Design and performance boost of a MOF-functionalized-wood solar evaporator through tuning the hydrogen-bonding interactions

Interfacial solar evaporation technology is recognized as one of the most promising strategies to address freshwater scarcity issues. To realize the sustainability of this technology for producing potable water from seawater and contaminated water sources, multi-functional photothermal materials nee...

Full description

Saved in:
Bibliographic Details
Published inNano energy Vol. 95; p. 107016
Main Authors Lu, Yi, Fan, Deqi, Shen, Ziyi, Zhang, Hao, Xu, Haolan, Yang, Xiaofei
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Interfacial solar evaporation technology is recognized as one of the most promising strategies to address freshwater scarcity issues. To realize the sustainability of this technology for producing potable water from seawater and contaminated water sources, multi-functional photothermal materials need to be explored to attain higher vapor output at the same solar energy input. Herein, a novel wood-based solar evaporator composed of porous wood substrate, zeolitic imidazolate framework-8 (ZIF-8), and polydopamine (PDA) as a light absorption layer is developed. The in-situ loading of ZIF-8 in the microchannels renders the wood evaporator an important function of reducing the equivalent evaporation enthalpy due to the lowered hydrogen bonding density of water molecules when they pass the wood channels, substantially augmenting solar evaporation efficiency. A superior evaporation rate of 2.70 kg m−2 h−1 is achieved under 1.0 sun irradiation, which exceeds the theoretical limit of a typical 2D photothermal evaporator (~1.46 kg m−2 h−1). The designed wood/ZIF-8@PDA also exhibits a prominent removal efficiency for harmful ions and organic pollutants. This multifunctional wood-based solar evaporator shows great potential for future freshwater production. [Display omitted] A MOF functionalized wood-based photothermal evaporator is designed for cost-effective and highly efficient solar steam generation. The MOF grown in wood channel is able to significantly lower the evaporation enthalpy, thus realizing an extremely high evaporation rate of 2.7 kg m−2 h−1 under 1.0 sun irradiation. •A MOF functionalized wood-based photothermal evaporator is fabricated for highly efficient solar steam generation.•In-situ synthesized MOF in wood channel can lower the hydrogen bonding density, thus lowering the evaporation enthalpy.•An extremely high evaporation rate of 2.7 kg m−2 h−1 is achieved under 1.0 sun.•Scalable and highly efficient photothermal evaporators for practical applications
AbstractList Interfacial solar evaporation technology is recognized as one of the most promising strategies to address freshwater scarcity issues. To realize the sustainability of this technology for producing potable water from seawater and contaminated water sources, multi-functional photothermal materials need to be explored to attain higher vapor output at the same solar energy input. Herein, a novel wood-based solar evaporator composed of porous wood substrate, zeolitic imidazolate framework-8 (ZIF-8), and polydopamine (PDA) as a light absorption layer is developed. The in-situ loading of ZIF-8 in the microchannels renders the wood evaporator an important function of reducing the equivalent evaporation enthalpy due to the lowered hydrogen bonding density of water molecules when they pass the wood channels, substantially augmenting solar evaporation efficiency. A superior evaporation rate of 2.70 kg m−2 h−1 is achieved under 1.0 sun irradiation, which exceeds the theoretical limit of a typical 2D photothermal evaporator (~1.46 kg m−2 h−1). The designed wood/ZIF-8@PDA also exhibits a prominent removal efficiency for harmful ions and organic pollutants. This multifunctional wood-based solar evaporator shows great potential for future freshwater production. [Display omitted] A MOF functionalized wood-based photothermal evaporator is designed for cost-effective and highly efficient solar steam generation. The MOF grown in wood channel is able to significantly lower the evaporation enthalpy, thus realizing an extremely high evaporation rate of 2.7 kg m−2 h−1 under 1.0 sun irradiation. •A MOF functionalized wood-based photothermal evaporator is fabricated for highly efficient solar steam generation.•In-situ synthesized MOF in wood channel can lower the hydrogen bonding density, thus lowering the evaporation enthalpy.•An extremely high evaporation rate of 2.7 kg m−2 h−1 is achieved under 1.0 sun.•Scalable and highly efficient photothermal evaporators for practical applications
ArticleNumber 107016
Author Lu, Yi
Shen, Ziyi
Zhang, Hao
Xu, Haolan
Yang, Xiaofei
Fan, Deqi
Author_xml – sequence: 1
  givenname: Yi
  surname: Lu
  fullname: Lu, Yi
  organization: Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China
– sequence: 2
  givenname: Deqi
  surname: Fan
  fullname: Fan, Deqi
  organization: College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
– sequence: 3
  givenname: Ziyi
  surname: Shen
  fullname: Shen, Ziyi
  organization: Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China
– sequence: 4
  givenname: Hao
  surname: Zhang
  fullname: Zhang, Hao
  organization: Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China
– sequence: 5
  givenname: Haolan
  surname: Xu
  fullname: Xu, Haolan
  email: haolan.xu@unisa.edu.au
  organization: Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
– sequence: 6
  givenname: Xiaofei
  surname: Yang
  fullname: Yang, Xiaofei
  email: xiaofei.yang@njfu.edu.cn
  organization: Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China
BookMark eNqFkM1OAjEURrvARETewEVfYLDtMH8uTAyKmmDY6LrpdG6HEuglbcGgL--MuHKh3dz0S86Xe88FGTh0QMgVZxPOeH69njjlENxEMCG6qOjCARkKwXkiyiw7J-MQ1qx7ecYLLobk8x6CbR1VrqE78Ab9VjkNtEYMkaKhir4s54nZOx0tOrWxH9Ak74gNDbhRnsJB7dCriJ7Glcd9u6Jx76xruy_Q1bHx2IJLanRNH1oXwavvrnBJzozaBBj_zBF5mz-8zp6SxfLxeXa3SHRaiJiUdVFmUzBpWmZlLgyrWW2mOlVVoXOhOdN5meU6L4woU15ntQBQleAGjKgq1qQjMj31ao8heDBy5-1W-aPkTPbe5FqevMnemzx567CbX5i2UfWbR6_s5j_49gRDd9jBgpdBW-jMNtaDjrJB-3fBF7y2kls
CitedBy_id crossref_primary_10_1016_j_indcrop_2024_119793
crossref_primary_10_1016_j_cej_2025_159554
crossref_primary_10_1002_solr_202201014
crossref_primary_10_1021_acssuschemeng_2c06472
crossref_primary_10_3390_bios13060636
crossref_primary_10_1002_advs_202204109
crossref_primary_10_1039_D4SE00617H
crossref_primary_10_1016_j_cej_2022_140777
crossref_primary_10_1016_j_susmat_2024_e01022
crossref_primary_10_1021_acs_langmuir_3c03971
crossref_primary_10_1016_j_seppur_2023_124188
crossref_primary_10_1016_j_cej_2023_147680
crossref_primary_10_1007_s40843_022_2467_x
crossref_primary_10_1002_adma_202212100
crossref_primary_10_1016_j_desal_2024_117366
crossref_primary_10_1002_adfm_202205790
crossref_primary_10_1016_j_desal_2024_118472
crossref_primary_10_1002_adhm_202400707
crossref_primary_10_1016_j_mtsust_2023_100538
crossref_primary_10_1016_j_solener_2024_112543
crossref_primary_10_1002_eom2_12302
crossref_primary_10_1039_D2EN00312K
crossref_primary_10_1016_j_desal_2023_116549
crossref_primary_10_1039_D2MA00927G
crossref_primary_10_1016_j_seppur_2023_124195
crossref_primary_10_1039_D2TA09778H
crossref_primary_10_1002_adfm_202303656
crossref_primary_10_1039_D3EE03922F
crossref_primary_10_1002_adfm_202306806
crossref_primary_10_1016_j_solmat_2024_113342
crossref_primary_10_1002_slct_202404061
crossref_primary_10_1002_ente_202200900
crossref_primary_10_1016_j_seppur_2023_124513
crossref_primary_10_1016_j_desal_2022_115873
crossref_primary_10_1021_acsapm_2c00935
crossref_primary_10_1016_j_mtcomm_2024_111377
crossref_primary_10_1016_j_seppur_2025_132353
crossref_primary_10_1016_j_nantod_2024_102227
crossref_primary_10_1016_j_solener_2024_112333
crossref_primary_10_1039_D3TA02229C
crossref_primary_10_1021_acs_energyfuels_5c00552
crossref_primary_10_1016_j_solener_2024_112572
crossref_primary_10_1021_acsapm_3c01202
crossref_primary_10_1039_D4MH00798K
crossref_primary_10_1002_adfm_202208965
crossref_primary_10_1039_D4TA07411D
crossref_primary_10_1002_aesr_202200158
crossref_primary_10_1002_sus2_231
crossref_primary_10_1039_D4TB02427C
crossref_primary_10_1016_j_cej_2023_145357
crossref_primary_10_1016_j_scib_2023_07_011
crossref_primary_10_1016_j_scitotenv_2024_172887
crossref_primary_10_1002_adfm_202214828
crossref_primary_10_1016_j_watres_2024_121707
crossref_primary_10_1016_j_jece_2023_110422
crossref_primary_10_1016_j_cej_2024_157068
crossref_primary_10_1016_j_cej_2023_145919
crossref_primary_10_1021_acsnano_3c01421
crossref_primary_10_1016_j_desal_2024_117954
crossref_primary_10_1016_j_micromeso_2022_112124
crossref_primary_10_1016_j_cej_2023_147891
crossref_primary_10_1016_j_cej_2024_158384
crossref_primary_10_1016_j_mssp_2024_108473
crossref_primary_10_1016_j_cej_2022_138257
crossref_primary_10_1016_j_carbpol_2024_121951
crossref_primary_10_1016_j_mtcomm_2024_108937
crossref_primary_10_1016_j_ijbiomac_2024_135164
crossref_primary_10_1016_j_cej_2024_155796
crossref_primary_10_1007_s40843_022_2407_2
crossref_primary_10_1021_acsnano_4c12228
crossref_primary_10_1016_j_desal_2023_116910
crossref_primary_10_1016_j_coco_2022_101302
crossref_primary_10_1016_j_seppur_2022_122754
crossref_primary_10_1016_j_chemosphere_2024_142048
crossref_primary_10_1002_advs_202206718
crossref_primary_10_1002_advs_202305523
crossref_primary_10_1016_j_seppur_2024_128698
crossref_primary_10_1016_j_fuel_2024_131813
crossref_primary_10_1039_D4GC01486C
crossref_primary_10_1016_j_molliq_2023_121409
crossref_primary_10_1016_j_scib_2022_07_004
crossref_primary_10_3390_f15101837
crossref_primary_10_1021_acsami_4c03986
crossref_primary_10_1016_j_susmat_2023_e00800
crossref_primary_10_1021_acs_iecr_3c02036
crossref_primary_10_1016_j_cej_2023_147868
crossref_primary_10_1016_j_cej_2024_150755
crossref_primary_10_1021_acs_iecr_2c03477
crossref_primary_10_1016_j_cej_2023_141763
crossref_primary_10_1002_smm2_1175
crossref_primary_10_1021_acssuschemeng_2c07196
crossref_primary_10_1016_j_seppur_2024_128325
crossref_primary_10_1016_j_nanoen_2024_109307
crossref_primary_10_1016_j_seppur_2023_124322
crossref_primary_10_1002_adfm_202304936
crossref_primary_10_1039_D2NJ05354C
crossref_primary_10_1016_j_cej_2024_148671
crossref_primary_10_1016_j_nanoen_2024_109531
crossref_primary_10_1016_j_inoche_2025_114001
crossref_primary_10_1016_j_surfin_2023_103299
crossref_primary_10_1021_acs_iecr_4c04315
crossref_primary_10_1021_acs_chemrev_3c00136
crossref_primary_10_1016_j_cej_2024_156052
crossref_primary_10_1016_j_cej_2024_158111
crossref_primary_10_1016_j_jece_2023_111827
crossref_primary_10_1021_acsnano_4c06339
crossref_primary_10_1016_j_apenergy_2024_122673
crossref_primary_10_1039_D3CS00500C
crossref_primary_10_1021_acssuschemeng_3c02154
crossref_primary_10_1002_sus2_96
crossref_primary_10_1016_j_cej_2024_152932
crossref_primary_10_1002_adma_202414045
crossref_primary_10_1016_j_molstruc_2023_137113
crossref_primary_10_1016_j_cej_2024_148680
crossref_primary_10_1007_s10853_023_08849_x
crossref_primary_10_1016_j_cej_2023_147298
crossref_primary_10_1039_D2TA03004G
crossref_primary_10_1002_adsu_202200215
crossref_primary_10_1002_smll_202204898
crossref_primary_10_1016_j_mtsust_2023_100363
crossref_primary_10_1007_s12274_024_6585_6
crossref_primary_10_1002_adsu_202400349
crossref_primary_10_1016_j_porgcoat_2024_108958
crossref_primary_10_1039_D2ME00163B
crossref_primary_10_1016_j_nanoen_2024_110232
crossref_primary_10_1021_acsenergylett_5c00038
crossref_primary_10_1016_j_cej_2024_153694
crossref_primary_10_1007_s12274_022_5348_5
crossref_primary_10_1021_acsami_3c17962
crossref_primary_10_1002_adfm_202406272
crossref_primary_10_1021_acssuschemeng_2c06869
crossref_primary_10_1016_j_cej_2023_147158
crossref_primary_10_26599_NRE_2022_9120014
crossref_primary_10_1016_j_mtphys_2022_100715
crossref_primary_10_1007_s00396_024_05340_0
crossref_primary_10_1021_acs_langmuir_4c02103
crossref_primary_10_1016_j_cej_2023_142944
crossref_primary_10_1016_j_cej_2024_151157
crossref_primary_10_1002_ep_13944
crossref_primary_10_1016_j_est_2024_110665
crossref_primary_10_1016_j_cej_2025_160715
crossref_primary_10_1039_D3RA01938A
crossref_primary_10_1021_acsami_2c12073
crossref_primary_10_1002_admt_202202078
crossref_primary_10_1021_acs_langmuir_3c00297
crossref_primary_10_1002_solr_202200202
crossref_primary_10_1016_j_desal_2023_116829
crossref_primary_10_1021_acsami_2c12750
crossref_primary_10_1002_cssc_202400111
crossref_primary_10_1038_s43246_024_00544_x
crossref_primary_10_1039_D3TA03128D
crossref_primary_10_1016_j_carbon_2024_118976
crossref_primary_10_1016_j_nanoen_2024_110458
crossref_primary_10_1016_j_seppur_2023_123959
crossref_primary_10_1002_smll_202407280
crossref_primary_10_1016_j_indcrop_2024_120040
crossref_primary_10_1016_j_solener_2024_112853
crossref_primary_10_1021_acsmaterialslett_4c00973
crossref_primary_10_1016_j_desal_2024_117668
crossref_primary_10_1016_j_jcis_2023_04_029
crossref_primary_10_1021_acsaem_2c03332
crossref_primary_10_1080_09593330_2022_2082326
crossref_primary_10_1016_j_cej_2023_144421
crossref_primary_10_1002_ente_202300263
crossref_primary_10_1016_j_surfin_2024_104402
crossref_primary_10_1002_smll_202311449
crossref_primary_10_1016_j_cej_2023_141955
crossref_primary_10_1016_j_cej_2023_141716
crossref_primary_10_1016_j_cej_2024_158431
crossref_primary_10_1016_j_carbpol_2022_119539
crossref_primary_10_1016_j_desal_2023_116961
crossref_primary_10_1016_j_nanoen_2022_107996
crossref_primary_10_1016_j_colsurfa_2023_131969
crossref_primary_10_1002_cssc_202401224
crossref_primary_10_1016_j_watres_2022_119011
crossref_primary_10_1038_s41545_024_00408_4
crossref_primary_10_1016_j_xcrp_2022_101020
crossref_primary_10_1007_s12598_023_02430_w
crossref_primary_10_1016_j_mtsust_2023_100561
crossref_primary_10_3390_gels10060371
crossref_primary_10_1016_j_cej_2025_159231
crossref_primary_10_20517_energymater_2023_74
crossref_primary_10_1002_adfm_202312613
crossref_primary_10_1016_j_apcatb_2023_122988
crossref_primary_10_1039_D3EN00252G
crossref_primary_10_1016_j_desal_2024_117686
crossref_primary_10_1007_s40843_022_2238_6
crossref_primary_10_1016_j_nanoen_2023_108631
crossref_primary_10_1016_j_cej_2023_144761
crossref_primary_10_1016_j_cej_2022_139193
crossref_primary_10_1016_j_jcis_2023_08_168
crossref_primary_10_1007_s42765_024_00408_6
crossref_primary_10_1016_j_colsurfa_2025_136161
crossref_primary_10_1016_j_seppur_2024_130937
crossref_primary_10_1039_D2NJ04579F
crossref_primary_10_1002_solr_202300382
crossref_primary_10_1007_s00226_022_01430_w
crossref_primary_10_1002_solr_202300026
crossref_primary_10_1016_j_solmat_2022_112052
crossref_primary_10_1016_j_desal_2025_118760
crossref_primary_10_1016_j_applthermaleng_2023_119985
crossref_primary_10_1002_adfm_202425522
crossref_primary_10_1016_j_carbpol_2024_122304
crossref_primary_10_1021_acsami_3c06049
crossref_primary_10_1016_j_cej_2023_144517
crossref_primary_10_1016_j_pmatsci_2023_101164
crossref_primary_10_1016_j_jece_2023_111787
crossref_primary_10_1016_j_seppur_2025_131864
crossref_primary_10_1016_j_cej_2022_138676
crossref_primary_10_1016_j_nanoen_2022_107961
crossref_primary_10_1016_j_cej_2023_147580
crossref_primary_10_3390_ma16041628
crossref_primary_10_1016_j_indcrop_2024_118293
crossref_primary_10_1016_j_seppur_2022_122010
crossref_primary_10_1039_D4TA00069B
crossref_primary_10_1007_s00226_023_01496_0
crossref_primary_10_1002_eom2_12289
crossref_primary_10_1002_ente_202300500
crossref_primary_10_1016_j_cej_2025_159221
crossref_primary_10_1016_j_jclepro_2024_143960
crossref_primary_10_1016_j_memsci_2023_121592
crossref_primary_10_1016_j_seppur_2024_130230
crossref_primary_10_1016_j_gee_2022_03_002
crossref_primary_10_1016_j_desal_2024_118208
crossref_primary_10_1016_j_indcrop_2024_118299
crossref_primary_10_1007_s10853_023_08420_8
Cites_doi 10.1021/acs.accounts.8b00521
10.1002/adma.201903378
10.1016/j.nanoen.2018.11.002
10.1038/s41578-020-0182-4
10.1016/j.joule.2021.04.009
10.1016/j.mattod.2020.10.022
10.1039/C9TA04914B
10.1021/acsnano.1c02578
10.1007/s10853-021-06420-0
10.1021/acsnano.1c01900
10.1039/D0TA08539A
10.1016/j.jhazmat.2014.03.048
10.1016/j.nanoen.2020.105322
10.1016/j.nanoen.2020.105477
10.1021/acs.accounts.9b00455
10.1021/acsnano.1c01590
10.1016/j.joule.2019.06.009
10.1002/solr.202000232
10.1002/adfm.202102618
10.1016/j.joule.2017.09.011
10.1016/j.nanoen.2020.104998
10.1039/C9SE00163H
10.1016/j.cej.2020.125174
10.1038/s41467-020-20823-8
10.1002/aenm.202000925
10.1016/j.nanoen.2019.03.039
10.1126/sciadv.abb4696
10.1016/j.nanoen.2018.12.008
10.1002/advs.201903125
10.1016/j.nanoen.2021.106146
10.1016/j.seppur.2021.118527
10.1016/j.joule.2020.02.014
10.1002/cssc.201802485
10.1016/j.scitotenv.2020.144317
10.1002/adsu.201800055
10.1002/adma.202102994
10.1002/adma.202001086
10.1021/acs.est.8b06564
10.1016/j.scib.2019.08.022
10.1016/j.nanoen.2020.105682
10.1039/C8EE01146J
10.1016/j.nanoen.2020.104650
10.1002/anie.201915170
10.1002/advs.202002501
10.1038/s41565-018-0097-z
10.1002/adma.201900498
10.1021/acsami.9b00291
10.1021/acsami.1c03388
10.1039/D1EE01381E
10.1016/j.apcatb.2021.120285
10.1002/adfm.202002867
10.1021/acs.nanolett.0c01088
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nanoen.2022.107016
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_nanoen_2022_107016
S221128552200101X
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
JARJE
KOM
M41
MAGPM
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SPC
SPCBC
SSM
SSR
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c372t-8b7854ef3385862f0b0bf4c3a97c62c10c6856c67f2831b5b2eea921fef2990d3
IEDL.DBID .~1
ISSN 2211-2855
IngestDate Thu Apr 24 22:59:58 EDT 2025
Tue Jul 01 00:56:52 EDT 2025
Fri Feb 23 02:40:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Polydopamine
Photothermal materials
MOFs
Wood
Solar steam generation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-8b7854ef3385862f0b0bf4c3a97c62c10c6856c67f2831b5b2eea921fef2990d3
ParticipantIDs crossref_primary_10_1016_j_nanoen_2022_107016
crossref_citationtrail_10_1016_j_nanoen_2022_107016
elsevier_sciencedirect_doi_10_1016_j_nanoen_2022_107016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationTitle Nano energy
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Guo, Dundas, Zhou, Johnston, Yu (bib31) 2021
Xiao, Jiang (bib35) 2019; 52
Ding, Zhou, Ong, Ho (bib47) 2021; 42
Huang, Hu, Tian, Wang, Tu, Cao, Zhang (bib34) 2019; 3
Chen, Sun, Xiang, Shen, Wang, Jia, Sun, Liu (bib45) 2020; 76
Gao, Peh, Zhu, Yilmaz, Ho (bib50) 2020; 10
Shi, Shi, Zhuo, Zhang, Aldrees, Aleid, Wang (bib48) 2019; 60
Liao, Zhang, Yao, Cheng, Li, Qu (bib7) 2020; 7
Meng, Jiang, Li, Xu, Li, Henzie, Nanjundan, Yamauchi, Bando (bib16) 2021; 87
Li, Wang, Lin, Xu, Li, Liang, Zhao, Lin, Zhu, Liu, Zhou, Zhu, Zhu (bib57) 2020; 4
Wu, Wu, Wang, Gao, Li, Xu (bib3) 2021; 8
Yu, Shapter, Popelka-Filcoff, Bennett, Ellis (bib41) 2014; 273
Wang, Wu, Gao, Lu, Yang, Chen, Owens, Xu (bib28) 2021; 79
Hou, Zhou, Zhang, Chang, Yang, Xue, Hu (bib32) 2021; 759
Li, Li, Liu, Zeng, Feng, Jia, Yu (bib23) 2021; 13
Chen, Li, Song, Yang, Kuang, Hitz, Jia, Gong, Jiang, Zhu, Yang, Xie, Hu (bib14) 2017; 29
Wang, Liu, Chen, Kuang, Song, Xie, Jia, Kronthal, Xu, He, Hu (bib21) 2019; 3
Guo, Cai, Liu, Yang, Meng, Chen, Li, Wang (bib38) 2019; 53
Li, Li, Wang, Qiao, Yu, Murto, Xu (bib2) 2021; 31
Ren, Li, Zhang, Yang (bib24) 2020; 18
Wu, Cao, Wang, Liu, Zhao, Wang, Liu, Huang, Liao, Shao, Kang (bib26) 2021; 12
Tu, Puertolas, Adobes-Vidal, Wang, Sun, Traber, Burgert, Perez-Ramirez, Keplinger (bib39) 2020; 7
Liu, Chen, Chen, Kuang, Zhao, Song, Jia, Xu, Hitz, Xie, Wang, Jiang, Li, Li, Gong, Yang, Das, Hu (bib22) 2018; 8
He, Han, Zhang, Wang, Wu, Zhou, Jiang, Peng, Li (bib27) 2020; 71
Zhou, Guo, Zha, Yu (bib30) 2019; 52
Wu, Gao, Han, Xu, Owens, Xu (bib60) 2019; 64
Zou, Chen, Yang, Liang, Yang, Gu, Li (bib43) 2020; 6
Xu, Li, Chao, Wu, Yan, Li, Cao, Wang (bib36) 2020; 59
Li, Ni, Cooper, Xu, Li, Zhou, Hu, Zhu, Yao, Zhu (bib58) 2019; 3
Wu, Wang, Wu, Zhao, Lu, Yang, Xu (bib5) 2021; 31
Gao, Zhu, Peh, Ho (bib12) 2019; 12
Fan, Lu, Zhang, Xu, Lu, Tang, Yang (bib56) 2021; 295
Wang, Yan, Shen, Jin, Sun, Li (bib40) 2019; 7
Fang, Li, Chen, Lin, Wang, Liu (bib6) 2019; 11
Yao, Zhang, Yang, Liao, Hao, Huang, Zhang, Wang, Lin, Cheng, Yuan, Qu (bib8) 2021; 14
Cui, Xu, Yang, Chen, Qian, Chen, Sun (bib42) 2020; 395
Fan, Min, Zhang, Tang, Lu (bib10) 2021; 56
Lu, Fan, Wang, Xu, Lu, Yang (bib54) 2021; 15
Wu, Robson, Phelps, Tan, Shao, Owens, Xu (bib11) 2019; 56
Shao, Wu, Wang, Gao, Liu, Owens, Xu (bib44) 2020; 8
Zhao, Guo, Zhou, Shi, Yu (bib29) 2020; 5
Zhang, Wang, Song, Yao (bib37) 2021; 266
Kuang, Chen, He, Hitz, Wang, Gan, Mi, Hu (bib25) 2019; 31
Li, Xu, Sheng, Lin, Tang, Pan, Kaneti, Yang, Yamauchi (bib1) 2021; 15
Meng, Gao, Ding, Yilmaz, Ong, Ho (bib51) 2020; 30
Zhao, Zhou, Shi, Qian, Alexander, Zhao, Mendez, Yang, Qu, Yu (bib4) 2018; 13
Yu, Qin, Ma, Gao, Guan, Yang, Yu (bib18) 2021; 33
Zhang, Yang, Dang, Tao, Li, Zhao, Li, Li, Chen, Liu (bib19) 2020; 78
Li, Liu, Zhao, Chen, Dai, Pastel, Jia, Chen, Hitz, Siddhartha, Yang, Hu (bib20) 2018; 28
Zhang, Yang, Dang, Tao, Li, Zhao, Li, Li, Chen, Liu (bib53) 2020; 78
Deng, Miao, Liu, Zhou, Wang, Gu, Wang, Cai, Sun, Tanemura (bib49) 2019; 55
Li, Qiao, He, Wang, Yu, Murto, Li, Xu (bib17) 2020; 31
Liu, Zhou, Wu, Zhang, Zhu, Jin, Zhang, Zhu, Chen (bib59) 2021; 15
Li, Zhang (bib46) 2021; 81
Wang, Wang, Zhang, Li, Jin (bib33) 2019; 12
Guan, Han, Ling, Yang, Yu (bib52) 2020; 20
Jia, Li, Yang, Chen, Yao, Jiang, Kuang, Pastel, Xie, Yang, Das, Hu (bib15) 2017; 1
Gao, Peh, Phan, Zhu, Ho (bib13) 2018; 8
Qi, Wei, Zhao, Zhu, Liu, Wang, Lin, Wang, Li, Zhang, Zhu (bib61) 2019; 31
Wang, Xu, Zhao, Zhou, Zhu, Wang, Zhu, Zhu (bib9) 2021; 5
Lu, Fan, Xu, Min, Lu, Lin, Yang (bib55) 2020; 4
Wu (10.1016/j.nanoen.2022.107016_bib3) 2021; 8
Yao (10.1016/j.nanoen.2022.107016_bib8) 2021; 14
Shao (10.1016/j.nanoen.2022.107016_bib44) 2020; 8
Guo (10.1016/j.nanoen.2022.107016_bib31) 2021
Wu (10.1016/j.nanoen.2022.107016_bib26) 2021; 12
Zhang (10.1016/j.nanoen.2022.107016_bib19) 2020; 78
Liu (10.1016/j.nanoen.2022.107016_bib59) 2021; 15
Xiao (10.1016/j.nanoen.2022.107016_bib35) 2019; 52
Lu (10.1016/j.nanoen.2022.107016_bib54) 2021; 15
Qi (10.1016/j.nanoen.2022.107016_bib61) 2019; 31
He (10.1016/j.nanoen.2022.107016_bib27) 2020; 71
Guo (10.1016/j.nanoen.2022.107016_bib38) 2019; 53
Cui (10.1016/j.nanoen.2022.107016_bib42) 2020; 395
Li (10.1016/j.nanoen.2022.107016_bib46) 2021; 81
Zhou (10.1016/j.nanoen.2022.107016_bib30) 2019; 52
Wang (10.1016/j.nanoen.2022.107016_bib33) 2019; 12
Li (10.1016/j.nanoen.2022.107016_bib58) 2019; 3
Shi (10.1016/j.nanoen.2022.107016_bib48) 2019; 60
Fang (10.1016/j.nanoen.2022.107016_bib6) 2019; 11
Jia (10.1016/j.nanoen.2022.107016_bib15) 2017; 1
Zhang (10.1016/j.nanoen.2022.107016_bib37) 2021; 266
Wang (10.1016/j.nanoen.2022.107016_bib9) 2021; 5
Gao (10.1016/j.nanoen.2022.107016_bib13) 2018; 8
Yu (10.1016/j.nanoen.2022.107016_bib41) 2014; 273
Li (10.1016/j.nanoen.2022.107016_bib23) 2021; 13
Li (10.1016/j.nanoen.2022.107016_bib2) 2021; 31
Li (10.1016/j.nanoen.2022.107016_bib17) 2020; 31
Wu (10.1016/j.nanoen.2022.107016_bib11) 2019; 56
Fan (10.1016/j.nanoen.2022.107016_bib56) 2021; 295
Wang (10.1016/j.nanoen.2022.107016_bib21) 2019; 3
Ren (10.1016/j.nanoen.2022.107016_bib24) 2020; 18
Gao (10.1016/j.nanoen.2022.107016_bib12) 2019; 12
Liu (10.1016/j.nanoen.2022.107016_bib22) 2018; 8
Fan (10.1016/j.nanoen.2022.107016_bib10) 2021; 56
Hou (10.1016/j.nanoen.2022.107016_bib32) 2021; 759
Chen (10.1016/j.nanoen.2022.107016_bib45) 2020; 76
Xu (10.1016/j.nanoen.2022.107016_bib36) 2020; 59
Lu (10.1016/j.nanoen.2022.107016_bib55) 2020; 4
Wu (10.1016/j.nanoen.2022.107016_bib60) 2019; 64
Huang (10.1016/j.nanoen.2022.107016_bib34) 2019; 3
Gao (10.1016/j.nanoen.2022.107016_bib50) 2020; 10
Guan (10.1016/j.nanoen.2022.107016_bib52) 2020; 20
Wu (10.1016/j.nanoen.2022.107016_bib5) 2021; 31
Li (10.1016/j.nanoen.2022.107016_bib57) 2020; 4
Meng (10.1016/j.nanoen.2022.107016_bib51) 2020; 30
Zou (10.1016/j.nanoen.2022.107016_bib43) 2020; 6
Deng (10.1016/j.nanoen.2022.107016_bib49) 2019; 55
Tu (10.1016/j.nanoen.2022.107016_bib39) 2020; 7
Liao (10.1016/j.nanoen.2022.107016_bib7) 2020; 7
Wang (10.1016/j.nanoen.2022.107016_bib28) 2021; 79
Ding (10.1016/j.nanoen.2022.107016_bib47) 2021; 42
Chen (10.1016/j.nanoen.2022.107016_bib14) 2017; 29
Meng (10.1016/j.nanoen.2022.107016_bib16) 2021; 87
Zhang (10.1016/j.nanoen.2022.107016_bib53) 2020; 78
Kuang (10.1016/j.nanoen.2022.107016_bib25) 2019; 31
Wang (10.1016/j.nanoen.2022.107016_bib40) 2019; 7
Li (10.1016/j.nanoen.2022.107016_bib1) 2021; 15
Yu (10.1016/j.nanoen.2022.107016_bib18) 2021; 33
Zhao (10.1016/j.nanoen.2022.107016_bib4) 2018; 13
Li (10.1016/j.nanoen.2022.107016_bib20) 2018; 28
Zhao (10.1016/j.nanoen.2022.107016_bib29) 2020; 5
References_xml – volume: 5
  start-page: 388
  year: 2020
  end-page: 401
  ident: bib29
  article-title: Materials for solar-powered water evaporation
  publication-title: Nat. Rev. Mater.
– volume: 6
  year: 2020
  ident: bib43
  article-title: Regulating the absorption spectrum of polydopamine
  publication-title: Sci. Adv.
– volume: 15
  start-page: 13007
  year: 2021
  end-page: 13018
  ident: bib59
  article-title: Hierarchical photothermal fabrics with low evaporation enthalpy as heliotropic evaporators for efficient, continuous, salt-free desalination
  publication-title: ACS Nano
– volume: 4
  start-page: 928
  year: 2020
  end-page: 937
  ident: bib57
  article-title: Over 10 kg m
  publication-title: Joule
– volume: 15
  start-page: 12535
  year: 2021
  end-page: 12566
  ident: bib1
  article-title: Solar-powered sustainable water production: state-of-the-art technologies for sunlight-energy-water nexus
  publication-title: ACS Nano
– volume: 31
  year: 2021
  ident: bib5
  article-title: Dual-zone photothermal evaporator for antisalt accumulation and highly efficient solar steam generation
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 588
  year: 2017
  end-page: 599
  ident: bib15
  article-title: Rich mesostructures derived from natural woods for solar steam generation
  publication-title: Joule
– volume: 8
  year: 2018
  ident: bib22
  article-title: High-performance solar steam device with layered channels: artificial tree with a reversed design
  publication-title: Adv. Energy Mater.
– volume: 79
  year: 2021
  ident: bib28
  article-title: Same materials, bigger output: a reversibly transformable
  publication-title: Nano Energy
– volume: 7
  year: 2020
  ident: bib39
  article-title: Green synthesis of hierarchical metal-organic framework/wood functional composites with superior mechanical properties
  publication-title: Adv. Sci.
– volume: 30
  year: 2020
  ident: bib51
  article-title: Modular deformable steam electricity cogeneration system with photothermal, water, and electrochemical tunable multilayers
  publication-title: Adv. Funct. Mater.
– volume: 78
  year: 2020
  ident: bib19
  article-title: Nature-inspired design: P-toluenesulfonic acid-assisted hydrothermally engineered wood for solar steam generation
  publication-title: Nano Energy
– volume: 266
  year: 2021
  ident: bib37
  article-title: In situ growth of ZIF-8 within wood channels for water pollutants removal
  publication-title: Sep. Purif. Technol.
– volume: 53
  start-page: 2705
  year: 2019
  end-page: 2712
  ident: bib38
  article-title: In situ growth of metal-organic frameworks in three-dimensional aligned lumen arrays of wood for rapid and highly efficient organic pollutant removal
  publication-title: Environ. Sci. Technol.
– volume: 7
  start-page: 20706
  year: 2019
  end-page: 20712
  ident: bib40
  article-title: A wood-polypyrrole composite as a photothermal conversion device for solar evaporation enhancement
  publication-title: J. Mater. Chem. A
– volume: 8
  year: 2021
  ident: bib3
  article-title: All-cold evaporation under one sun with zero energy loss by using a heatsink inspired solar evaporator
  publication-title: Adv. Sci.
– volume: 13
  start-page: 489
  year: 2018
  end-page: 495
  ident: bib4
  article-title: Highly efficient solar vapour generation via hierarchically nanostructured gels
  publication-title: Nat. Nanotechnol.
– volume: 20
  start-page: 5699
  year: 2020
  end-page: 5704
  ident: bib52
  article-title: Sustainable wood-based hierarchical solar steam generator: a biomimetic design with reduced vaporization enthalpy of water
  publication-title: Nano Lett.
– volume: 31
  year: 2020
  ident: bib17
  article-title: Solar-driven interfacial evaporation and self-powered water wave detection based on an all-cellulose monolithic design
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2017
  ident: bib14
  article-title: Highly flexible and efficient solar steam generation device
  publication-title: Adv. Mater.
– volume: 12
  start-page: 467
  year: 2019
  end-page: 472
  ident: bib33
  article-title: A ternary Pt/Au/TiO
  publication-title: ChemSusChem
– volume: 395
  year: 2020
  ident: bib42
  article-title: Soft foam-like UiO-66/Polydopamine/Bacterial cellulose composite for the removal of aspirin and tetracycline hydrochloride
  publication-title: Chem. Eng. J.
– volume: 15
  start-page: 10366
  year: 2021
  end-page: 10376
  ident: bib54
  article-title: Surface patterning of two-dimensional nanostructure-embedded photothermal hydrogels for high-yield solar steam generation
  publication-title: ACS Nano
– volume: 12
  start-page: 483
  year: 2021
  ident: bib26
  article-title: A metal-free photocatalyst for highly efficient hydrogen peroxide photoproduction in real seawater
  publication-title: Nat. Commun.
– volume: 759
  year: 2021
  ident: bib32
  article-title: Boosting adsorption of heavy metal ions in wastewater through solar-driven interfacial evaporation of chemically-treated carbonized wood
  publication-title: Sci. Total Environ.
– volume: 7
  year: 2020
  ident: bib7
  article-title: Reduced graphene oxide-based spectrally selective absorber with an extremely low thermal emittance and high solar absorptance
  publication-title: Adv. Sci.
– volume: 56
  start-page: 18625
  year: 2021
  end-page: 18635
  ident: bib10
  article-title: Architecting a bifunctional solar evaporator of perovskite La
  publication-title: J. Mater. Sci.
– volume: 13
  start-page: 22845
  year: 2021
  end-page: 22854
  ident: bib23
  article-title: Coating of wood with Fe
  publication-title: ACS Appl. Mater. Interfaces
– volume: 28
  year: 2018
  ident: bib20
  article-title: Scalable and highly efficient mesoporous wood-based solar steam generation device: localized heat, rapid water transport
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 3000
  year: 2019
  end-page: 3008
  ident: bib34
  article-title: Nature-inspired salt resistant polypyrrole-wood for highly efficient solar steam generation
  publication-title: Sustain. Energ. Fuels
– volume: 14
  start-page: 5330
  year: 2021
  end-page: 5338
  ident: bib8
  article-title: Janus-interface engineering boosting solar steam towards high-efficiency water collection
  publication-title: Energy Environ. Sci.
– volume: 81
  year: 2021
  ident: bib46
  article-title: Highly salt-resistant and all-weather solar-driven interfacial evaporators with photothermal and electrothermal effects based on Janus graphene@silicone sponges
  publication-title: Nano Energy
– volume: 4
  year: 2020
  ident: bib55
  article-title: Implementing hybrid energy harvesting in 3D spherical evaporator for solar steam generation and synergic water purification
  publication-title: Sol. RRL
– volume: 55
  start-page: 368
  year: 2019
  end-page: 376
  ident: bib49
  article-title: Extremely high water-production created by a nanoink-stained PVA evaporator with embossment structure
  publication-title: Nano Energy
– volume: 31
  year: 2021
  ident: bib2
  article-title: Self-repairing and damage-tolerant hydrogels for efficient solar-powered water purification and desalination
  publication-title: Adv. Funct. Mater.
– volume: 76
  year: 2020
  ident: bib45
  article-title: Plasmonic wooden flower for highly efficient solar vapor generation
  publication-title: Nano Energy
– volume: 295
  year: 2021
  ident: bib56
  article-title: Synergy of photocatalysis and photothermal effect in integrated 0D perovskite oxide/2D MXene heterostructures for simultaneous water purification and solar steam generation
  publication-title: Appl. Catal. B-Environ.
– volume: 64
  start-page: 1625
  year: 2019
  end-page: 1633
  ident: bib60
  article-title: A photothermal reservoir for highly efficient solar steam generation without bulk water
  publication-title: Sci. Bull.
– volume: 60
  start-page: 222
  year: 2019
  end-page: 230
  ident: bib48
  article-title: Multi-functional 3D honeycomb ceramic plate for clean water production by heterogeneous photo-Fenton reaction and solar-driven water evaporation
  publication-title: Nano Energy
– volume: 31
  year: 2019
  ident: bib25
  article-title: A high-performance self-regenerating solar evaporator for continuous water desalination
  publication-title: Adv. Mater.
– volume: 273
  start-page: 174
  year: 2014
  end-page: 182
  ident: bib41
  article-title: Copper removal using bio-inspired polydopamine coated natural zeolites
  publication-title: J. Hazard. Mater.
– volume: 3
  start-page: 1798
  year: 2019
  end-page: 1803
  ident: bib58
  article-title: Measuring conversion efficiency of solar vapor generation
  publication-title: Joule
– volume: 42
  start-page: 178
  year: 2021
  end-page: 191
  ident: bib47
  article-title: Hybrid solar-driven interfacial evaporation systems: beyond water production towards high solar energy utilization
  publication-title: Mater. Today
– volume: 3
  year: 2019
  ident: bib21
  article-title: All natural, high efficient groundwater extraction via solar steam/vapor generation
  publication-title: Adv. Sustain. Syst.
– volume: 71
  year: 2020
  ident: bib27
  article-title: A simple, mild and versatile method for preparation of photothermal woods toward highly efficient solar steam generation
  publication-title: Nano Energy
– volume: 52
  start-page: 3244
  year: 2019
  end-page: 3253
  ident: bib30
  article-title: Hydrogels as an emerging material platform for solar water purification
  publication-title: Acc. Chem. Res.
– volume: 52
  start-page: 356
  year: 2019
  end-page: 366
  ident: bib35
  article-title: Metal-organic frameworks for photocatalysis and photothermal catalysis
  publication-title: Acc. Chem. Res.
– volume: 33
  year: 2021
  ident: bib18
  article-title: Emerging bioinspired artificial woods
  publication-title: Adv. Mater.
– year: 2021
  ident: bib31
  article-title: Molecular engineering of hydrogels for rapid water disinfection and sustainable solar vapor generation
  publication-title: Adv. Mater.
– volume: 11
  start-page: 10672
  year: 2019
  end-page: 10679
  ident: bib6
  article-title: Full biomass-derived solar stills for robust and stable evaporation to collect clean water from various water-bearing media
  publication-title: ACS Appl. Mater. Interfaces
– volume: 78
  year: 2020
  ident: bib53
  article-title: Nature-inspired design: P-toluenesulfonic acid-assisted hydrothermally engineered wood for solar steam generation
  publication-title: Nano Energy
– volume: 59
  start-page: 5202
  year: 2020
  end-page: 5210
  ident: bib36
  article-title: Efficient solar-driven water harvesting from arid air with metal-organic frameworks modified by hygroscopic salt
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: 24703
  year: 2020
  end-page: 24709
  ident: bib44
  article-title: A general method for selectively coating photothermal materials on 3D porous substrate surfaces towards cost-effective and highly efficient solar steam generation
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 1602
  year: 2021
  end-page: 1612
  ident: bib9
  article-title: A high-performing single-stage invert-structured solar water purifier through enhanced absorption and condensation
  publication-title: Joule
– volume: 12
  start-page: 841
  year: 2019
  end-page: 864
  ident: bib12
  article-title: Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production
  publication-title: Energy Environ. Sci.
– volume: 8
  year: 2018
  ident: bib13
  article-title: Solar absorber gel: localized macro-nano heat channeling for efficient plasmonic Au nanoflowers photothermic vaporization and triboelectric generation
  publication-title: Adv. Energy Mater.
– volume: 56
  start-page: 708
  year: 2019
  end-page: 715
  ident: bib11
  article-title: A flexible photothermal cotton-CuS nanocage-agarose aerogel towards portable solar steam generation
  publication-title: Nano Energy
– volume: 87
  year: 2021
  ident: bib16
  article-title: Programmed design of selectively-functionalized wood aerogel: affordable and mildew-resistant solar-driven evaporator
  publication-title: Nano Energy
– volume: 10
  year: 2020
  ident: bib50
  article-title: Photothermal catalytic gel featuring spectral and thermal management for parallel freshwater and hydrogen production
  publication-title: Adv. Energy Mater.
– volume: 31
  year: 2019
  ident: bib61
  article-title: An interfacial solar-driven atmospheric water generator based on a liquid sorbent with simultaneous adsorption-desorption
  publication-title: Adv. Mater.
– volume: 18
  year: 2020
  ident: bib24
  article-title: Highly efficient solar water evaporation of TiO
  publication-title: Mater. Today Energy
– volume: 52
  start-page: 356
  year: 2019
  ident: 10.1016/j.nanoen.2022.107016_bib35
  article-title: Metal-organic frameworks for photocatalysis and photothermal catalysis
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00521
– volume: 31
  year: 2019
  ident: 10.1016/j.nanoen.2022.107016_bib61
  article-title: An interfacial solar-driven atmospheric water generator based on a liquid sorbent with simultaneous adsorption-desorption
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903378
– volume: 55
  start-page: 368
  year: 2019
  ident: 10.1016/j.nanoen.2022.107016_bib49
  article-title: Extremely high water-production created by a nanoink-stained PVA evaporator with embossment structure
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.11.002
– volume: 5
  start-page: 388
  year: 2020
  ident: 10.1016/j.nanoen.2022.107016_bib29
  article-title: Materials for solar-powered water evaporation
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-020-0182-4
– volume: 5
  start-page: 1602
  year: 2021
  ident: 10.1016/j.nanoen.2022.107016_bib9
  article-title: A high-performing single-stage invert-structured solar water purifier through enhanced absorption and condensation
  publication-title: Joule
  doi: 10.1016/j.joule.2021.04.009
– volume: 42
  start-page: 178
  year: 2021
  ident: 10.1016/j.nanoen.2022.107016_bib47
  article-title: Hybrid solar-driven interfacial evaporation systems: beyond water production towards high solar energy utilization
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2020.10.022
– volume: 7
  start-page: 20706
  year: 2019
  ident: 10.1016/j.nanoen.2022.107016_bib40
  article-title: A wood-polypyrrole composite as a photothermal conversion device for solar evaporation enhancement
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA04914B
– volume: 15
  start-page: 10366
  year: 2021
  ident: 10.1016/j.nanoen.2022.107016_bib54
  article-title: Surface patterning of two-dimensional nanostructure-embedded photothermal hydrogels for high-yield solar steam generation
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c02578
– volume: 56
  start-page: 18625
  year: 2021
  ident: 10.1016/j.nanoen.2022.107016_bib10
  article-title: Architecting a bifunctional solar evaporator of perovskite La0.5Sr0.5CoO3 for solar evaporation and degradation
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-021-06420-0
– volume: 15
  start-page: 13007
  year: 2021
  ident: 10.1016/j.nanoen.2022.107016_bib59
  article-title: Hierarchical photothermal fabrics with low evaporation enthalpy as heliotropic evaporators for efficient, continuous, salt-free desalination
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c01900
– volume: 8
  year: 2018
  ident: 10.1016/j.nanoen.2022.107016_bib13
  article-title: Solar absorber gel: localized macro-nano heat channeling for efficient plasmonic Au nanoflowers photothermic vaporization and triboelectric generation
  publication-title: Adv. Energy Mater.
– volume: 29
  year: 2017
  ident: 10.1016/j.nanoen.2022.107016_bib14
  article-title: Highly flexible and efficient solar steam generation device
  publication-title: Adv. Mater.
– volume: 8
  start-page: 24703
  year: 2020
  ident: 10.1016/j.nanoen.2022.107016_bib44
  article-title: A general method for selectively coating photothermal materials on 3D porous substrate surfaces towards cost-effective and highly efficient solar steam generation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA08539A
– volume: 273
  start-page: 174
  year: 2014
  ident: 10.1016/j.nanoen.2022.107016_bib41
  article-title: Copper removal using bio-inspired polydopamine coated natural zeolites
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2014.03.048
– volume: 78
  year: 2020
  ident: 10.1016/j.nanoen.2022.107016_bib19
  article-title: Nature-inspired design: P-toluenesulfonic acid-assisted hydrothermally engineered wood for solar steam generation
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105322
– volume: 79
  year: 2021
  ident: 10.1016/j.nanoen.2022.107016_bib28
  article-title: Same materials, bigger output: a reversibly transformable 2D–3D photothermal evaporator for highly efficient solar steam generation
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105477
– volume: 52
  start-page: 3244
  year: 2019
  ident: 10.1016/j.nanoen.2022.107016_bib30
  article-title: Hydrogels as an emerging material platform for solar water purification
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00455
– volume: 15
  start-page: 12535
  year: 2021
  ident: 10.1016/j.nanoen.2022.107016_bib1
  article-title: Solar-powered sustainable water production: state-of-the-art technologies for sunlight-energy-water nexus
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c01590
– volume: 3
  start-page: 1798
  year: 2019
  ident: 10.1016/j.nanoen.2022.107016_bib58
  article-title: Measuring conversion efficiency of solar vapor generation
  publication-title: Joule
  doi: 10.1016/j.joule.2019.06.009
– volume: 4
  year: 2020
  ident: 10.1016/j.nanoen.2022.107016_bib55
  article-title: Implementing hybrid energy harvesting in 3D spherical evaporator for solar steam generation and synergic water purification
  publication-title: Sol. RRL
  doi: 10.1002/solr.202000232
– volume: 31
  year: 2021
  ident: 10.1016/j.nanoen.2022.107016_bib5
  article-title: Dual-zone photothermal evaporator for antisalt accumulation and highly efficient solar steam generation
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202102618
– volume: 7
  year: 2020
  ident: 10.1016/j.nanoen.2022.107016_bib39
  article-title: Green synthesis of hierarchical metal-organic framework/wood functional composites with superior mechanical properties
  publication-title: Adv. Sci.
– volume: 1
  start-page: 588
  year: 2017
  ident: 10.1016/j.nanoen.2022.107016_bib15
  article-title: Rich mesostructures derived from natural woods for solar steam generation
  publication-title: Joule
  doi: 10.1016/j.joule.2017.09.011
– volume: 76
  year: 2020
  ident: 10.1016/j.nanoen.2022.107016_bib45
  article-title: Plasmonic wooden flower for highly efficient solar vapor generation
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104998
– volume: 78
  year: 2020
  ident: 10.1016/j.nanoen.2022.107016_bib53
  article-title: Nature-inspired design: P-toluenesulfonic acid-assisted hydrothermally engineered wood for solar steam generation
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105322
– volume: 3
  start-page: 3000
  year: 2019
  ident: 10.1016/j.nanoen.2022.107016_bib34
  article-title: Nature-inspired salt resistant polypyrrole-wood for highly efficient solar steam generation
  publication-title: Sustain. Energ. Fuels
  doi: 10.1039/C9SE00163H
– volume: 395
  year: 2020
  ident: 10.1016/j.nanoen.2022.107016_bib42
  article-title: Soft foam-like UiO-66/Polydopamine/Bacterial cellulose composite for the removal of aspirin and tetracycline hydrochloride
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125174
– volume: 12
  start-page: 483
  year: 2021
  ident: 10.1016/j.nanoen.2022.107016_bib26
  article-title: A metal-free photocatalyst for highly efficient hydrogen peroxide photoproduction in real seawater
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20823-8
– volume: 10
  year: 2020
  ident: 10.1016/j.nanoen.2022.107016_bib50
  article-title: Photothermal catalytic gel featuring spectral and thermal management for parallel freshwater and hydrogen production
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202000925
– volume: 60
  start-page: 222
  year: 2019
  ident: 10.1016/j.nanoen.2022.107016_bib48
  article-title: Multi-functional 3D honeycomb ceramic plate for clean water production by heterogeneous photo-Fenton reaction and solar-driven water evaporation
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.03.039
– volume: 6
  year: 2020
  ident: 10.1016/j.nanoen.2022.107016_bib43
  article-title: Regulating the absorption spectrum of polydopamine
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abb4696
– volume: 56
  start-page: 708
  year: 2019
  ident: 10.1016/j.nanoen.2022.107016_bib11
  article-title: A flexible photothermal cotton-CuS nanocage-agarose aerogel towards portable solar steam generation
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.008
– volume: 7
  year: 2020
  ident: 10.1016/j.nanoen.2022.107016_bib7
  article-title: Reduced graphene oxide-based spectrally selective absorber with an extremely low thermal emittance and high solar absorptance
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201903125
– volume: 31
  year: 2020
  ident: 10.1016/j.nanoen.2022.107016_bib17
  article-title: Solar-driven interfacial evaporation and self-powered water wave detection based on an all-cellulose monolithic design
  publication-title: Adv. Funct. Mater.
– volume: 87
  year: 2021
  ident: 10.1016/j.nanoen.2022.107016_bib16
  article-title: Programmed design of selectively-functionalized wood aerogel: affordable and mildew-resistant solar-driven evaporator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106146
– volume: 266
  year: 2021
  ident: 10.1016/j.nanoen.2022.107016_bib37
  article-title: In situ growth of ZIF-8 within wood channels for water pollutants removal
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.118527
– volume: 4
  start-page: 928
  year: 2020
  ident: 10.1016/j.nanoen.2022.107016_bib57
  article-title: Over 10 kg m−2 h−1 evaporation rate enabled by a 3D interconnected porous carbon foam
  publication-title: Joule
  doi: 10.1016/j.joule.2020.02.014
– volume: 28
  year: 2018
  ident: 10.1016/j.nanoen.2022.107016_bib20
  article-title: Scalable and highly efficient mesoporous wood-based solar steam generation device: localized heat, rapid water transport
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 467
  year: 2019
  ident: 10.1016/j.nanoen.2022.107016_bib33
  article-title: A ternary Pt/Au/TiO2-decorated plasmonic wood carbon for high-efficiency interfacial solar steam generation and photodegradation of tetracycline
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201802485
– volume: 759
  year: 2021
  ident: 10.1016/j.nanoen.2022.107016_bib32
  article-title: Boosting adsorption of heavy metal ions in wastewater through solar-driven interfacial evaporation of chemically-treated carbonized wood
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.144317
– volume: 3
  year: 2019
  ident: 10.1016/j.nanoen.2022.107016_bib21
  article-title: All natural, high efficient groundwater extraction via solar steam/vapor generation
  publication-title: Adv. Sustain. Syst.
  doi: 10.1002/adsu.201800055
– year: 2021
  ident: 10.1016/j.nanoen.2022.107016_bib31
  article-title: Molecular engineering of hydrogels for rapid water disinfection and sustainable solar vapor generation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202102994
– volume: 33
  year: 2021
  ident: 10.1016/j.nanoen.2022.107016_bib18
  article-title: Emerging bioinspired artificial woods
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001086
– volume: 18
  year: 2020
  ident: 10.1016/j.nanoen.2022.107016_bib24
  article-title: Highly efficient solar water evaporation of TiO2@TiN hyperbranched nanowires-carbonized wood hierarchical photothermal conversion material
  publication-title: Mater. Today Energy
– volume: 53
  start-page: 2705
  year: 2019
  ident: 10.1016/j.nanoen.2022.107016_bib38
  article-title: In situ growth of metal-organic frameworks in three-dimensional aligned lumen arrays of wood for rapid and highly efficient organic pollutant removal
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b06564
– volume: 64
  start-page: 1625
  year: 2019
  ident: 10.1016/j.nanoen.2022.107016_bib60
  article-title: A photothermal reservoir for highly efficient solar steam generation without bulk water
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2019.08.022
– volume: 81
  year: 2021
  ident: 10.1016/j.nanoen.2022.107016_bib46
  article-title: Highly salt-resistant and all-weather solar-driven interfacial evaporators with photothermal and electrothermal effects based on Janus graphene@silicone sponges
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105682
– volume: 12
  start-page: 841
  year: 2019
  ident: 10.1016/j.nanoen.2022.107016_bib12
  article-title: Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE01146J
– volume: 71
  year: 2020
  ident: 10.1016/j.nanoen.2022.107016_bib27
  article-title: A simple, mild and versatile method for preparation of photothermal woods toward highly efficient solar steam generation
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104650
– volume: 59
  start-page: 5202
  year: 2020
  ident: 10.1016/j.nanoen.2022.107016_bib36
  article-title: Efficient solar-driven water harvesting from arid air with metal-organic frameworks modified by hygroscopic salt
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201915170
– volume: 31
  year: 2021
  ident: 10.1016/j.nanoen.2022.107016_bib2
  article-title: Self-repairing and damage-tolerant hydrogels for efficient solar-powered water purification and desalination
  publication-title: Adv. Funct. Mater.
– volume: 8
  year: 2021
  ident: 10.1016/j.nanoen.2022.107016_bib3
  article-title: All-cold evaporation under one sun with zero energy loss by using a heatsink inspired solar evaporator
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202002501
– volume: 13
  start-page: 489
  year: 2018
  ident: 10.1016/j.nanoen.2022.107016_bib4
  article-title: Highly efficient solar vapour generation via hierarchically nanostructured gels
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0097-z
– volume: 31
  year: 2019
  ident: 10.1016/j.nanoen.2022.107016_bib25
  article-title: A high-performance self-regenerating solar evaporator for continuous water desalination
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900498
– volume: 11
  start-page: 10672
  year: 2019
  ident: 10.1016/j.nanoen.2022.107016_bib6
  article-title: Full biomass-derived solar stills for robust and stable evaporation to collect clean water from various water-bearing media
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b00291
– volume: 13
  start-page: 22845
  year: 2021
  ident: 10.1016/j.nanoen.2022.107016_bib23
  article-title: Coating of wood with Fe2O3-decorated carbon nanotubes by one-step combustion for efficient solar steam generation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c03388
– volume: 14
  start-page: 5330
  year: 2021
  ident: 10.1016/j.nanoen.2022.107016_bib8
  article-title: Janus-interface engineering boosting solar steam towards high-efficiency water collection
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE01381E
– volume: 8
  year: 2018
  ident: 10.1016/j.nanoen.2022.107016_bib22
  article-title: High-performance solar steam device with layered channels: artificial tree with a reversed design
  publication-title: Adv. Energy Mater.
– volume: 295
  year: 2021
  ident: 10.1016/j.nanoen.2022.107016_bib56
  article-title: Synergy of photocatalysis and photothermal effect in integrated 0D perovskite oxide/2D MXene heterostructures for simultaneous water purification and solar steam generation
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2021.120285
– volume: 30
  year: 2020
  ident: 10.1016/j.nanoen.2022.107016_bib51
  article-title: Modular deformable steam electricity cogeneration system with photothermal, water, and electrochemical tunable multilayers
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202002867
– volume: 20
  start-page: 5699
  year: 2020
  ident: 10.1016/j.nanoen.2022.107016_bib52
  article-title: Sustainable wood-based hierarchical solar steam generator: a biomimetic design with reduced vaporization enthalpy of water
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c01088
SSID ssj0000651712
Score 2.6695213
Snippet Interfacial solar evaporation technology is recognized as one of the most promising strategies to address freshwater scarcity issues. To realize the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107016
SubjectTerms MOFs
Photothermal materials
Polydopamine
Solar steam generation
Wood
Title Design and performance boost of a MOF-functionalized-wood solar evaporator through tuning the hydrogen-bonding interactions
URI https://dx.doi.org/10.1016/j.nanoen.2022.107016
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXvQgPvFNDl7jtmmbtEdRl1VxPejC3kqSTnBF2mW3Cir42830oSuIgseEDJTpkG-SzPcNIUcOYhxOQcK0AmAhGI-pOPSZtCKLkLSXcSQ4Xw9EfxhejqJRh5y2XBgsq2z2_npPr3brZqbbeLM7GY-7t9ydXXgcuQSiEkobIYM9lBjlx-_-5z2Lg1hfVo-euJ6hQcugq8q8cpUXgEKonLsp6WHj858Qag51eqtkpUkX6Un9RWukA_k6WZ4TEdwgb2dVEQZVeUYnXzQA6tLnWUkLSxW9vukxBLD63m_8ChnDUhs6w3MthWdViRkXU9p07aHlE16XuCHQ-5dsWrgoY7qoCDAUBSamNR1itkmGvfO70z5rWiowE0hesljLOArBBvgeKLj1tKdtaAKVSCO48T0j4kgYIa1LO3wdaQ6gEu5bsIhbWbBFFvIih21CExCZSTRYxVWoE6vBHbWUSLDxjU1UuEOC1o2pafTGse3FY9oWlj2ktfNTdH5aO3-HsE-rSa238cd62f6h9FvcpA4SfrXc_bflHlnCUV32uE8WyukTHLjUpNSHVewdksWTi6v-4ANrOeXE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6rHtSD-MT1mYPXuG3apu1RVpf1sXpQYW8lSSe4Iu2yWwUV_O1m-vABouCxaQfKdJpvksz3DSEHFmIsTkHMlARgPmiHych3WWhEGiBpL-VIcB5civ6tfzYMhi3SbbgwWFZZz_3VnF7O1vVIp_ZmZzwada65XbvwKLAJRCmUNpwhc779fbGNweGb-7HRYjHWDctTTzRgaNFQ6Mo6r0xmOaASKud2KHSw8_lPEPUFdnrLZKnOF-lR9UorpAXZKln8oiK4Rl6PyyoMKrOUjj95ANTmz9OC5oZKOrjqMUSwauNv9AIpw1obOsWFLYUnWaoZ5xNat-2hxSPul9hLoHfP6SS3YcZUXjJgKCpMTCo-xHSd3PZObrp9VvdUYNoLecEiFUaBD8bDA0HBjaMcZXztyTjUgmvX0SIKhBahsXmHqwLFAWTMXQMGgSv1NshslmewSWgMItWxAiO59FVsFNi1lhQxdr4xsfTbxGvcmOhacBz7XjwkTWXZfVI5P0HnJ5Xz24R9WI0rwY0_ng-bL5R8C5zEYsKvllv_ttwn8_2bwUVycXp5vk0W8E5VA7lDZovJI-zaPKVQe2UcvgO8BedS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+performance+boost+of+a+MOF-functionalized-wood+solar+evaporator+through+tuning+the+hydrogen-bonding+interactions&rft.jtitle=Nano+energy&rft.au=Lu%2C+Yi&rft.au=Fan%2C+Deqi&rft.au=Shen%2C+Ziyi&rft.au=Zhang%2C+Hao&rft.date=2022-05-01&rft.issn=2211-2855&rft.volume=95&rft.spage=107016&rft_id=info:doi/10.1016%2Fj.nanoen.2022.107016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nanoen_2022_107016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon