Regulating the vertical phase distribution by fullerene-derivative in high performance ternary organic solar cells

The vertical phase distribution of components in bulk heterojunction is diversified in organic solar cells (OSCs). The electron donors (acceptors) can be accumulated (depleted) at the interface of active layer and charge extraction layer. The variation of vertical phase distribution significantly in...

Full description

Saved in:
Bibliographic Details
Published inNano energy Vol. 46; pp. 81 - 90
Main Authors Bi, Pengqing, Xiao, Tong, Yang, Xiaoyu, Niu, Mengsi, Wen, Zhenchuan, Zhang, Kangning, Qin, Wei, So, Shu Kong, Lu, Guanghao, Hao, Xiaotao, Liu, Hong
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2018
Subjects
Online AccessGet full text
ISSN2211-2855
DOI10.1016/j.nanoen.2018.01.040

Cover

Loading…
Abstract The vertical phase distribution of components in bulk heterojunction is diversified in organic solar cells (OSCs). The electron donors (acceptors) can be accumulated (depleted) at the interface of active layer and charge extraction layer. The variation of vertical phase distribution significantly influences device performance because of its impact on the charge transport and charge recombination. In order to achieve favorable vertical phase distribution in OSCs based on poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene))-co-(1,3-di(5-thiophene-2-yl)–5,7-bis(2-ethylhexyl) benzo[1,2-c:4,5-c′]dithiophene-4,8-dione)] (PBDB-T):3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))−5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno[1,2-b:5,6-b′]-dithiophene (ITIC), phenyl-C71-butyric-acid-methyl ester (PC71BM) was incorporated into the binary system to fabricate ternary OSCs. In the ternary blend, PC71BM can effectively regulate the phase distribution of PBDB-T and ITIC in vertical direction, which provides favorable vertical phase distribution for charge transport. Moreover, the addition of PC71BM can also effectively increase the π-π stacking coherence length of both donor and acceptor, which facilitates charge transport and reduces the bimolecular recombination. The addition of an appropriate quantity of PC71BM can obviously improve both fill factor and short-circuit current density of the OSC based on PBDB-T:ITIC while open-circuit voltage reduces only about 0.01 V, which indicates a rational low energy loss. Consequently, the ternary OSC exhibits a best PCE of 11.0% compared to the 9.6% PCE of the binary counterpart. Ternary system of PBDB-T:PC71BM:ITIC is systematically investigated by depth-resolved light absorption spectroscopy, GIWAXS, and transient absorption spectroscopy. It is proved that PC71BM can regulate the phase distribution of PBDB-T and ITIC in vertical direction. As a result, the ternary OSC exhibits a best PCE of 11.0% compared to the 9.6% PCE of the binary counterpart. [Display omitted] •PC71BM in the ternary blends can effectively regulate the vertical phase distribution of PBDB-T and ITIC.•π-π stacking coherence length of both PBDB-T and ITIC in ternary blends were increased by the PC71BM.•Efficient charge transport, charge collection and reduced the bimolecular recombination were achieved in the ternary blends.•The PCE of binary OSC was obviously improved by the additional PC71BM from 9.6% to 11.0%.
AbstractList The vertical phase distribution of components in bulk heterojunction is diversified in organic solar cells (OSCs). The electron donors (acceptors) can be accumulated (depleted) at the interface of active layer and charge extraction layer. The variation of vertical phase distribution significantly influences device performance because of its impact on the charge transport and charge recombination. In order to achieve favorable vertical phase distribution in OSCs based on poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene))-co-(1,3-di(5-thiophene-2-yl)–5,7-bis(2-ethylhexyl) benzo[1,2-c:4,5-c′]dithiophene-4,8-dione)] (PBDB-T):3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))−5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno[1,2-b:5,6-b′]-dithiophene (ITIC), phenyl-C71-butyric-acid-methyl ester (PC71BM) was incorporated into the binary system to fabricate ternary OSCs. In the ternary blend, PC71BM can effectively regulate the phase distribution of PBDB-T and ITIC in vertical direction, which provides favorable vertical phase distribution for charge transport. Moreover, the addition of PC71BM can also effectively increase the π-π stacking coherence length of both donor and acceptor, which facilitates charge transport and reduces the bimolecular recombination. The addition of an appropriate quantity of PC71BM can obviously improve both fill factor and short-circuit current density of the OSC based on PBDB-T:ITIC while open-circuit voltage reduces only about 0.01 V, which indicates a rational low energy loss. Consequently, the ternary OSC exhibits a best PCE of 11.0% compared to the 9.6% PCE of the binary counterpart. Ternary system of PBDB-T:PC71BM:ITIC is systematically investigated by depth-resolved light absorption spectroscopy, GIWAXS, and transient absorption spectroscopy. It is proved that PC71BM can regulate the phase distribution of PBDB-T and ITIC in vertical direction. As a result, the ternary OSC exhibits a best PCE of 11.0% compared to the 9.6% PCE of the binary counterpart. [Display omitted] •PC71BM in the ternary blends can effectively regulate the vertical phase distribution of PBDB-T and ITIC.•π-π stacking coherence length of both PBDB-T and ITIC in ternary blends were increased by the PC71BM.•Efficient charge transport, charge collection and reduced the bimolecular recombination were achieved in the ternary blends.•The PCE of binary OSC was obviously improved by the additional PC71BM from 9.6% to 11.0%.
Author Xiao, Tong
Niu, Mengsi
Zhang, Kangning
Hao, Xiaotao
Lu, Guanghao
Wen, Zhenchuan
Bi, Pengqing
So, Shu Kong
Yang, Xiaoyu
Liu, Hong
Qin, Wei
Author_xml – sequence: 1
  givenname: Pengqing
  surname: Bi
  fullname: Bi, Pengqing
  organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
– sequence: 2
  givenname: Tong
  surname: Xiao
  fullname: Xiao, Tong
  organization: Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
– sequence: 3
  givenname: Xiaoyu
  surname: Yang
  fullname: Yang, Xiaoyu
  organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
– sequence: 4
  givenname: Mengsi
  surname: Niu
  fullname: Niu, Mengsi
  organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
– sequence: 5
  givenname: Zhenchuan
  surname: Wen
  fullname: Wen, Zhenchuan
  organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
– sequence: 6
  givenname: Kangning
  surname: Zhang
  fullname: Zhang, Kangning
  organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
– sequence: 7
  givenname: Wei
  surname: Qin
  fullname: Qin, Wei
  organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
– sequence: 8
  givenname: Shu Kong
  surname: So
  fullname: So, Shu Kong
  organization: Department of Physics and Institute of Advanced Materials, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
– sequence: 9
  givenname: Guanghao
  surname: Lu
  fullname: Lu, Guanghao
  email: guanghao.lu@mail.xjtu.edu.cn
  organization: Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
– sequence: 10
  givenname: Xiaotao
  surname: Hao
  fullname: Hao, Xiaotao
  email: haoxt@sdu.edu.cn
  organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
– sequence: 11
  givenname: Hong
  surname: Liu
  fullname: Liu, Hong
  organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
BookMark eNqFkM1KAzEUhbOoYK19Axd5gRmTzG9dCFL8A0EQXYc7mTvTlDRTbtKBvr1T6sqF3s1ZfYdzvys284NHxm6kSKWQ5e029eAH9KkSsk6FTEUuZmyulJSJqoviki1D2IrpykJWUs0ZfWB_cBCt73ncIB-RojXg-H4DAXlrQyTbHKIdPG-OvDs4h4QekxbJjhM3Ireeb2y_4XukbqAdeIM8InmgIx-oB28ND4MD4gadC9fsogMXcPmTC_b19Pi5fkne3p9f1w9vickqFZMaUBQ1wEp1KCQUqi4b2XRVlq2gzAXkUnUlNpU0WBRtLqpKdaapV01WVm1W1dmC5edeQ0MIhJ3ek91No7QU-qRLb_VZlz7p0kLqSdeE3f3CjI1wEhAJrPsPvj_DOD02WiQdjMVJSGsJTdTtYP8u-AaYkI-v
CitedBy_id crossref_primary_10_1007_s12274_020_3169_y
crossref_primary_10_1088_2053_1583_abdf6b
crossref_primary_10_1039_D1EE03989J
crossref_primary_10_1109_JPHOTOV_2019_2925556
crossref_primary_10_7498_aps_69_20200624
crossref_primary_10_1016_j_orgel_2019_05_020
crossref_primary_10_1021_acsami_9b12522
crossref_primary_10_1021_acsaem_9b02302
crossref_primary_10_1016_j_nanoen_2022_107463
crossref_primary_10_1002_smll_202000441
crossref_primary_10_1021_acsenergylett_1c01154
crossref_primary_10_1039_C9TC04969J
crossref_primary_10_1016_j_orgel_2019_03_030
crossref_primary_10_1002_adfm_202100316
crossref_primary_10_1021_acs_jpcc_1c07320
crossref_primary_10_1088_1361_6528_ac3612
crossref_primary_10_3389_fchem_2020_00211
crossref_primary_10_3389_fchem_2021_684241
crossref_primary_10_1002_aelm_201900497
crossref_primary_10_1002_pssr_202100107
crossref_primary_10_1016_j_orgel_2019_105382
crossref_primary_10_1002_adom_201901241
crossref_primary_10_1002_solr_201900552
crossref_primary_10_1002_solr_201800263
crossref_primary_10_1021_acsaem_3c03094
crossref_primary_10_1016_j_jmat_2021_01_010
crossref_primary_10_1016_j_jpowsour_2019_227442
crossref_primary_10_1002_adfm_202402128
crossref_primary_10_1016_j_orgel_2021_106063
crossref_primary_10_1002_solr_202000047
crossref_primary_10_1002_solr_202100819
crossref_primary_10_1016_j_orgel_2018_08_029
crossref_primary_10_1039_D1TA02345D
crossref_primary_10_1088_1361_6463_abbd66
crossref_primary_10_1021_acs_jpcc_9b03572
crossref_primary_10_1016_j_nanoen_2019_104119
crossref_primary_10_1039_C9TA01195A
crossref_primary_10_1063_5_0080456
crossref_primary_10_1002_aenm_201801968
crossref_primary_10_1002_solr_202100007
crossref_primary_10_31202_ecjse_407306
crossref_primary_10_1007_s11426_020_9926_x
crossref_primary_10_1021_acsami_0c12845
crossref_primary_10_1039_C9TA11613C
crossref_primary_10_1039_D2EE03535A
crossref_primary_10_1002_admi_201801396
crossref_primary_10_1021_acs_chemmater_9b02520
crossref_primary_10_1021_jacs_4c01139
crossref_primary_10_1002_adfm_201808731
crossref_primary_10_1039_D1SE01258D
crossref_primary_10_1002_smll_202007746
crossref_primary_10_1016_j_nanoen_2020_104447
crossref_primary_10_1016_j_orgel_2019_05_034
crossref_primary_10_1002_solr_202000165
crossref_primary_10_1002_adma_202416785
crossref_primary_10_1002_aenm_201903609
crossref_primary_10_1016_j_orgel_2018_11_006
crossref_primary_10_1016_j_orgel_2020_105924
crossref_primary_10_1039_C9TA12046G
crossref_primary_10_1039_D0TA08559F
crossref_primary_10_1016_j_solener_2021_05_011
crossref_primary_10_1039_C8TC03004A
crossref_primary_10_1039_D1TA10581G
crossref_primary_10_1016_j_cclet_2019_01_028
crossref_primary_10_1007_s13233_022_0069_x
crossref_primary_10_1002_solr_201900087
crossref_primary_10_1021_acs_jpcc_9b06707
crossref_primary_10_1016_j_solener_2019_03_093
crossref_primary_10_1016_j_cej_2022_138018
crossref_primary_10_1021_acsami_0c20389
crossref_primary_10_1016_j_cclet_2020_02_013
crossref_primary_10_1016_j_orgel_2021_106289
crossref_primary_10_1021_acs_jpcc_9b06267
crossref_primary_10_1021_acsaem_8b01311
crossref_primary_10_1039_C8TC05670F
crossref_primary_10_1021_acsaem_0c00218
crossref_primary_10_2139_ssrn_4089368
crossref_primary_10_1002_solr_201900071
crossref_primary_10_1016_j_nanoen_2020_105513
crossref_primary_10_1016_j_synthmet_2021_116783
crossref_primary_10_1021_acsaem_1c01653
crossref_primary_10_1002_smll_202104623
crossref_primary_10_1016_j_orgel_2019_105587
crossref_primary_10_1016_j_polymer_2020_122900
crossref_primary_10_1002_adom_201900913
crossref_primary_10_1016_j_jechem_2020_09_025
crossref_primary_10_1021_acs_jpclett_2c01565
crossref_primary_10_1007_s11426_024_2244_8
crossref_primary_10_1021_acsami_8b18240
crossref_primary_10_1016_j_cej_2023_145201
crossref_primary_10_1063_5_0181582
crossref_primary_10_1016_j_orgel_2018_12_006
crossref_primary_10_1002_solr_202000400
crossref_primary_10_1016_j_cej_2025_159972
crossref_primary_10_1016_j_nanoen_2019_104271
crossref_primary_10_1021_jacs_3c01634
crossref_primary_10_1002_adma_202310390
crossref_primary_10_1021_acs_jpcc_4c00299
crossref_primary_10_1002_adfm_202002181
crossref_primary_10_1016_j_colsurfa_2020_125967
crossref_primary_10_3389_fchem_2018_00398
crossref_primary_10_1002_adma_202210865
crossref_primary_10_3389_fchem_2020_00190
crossref_primary_10_1002_solr_202000374
crossref_primary_10_1002_solr_202000130
crossref_primary_10_1088_2058_8585_ab556f
crossref_primary_10_1002_aenm_202302252
crossref_primary_10_1007_s11426_019_9634_5
crossref_primary_10_1021_acsphotonics_8b01134
crossref_primary_10_1039_C8NR09467E
crossref_primary_10_1002_adma_202107476
crossref_primary_10_1039_C9TC04680A
crossref_primary_10_1021_acsami_0c07173
crossref_primary_10_1002_cssc_202100566
crossref_primary_10_1039_D1TA04030H
crossref_primary_10_1002_adma_202313532
crossref_primary_10_1007_s10854_023_10888_8
crossref_primary_10_1055_a_1472_3989
crossref_primary_10_1002_ente_202201176
crossref_primary_10_1016_j_surfin_2020_100921
crossref_primary_10_1002_adfm_202200478
crossref_primary_10_1016_j_dyepig_2021_109424
crossref_primary_10_1002_admi_202000577
crossref_primary_10_1039_C8TC01542B
crossref_primary_10_1021_acs_jpclett_0c00919
crossref_primary_10_1016_j_physleta_2019_126001
crossref_primary_10_1021_acs_jpclett_9b03502
Cites_doi 10.1002/aenm.201701548
10.1038/nphoton.2016.240
10.1039/C5EE02641E
10.1021/acs.chemmater.6b05194
10.1002/adma.201402072
10.1002/adma.201602776
10.1039/C5EE03315B
10.1126/science.270.5243.1789
10.1039/C4TA04070H
10.1021/acs.jpcc.7b03001
10.1021/jacs.6b11991
10.1002/aenm.201301377
10.1039/c3cs60200a
10.1002/adma.201701308
10.1021/ja201837e
10.1038/nenergy.2016.89
10.1002/adma.201002687
10.1021/nl103482n
10.1002/adma.200702672
10.1021/jp9120639
10.1002/adma.201602570
10.1038/nmat2102
10.1002/adma.201600281
10.1038/nphoton.2012.11
10.1103/PhysRevB.55.R656
10.1038/nmat2533
10.1039/c2ee22056c
10.1002/adom.201400542
10.1038/ncomms2587
10.1002/adma.200903971
10.1021/ja9108787
10.1039/C5NR06244F
10.1039/C7TA01557G
10.1021/acs.chemrev.5b00165
10.1021/jacs.7b02677
10.1107/S0021889809040126
10.1002/adma.201605437
10.1002/adma.201604059
10.1002/adma.201004301
10.1002/anie.200702506
10.1021/acsami.6b07612
10.1021/cr050149z
10.1021/nl200552r
10.1038/nphoton.2015.9
10.1039/C4EE02003K
10.1002/aelm.201600359
10.1002/adma.201603588
10.1002/adma.201602834
10.1039/c3ee44202k
10.1039/C2JM14967B
10.1021/cr300005u
10.1103/PhysRevB.58.R13411
10.1002/adma.201300623
10.1038/nenergy.2016.118
10.1002/adfm.200304399
10.1002/adma.200703097
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nanoen.2018.01.040
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 90
ExternalDocumentID 10_1016_j_nanoen_2018_01_040
S2211285518300491
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
JARJE
KOM
M41
MAGPM
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SPC
SPCBC
SSM
SSR
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c372t-8ae058aa92fe01a5286b1bf7339a640a412f6eb71ce55d40772fcb89b367d3783
IEDL.DBID .~1
ISSN 2211-2855
IngestDate Thu Apr 24 22:55:15 EDT 2025
Tue Jul 01 01:56:00 EDT 2025
Fri Feb 23 02:30:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Vertical phase distribution
Ternary organic solar cells
Charge transport
Non-fullerene acceptor
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-8ae058aa92fe01a5286b1bf7339a640a412f6eb71ce55d40772fcb89b367d3783
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_nanoen_2018_01_040
crossref_citationtrail_10_1016_j_nanoen_2018_01_040
elsevier_sciencedirect_doi_10_1016_j_nanoen_2018_01_040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2018
2018-04-00
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: April 2018
PublicationDecade 2010
PublicationTitle Nano energy
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Blom, De Jong, Munster (bib33) 1997; 55
Duan, Zhang, Zhong, Huang, Cao (bib5) 2013; 42
Ameri, Khoram, Heumuller, Baran, Machui, Troeger, Sgobba, Guldi, Halik, Rathgeber, Scherf, Brabec (bib26) 2014; 2
H. Fu, Z. Wang, Y. Sun, Sol. RRL.
Chen, Nakahara, Wei, Nordlund, Russell (bib41) 2011; 11
Chen, Liu, Wang, Nakahara, Russell (bib45) 2011; 11
Riedel, Parisi, Dyakonov, Lutsen, Vanderzande, Hummelen (bib38) 2004; 14
Zhao, Li, Yao, Zhang, Zhang, Yang, Hou (bib11) 2017; 139
Liu, Zhao, Tumbleston, Wang, Gu, Wang, Briseno, Ade, Russell (bib53) 2014; 4
Hendricks, Lu, Drzal, Lee (bib57) 2008; 20
Etzold, Howard, Mauer, Meister, Kim, Lee, Baek, Laquai (bib50) 2011; 133
Liu, Xue, Huo, Sun, An, Zhang, Russell, Liu, Sun (bib23) 2017; 29
Spyropoulos, Kubis, Li, Baran, Lucera, Salvador, Ameri, Voigt, Krebs, Brabec (bib22) 2014; 7
Guo, Ohkita, Yokoya, Benten, Ito (bib51) 2010; 132
Li, Zhu, Yang (bib4) 2012; 6
Oosterhout, Wienk, van Bavel, Thiedmann, Jan Anton Koster, Gilot, Loos, Schmidt, Janssen (bib42) 2009; 8
Günes, Neugebauer, Sariciftci (bib2) 2007; 107
Lu, Blakesley, Himmelberger, Pingel, Frisch, Lieberwirth, Salzmann, Oehzelt, Di Pietro, Salleo, Koch, Neher (bib40) 2013; 4
Chen, Nikiforov, Darling (bib55) 2012; 5
Huang, Li, Chien, Hsiao, Kekuda, Chen, Lin, Ho, Chu (bib54) 2010; 114
Dou, Liu, Hong, Li, Yang (bib7) 2015; 115
Campoy-Quiles, Ferenczi, Agostinelli, Etchegoin, Kim, Anthopoulos, Stavrinou, Bradley, Nelson (bib44) 2008; 7
An, Zhang, Zhang, Tang, Deng, Hu (bib19) 2016; 9
.
Li, Gao, Wan, Zhang, Kan, Xia, Liu, Yang, Feng, Ni, Wang, Peng, Zhang, Liang, Yip, Peng, Cao, Chen (bib13) 2017; 11
Cheng, Li, Zhan (bib29) 2014; 7
Liu, Chen, Qian, Gautam, Yang, Zhao, Bergqvist, Zhang, Ma, Ade (bib52) 2016; 1
Gasparini, Jiao, Heumueller, Baran, Matt, Fladischer, Spiecker, Ade, Brabec, Ameri (bib16) 2016; 1
Cai, Huo, Sun (bib10) 2017; 29
Yang, Chen, Dou, Chang, Duan, Bob, Li, Yang (bib25) 2015; 9
Chiu, Jeng, Su, Liang, Wei (bib56) 2008; 20
Zhao, Qian, Zhang, Li, Inganäs, Gao, Hou (bib48) 2016; 28
Jin, Ding, Wang, Yuan, Guo, Yuan, Sheng, Ma, Zhao (bib49) 2017; 121
Lu, Zhang, Chen, Liu, Gong, Feng, Xu, Ma, Bo (bib27) 2016; 28
Kirschner, Smith, Wepasnick, Katz, Kirby, Borchers, Reich (bib46) 2012; 22
Ameri, Khoram, Min, Brabec (bib21) 2013; 25
Chen, Chang, Yoshimura, Ohya, You, Gao, Hong, Yang (bib12) 2014; 26
Yao, Xu, Li, Wang, Zhou (bib18) 2015; 3
Zhang, Deng, Wang, Wang, Zhang, Fang, Yang, Lu, Ma, Wei (bib47) 2017
Smilgies (bib36) 2009; 42
Liu, Guo, Yi, Huo, Xue, Sun, Fu, Xiong, Meng, Wang, Liu, Russell, Sun (bib24) 2016; 28
Wang, Yan, Lau, Wang, Liu, Fan, Lu, Zhan (bib9) 2017; 29
Szarko, Guo, Liang, Lee, Rolczynski, Strzalka, Xu, Loser, Marks, Yu, Chen (bib37) 2010; 22
Lucera, Machui, Kubis, Schmidt, Adams, Strohm, Ahmad, Forberich, Egelhaaf, Brabec (bib8) 2016; 9
Schwarz, Farley, Smith, Ghiggino (bib30) 2015; 7
Parnell, Dunbar, Pearson, Staniec, Dennison, Hamamatsu, Skoda, Lidzey, Jones (bib43) 2010; 22
Yu, Gao, Hummelen, Wudl, Heeger (bib1) 1995; 270
Li, Ye, Zhao, Zhang, Mukherjee, Ade, Hou (bib15) 2016; 28
Nian, Gao, Liu, Kan, Jiang, Liu, Xie, Peng, Russell, Ma (bib14) 2016; 28
Bi, Wu, Zheng, Xu, Yang, Feng, Zhu, Hao (bib35) 2016; 8
Bu, Gao, Wang, Zhou, Feng, Chen, Yu, Li, Lu (bib31) 2016; 2
Thompson, Fréchet (bib3) 2008; 47
Zhang, Zhang, Yin, Jiang, Wang, Xin, Ma, Yan, Huang, Cao (bib39) 2017; 139
Zhao, Li, Zhang, Liu, Hou (bib28) 2017; 29
Dang, Hirsch, Wantz, Wuest (bib6) 2013; 113
Bi, Zheng, Yang, Niu, Feng, Qin, Hao (bib17) 2017; 5
Malliaras, Salem, Brock, Scott (bib34) 1998; 58
Sun, Seo, Takacs, Seifter, Heeger (bib32) 2011; 23
Bi (10.1016/j.nanoen.2018.01.040_bib35) 2016; 8
Zhang (10.1016/j.nanoen.2018.01.040_bib47) 2017
Chen (10.1016/j.nanoen.2018.01.040_bib12) 2014; 26
Bu (10.1016/j.nanoen.2018.01.040_bib31) 2016; 2
Liu (10.1016/j.nanoen.2018.01.040_bib53) 2014; 4
Etzold (10.1016/j.nanoen.2018.01.040_bib50) 2011; 133
Cai (10.1016/j.nanoen.2018.01.040_bib10) 2017; 29
Li (10.1016/j.nanoen.2018.01.040_bib15) 2016; 28
Yao (10.1016/j.nanoen.2018.01.040_bib18) 2015; 3
Spyropoulos (10.1016/j.nanoen.2018.01.040_bib22) 2014; 7
Campoy-Quiles (10.1016/j.nanoen.2018.01.040_bib44) 2008; 7
Liu (10.1016/j.nanoen.2018.01.040_bib52) 2016; 1
Huang (10.1016/j.nanoen.2018.01.040_bib54) 2010; 114
Wang (10.1016/j.nanoen.2018.01.040_bib9) 2017; 29
Lucera (10.1016/j.nanoen.2018.01.040_bib8) 2016; 9
An (10.1016/j.nanoen.2018.01.040_bib19) 2016; 9
Smilgies (10.1016/j.nanoen.2018.01.040_bib36) 2009; 42
Thompson (10.1016/j.nanoen.2018.01.040_bib3) 2008; 47
Zhao (10.1016/j.nanoen.2018.01.040_bib11) 2017; 139
Zhang (10.1016/j.nanoen.2018.01.040_bib39) 2017; 139
Li (10.1016/j.nanoen.2018.01.040_bib13) 2017; 11
Sun (10.1016/j.nanoen.2018.01.040_bib32) 2011; 23
Malliaras (10.1016/j.nanoen.2018.01.040_bib34) 1998; 58
Lu (10.1016/j.nanoen.2018.01.040_bib27) 2016; 28
Szarko (10.1016/j.nanoen.2018.01.040_bib37) 2010; 22
Chiu (10.1016/j.nanoen.2018.01.040_bib56) 2008; 20
Parnell (10.1016/j.nanoen.2018.01.040_bib43) 2010; 22
Riedel (10.1016/j.nanoen.2018.01.040_bib38) 2004; 14
Liu (10.1016/j.nanoen.2018.01.040_bib24) 2016; 28
Chen (10.1016/j.nanoen.2018.01.040_bib55) 2012; 5
Dou (10.1016/j.nanoen.2018.01.040_bib7) 2015; 115
Gasparini (10.1016/j.nanoen.2018.01.040_bib16) 2016; 1
Chen (10.1016/j.nanoen.2018.01.040_bib41) 2011; 11
10.1016/j.nanoen.2018.01.040_bib20
Zhao (10.1016/j.nanoen.2018.01.040_bib28) 2017; 29
Kirschner (10.1016/j.nanoen.2018.01.040_bib46) 2012; 22
Oosterhout (10.1016/j.nanoen.2018.01.040_bib42) 2009; 8
Duan (10.1016/j.nanoen.2018.01.040_bib5) 2013; 42
Cheng (10.1016/j.nanoen.2018.01.040_bib29) 2014; 7
Ameri (10.1016/j.nanoen.2018.01.040_bib26) 2014; 2
Guo (10.1016/j.nanoen.2018.01.040_bib51) 2010; 132
Liu (10.1016/j.nanoen.2018.01.040_bib23) 2017; 29
Yang (10.1016/j.nanoen.2018.01.040_bib25) 2015; 9
Chen (10.1016/j.nanoen.2018.01.040_bib45) 2011; 11
Zhao (10.1016/j.nanoen.2018.01.040_bib48) 2016; 28
Blom (10.1016/j.nanoen.2018.01.040_bib33) 1997; 55
Günes (10.1016/j.nanoen.2018.01.040_bib2) 2007; 107
Nian (10.1016/j.nanoen.2018.01.040_bib14) 2016; 28
Lu (10.1016/j.nanoen.2018.01.040_bib40) 2013; 4
Bi (10.1016/j.nanoen.2018.01.040_bib17) 2017; 5
Ameri (10.1016/j.nanoen.2018.01.040_bib21) 2013; 25
Hendricks (10.1016/j.nanoen.2018.01.040_bib57) 2008; 20
Dang (10.1016/j.nanoen.2018.01.040_bib6) 2013; 113
Schwarz (10.1016/j.nanoen.2018.01.040_bib30) 2015; 7
Jin (10.1016/j.nanoen.2018.01.040_bib49) 2017; 121
Yu (10.1016/j.nanoen.2018.01.040_bib1) 1995; 270
Li (10.1016/j.nanoen.2018.01.040_bib4) 2012; 6
References_xml – volume: 114
  start-page: 9062
  year: 2010
  end-page: 9069
  ident: bib54
  publication-title: J. Phys. Chem. C
– volume: 121
  start-page: 8804
  year: 2017
  end-page: 8811
  ident: bib49
  publication-title: J. Phys. Chem. C
– volume: 29
  start-page: 1604059
  year: 2017
  ident: bib28
  publication-title: Adv. Mater.
– volume: 28
  start-page: 4734
  year: 2016
  end-page: 4739
  ident: bib48
  publication-title: Adv. Mater.
– start-page: 1701548
  year: 2017
  ident: bib47
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 158
  year: 2008
  ident: bib44
  publication-title: Nat. Mater.
– volume: 42
  start-page: 9071
  year: 2013
  end-page: 9104
  ident: bib5
  publication-title: Chem. Soc. Rev.
– volume: 270
  start-page: 1789
  year: 1995
  end-page: 1791
  ident: bib1
  publication-title: Science
– volume: 11
  start-page: 85
  year: 2017
  end-page: 90
  ident: bib13
  publication-title: Nat. Photonics
– volume: 4
  start-page: 1588
  year: 2013
  ident: bib40
  publication-title: Nat. Commun.
– volume: 47
  start-page: 58
  year: 2008
  end-page: 77
  ident: bib3
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: 818
  year: 2009
  ident: bib42
  publication-title: Nat. Mater.
– volume: 23
  start-page: 1679
  year: 2011
  end-page: 1683
  ident: bib32
  publication-title: Adv. Mater.
– volume: 5
  start-page: 8045
  year: 2012
  end-page: 8074
  ident: bib55
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 1301377
  year: 2014
  ident: bib53
  publication-title: Adv. Energy Mater.
– volume: 28
  start-page: 10008
  year: 2016
  end-page: 10015
  ident: bib24
  publication-title: Adv. Mater.
– reference: 〉.
– volume: 2
  start-page: 19461
  year: 2014
  end-page: 19472
  ident: bib26
  publication-title: J. Mater. Chem. A
– volume: 42
  start-page: 1030
  year: 2009
  end-page: 1034
  ident: bib36
  publication-title: J. Appl. Crystallogr.
– volume: 22
  start-page: 5468
  year: 2010
  end-page: 5472
  ident: bib37
  publication-title: Adv. Mater.
– volume: 28
  start-page: 8184
  year: 2016
  end-page: 8190
  ident: bib14
  publication-title: Adv. Mater.
– volume: 7
  start-page: 2005
  year: 2014
  end-page: 2011
  ident: bib29
  publication-title: Energy Environ. Sci.
– volume: 22
  start-page: 4364
  year: 2012
  end-page: 4370
  ident: bib46
  publication-title: J. Mater. Chem.
– volume: 1
  start-page: 16118
  year: 2016
  ident: bib16
  publication-title: Nat. Energy
– volume: 26
  start-page: 5670
  year: 2014
  end-page: 5677
  ident: bib12
  publication-title: Adv. Mater.
– volume: 7
  start-page: 3284
  year: 2014
  end-page: 3290
  ident: bib22
  publication-title: Energy Environ. Sci.
– volume: 139
  start-page: 7148
  year: 2017
  end-page: 7151
  ident: bib11
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 9423
  year: 2016
  end-page: 9429
  ident: bib15
  publication-title: Adv. Mater.
– volume: 11
  start-page: 2071
  year: 2011
  end-page: 2078
  ident: bib45
  publication-title: Nano Lett.
– volume: 139
  start-page: 2387
  year: 2017
  end-page: 2395
  ident: bib39
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 16089
  year: 2016
  ident: bib52
  publication-title: Nat. Energy
– volume: 9
  start-page: 190
  year: 2015
  end-page: 198
  ident: bib25
  publication-title: Nat. Photonics
– volume: 107
  start-page: 1324
  year: 2007
  end-page: 1338
  ident: bib2
  publication-title: Chem. Rev.
– volume: 9
  start-page: 281
  year: 2016
  end-page: 322
  ident: bib19
  publication-title: Energy Environ. Sci.
– reference: H. Fu, Z. Wang, Y. Sun, Sol. RRL. 〈
– volume: 14
  start-page: 38
  year: 2004
  end-page: 44
  ident: bib38
  publication-title: Adv. Funct. Mater.
– volume: 20
  start-page: 2573
  year: 2008
  end-page: 2578
  ident: bib56
  publication-title: Adv. Mater.
– volume: 115
  start-page: 12633
  year: 2015
  end-page: 12665
  ident: bib7
  publication-title: Chem. Rev.
– volume: 11
  start-page: 561
  year: 2011
  end-page: 567
  ident: bib41
  publication-title: Nano Lett.
– volume: 9
  start-page: 89
  year: 2016
  end-page: 94
  ident: bib8
  publication-title: Energy Environ. Sci.
– volume: 20
  start-page: 2008
  year: 2008
  end-page: 2012
  ident: bib57
  publication-title: Adv. Mater.
– volume: 25
  start-page: 4245
  year: 2013
  end-page: 4266
  ident: bib21
  publication-title: Adv. Mater.
– volume: 55
  start-page: R656
  year: 1997
  ident: bib33
  publication-title: Phys. Rev. B
– volume: 22
  start-page: 2444
  year: 2010
  end-page: 2447
  ident: bib43
  publication-title: Adv. Mater.
– volume: 6
  start-page: 153
  year: 2012
  end-page: 161
  ident: bib4
  publication-title: Nat. Photonics
– volume: 7
  start-page: 19899
  year: 2015
  end-page: 19904
  ident: bib30
  publication-title: Nanoscale
– volume: 58
  start-page: R13411
  year: 1998
  ident: bib34
  publication-title: Phys. Rev. B
– volume: 8
  start-page: 23212
  year: 2016
  end-page: 23221
  ident: bib35
  publication-title: ACS Appl. Mater. Interfaces
– volume: 29
  start-page: 1605437
  year: 2017
  ident: bib10
  publication-title: Adv. Mater.
– volume: 2
  start-page: 1600359
  year: 2016
  ident: bib31
  publication-title: Adv. Electron. Mater.
– volume: 5
  start-page: 12120
  year: 2017
  end-page: 12130
  ident: bib17
  publication-title: J. Mater. Chem. A
– volume: 132
  start-page: 9631
  year: 2010
  end-page: 9637
  ident: bib51
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 321
  year: 2015
  end-page: 327
  ident: bib18
  publication-title: Adv. Opt. Mater.
– volume: 133
  start-page: 9469
  year: 2011
  end-page: 9479
  ident: bib50
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 9559
  year: 2016
  end-page: 9566
  ident: bib27
  publication-title: Adv. Mater.
– volume: 29
  start-page: 2914
  year: 2017
  end-page: 2920
  ident: bib23
  publication-title: Chem. Mater.
– volume: 29
  start-page: 1701308
  year: 2017
  ident: bib9
  publication-title: Adv. Mater.
– volume: 113
  start-page: 3734
  year: 2013
  end-page: 3765
  ident: bib6
  publication-title: Chem. Rev.
– start-page: 1701548
  year: 2017
  ident: 10.1016/j.nanoen.2018.01.040_bib47
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701548
– volume: 11
  start-page: 85
  year: 2017
  ident: 10.1016/j.nanoen.2018.01.040_bib13
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2016.240
– volume: 9
  start-page: 281
  year: 2016
  ident: 10.1016/j.nanoen.2018.01.040_bib19
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02641E
– volume: 29
  start-page: 2914
  year: 2017
  ident: 10.1016/j.nanoen.2018.01.040_bib23
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b05194
– volume: 26
  start-page: 5670
  year: 2014
  ident: 10.1016/j.nanoen.2018.01.040_bib12
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201402072
– volume: 28
  start-page: 9423
  year: 2016
  ident: 10.1016/j.nanoen.2018.01.040_bib15
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602776
– volume: 9
  start-page: 89
  year: 2016
  ident: 10.1016/j.nanoen.2018.01.040_bib8
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03315B
– volume: 270
  start-page: 1789
  year: 1995
  ident: 10.1016/j.nanoen.2018.01.040_bib1
  publication-title: Science
  doi: 10.1126/science.270.5243.1789
– volume: 2
  start-page: 19461
  year: 2014
  ident: 10.1016/j.nanoen.2018.01.040_bib26
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04070H
– volume: 121
  start-page: 8804
  year: 2017
  ident: 10.1016/j.nanoen.2018.01.040_bib49
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b03001
– volume: 139
  start-page: 2387
  year: 2017
  ident: 10.1016/j.nanoen.2018.01.040_bib39
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11991
– volume: 4
  start-page: 1301377
  year: 2014
  ident: 10.1016/j.nanoen.2018.01.040_bib53
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201301377
– volume: 42
  start-page: 9071
  year: 2013
  ident: 10.1016/j.nanoen.2018.01.040_bib5
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs60200a
– volume: 29
  start-page: 1701308
  year: 2017
  ident: 10.1016/j.nanoen.2018.01.040_bib9
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701308
– volume: 133
  start-page: 9469
  year: 2011
  ident: 10.1016/j.nanoen.2018.01.040_bib50
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja201837e
– volume: 1
  start-page: 16089
  year: 2016
  ident: 10.1016/j.nanoen.2018.01.040_bib52
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.89
– volume: 22
  start-page: 5468
  year: 2010
  ident: 10.1016/j.nanoen.2018.01.040_bib37
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201002687
– volume: 11
  start-page: 561
  year: 2011
  ident: 10.1016/j.nanoen.2018.01.040_bib41
  publication-title: Nano Lett.
  doi: 10.1021/nl103482n
– volume: 20
  start-page: 2008
  year: 2008
  ident: 10.1016/j.nanoen.2018.01.040_bib57
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200702672
– volume: 114
  start-page: 9062
  year: 2010
  ident: 10.1016/j.nanoen.2018.01.040_bib54
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp9120639
– volume: 28
  start-page: 10008
  year: 2016
  ident: 10.1016/j.nanoen.2018.01.040_bib24
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602570
– volume: 7
  start-page: 158
  year: 2008
  ident: 10.1016/j.nanoen.2018.01.040_bib44
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2102
– volume: 28
  start-page: 4734
  year: 2016
  ident: 10.1016/j.nanoen.2018.01.040_bib48
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600281
– volume: 6
  start-page: 153
  year: 2012
  ident: 10.1016/j.nanoen.2018.01.040_bib4
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2012.11
– volume: 55
  start-page: R656
  year: 1997
  ident: 10.1016/j.nanoen.2018.01.040_bib33
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.55.R656
– volume: 8
  start-page: 818
  year: 2009
  ident: 10.1016/j.nanoen.2018.01.040_bib42
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2533
– volume: 5
  start-page: 8045
  year: 2012
  ident: 10.1016/j.nanoen.2018.01.040_bib55
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22056c
– volume: 3
  start-page: 321
  year: 2015
  ident: 10.1016/j.nanoen.2018.01.040_bib18
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201400542
– volume: 4
  start-page: 1588
  year: 2013
  ident: 10.1016/j.nanoen.2018.01.040_bib40
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2587
– volume: 22
  start-page: 2444
  year: 2010
  ident: 10.1016/j.nanoen.2018.01.040_bib43
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200903971
– volume: 132
  start-page: 9631
  year: 2010
  ident: 10.1016/j.nanoen.2018.01.040_bib51
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9108787
– volume: 7
  start-page: 19899
  year: 2015
  ident: 10.1016/j.nanoen.2018.01.040_bib30
  publication-title: Nanoscale
  doi: 10.1039/C5NR06244F
– volume: 5
  start-page: 12120
  year: 2017
  ident: 10.1016/j.nanoen.2018.01.040_bib17
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01557G
– volume: 115
  start-page: 12633
  year: 2015
  ident: 10.1016/j.nanoen.2018.01.040_bib7
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00165
– volume: 139
  start-page: 7148
  year: 2017
  ident: 10.1016/j.nanoen.2018.01.040_bib11
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b02677
– volume: 42
  start-page: 1030
  year: 2009
  ident: 10.1016/j.nanoen.2018.01.040_bib36
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889809040126
– volume: 29
  start-page: 1605437
  year: 2017
  ident: 10.1016/j.nanoen.2018.01.040_bib10
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605437
– volume: 29
  start-page: 1604059
  year: 2017
  ident: 10.1016/j.nanoen.2018.01.040_bib28
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604059
– volume: 23
  start-page: 1679
  year: 2011
  ident: 10.1016/j.nanoen.2018.01.040_bib32
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201004301
– volume: 47
  start-page: 58
  year: 2008
  ident: 10.1016/j.nanoen.2018.01.040_bib3
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200702506
– volume: 8
  start-page: 23212
  year: 2016
  ident: 10.1016/j.nanoen.2018.01.040_bib35
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b07612
– volume: 107
  start-page: 1324
  year: 2007
  ident: 10.1016/j.nanoen.2018.01.040_bib2
  publication-title: Chem. Rev.
  doi: 10.1021/cr050149z
– volume: 11
  start-page: 2071
  year: 2011
  ident: 10.1016/j.nanoen.2018.01.040_bib45
  publication-title: Nano Lett.
  doi: 10.1021/nl200552r
– volume: 9
  start-page: 190
  year: 2015
  ident: 10.1016/j.nanoen.2018.01.040_bib25
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2015.9
– volume: 7
  start-page: 3284
  year: 2014
  ident: 10.1016/j.nanoen.2018.01.040_bib22
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE02003K
– volume: 2
  start-page: 1600359
  year: 2016
  ident: 10.1016/j.nanoen.2018.01.040_bib31
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201600359
– volume: 28
  start-page: 9559
  year: 2016
  ident: 10.1016/j.nanoen.2018.01.040_bib27
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603588
– ident: 10.1016/j.nanoen.2018.01.040_bib20
– volume: 28
  start-page: 8184
  year: 2016
  ident: 10.1016/j.nanoen.2018.01.040_bib14
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602834
– volume: 7
  start-page: 2005
  year: 2014
  ident: 10.1016/j.nanoen.2018.01.040_bib29
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee44202k
– volume: 22
  start-page: 4364
  year: 2012
  ident: 10.1016/j.nanoen.2018.01.040_bib46
  publication-title: J. Mater. Chem.
  doi: 10.1039/C2JM14967B
– volume: 113
  start-page: 3734
  year: 2013
  ident: 10.1016/j.nanoen.2018.01.040_bib6
  publication-title: Chem. Rev.
  doi: 10.1021/cr300005u
– volume: 58
  start-page: R13411
  year: 1998
  ident: 10.1016/j.nanoen.2018.01.040_bib34
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.58.R13411
– volume: 25
  start-page: 4245
  year: 2013
  ident: 10.1016/j.nanoen.2018.01.040_bib21
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201300623
– volume: 1
  start-page: 16118
  year: 2016
  ident: 10.1016/j.nanoen.2018.01.040_bib16
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.118
– volume: 14
  start-page: 38
  year: 2004
  ident: 10.1016/j.nanoen.2018.01.040_bib38
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200304399
– volume: 20
  start-page: 2573
  year: 2008
  ident: 10.1016/j.nanoen.2018.01.040_bib56
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200703097
SSID ssj0000651712
Score 2.5280545
Snippet The vertical phase distribution of components in bulk heterojunction is diversified in organic solar cells (OSCs). The electron donors (acceptors) can be...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 81
SubjectTerms Charge transport
Non-fullerene acceptor
Ternary organic solar cells
Vertical phase distribution
Title Regulating the vertical phase distribution by fullerene-derivative in high performance ternary organic solar cells
URI https://dx.doi.org/10.1016/j.nanoen.2018.01.040
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DL3oQP_GbHLzGNR9t0uMYjqmwgzrYrSRpihOpY07Bi3-7eUk7FUTBY0peKS_hffW93w-hs8RwZZQ1RPGSE5EbTZShgmS2yquUGpfrgPY5yoZjcTVJJx3Ub2dhoK2ysf3Rpgdr3TzpNtrszqbT7i3zuQtTgCgGqFFxgl1IaOs7f6fLOot3sVSGn56wn4BAO0EX2rxqXT85AEKlKuB3QhXkJw_1xesMNtFGEy7iXvyiLdRx9TZa_wIiuIPmN5FO3i-wj-ZwIFj2mseze--hcAnIuA2pFTZvGOrtgRGFlP4FrwH3G09rDLjFePY5RoBDpXD-hiPvk8XPkARjKPQ_76Lx4OKuPyQNkwKxXLIFUdolqdI6Z5VLqE6Zygw1leTcH4VItKCsypyR1Lo0LX2OJ1lljcoNz2TJpeJ7aKV-qt0-wlkpfJIkhC4TLpxlObU5c7TkeSZhLvUA8VZ7hW1gxoHt4rFo-8keiqjzAnReJLTwOj9AZCk1izAbf-yX7cEU365L4T3Br5KH_5Y8Qmuwim07x2hlMX9xJz4iWZjTcOVO0Wrv8no4-gDPYeI6
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA4yc1AP4oq7OXgN0yxt0qOIMjo6BxfwFpI0xRGpw8wozL83L21dQBQ8dnmlvIS35b3vQ-g4sVxZ5SxRvOBE5NYQZakgmSvzMqXW5yaifQ6z_r24fEgfFtBpOwsDbZWN7a9terTWzZ1eo83eeDTq3bKQuzAFiGKAGgUT7F1ApxId1D25GPSHH6WW4GWpjOeeIEJAph2ii51elalePGChUhUhPKEQ8pOT-uJ4zlfRShMx4pP6p9bQgq_W0fIXHMENNLmpGeXDBQ4BHY4cy0H5ePwYnBQuABy34bXCdo6h5B5JUUgRPvAWob_xqMIAXYzHn5MEOBYLJ3NcUz85PIU8GEOtf7qJ7s_P7k77pCFTII5LNiPK-CRVxuSs9Ak1KVOZpbaUnIfVEIkRlJWZt5I6n6ZFSPMkK51VueWZLLhUfAt1qpfKbyOcFSLkSUKYIuHCO5ZTlzNPC55nEkZTdxBvtaddgzQOhBfPum0pe9K1zjXoXCdUB53vIPIhNa6RNv54X7YLo7_tGB2cwa-Su_-WPEKL_bvrK311MRzsoSV4Unfx7KPObPLqD0KAMrOHzQZ8B5TZ5Os
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulating+the+vertical+phase+distribution+by+fullerene-derivative+in+high+performance+ternary+organic+solar+cells&rft.jtitle=Nano+energy&rft.au=Bi%2C+Pengqing&rft.au=Xiao%2C+Tong&rft.au=Yang%2C+Xiaoyu&rft.au=Niu%2C+Mengsi&rft.date=2018-04-01&rft.pub=Elsevier+Ltd&rft.issn=2211-2855&rft.volume=46&rft.spage=81&rft.epage=90&rft_id=info:doi/10.1016%2Fj.nanoen.2018.01.040&rft.externalDocID=S2211285518300491
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon