Regulating the vertical phase distribution by fullerene-derivative in high performance ternary organic solar cells
The vertical phase distribution of components in bulk heterojunction is diversified in organic solar cells (OSCs). The electron donors (acceptors) can be accumulated (depleted) at the interface of active layer and charge extraction layer. The variation of vertical phase distribution significantly in...
Saved in:
Published in | Nano energy Vol. 46; pp. 81 - 90 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 2211-2855 |
DOI | 10.1016/j.nanoen.2018.01.040 |
Cover
Loading…
Abstract | The vertical phase distribution of components in bulk heterojunction is diversified in organic solar cells (OSCs). The electron donors (acceptors) can be accumulated (depleted) at the interface of active layer and charge extraction layer. The variation of vertical phase distribution significantly influences device performance because of its impact on the charge transport and charge recombination. In order to achieve favorable vertical phase distribution in OSCs based on poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene))-co-(1,3-di(5-thiophene-2-yl)–5,7-bis(2-ethylhexyl) benzo[1,2-c:4,5-c′]dithiophene-4,8-dione)] (PBDB-T):3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))−5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno[1,2-b:5,6-b′]-dithiophene (ITIC), phenyl-C71-butyric-acid-methyl ester (PC71BM) was incorporated into the binary system to fabricate ternary OSCs. In the ternary blend, PC71BM can effectively regulate the phase distribution of PBDB-T and ITIC in vertical direction, which provides favorable vertical phase distribution for charge transport. Moreover, the addition of PC71BM can also effectively increase the π-π stacking coherence length of both donor and acceptor, which facilitates charge transport and reduces the bimolecular recombination. The addition of an appropriate quantity of PC71BM can obviously improve both fill factor and short-circuit current density of the OSC based on PBDB-T:ITIC while open-circuit voltage reduces only about 0.01 V, which indicates a rational low energy loss. Consequently, the ternary OSC exhibits a best PCE of 11.0% compared to the 9.6% PCE of the binary counterpart.
Ternary system of PBDB-T:PC71BM:ITIC is systematically investigated by depth-resolved light absorption spectroscopy, GIWAXS, and transient absorption spectroscopy. It is proved that PC71BM can regulate the phase distribution of PBDB-T and ITIC in vertical direction. As a result, the ternary OSC exhibits a best PCE of 11.0% compared to the 9.6% PCE of the binary counterpart. [Display omitted]
•PC71BM in the ternary blends can effectively regulate the vertical phase distribution of PBDB-T and ITIC.•π-π stacking coherence length of both PBDB-T and ITIC in ternary blends were increased by the PC71BM.•Efficient charge transport, charge collection and reduced the bimolecular recombination were achieved in the ternary blends.•The PCE of binary OSC was obviously improved by the additional PC71BM from 9.6% to 11.0%. |
---|---|
AbstractList | The vertical phase distribution of components in bulk heterojunction is diversified in organic solar cells (OSCs). The electron donors (acceptors) can be accumulated (depleted) at the interface of active layer and charge extraction layer. The variation of vertical phase distribution significantly influences device performance because of its impact on the charge transport and charge recombination. In order to achieve favorable vertical phase distribution in OSCs based on poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene))-co-(1,3-di(5-thiophene-2-yl)–5,7-bis(2-ethylhexyl) benzo[1,2-c:4,5-c′]dithiophene-4,8-dione)] (PBDB-T):3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))−5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno[1,2-b:5,6-b′]-dithiophene (ITIC), phenyl-C71-butyric-acid-methyl ester (PC71BM) was incorporated into the binary system to fabricate ternary OSCs. In the ternary blend, PC71BM can effectively regulate the phase distribution of PBDB-T and ITIC in vertical direction, which provides favorable vertical phase distribution for charge transport. Moreover, the addition of PC71BM can also effectively increase the π-π stacking coherence length of both donor and acceptor, which facilitates charge transport and reduces the bimolecular recombination. The addition of an appropriate quantity of PC71BM can obviously improve both fill factor and short-circuit current density of the OSC based on PBDB-T:ITIC while open-circuit voltage reduces only about 0.01 V, which indicates a rational low energy loss. Consequently, the ternary OSC exhibits a best PCE of 11.0% compared to the 9.6% PCE of the binary counterpart.
Ternary system of PBDB-T:PC71BM:ITIC is systematically investigated by depth-resolved light absorption spectroscopy, GIWAXS, and transient absorption spectroscopy. It is proved that PC71BM can regulate the phase distribution of PBDB-T and ITIC in vertical direction. As a result, the ternary OSC exhibits a best PCE of 11.0% compared to the 9.6% PCE of the binary counterpart. [Display omitted]
•PC71BM in the ternary blends can effectively regulate the vertical phase distribution of PBDB-T and ITIC.•π-π stacking coherence length of both PBDB-T and ITIC in ternary blends were increased by the PC71BM.•Efficient charge transport, charge collection and reduced the bimolecular recombination were achieved in the ternary blends.•The PCE of binary OSC was obviously improved by the additional PC71BM from 9.6% to 11.0%. |
Author | Xiao, Tong Niu, Mengsi Zhang, Kangning Hao, Xiaotao Lu, Guanghao Wen, Zhenchuan Bi, Pengqing So, Shu Kong Yang, Xiaoyu Liu, Hong Qin, Wei |
Author_xml | – sequence: 1 givenname: Pengqing surname: Bi fullname: Bi, Pengqing organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China – sequence: 2 givenname: Tong surname: Xiao fullname: Xiao, Tong organization: Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China – sequence: 3 givenname: Xiaoyu surname: Yang fullname: Yang, Xiaoyu organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China – sequence: 4 givenname: Mengsi surname: Niu fullname: Niu, Mengsi organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China – sequence: 5 givenname: Zhenchuan surname: Wen fullname: Wen, Zhenchuan organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China – sequence: 6 givenname: Kangning surname: Zhang fullname: Zhang, Kangning organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China – sequence: 7 givenname: Wei surname: Qin fullname: Qin, Wei organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China – sequence: 8 givenname: Shu Kong surname: So fullname: So, Shu Kong organization: Department of Physics and Institute of Advanced Materials, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China – sequence: 9 givenname: Guanghao surname: Lu fullname: Lu, Guanghao email: guanghao.lu@mail.xjtu.edu.cn organization: Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China – sequence: 10 givenname: Xiaotao surname: Hao fullname: Hao, Xiaotao email: haoxt@sdu.edu.cn organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China – sequence: 11 givenname: Hong surname: Liu fullname: Liu, Hong organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China |
BookMark | eNqFkM1KAzEUhbOoYK19Axd5gRmTzG9dCFL8A0EQXYc7mTvTlDRTbtKBvr1T6sqF3s1ZfYdzvys284NHxm6kSKWQ5e029eAH9KkSsk6FTEUuZmyulJSJqoviki1D2IrpykJWUs0ZfWB_cBCt73ncIB-RojXg-H4DAXlrQyTbHKIdPG-OvDs4h4QekxbJjhM3Ireeb2y_4XukbqAdeIM8InmgIx-oB28ND4MD4gadC9fsogMXcPmTC_b19Pi5fkne3p9f1w9vickqFZMaUBQ1wEp1KCQUqi4b2XRVlq2gzAXkUnUlNpU0WBRtLqpKdaapV01WVm1W1dmC5edeQ0MIhJ3ek91No7QU-qRLb_VZlz7p0kLqSdeE3f3CjI1wEhAJrPsPvj_DOD02WiQdjMVJSGsJTdTtYP8u-AaYkI-v |
CitedBy_id | crossref_primary_10_1007_s12274_020_3169_y crossref_primary_10_1088_2053_1583_abdf6b crossref_primary_10_1039_D1EE03989J crossref_primary_10_1109_JPHOTOV_2019_2925556 crossref_primary_10_7498_aps_69_20200624 crossref_primary_10_1016_j_orgel_2019_05_020 crossref_primary_10_1021_acsami_9b12522 crossref_primary_10_1021_acsaem_9b02302 crossref_primary_10_1016_j_nanoen_2022_107463 crossref_primary_10_1002_smll_202000441 crossref_primary_10_1021_acsenergylett_1c01154 crossref_primary_10_1039_C9TC04969J crossref_primary_10_1016_j_orgel_2019_03_030 crossref_primary_10_1002_adfm_202100316 crossref_primary_10_1021_acs_jpcc_1c07320 crossref_primary_10_1088_1361_6528_ac3612 crossref_primary_10_3389_fchem_2020_00211 crossref_primary_10_3389_fchem_2021_684241 crossref_primary_10_1002_aelm_201900497 crossref_primary_10_1002_pssr_202100107 crossref_primary_10_1016_j_orgel_2019_105382 crossref_primary_10_1002_adom_201901241 crossref_primary_10_1002_solr_201900552 crossref_primary_10_1002_solr_201800263 crossref_primary_10_1021_acsaem_3c03094 crossref_primary_10_1016_j_jmat_2021_01_010 crossref_primary_10_1016_j_jpowsour_2019_227442 crossref_primary_10_1002_adfm_202402128 crossref_primary_10_1016_j_orgel_2021_106063 crossref_primary_10_1002_solr_202000047 crossref_primary_10_1002_solr_202100819 crossref_primary_10_1016_j_orgel_2018_08_029 crossref_primary_10_1039_D1TA02345D crossref_primary_10_1088_1361_6463_abbd66 crossref_primary_10_1021_acs_jpcc_9b03572 crossref_primary_10_1016_j_nanoen_2019_104119 crossref_primary_10_1039_C9TA01195A crossref_primary_10_1063_5_0080456 crossref_primary_10_1002_aenm_201801968 crossref_primary_10_1002_solr_202100007 crossref_primary_10_31202_ecjse_407306 crossref_primary_10_1007_s11426_020_9926_x crossref_primary_10_1021_acsami_0c12845 crossref_primary_10_1039_C9TA11613C crossref_primary_10_1039_D2EE03535A crossref_primary_10_1002_admi_201801396 crossref_primary_10_1021_acs_chemmater_9b02520 crossref_primary_10_1021_jacs_4c01139 crossref_primary_10_1002_adfm_201808731 crossref_primary_10_1039_D1SE01258D crossref_primary_10_1002_smll_202007746 crossref_primary_10_1016_j_nanoen_2020_104447 crossref_primary_10_1016_j_orgel_2019_05_034 crossref_primary_10_1002_solr_202000165 crossref_primary_10_1002_adma_202416785 crossref_primary_10_1002_aenm_201903609 crossref_primary_10_1016_j_orgel_2018_11_006 crossref_primary_10_1016_j_orgel_2020_105924 crossref_primary_10_1039_C9TA12046G crossref_primary_10_1039_D0TA08559F crossref_primary_10_1016_j_solener_2021_05_011 crossref_primary_10_1039_C8TC03004A crossref_primary_10_1039_D1TA10581G crossref_primary_10_1016_j_cclet_2019_01_028 crossref_primary_10_1007_s13233_022_0069_x crossref_primary_10_1002_solr_201900087 crossref_primary_10_1021_acs_jpcc_9b06707 crossref_primary_10_1016_j_solener_2019_03_093 crossref_primary_10_1016_j_cej_2022_138018 crossref_primary_10_1021_acsami_0c20389 crossref_primary_10_1016_j_cclet_2020_02_013 crossref_primary_10_1016_j_orgel_2021_106289 crossref_primary_10_1021_acs_jpcc_9b06267 crossref_primary_10_1021_acsaem_8b01311 crossref_primary_10_1039_C8TC05670F crossref_primary_10_1021_acsaem_0c00218 crossref_primary_10_2139_ssrn_4089368 crossref_primary_10_1002_solr_201900071 crossref_primary_10_1016_j_nanoen_2020_105513 crossref_primary_10_1016_j_synthmet_2021_116783 crossref_primary_10_1021_acsaem_1c01653 crossref_primary_10_1002_smll_202104623 crossref_primary_10_1016_j_orgel_2019_105587 crossref_primary_10_1016_j_polymer_2020_122900 crossref_primary_10_1002_adom_201900913 crossref_primary_10_1016_j_jechem_2020_09_025 crossref_primary_10_1021_acs_jpclett_2c01565 crossref_primary_10_1007_s11426_024_2244_8 crossref_primary_10_1021_acsami_8b18240 crossref_primary_10_1016_j_cej_2023_145201 crossref_primary_10_1063_5_0181582 crossref_primary_10_1016_j_orgel_2018_12_006 crossref_primary_10_1002_solr_202000400 crossref_primary_10_1016_j_cej_2025_159972 crossref_primary_10_1016_j_nanoen_2019_104271 crossref_primary_10_1021_jacs_3c01634 crossref_primary_10_1002_adma_202310390 crossref_primary_10_1021_acs_jpcc_4c00299 crossref_primary_10_1002_adfm_202002181 crossref_primary_10_1016_j_colsurfa_2020_125967 crossref_primary_10_3389_fchem_2018_00398 crossref_primary_10_1002_adma_202210865 crossref_primary_10_3389_fchem_2020_00190 crossref_primary_10_1002_solr_202000374 crossref_primary_10_1002_solr_202000130 crossref_primary_10_1088_2058_8585_ab556f crossref_primary_10_1002_aenm_202302252 crossref_primary_10_1007_s11426_019_9634_5 crossref_primary_10_1021_acsphotonics_8b01134 crossref_primary_10_1039_C8NR09467E crossref_primary_10_1002_adma_202107476 crossref_primary_10_1039_C9TC04680A crossref_primary_10_1021_acsami_0c07173 crossref_primary_10_1002_cssc_202100566 crossref_primary_10_1039_D1TA04030H crossref_primary_10_1002_adma_202313532 crossref_primary_10_1007_s10854_023_10888_8 crossref_primary_10_1055_a_1472_3989 crossref_primary_10_1002_ente_202201176 crossref_primary_10_1016_j_surfin_2020_100921 crossref_primary_10_1002_adfm_202200478 crossref_primary_10_1016_j_dyepig_2021_109424 crossref_primary_10_1002_admi_202000577 crossref_primary_10_1039_C8TC01542B crossref_primary_10_1021_acs_jpclett_0c00919 crossref_primary_10_1016_j_physleta_2019_126001 crossref_primary_10_1021_acs_jpclett_9b03502 |
Cites_doi | 10.1002/aenm.201701548 10.1038/nphoton.2016.240 10.1039/C5EE02641E 10.1021/acs.chemmater.6b05194 10.1002/adma.201402072 10.1002/adma.201602776 10.1039/C5EE03315B 10.1126/science.270.5243.1789 10.1039/C4TA04070H 10.1021/acs.jpcc.7b03001 10.1021/jacs.6b11991 10.1002/aenm.201301377 10.1039/c3cs60200a 10.1002/adma.201701308 10.1021/ja201837e 10.1038/nenergy.2016.89 10.1002/adma.201002687 10.1021/nl103482n 10.1002/adma.200702672 10.1021/jp9120639 10.1002/adma.201602570 10.1038/nmat2102 10.1002/adma.201600281 10.1038/nphoton.2012.11 10.1103/PhysRevB.55.R656 10.1038/nmat2533 10.1039/c2ee22056c 10.1002/adom.201400542 10.1038/ncomms2587 10.1002/adma.200903971 10.1021/ja9108787 10.1039/C5NR06244F 10.1039/C7TA01557G 10.1021/acs.chemrev.5b00165 10.1021/jacs.7b02677 10.1107/S0021889809040126 10.1002/adma.201605437 10.1002/adma.201604059 10.1002/adma.201004301 10.1002/anie.200702506 10.1021/acsami.6b07612 10.1021/cr050149z 10.1021/nl200552r 10.1038/nphoton.2015.9 10.1039/C4EE02003K 10.1002/aelm.201600359 10.1002/adma.201603588 10.1002/adma.201602834 10.1039/c3ee44202k 10.1039/C2JM14967B 10.1021/cr300005u 10.1103/PhysRevB.58.R13411 10.1002/adma.201300623 10.1038/nenergy.2016.118 10.1002/adfm.200304399 10.1002/adma.200703097 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd |
Copyright_xml | – notice: 2018 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nanoen.2018.01.040 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 90 |
ExternalDocumentID | 10_1016_j_nanoen_2018_01_040 S2211285518300491 |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ JARJE KOM M41 MAGPM MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSM SSR SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c372t-8ae058aa92fe01a5286b1bf7339a640a412f6eb71ce55d40772fcb89b367d3783 |
IEDL.DBID | .~1 |
ISSN | 2211-2855 |
IngestDate | Thu Apr 24 22:55:15 EDT 2025 Tue Jul 01 01:56:00 EDT 2025 Fri Feb 23 02:30:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Vertical phase distribution Ternary organic solar cells Charge transport Non-fullerene acceptor |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-8ae058aa92fe01a5286b1bf7339a640a412f6eb71ce55d40772fcb89b367d3783 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1016_j_nanoen_2018_01_040 crossref_citationtrail_10_1016_j_nanoen_2018_01_040 elsevier_sciencedirect_doi_10_1016_j_nanoen_2018_01_040 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2018 2018-04-00 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: April 2018 |
PublicationDecade | 2010 |
PublicationTitle | Nano energy |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Blom, De Jong, Munster (bib33) 1997; 55 Duan, Zhang, Zhong, Huang, Cao (bib5) 2013; 42 Ameri, Khoram, Heumuller, Baran, Machui, Troeger, Sgobba, Guldi, Halik, Rathgeber, Scherf, Brabec (bib26) 2014; 2 H. Fu, Z. Wang, Y. Sun, Sol. RRL. Chen, Nakahara, Wei, Nordlund, Russell (bib41) 2011; 11 Chen, Liu, Wang, Nakahara, Russell (bib45) 2011; 11 Riedel, Parisi, Dyakonov, Lutsen, Vanderzande, Hummelen (bib38) 2004; 14 Zhao, Li, Yao, Zhang, Zhang, Yang, Hou (bib11) 2017; 139 Liu, Zhao, Tumbleston, Wang, Gu, Wang, Briseno, Ade, Russell (bib53) 2014; 4 Hendricks, Lu, Drzal, Lee (bib57) 2008; 20 Etzold, Howard, Mauer, Meister, Kim, Lee, Baek, Laquai (bib50) 2011; 133 Liu, Xue, Huo, Sun, An, Zhang, Russell, Liu, Sun (bib23) 2017; 29 Spyropoulos, Kubis, Li, Baran, Lucera, Salvador, Ameri, Voigt, Krebs, Brabec (bib22) 2014; 7 Guo, Ohkita, Yokoya, Benten, Ito (bib51) 2010; 132 Li, Zhu, Yang (bib4) 2012; 6 Oosterhout, Wienk, van Bavel, Thiedmann, Jan Anton Koster, Gilot, Loos, Schmidt, Janssen (bib42) 2009; 8 Günes, Neugebauer, Sariciftci (bib2) 2007; 107 Lu, Blakesley, Himmelberger, Pingel, Frisch, Lieberwirth, Salzmann, Oehzelt, Di Pietro, Salleo, Koch, Neher (bib40) 2013; 4 Chen, Nikiforov, Darling (bib55) 2012; 5 Huang, Li, Chien, Hsiao, Kekuda, Chen, Lin, Ho, Chu (bib54) 2010; 114 Dou, Liu, Hong, Li, Yang (bib7) 2015; 115 Campoy-Quiles, Ferenczi, Agostinelli, Etchegoin, Kim, Anthopoulos, Stavrinou, Bradley, Nelson (bib44) 2008; 7 An, Zhang, Zhang, Tang, Deng, Hu (bib19) 2016; 9 . Li, Gao, Wan, Zhang, Kan, Xia, Liu, Yang, Feng, Ni, Wang, Peng, Zhang, Liang, Yip, Peng, Cao, Chen (bib13) 2017; 11 Cheng, Li, Zhan (bib29) 2014; 7 Liu, Chen, Qian, Gautam, Yang, Zhao, Bergqvist, Zhang, Ma, Ade (bib52) 2016; 1 Gasparini, Jiao, Heumueller, Baran, Matt, Fladischer, Spiecker, Ade, Brabec, Ameri (bib16) 2016; 1 Cai, Huo, Sun (bib10) 2017; 29 Yang, Chen, Dou, Chang, Duan, Bob, Li, Yang (bib25) 2015; 9 Chiu, Jeng, Su, Liang, Wei (bib56) 2008; 20 Zhao, Qian, Zhang, Li, Inganäs, Gao, Hou (bib48) 2016; 28 Jin, Ding, Wang, Yuan, Guo, Yuan, Sheng, Ma, Zhao (bib49) 2017; 121 Lu, Zhang, Chen, Liu, Gong, Feng, Xu, Ma, Bo (bib27) 2016; 28 Kirschner, Smith, Wepasnick, Katz, Kirby, Borchers, Reich (bib46) 2012; 22 Ameri, Khoram, Min, Brabec (bib21) 2013; 25 Chen, Chang, Yoshimura, Ohya, You, Gao, Hong, Yang (bib12) 2014; 26 Yao, Xu, Li, Wang, Zhou (bib18) 2015; 3 Zhang, Deng, Wang, Wang, Zhang, Fang, Yang, Lu, Ma, Wei (bib47) 2017 Smilgies (bib36) 2009; 42 Liu, Guo, Yi, Huo, Xue, Sun, Fu, Xiong, Meng, Wang, Liu, Russell, Sun (bib24) 2016; 28 Wang, Yan, Lau, Wang, Liu, Fan, Lu, Zhan (bib9) 2017; 29 Szarko, Guo, Liang, Lee, Rolczynski, Strzalka, Xu, Loser, Marks, Yu, Chen (bib37) 2010; 22 Lucera, Machui, Kubis, Schmidt, Adams, Strohm, Ahmad, Forberich, Egelhaaf, Brabec (bib8) 2016; 9 Schwarz, Farley, Smith, Ghiggino (bib30) 2015; 7 Parnell, Dunbar, Pearson, Staniec, Dennison, Hamamatsu, Skoda, Lidzey, Jones (bib43) 2010; 22 Yu, Gao, Hummelen, Wudl, Heeger (bib1) 1995; 270 Li, Ye, Zhao, Zhang, Mukherjee, Ade, Hou (bib15) 2016; 28 Nian, Gao, Liu, Kan, Jiang, Liu, Xie, Peng, Russell, Ma (bib14) 2016; 28 Bi, Wu, Zheng, Xu, Yang, Feng, Zhu, Hao (bib35) 2016; 8 Bu, Gao, Wang, Zhou, Feng, Chen, Yu, Li, Lu (bib31) 2016; 2 Thompson, Fréchet (bib3) 2008; 47 Zhang, Zhang, Yin, Jiang, Wang, Xin, Ma, Yan, Huang, Cao (bib39) 2017; 139 Zhao, Li, Zhang, Liu, Hou (bib28) 2017; 29 Dang, Hirsch, Wantz, Wuest (bib6) 2013; 113 Bi, Zheng, Yang, Niu, Feng, Qin, Hao (bib17) 2017; 5 Malliaras, Salem, Brock, Scott (bib34) 1998; 58 Sun, Seo, Takacs, Seifter, Heeger (bib32) 2011; 23 Bi (10.1016/j.nanoen.2018.01.040_bib35) 2016; 8 Zhang (10.1016/j.nanoen.2018.01.040_bib47) 2017 Chen (10.1016/j.nanoen.2018.01.040_bib12) 2014; 26 Bu (10.1016/j.nanoen.2018.01.040_bib31) 2016; 2 Liu (10.1016/j.nanoen.2018.01.040_bib53) 2014; 4 Etzold (10.1016/j.nanoen.2018.01.040_bib50) 2011; 133 Cai (10.1016/j.nanoen.2018.01.040_bib10) 2017; 29 Li (10.1016/j.nanoen.2018.01.040_bib15) 2016; 28 Yao (10.1016/j.nanoen.2018.01.040_bib18) 2015; 3 Spyropoulos (10.1016/j.nanoen.2018.01.040_bib22) 2014; 7 Campoy-Quiles (10.1016/j.nanoen.2018.01.040_bib44) 2008; 7 Liu (10.1016/j.nanoen.2018.01.040_bib52) 2016; 1 Huang (10.1016/j.nanoen.2018.01.040_bib54) 2010; 114 Wang (10.1016/j.nanoen.2018.01.040_bib9) 2017; 29 Lucera (10.1016/j.nanoen.2018.01.040_bib8) 2016; 9 An (10.1016/j.nanoen.2018.01.040_bib19) 2016; 9 Smilgies (10.1016/j.nanoen.2018.01.040_bib36) 2009; 42 Thompson (10.1016/j.nanoen.2018.01.040_bib3) 2008; 47 Zhao (10.1016/j.nanoen.2018.01.040_bib11) 2017; 139 Zhang (10.1016/j.nanoen.2018.01.040_bib39) 2017; 139 Li (10.1016/j.nanoen.2018.01.040_bib13) 2017; 11 Sun (10.1016/j.nanoen.2018.01.040_bib32) 2011; 23 Malliaras (10.1016/j.nanoen.2018.01.040_bib34) 1998; 58 Lu (10.1016/j.nanoen.2018.01.040_bib27) 2016; 28 Szarko (10.1016/j.nanoen.2018.01.040_bib37) 2010; 22 Chiu (10.1016/j.nanoen.2018.01.040_bib56) 2008; 20 Parnell (10.1016/j.nanoen.2018.01.040_bib43) 2010; 22 Riedel (10.1016/j.nanoen.2018.01.040_bib38) 2004; 14 Liu (10.1016/j.nanoen.2018.01.040_bib24) 2016; 28 Chen (10.1016/j.nanoen.2018.01.040_bib55) 2012; 5 Dou (10.1016/j.nanoen.2018.01.040_bib7) 2015; 115 Gasparini (10.1016/j.nanoen.2018.01.040_bib16) 2016; 1 Chen (10.1016/j.nanoen.2018.01.040_bib41) 2011; 11 10.1016/j.nanoen.2018.01.040_bib20 Zhao (10.1016/j.nanoen.2018.01.040_bib28) 2017; 29 Kirschner (10.1016/j.nanoen.2018.01.040_bib46) 2012; 22 Oosterhout (10.1016/j.nanoen.2018.01.040_bib42) 2009; 8 Duan (10.1016/j.nanoen.2018.01.040_bib5) 2013; 42 Cheng (10.1016/j.nanoen.2018.01.040_bib29) 2014; 7 Ameri (10.1016/j.nanoen.2018.01.040_bib26) 2014; 2 Guo (10.1016/j.nanoen.2018.01.040_bib51) 2010; 132 Liu (10.1016/j.nanoen.2018.01.040_bib23) 2017; 29 Yang (10.1016/j.nanoen.2018.01.040_bib25) 2015; 9 Chen (10.1016/j.nanoen.2018.01.040_bib45) 2011; 11 Zhao (10.1016/j.nanoen.2018.01.040_bib48) 2016; 28 Blom (10.1016/j.nanoen.2018.01.040_bib33) 1997; 55 Günes (10.1016/j.nanoen.2018.01.040_bib2) 2007; 107 Nian (10.1016/j.nanoen.2018.01.040_bib14) 2016; 28 Lu (10.1016/j.nanoen.2018.01.040_bib40) 2013; 4 Bi (10.1016/j.nanoen.2018.01.040_bib17) 2017; 5 Ameri (10.1016/j.nanoen.2018.01.040_bib21) 2013; 25 Hendricks (10.1016/j.nanoen.2018.01.040_bib57) 2008; 20 Dang (10.1016/j.nanoen.2018.01.040_bib6) 2013; 113 Schwarz (10.1016/j.nanoen.2018.01.040_bib30) 2015; 7 Jin (10.1016/j.nanoen.2018.01.040_bib49) 2017; 121 Yu (10.1016/j.nanoen.2018.01.040_bib1) 1995; 270 Li (10.1016/j.nanoen.2018.01.040_bib4) 2012; 6 |
References_xml | – volume: 114 start-page: 9062 year: 2010 end-page: 9069 ident: bib54 publication-title: J. Phys. Chem. C – volume: 121 start-page: 8804 year: 2017 end-page: 8811 ident: bib49 publication-title: J. Phys. Chem. C – volume: 29 start-page: 1604059 year: 2017 ident: bib28 publication-title: Adv. Mater. – volume: 28 start-page: 4734 year: 2016 end-page: 4739 ident: bib48 publication-title: Adv. Mater. – start-page: 1701548 year: 2017 ident: bib47 publication-title: Adv. Energy Mater. – volume: 7 start-page: 158 year: 2008 ident: bib44 publication-title: Nat. Mater. – volume: 42 start-page: 9071 year: 2013 end-page: 9104 ident: bib5 publication-title: Chem. Soc. Rev. – volume: 270 start-page: 1789 year: 1995 end-page: 1791 ident: bib1 publication-title: Science – volume: 11 start-page: 85 year: 2017 end-page: 90 ident: bib13 publication-title: Nat. Photonics – volume: 4 start-page: 1588 year: 2013 ident: bib40 publication-title: Nat. Commun. – volume: 47 start-page: 58 year: 2008 end-page: 77 ident: bib3 publication-title: Angew. Chem. Int. Ed. – volume: 8 start-page: 818 year: 2009 ident: bib42 publication-title: Nat. Mater. – volume: 23 start-page: 1679 year: 2011 end-page: 1683 ident: bib32 publication-title: Adv. Mater. – volume: 5 start-page: 8045 year: 2012 end-page: 8074 ident: bib55 publication-title: Energy Environ. Sci. – volume: 4 start-page: 1301377 year: 2014 ident: bib53 publication-title: Adv. Energy Mater. – volume: 28 start-page: 10008 year: 2016 end-page: 10015 ident: bib24 publication-title: Adv. Mater. – reference: 〉. – volume: 2 start-page: 19461 year: 2014 end-page: 19472 ident: bib26 publication-title: J. Mater. Chem. A – volume: 42 start-page: 1030 year: 2009 end-page: 1034 ident: bib36 publication-title: J. Appl. Crystallogr. – volume: 22 start-page: 5468 year: 2010 end-page: 5472 ident: bib37 publication-title: Adv. Mater. – volume: 28 start-page: 8184 year: 2016 end-page: 8190 ident: bib14 publication-title: Adv. Mater. – volume: 7 start-page: 2005 year: 2014 end-page: 2011 ident: bib29 publication-title: Energy Environ. Sci. – volume: 22 start-page: 4364 year: 2012 end-page: 4370 ident: bib46 publication-title: J. Mater. Chem. – volume: 1 start-page: 16118 year: 2016 ident: bib16 publication-title: Nat. Energy – volume: 26 start-page: 5670 year: 2014 end-page: 5677 ident: bib12 publication-title: Adv. Mater. – volume: 7 start-page: 3284 year: 2014 end-page: 3290 ident: bib22 publication-title: Energy Environ. Sci. – volume: 139 start-page: 7148 year: 2017 end-page: 7151 ident: bib11 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 9423 year: 2016 end-page: 9429 ident: bib15 publication-title: Adv. Mater. – volume: 11 start-page: 2071 year: 2011 end-page: 2078 ident: bib45 publication-title: Nano Lett. – volume: 139 start-page: 2387 year: 2017 end-page: 2395 ident: bib39 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 16089 year: 2016 ident: bib52 publication-title: Nat. Energy – volume: 9 start-page: 190 year: 2015 end-page: 198 ident: bib25 publication-title: Nat. Photonics – volume: 107 start-page: 1324 year: 2007 end-page: 1338 ident: bib2 publication-title: Chem. Rev. – volume: 9 start-page: 281 year: 2016 end-page: 322 ident: bib19 publication-title: Energy Environ. Sci. – reference: H. Fu, Z. Wang, Y. Sun, Sol. RRL. 〈 – volume: 14 start-page: 38 year: 2004 end-page: 44 ident: bib38 publication-title: Adv. Funct. Mater. – volume: 20 start-page: 2573 year: 2008 end-page: 2578 ident: bib56 publication-title: Adv. Mater. – volume: 115 start-page: 12633 year: 2015 end-page: 12665 ident: bib7 publication-title: Chem. Rev. – volume: 11 start-page: 561 year: 2011 end-page: 567 ident: bib41 publication-title: Nano Lett. – volume: 9 start-page: 89 year: 2016 end-page: 94 ident: bib8 publication-title: Energy Environ. Sci. – volume: 20 start-page: 2008 year: 2008 end-page: 2012 ident: bib57 publication-title: Adv. Mater. – volume: 25 start-page: 4245 year: 2013 end-page: 4266 ident: bib21 publication-title: Adv. Mater. – volume: 55 start-page: R656 year: 1997 ident: bib33 publication-title: Phys. Rev. B – volume: 22 start-page: 2444 year: 2010 end-page: 2447 ident: bib43 publication-title: Adv. Mater. – volume: 6 start-page: 153 year: 2012 end-page: 161 ident: bib4 publication-title: Nat. Photonics – volume: 7 start-page: 19899 year: 2015 end-page: 19904 ident: bib30 publication-title: Nanoscale – volume: 58 start-page: R13411 year: 1998 ident: bib34 publication-title: Phys. Rev. B – volume: 8 start-page: 23212 year: 2016 end-page: 23221 ident: bib35 publication-title: ACS Appl. Mater. Interfaces – volume: 29 start-page: 1605437 year: 2017 ident: bib10 publication-title: Adv. Mater. – volume: 2 start-page: 1600359 year: 2016 ident: bib31 publication-title: Adv. Electron. Mater. – volume: 5 start-page: 12120 year: 2017 end-page: 12130 ident: bib17 publication-title: J. Mater. Chem. A – volume: 132 start-page: 9631 year: 2010 end-page: 9637 ident: bib51 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 321 year: 2015 end-page: 327 ident: bib18 publication-title: Adv. Opt. Mater. – volume: 133 start-page: 9469 year: 2011 end-page: 9479 ident: bib50 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 9559 year: 2016 end-page: 9566 ident: bib27 publication-title: Adv. Mater. – volume: 29 start-page: 2914 year: 2017 end-page: 2920 ident: bib23 publication-title: Chem. Mater. – volume: 29 start-page: 1701308 year: 2017 ident: bib9 publication-title: Adv. Mater. – volume: 113 start-page: 3734 year: 2013 end-page: 3765 ident: bib6 publication-title: Chem. Rev. – start-page: 1701548 year: 2017 ident: 10.1016/j.nanoen.2018.01.040_bib47 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701548 – volume: 11 start-page: 85 year: 2017 ident: 10.1016/j.nanoen.2018.01.040_bib13 publication-title: Nat. Photonics doi: 10.1038/nphoton.2016.240 – volume: 9 start-page: 281 year: 2016 ident: 10.1016/j.nanoen.2018.01.040_bib19 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02641E – volume: 29 start-page: 2914 year: 2017 ident: 10.1016/j.nanoen.2018.01.040_bib23 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b05194 – volume: 26 start-page: 5670 year: 2014 ident: 10.1016/j.nanoen.2018.01.040_bib12 publication-title: Adv. Mater. doi: 10.1002/adma.201402072 – volume: 28 start-page: 9423 year: 2016 ident: 10.1016/j.nanoen.2018.01.040_bib15 publication-title: Adv. Mater. doi: 10.1002/adma.201602776 – volume: 9 start-page: 89 year: 2016 ident: 10.1016/j.nanoen.2018.01.040_bib8 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03315B – volume: 270 start-page: 1789 year: 1995 ident: 10.1016/j.nanoen.2018.01.040_bib1 publication-title: Science doi: 10.1126/science.270.5243.1789 – volume: 2 start-page: 19461 year: 2014 ident: 10.1016/j.nanoen.2018.01.040_bib26 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04070H – volume: 121 start-page: 8804 year: 2017 ident: 10.1016/j.nanoen.2018.01.040_bib49 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b03001 – volume: 139 start-page: 2387 year: 2017 ident: 10.1016/j.nanoen.2018.01.040_bib39 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11991 – volume: 4 start-page: 1301377 year: 2014 ident: 10.1016/j.nanoen.2018.01.040_bib53 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201301377 – volume: 42 start-page: 9071 year: 2013 ident: 10.1016/j.nanoen.2018.01.040_bib5 publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60200a – volume: 29 start-page: 1701308 year: 2017 ident: 10.1016/j.nanoen.2018.01.040_bib9 publication-title: Adv. Mater. doi: 10.1002/adma.201701308 – volume: 133 start-page: 9469 year: 2011 ident: 10.1016/j.nanoen.2018.01.040_bib50 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja201837e – volume: 1 start-page: 16089 year: 2016 ident: 10.1016/j.nanoen.2018.01.040_bib52 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.89 – volume: 22 start-page: 5468 year: 2010 ident: 10.1016/j.nanoen.2018.01.040_bib37 publication-title: Adv. Mater. doi: 10.1002/adma.201002687 – volume: 11 start-page: 561 year: 2011 ident: 10.1016/j.nanoen.2018.01.040_bib41 publication-title: Nano Lett. doi: 10.1021/nl103482n – volume: 20 start-page: 2008 year: 2008 ident: 10.1016/j.nanoen.2018.01.040_bib57 publication-title: Adv. Mater. doi: 10.1002/adma.200702672 – volume: 114 start-page: 9062 year: 2010 ident: 10.1016/j.nanoen.2018.01.040_bib54 publication-title: J. Phys. Chem. C doi: 10.1021/jp9120639 – volume: 28 start-page: 10008 year: 2016 ident: 10.1016/j.nanoen.2018.01.040_bib24 publication-title: Adv. Mater. doi: 10.1002/adma.201602570 – volume: 7 start-page: 158 year: 2008 ident: 10.1016/j.nanoen.2018.01.040_bib44 publication-title: Nat. Mater. doi: 10.1038/nmat2102 – volume: 28 start-page: 4734 year: 2016 ident: 10.1016/j.nanoen.2018.01.040_bib48 publication-title: Adv. Mater. doi: 10.1002/adma.201600281 – volume: 6 start-page: 153 year: 2012 ident: 10.1016/j.nanoen.2018.01.040_bib4 publication-title: Nat. Photonics doi: 10.1038/nphoton.2012.11 – volume: 55 start-page: R656 year: 1997 ident: 10.1016/j.nanoen.2018.01.040_bib33 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.55.R656 – volume: 8 start-page: 818 year: 2009 ident: 10.1016/j.nanoen.2018.01.040_bib42 publication-title: Nat. Mater. doi: 10.1038/nmat2533 – volume: 5 start-page: 8045 year: 2012 ident: 10.1016/j.nanoen.2018.01.040_bib55 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22056c – volume: 3 start-page: 321 year: 2015 ident: 10.1016/j.nanoen.2018.01.040_bib18 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201400542 – volume: 4 start-page: 1588 year: 2013 ident: 10.1016/j.nanoen.2018.01.040_bib40 publication-title: Nat. Commun. doi: 10.1038/ncomms2587 – volume: 22 start-page: 2444 year: 2010 ident: 10.1016/j.nanoen.2018.01.040_bib43 publication-title: Adv. Mater. doi: 10.1002/adma.200903971 – volume: 132 start-page: 9631 year: 2010 ident: 10.1016/j.nanoen.2018.01.040_bib51 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9108787 – volume: 7 start-page: 19899 year: 2015 ident: 10.1016/j.nanoen.2018.01.040_bib30 publication-title: Nanoscale doi: 10.1039/C5NR06244F – volume: 5 start-page: 12120 year: 2017 ident: 10.1016/j.nanoen.2018.01.040_bib17 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA01557G – volume: 115 start-page: 12633 year: 2015 ident: 10.1016/j.nanoen.2018.01.040_bib7 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00165 – volume: 139 start-page: 7148 year: 2017 ident: 10.1016/j.nanoen.2018.01.040_bib11 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b02677 – volume: 42 start-page: 1030 year: 2009 ident: 10.1016/j.nanoen.2018.01.040_bib36 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889809040126 – volume: 29 start-page: 1605437 year: 2017 ident: 10.1016/j.nanoen.2018.01.040_bib10 publication-title: Adv. Mater. doi: 10.1002/adma.201605437 – volume: 29 start-page: 1604059 year: 2017 ident: 10.1016/j.nanoen.2018.01.040_bib28 publication-title: Adv. Mater. doi: 10.1002/adma.201604059 – volume: 23 start-page: 1679 year: 2011 ident: 10.1016/j.nanoen.2018.01.040_bib32 publication-title: Adv. Mater. doi: 10.1002/adma.201004301 – volume: 47 start-page: 58 year: 2008 ident: 10.1016/j.nanoen.2018.01.040_bib3 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200702506 – volume: 8 start-page: 23212 year: 2016 ident: 10.1016/j.nanoen.2018.01.040_bib35 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b07612 – volume: 107 start-page: 1324 year: 2007 ident: 10.1016/j.nanoen.2018.01.040_bib2 publication-title: Chem. Rev. doi: 10.1021/cr050149z – volume: 11 start-page: 2071 year: 2011 ident: 10.1016/j.nanoen.2018.01.040_bib45 publication-title: Nano Lett. doi: 10.1021/nl200552r – volume: 9 start-page: 190 year: 2015 ident: 10.1016/j.nanoen.2018.01.040_bib25 publication-title: Nat. Photonics doi: 10.1038/nphoton.2015.9 – volume: 7 start-page: 3284 year: 2014 ident: 10.1016/j.nanoen.2018.01.040_bib22 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE02003K – volume: 2 start-page: 1600359 year: 2016 ident: 10.1016/j.nanoen.2018.01.040_bib31 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201600359 – volume: 28 start-page: 9559 year: 2016 ident: 10.1016/j.nanoen.2018.01.040_bib27 publication-title: Adv. Mater. doi: 10.1002/adma.201603588 – ident: 10.1016/j.nanoen.2018.01.040_bib20 – volume: 28 start-page: 8184 year: 2016 ident: 10.1016/j.nanoen.2018.01.040_bib14 publication-title: Adv. Mater. doi: 10.1002/adma.201602834 – volume: 7 start-page: 2005 year: 2014 ident: 10.1016/j.nanoen.2018.01.040_bib29 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee44202k – volume: 22 start-page: 4364 year: 2012 ident: 10.1016/j.nanoen.2018.01.040_bib46 publication-title: J. Mater. Chem. doi: 10.1039/C2JM14967B – volume: 113 start-page: 3734 year: 2013 ident: 10.1016/j.nanoen.2018.01.040_bib6 publication-title: Chem. Rev. doi: 10.1021/cr300005u – volume: 58 start-page: R13411 year: 1998 ident: 10.1016/j.nanoen.2018.01.040_bib34 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.58.R13411 – volume: 25 start-page: 4245 year: 2013 ident: 10.1016/j.nanoen.2018.01.040_bib21 publication-title: Adv. Mater. doi: 10.1002/adma.201300623 – volume: 1 start-page: 16118 year: 2016 ident: 10.1016/j.nanoen.2018.01.040_bib16 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.118 – volume: 14 start-page: 38 year: 2004 ident: 10.1016/j.nanoen.2018.01.040_bib38 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200304399 – volume: 20 start-page: 2573 year: 2008 ident: 10.1016/j.nanoen.2018.01.040_bib56 publication-title: Adv. Mater. doi: 10.1002/adma.200703097 |
SSID | ssj0000651712 |
Score | 2.5280545 |
Snippet | The vertical phase distribution of components in bulk heterojunction is diversified in organic solar cells (OSCs). The electron donors (acceptors) can be... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 81 |
SubjectTerms | Charge transport Non-fullerene acceptor Ternary organic solar cells Vertical phase distribution |
Title | Regulating the vertical phase distribution by fullerene-derivative in high performance ternary organic solar cells |
URI | https://dx.doi.org/10.1016/j.nanoen.2018.01.040 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DL3oQP_GbHLzGNR9t0uMYjqmwgzrYrSRpihOpY07Bi3-7eUk7FUTBY0peKS_hffW93w-hs8RwZZQ1RPGSE5EbTZShgmS2yquUGpfrgPY5yoZjcTVJJx3Ub2dhoK2ysf3Rpgdr3TzpNtrszqbT7i3zuQtTgCgGqFFxgl1IaOs7f6fLOot3sVSGn56wn4BAO0EX2rxqXT85AEKlKuB3QhXkJw_1xesMNtFGEy7iXvyiLdRx9TZa_wIiuIPmN5FO3i-wj-ZwIFj2mseze--hcAnIuA2pFTZvGOrtgRGFlP4FrwH3G09rDLjFePY5RoBDpXD-hiPvk8XPkARjKPQ_76Lx4OKuPyQNkwKxXLIFUdolqdI6Z5VLqE6Zygw1leTcH4VItKCsypyR1Lo0LX2OJ1lljcoNz2TJpeJ7aKV-qt0-wlkpfJIkhC4TLpxlObU5c7TkeSZhLvUA8VZ7hW1gxoHt4rFo-8keiqjzAnReJLTwOj9AZCk1izAbf-yX7cEU365L4T3Br5KH_5Y8Qmuwim07x2hlMX9xJz4iWZjTcOVO0Wrv8no4-gDPYeI6 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA4yc1AP4oq7OXgN0yxt0qOIMjo6BxfwFpI0xRGpw8wozL83L21dQBQ8dnmlvIS35b3vQ-g4sVxZ5SxRvOBE5NYQZakgmSvzMqXW5yaifQ6z_r24fEgfFtBpOwsDbZWN7a9terTWzZ1eo83eeDTq3bKQuzAFiGKAGgUT7F1ApxId1D25GPSHH6WW4GWpjOeeIEJAph2ii51elalePGChUhUhPKEQ8pOT-uJ4zlfRShMx4pP6p9bQgq_W0fIXHMENNLmpGeXDBQ4BHY4cy0H5ePwYnBQuABy34bXCdo6h5B5JUUgRPvAWob_xqMIAXYzHn5MEOBYLJ3NcUz85PIU8GEOtf7qJ7s_P7k77pCFTII5LNiPK-CRVxuSs9Ak1KVOZpbaUnIfVEIkRlJWZt5I6n6ZFSPMkK51VueWZLLhUfAt1qpfKbyOcFSLkSUKYIuHCO5ZTlzNPC55nEkZTdxBvtaddgzQOhBfPum0pe9K1zjXoXCdUB53vIPIhNa6RNv54X7YLo7_tGB2cwa-Su_-WPEKL_bvrK311MRzsoSV4Unfx7KPObPLqD0KAMrOHzQZ8B5TZ5Os |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulating+the+vertical+phase+distribution+by+fullerene-derivative+in+high+performance+ternary+organic+solar+cells&rft.jtitle=Nano+energy&rft.au=Bi%2C+Pengqing&rft.au=Xiao%2C+Tong&rft.au=Yang%2C+Xiaoyu&rft.au=Niu%2C+Mengsi&rft.date=2018-04-01&rft.pub=Elsevier+Ltd&rft.issn=2211-2855&rft.volume=46&rft.spage=81&rft.epage=90&rft_id=info:doi/10.1016%2Fj.nanoen.2018.01.040&rft.externalDocID=S2211285518300491 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon |