liquid sorbent with simultaneous adsorption-desorption publication-title: Adv. Mater. doi: 10.1002/adma.201903378 – volume: 55 start-page: 368 year: 2019 ident: 10.1016/j.nanoen.2022.107016_bib49 article-title: Extremely high water-production created by a nanoink-stained PVA evaporator with embossment structure publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.11.002 – volume: 5 start-page: 388 year: 2020 ident: 10.1016/j.nanoen.2022.107016_bib29 article-title: Materials for solar-powered water evaporation publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-020-0182-4 – volume: 5 start-page: 1602 year: 2021 ident: 10.1016/j.nanoen.2022.107016_bib9 article-title: A high-performing single-stage invert-structured solar water purifier through enhanced absorption and condensation publication-title: Joule doi: 10.1016/j.joule.2021.04.009 – volume: 42 start-page: 178 year: 2021 ident: 10.1016/j.nanoen.2022.107016_bib47 article-title: Hybrid solar-driven interfacial evaporation systems: beyond water production towards high solar energy utilization publication-title: Mater. Today doi: 10.1016/j.mattod.2020.10.022 – volume: 7 start-page: 20706 year: 2019 ident: 10.1016/j.nanoen.2022.107016_bib40 article-title: A wood-polypyrrole composite as a photothermal conversion device for solar evaporation enhancement publication-title: J. Mater. Chem. A doi: 10.1039/C9TA04914B – volume: 15 start-page: 10366 year: 2021 ident: 10.1016/j.nanoen.2022.107016_bib54 article-title: Surface patterning of two-dimensional nanostructure-embedded photothermal hydrogels for high-yield solar steam generation publication-title: ACS Nano doi: 10.1021/acsnano.1c02578 – volume: 56 start-page: 18625 year: 2021 ident: 10.1016/j.nanoen.2022.107016_bib10 article-title: Architecting a bifunctional solar evaporator of perovskite La0.5Sr0.5CoO3 for solar evaporation and degradation publication-title: J. Mater. Sci. doi: 10.1007/s10853-021-06420-0 – volume: 15 start-page: 13007 year: 2021 ident: 10.1016/j.nanoen.2022.107016_bib59 article-title: Hierarchical photothermal fabrics with low evaporation enthalpy as heliotropic evaporators for efficient, continuous, salt-free desalination publication-title: ACS Nano doi: 10.1021/acsnano.1c01900 – volume: 8 year: 2018 ident: 10.1016/j.nanoen.2022.107016_bib13 article-title: Solar absorber gel: localized macro-nano heat channeling for efficient plasmonic Au nanoflowers photothermic vaporization and triboelectric generation publication-title: Adv. Energy Mater. – volume: 29 year: 2017 ident: 10.1016/j.nanoen.2022.107016_bib14 article-title: Highly flexible and efficient solar steam generation device publication-title: Adv. Mater. – volume: 8 start-page: 24703 year: 2020 ident: 10.1016/j.nanoen.2022.107016_bib44 article-title: A general method for selectively coating photothermal materials on 3D porous substrate surfaces towards cost-effective and highly efficient solar steam generation publication-title: J. Mater. Chem. A doi: 10.1039/D0TA08539A – volume: 273 start-page: 174 year: 2014 ident: 10.1016/j.nanoen.2022.107016_bib41 article-title: Copper removal using bio-inspired polydopamine coated natural zeolites publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2014.03.048 – volume: 78 year: 2020 ident: 10.1016/j.nanoen.2022.107016_bib19 article-title: Nature-inspired design: P-toluenesulfonic acid-assisted hydrothermally engineered wood for solar steam generation publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105322 – volume: 79 year: 2021 ident: 10.1016/j.nanoen.2022.107016_bib28 article-title: Same materials, bigger output: a reversibly transformable 2D–3D photothermal evaporator for highly efficient solar steam generation publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105477 – volume: 52 start-page: 3244 year: 2019 ident: 10.1016/j.nanoen.2022.107016_bib30 article-title: Hydrogels as an emerging material platform for solar water purification publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00455 – volume: 15 start-page: 12535 year: 2021 ident: 10.1016/j.nanoen.2022.107016_bib1 article-title: Solar-powered sustainable water production: state-of-the-art technologies for sunlight-energy-water nexus publication-title: ACS Nano doi: 10.1021/acsnano.1c01590 – volume: 3 start-page: 1798 year: 2019 ident: 10.1016/j.nanoen.2022.107016_bib58 article-title: Measuring conversion efficiency of solar vapor generation publication-title: Joule doi: 10.1016/j.joule.2019.06.009 – volume: 4 year: 2020 ident: 10.1016/j.nanoen.2022.107016_bib55 article-title: Implementing hybrid energy harvesting in 3D spherical evaporator for solar steam generation and synergic water purification publication-title: Sol. RRL doi: 10.1002/solr.202000232 – volume: 31 year: 2021 ident: 10.1016/j.nanoen.2022.107016_bib5 article-title: Dual-zone photothermal evaporator for antisalt accumulation and highly efficient solar steam generation publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202102618 – volume: 7 year: 2020 ident: 10.1016/j.nanoen.2022.107016_bib39 article-title: Green synthesis of hierarchical metal-organic framework/wood functional composites with superior mechanical properties publication-title: Adv. Sci. – volume: 1 start-page: 588 year: 2017 ident: 10.1016/j.nanoen.2022.107016_bib15 article-title: Rich mesostructures derived from natural woods for solar steam generation publication-title: Joule doi: 10.1016/j.joule.2017.09.011 – volume: 76 year: 2020 ident: 10.1016/j.nanoen.2022.107016_bib45 article-title: Plasmonic wooden flower for highly efficient solar vapor generation publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104998 – volume: 78 year: 2020 ident: 10.1016/j.nanoen.2022.107016_bib53 article-title: Nature-inspired design: P-toluenesulfonic acid-assisted hydrothermally engineered wood for solar steam generation publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105322 – volume: 3 start-page: 3000 year: 2019 ident: 10.1016/j.nanoen.2022.107016_bib34 article-title: Nature-inspired salt resistant polypyrrole-wood for highly efficient solar steam generation publication-title: Sustain. Energ. Fuels doi: 10.1039/C9SE00163H – volume: 395 year: 2020 ident: 10.1016/j.nanoen.2022.107016_bib42 article-title: Soft foam-like UiO-66/Polydopamine/Bacterial cellulose composite for the removal of aspirin and tetracycline hydrochloride publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125174 – volume: 12 start-page: 483 year: 2021 ident: 10.1016/j.nanoen.2022.107016_bib26 article-title: A metal-free photocatalyst for highly efficient hydrogen peroxide photoproduction in real seawater publication-title: Nat. Commun. doi: 10.1038/s41467-020-20823-8 – volume: 10 year: 2020 ident: 10.1016/j.nanoen.2022.107016_bib50 article-title: Photothermal catalytic gel featuring spectral and thermal management for parallel freshwater and hydrogen production publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000925 – volume: 60 start-page: 222 year: 2019 ident: 10.1016/j.nanoen.2022.107016_bib48 article-title: Multi-functional 3D honeycomb ceramic plate for clean water production by heterogeneous photo-Fenton reaction and solar-driven water evaporation publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.039 – volume: 6 year: 2020 ident: 10.1016/j.nanoen.2022.107016_bib43 article-title: Regulating the absorption spectrum of polydopamine publication-title: Sci. Adv. doi: 10.1126/sciadv.abb4696 – volume: 56 start-page: 708 year: 2019 ident: 10.1016/j.nanoen.2022.107016_bib11 article-title: A flexible photothermal cotton-CuS nanocage-agarose aerogel towards portable solar steam generation publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.008 – volume: 7 year: 2020 ident: 10.1016/j.nanoen.2022.107016_bib7 article-title: Reduced graphene oxide-based spectrally selective absorber with an extremely low thermal emittance and high solar absorptance publication-title: Adv. Sci. doi: 10.1002/advs.201903125 – volume: 31 year: 2020 ident: 10.1016/j.nanoen.2022.107016_bib17 article-title: Solar-driven interfacial evaporation and self-powered water wave detection based on an all-cellulose monolithic design publication-title: Adv. Funct. Mater. – volume: 87 year: 2021 ident: 10.1016/j.nanoen.2022.107016_bib16 article-title: Programmed design of selectively-functionalized wood aerogel: affordable and mildew-resistant solar-driven evaporator publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106146 – volume: 266 year: 2021 ident: 10.1016/j.nanoen.2022.107016_bib37 article-title: In situ growth of ZIF-8 within wood channels for water pollutants removal publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.118527 – volume: 4 start-page: 928 year: 2020 ident: 10.1016/j.nanoen.2022.107016_bib57 article-title: Over 10 kg m−2 h−1 evaporation rate enabled by a 3D interconnected porous carbon foam publication-title: Joule doi: 10.1016/j.joule.2020.02.014 – volume: 28 year: 2018 ident: 10.1016/j.nanoen.2022.107016_bib20 article-title: Scalable and highly efficient mesoporous wood-based solar steam generation device: localized heat, rapid water transport publication-title: Adv. Funct. Mater. – volume: 12 start-page: 467 year: 2019 ident: 10.1016/j.nanoen.2022.107016_bib33 article-title: A ternary Pt/Au/TiO2-decorated plasmonic wood carbon for high-efficiency interfacial solar steam generation and photodegradation of tetracycline publication-title: ChemSusChem doi: 10.1002/cssc.201802485 – volume: 759 year: 2021 ident: 10.1016/j.nanoen.2022.107016_bib32 article-title: Boosting adsorption of heavy metal ions in wastewater through solar-driven interfacial evaporation of chemically-treated carbonized wood publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.144317 – volume: 3 year: 2019 ident: 10.1016/j.nanoen.2022.107016_bib21 article-title: All natural, high efficient groundwater extraction via solar steam/vapor generation publication-title: Adv. Sustain. Syst. doi: 10.1002/adsu.201800055 – year: 2021 ident: 10.1016/j.nanoen.2022.107016_bib31 article-title: Molecular engineering of hydrogels for rapid water disinfection and sustainable solar vapor generation publication-title: Adv. Mater. doi: 10.1002/adma.202102994 – volume: 33 year: 2021 ident: 10.1016/j.nanoen.2022.107016_bib18 article-title: Emerging bioinspired artificial woods publication-title: Adv. Mater. doi: 10.1002/adma.202001086 – volume: 18 year: 2020 ident: 10.1016/j.nanoen.2022.107016_bib24 article-title: Highly efficient solar water evaporation of TiO2@TiN hyperbranched nanowires-carbonized wood hierarchical photothermal conversion material publication-title: Mater. Today Energy – volume: 53 start-page: 2705 year: 2019 ident: 10.1016/j.nanoen.2022.107016_bib38 article-title: In situ growth of metal-organic frameworks in three-dimensional aligned lumen arrays of wood for rapid and highly efficient organic pollutant removal publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b06564 – volume: 64 start-page: 1625 year: 2019 ident: 10.1016/j.nanoen.2022.107016_bib60 article-title: A photothermal reservoir for highly efficient solar steam generation without bulk water publication-title: Sci. Bull. doi: 10.1016/j.scib.2019.08.022 – volume: 81 year: 2021 ident: 10.1016/j.nanoen.2022.107016_bib46 article-title: Highly salt-resistant and all-weather solar-driven interfacial evaporators with photothermal and electrothermal effects based on Janus graphene@silicone sponges publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105682 – volume: 12 start-page: 841 year: 2019 ident: 10.1016/j.nanoen.2022.107016_bib12 article-title: Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production publication-title: Energy Environ. Sci. doi: 10.1039/C8EE01146J – volume: 71 year: 2020 ident: 10.1016/j.nanoen.2022.107016_bib27 article-title: A simple, mild and versatile method for preparation of photothermal woods toward highly efficient solar steam generation publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104650 – volume: 59 start-page: 5202 year: 2020 ident: 10.1016/j.nanoen.2022.107016_bib36 article-title: Efficient solar-driven water harvesting from arid air with metal-organic frameworks modified by hygroscopic salt publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201915170 – volume: 31 year: 2021 ident: 10.1016/j.nanoen.2022.107016_bib2 article-title: Self-repairing and damage-tolerant hydrogels for efficient solar-powered water purification and desalination publication-title: Adv. Funct. Mater. – volume: 8 year: 2021 ident: 10.1016/j.nanoen.2022.107016_bib3 article-title: All-cold evaporation under one sun with zero energy loss by using a heatsink inspired solar evaporator publication-title: Adv. Sci. doi: 10.1002/advs.202002501 – volume: 13 start-page: 489 year: 2018 ident: 10.1016/j.nanoen.2022.107016_bib4 article-title: Highly efficient solar vapour generation via hierarchically nanostructured gels publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0097-z – volume: 31 year: 2019 ident: 10.1016/j.nanoen.2022.107016_bib25 article-title: A high-performance self-regenerating solar evaporator for continuous water desalination publication-title: Adv. Mater. doi: 10.1002/adma.201900498 – volume: 11 start-page: 10672 year: 2019 ident: 10.1016/j.nanoen.2022.107016_bib6 article-title: Full biomass-derived solar stills for robust and stable evaporation to collect clean water from various water-bearing media publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b00291 – volume: 13 start-page: 22845 year: 2021 ident: 10.1016/j.nanoen.2022.107016_bib23 article-title: Coating of wood with Fe2O3-decorated carbon nanotubes by one-step combustion for efficient solar steam generation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c03388 – volume: 14 start-page: 5330 year: 2021 ident: 10.1016/j.nanoen.2022.107016_bib8 article-title: Janus-interface engineering boosting solar steam towards high-efficiency water collection publication-title: Energy Environ. Sci. doi: 10.1039/D1EE01381E – volume: 8 year: 2018 ident: 10.1016/j.nanoen.2022.107016_bib22 article-title: High-performance solar steam device with layered channels: artificial tree with a reversed design publication-title: Adv. Energy Mater. – volume: 295 year: 2021 ident: 10.1016/j.nanoen.2022.107016_bib56 article-title: Synergy of photocatalysis and photothermal effect in integrated 0D perovskite oxide/2D MXene heterostructures for simultaneous water purification and solar steam generation publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2021.120285 – volume: 30 year: 2020 ident: 10.1016/j.nanoen.2022.107016_bib51 article-title: Modular deformable steam electricity cogeneration system with photothermal, water, and electrochemical tunable multilayers publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202002867 – volume: 20 start-page: 5699 year: 2020 ident: 10.1016/j.nanoen.2022.107016_bib52 article-title: Sustainable wood-based hierarchical solar steam generator: a biomimetic design with reduced vaporization enthalpy of water publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c01088 |
SSID | ssj0000651712 |
Score | 2.6695213 |
Snippet | Interfacial solar evaporation technology is recognized as one of the most promising strategies to address freshwater scarcity issues. To realize the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107016 |
SubjectTerms | MOFs Photothermal materials Polydopamine Solar steam generation Wood |
Title | Design and performance boost of a MOF-functionalized-wood solar evaporator through tuning the hydrogen-bonding interactions |
URI | https://dx.doi.org/10.1016/j.nanoen.2022.107016 |
Volume | 95 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXvQgPvFNDl7jtmmbtEdRl1VxPejC3kqSTnBF2mW3Cir42830oSuIgseEDJTpkG-SzPcNIUcOYhxOQcK0AmAhGI-pOPSZtCKLkLSXcSQ4Xw9EfxhejqJRh5y2XBgsq2z2_npPr3brZqbbeLM7GY-7t9ydXXgcuQSiEkobIYM9lBjlx-_-5z2Lg1hfVo-euJ6hQcugq8q8cpUXgEKonLsp6WHj858Qag51eqtkpUkX6Un9RWukA_k6WZ4TEdwgb2dVEQZVeUYnXzQA6tLnWUkLSxW9vukxBLD63m_8ChnDUhs6w3MthWdViRkXU9p07aHlE16XuCHQ-5dsWrgoY7qoCDAUBSamNR1itkmGvfO70z5rWiowE0hesljLOArBBvgeKLj1tKdtaAKVSCO48T0j4kgYIa1LO3wdaQ6gEu5bsIhbWbBFFvIih21CExCZSTRYxVWoE6vBHbWUSLDxjU1UuEOC1o2pafTGse3FY9oWlj2ktfNTdH5aO3-HsE-rSa238cd62f6h9FvcpA4SfrXc_bflHlnCUV32uE8WyukTHLjUpNSHVewdksWTi6v-4ANrOeXE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6rHtSD-MT1mYPXuG3apu1RVpf1sXpQYW8lSSe4Iu2yWwUV_O1m-vABouCxaQfKdJpvksz3DSEHFmIsTkHMlARgPmiHych3WWhEGiBpL-VIcB5civ6tfzYMhi3SbbgwWFZZz_3VnF7O1vVIp_ZmZzwada65XbvwKLAJRCmUNpwhc779fbGNweGb-7HRYjHWDctTTzRgaNFQ6Mo6r0xmOaASKud2KHSw8_lPEPUFdnrLZKnOF-lR9UorpAXZKln8oiK4Rl6PyyoMKrOUjj95ANTmz9OC5oZKOrjqMUSwauNv9AIpw1obOsWFLYUnWaoZ5xNat-2hxSPul9hLoHfP6SS3YcZUXjJgKCpMTCo-xHSd3PZObrp9VvdUYNoLecEiFUaBD8bDA0HBjaMcZXztyTjUgmvX0SIKhBahsXmHqwLFAWTMXQMGgSv1NshslmewSWgMItWxAiO59FVsFNi1lhQxdr4xsfTbxGvcmOhacBz7XjwkTWXZfVI5P0HnJ5Xz24R9WI0rwY0_ng-bL5R8C5zEYsKvllv_ttwn8_2bwUVycXp5vk0W8E5VA7lDZovJI-zaPKVQe2UcvgO8BedS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+performance+boost+of+a+MOF-functionalized-wood+solar+evaporator+through+tuning+the+hydrogen-bonding+interactions&rft.jtitle=Nano+energy&rft.au=Lu%2C+Yi&rft.au=Fan%2C+Deqi&rft.au=Shen%2C+Ziyi&rft.au=Zhang%2C+Hao&rft.date=2022-05-01&rft.issn=2211-2855&rft.volume=95&rft.spage=107016&rft_id=info:doi/10.1016%2Fj.nanoen.2022.107016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nanoen_2022_107016 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon |