Surface deformation and shear flow in ligand mediated cell adhesion
We present a unified, multiscale model to study the attachment/detachment dynamics of two deforming, charged, near spherical cells, coated with binding ligands and subject to a slow, homogeneous shear flow in a viscous, ionic fluid medium. The binding ligands on the surface of the cells experience b...
Saved in:
Published in | Journal of mathematical biology Vol. 73; no. 4; pp. 1035 - 1052 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0303-6812 1432-1416 1432-1416 |
DOI | 10.1007/s00285-016-0983-7 |
Cover
Loading…
Abstract | We present a unified, multiscale model to study the attachment/detachment dynamics of two deforming, charged, near spherical cells, coated with binding ligands and subject to a slow, homogeneous shear flow in a viscous, ionic fluid medium. The binding ligands on the surface of the cells experience both attractive and repulsive forces in an ionic medium and exhibit finite resistance to rotation via bond tilting. The microscale drag forces and couples describing the fluid flow inside the small separation gap between the cells, are calculated using a combination of methods in lubrication theory and previously published numerical results. For a selected range of material and fluid parameters, a hysteretic transition of the sticking probability curves (i.e., the function
g
∗
) between the adhesion phase (when
g
∗
>
0.5
) and the fragmentation phase (when
g
∗
<
0.5
) is attributed to a nonlinear relation between the total nanoscale binding forces and the separation gap between the cells. We show that adhesion is favoured in highly ionic fluids, increased deformability of the cells, elastic binders and a higher fluid shear rate (until a critical threshold value of shear rate is reached). Within a selected range of critical shear rates, the continuation of the limit points (i.e., the turning points where the slope of
g
∗
changes sign) predict a bistable region, indicating an abrupt switching between the adhesion and the fragmentation regimes. Although, bistability in the adhesion-fragmentation phase diagram of two deformable, charged cells immersed in an ionic aqueous environment has been identified by some in vitro experiments, but until now, has not been quantified theoretically. |
---|---|
AbstractList | We present a unified, multiscale model to study the attachment/detachment dynamics of two deforming, charged, near spherical cells, coated with binding ligands and subject to a slow, homogeneous shear flow in a viscous, ionic fluid medium. The binding ligands on the surface of the cells experience both attractive and repulsive forces in an ionic medium and exhibit finite resistance to rotation via bond tilting. The microscale drag forces and couples describing the fluid flow inside the small separation gap between the cells, are calculated using a combination of methods in lubrication theory and previously published numerical results. For a selected range of material and fluid parameters, a hysteretic transition of the sticking probability curves (i.e., the function
g
∗
) between the adhesion phase (when
g
∗
>
0.5
) and the fragmentation phase (when
g
∗
<
0.5
) is attributed to a nonlinear relation between the total nanoscale binding forces and the separation gap between the cells. We show that adhesion is favoured in highly ionic fluids, increased deformability of the cells, elastic binders and a higher fluid shear rate (until a critical threshold value of shear rate is reached). Within a selected range of critical shear rates, the continuation of the limit points (i.e., the turning points where the slope of
g
∗
changes sign) predict a bistable region, indicating an abrupt switching between the adhesion and the fragmentation regimes. Although, bistability in the adhesion-fragmentation phase diagram of two deformable, charged cells immersed in an ionic aqueous environment has been identified by some in vitro experiments, but until now, has not been quantified theoretically. We present a unified, multiscale model to study the attachment/detachment dynamics of two deforming, charged, near spherical cells, coated with binding ligands and subject to a slow, homogeneous shear flow in a viscous, ionic fluid medium. The binding ligands on the surface of the cells experience both attractive and repulsive forces in an ionic medium and exhibit finite resistance to rotation via bond tilting. The microscale drag forces and couples describing the fluid flow inside the small separation gap between the cells, are calculated using a combination of methods in lubrication theory and previously published numerical results. For a selected range of material and fluid parameters, a hysteretic transition of the sticking probability curves (i.e., the function [Formula: see text]) between the adhesion phase (when [Formula: see text]) and the fragmentation phase (when [Formula: see text]) is attributed to a nonlinear relation between the total nanoscale binding forces and the separation gap between the cells. We show that adhesion is favoured in highly ionic fluids, increased deformability of the cells, elastic binders and a higher fluid shear rate (until a critical threshold value of shear rate is reached). Within a selected range of critical shear rates, the continuation of the limit points (i.e., the turning points where the slope of [Formula: see text] changes sign) predict a bistable region, indicating an abrupt switching between the adhesion and the fragmentation regimes. Although, bistability in the adhesion-fragmentation phase diagram of two deformable, charged cells immersed in an ionic aqueous environment has been identified by some in vitro experiments, but until now, has not been quantified theoretically.We present a unified, multiscale model to study the attachment/detachment dynamics of two deforming, charged, near spherical cells, coated with binding ligands and subject to a slow, homogeneous shear flow in a viscous, ionic fluid medium. The binding ligands on the surface of the cells experience both attractive and repulsive forces in an ionic medium and exhibit finite resistance to rotation via bond tilting. The microscale drag forces and couples describing the fluid flow inside the small separation gap between the cells, are calculated using a combination of methods in lubrication theory and previously published numerical results. For a selected range of material and fluid parameters, a hysteretic transition of the sticking probability curves (i.e., the function [Formula: see text]) between the adhesion phase (when [Formula: see text]) and the fragmentation phase (when [Formula: see text]) is attributed to a nonlinear relation between the total nanoscale binding forces and the separation gap between the cells. We show that adhesion is favoured in highly ionic fluids, increased deformability of the cells, elastic binders and a higher fluid shear rate (until a critical threshold value of shear rate is reached). Within a selected range of critical shear rates, the continuation of the limit points (i.e., the turning points where the slope of [Formula: see text] changes sign) predict a bistable region, indicating an abrupt switching between the adhesion and the fragmentation regimes. Although, bistability in the adhesion-fragmentation phase diagram of two deformable, charged cells immersed in an ionic aqueous environment has been identified by some in vitro experiments, but until now, has not been quantified theoretically. (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) We present a unified, multiscale model to study the attachment/detachment dynamics of two deforming, charged, near spherical cells, coated with binding ligands and subject to a slow, homogeneous shear flow in a viscous, ionic fluid medium. The binding ligands on the surface of the cells experience both attractive and repulsive forces in an ionic medium and exhibit finite resistance to rotation via bond tilting. The microscale drag forces and couples describing the fluid flow inside the small separation gap between the cells, are calculated using a combination of methods in lubrication theory and previously published numerical results. For a selected range of material and fluid parameters, a hysteretic transition of the sticking probability curves (i.e., the function ...) between the adhesion phase (when ...) and the fragmentation phase (when ...) is attributed to a nonlinear relation between the total nanoscale binding forces and the separation gap between the cells. We show that adhesion is favoured in highly ionic fluids, increased deformability of the cells, elastic binders and a higher fluid shear rate (until a critical threshold value of shear rate is reached). Within a selected range of critical shear rates, the continuation of the limit points (i.e., the turning points where the slope of ... changes sign) predict a bistable region, indicating an abrupt switching between the adhesion and the fragmentation regimes. Although, bistability in the adhesion-fragmentation phase diagram of two deformable, charged cells immersed in an ionic aqueous environment has been identified by some in vitro experiments, but until now, has not been quantified theoretically. We present a unified, multiscale model to study the attachment/detachment dynamics of two deforming, charged, near spherical cells, coated with binding ligands and subject to a slow, homogeneous shear flow in a viscous, ionic fluid medium. The binding ligands on the surface of the cells experience both attractive and repulsive forces in an ionic medium and exhibit finite resistance to rotation via bond tilting. The microscale drag forces and couples describing the fluid flow inside the small separation gap between the cells, are calculated using a combination of methods in lubrication theory and previously published numerical results. For a selected range of material and fluid parameters, a hysteretic transition of the sticking probability curves (i.e., the function [Formula: see text]) between the adhesion phase (when [Formula: see text]) and the fragmentation phase (when [Formula: see text]) is attributed to a nonlinear relation between the total nanoscale binding forces and the separation gap between the cells. We show that adhesion is favoured in highly ionic fluids, increased deformability of the cells, elastic binders and a higher fluid shear rate (until a critical threshold value of shear rate is reached). Within a selected range of critical shear rates, the continuation of the limit points (i.e., the turning points where the slope of [Formula: see text] changes sign) predict a bistable region, indicating an abrupt switching between the adhesion and the fragmentation regimes. Although, bistability in the adhesion-fragmentation phase diagram of two deformable, charged cells immersed in an ionic aqueous environment has been identified by some in vitro experiments, but until now, has not been quantified theoretically. |
Author | Roberts, Anthony J. Sircar, Sarthok |
Author_xml | – sequence: 1 givenname: Sarthok surname: Sircar fullname: Sircar, Sarthok email: sarthok.sircar@adelaide.edu.au organization: University of Adelaide – sequence: 2 givenname: Anthony J. surname: Roberts fullname: Roberts, Anthony J. organization: University of Adelaide |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26965247$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtLAzEUhYNU7EN_gBsZcONmNK9JMkspvqDgQl2HNI92yjxqMoP47810WpCCwoXA5TuXk3OmYFQ3tQXgEsFbBCG_CxBikaUQsRTmgqT8BEwQJThFFLERmEACScoEwmMwDWEDIeJZjs7AGLOcZZjyCZi_dd4pbRNjXeMr1RZNnajaJGFtlU9c2XwlRZ2UxapfVtYUqrUm0bYsE2XWNkT-HJw6VQZ7sX9n4OPx4X3-nC5en17m94tUE47bVOQcMqxttjTMCS2McIZzrYSNw0QuxNJx5TCz0LCcaswEVhnJaJZTo5ghM3Az3N365rOzoZVVEXonqrZNFyQSSBCSU5ZF9PoI3TSdr6O7HQVpTAJG6mpPdcv4Nbn1RaX8tzzEEwE-ANo3IXjrpC7aXUatV0UpEZR9EXIoQsYiZF-E7JXoSHk4_p8GD5oQ2Xpl_S_Tf4p-AJ90mG4 |
CitedBy_id | crossref_primary_10_1063_1_5115455 crossref_primary_10_1093_imammb_dqy012 crossref_primary_10_1016_j_compfluid_2020_104709 crossref_primary_10_1063_5_0113987 crossref_primary_10_1063_5_0195666 crossref_primary_10_1063_5_0240113 crossref_primary_10_1002_advs_202202644 crossref_primary_10_1063_5_0049504 crossref_primary_10_1007_s10665_023_10282_7 crossref_primary_10_1063_5_0174598 |
Cites_doi | 10.1146/annurev.ms.26.080196.003251 10.1529/biophysj.104.051029 10.1098/rspa.2007.0210 10.1016/j.jcis.2009.02.062 10.1103/PhysRevLett.97.138103 10.1063/1.857525 10.1016/S0006-3495(04)74211-3 10.1016/j.jcis.2006.06.011 10.1016/j.jcis.2007.04.038 10.1209/epl/i2001-00210-x 10.1103/PhysRevLett.108.226104 10.1073/pnas.95.12.6797 10.1017/S0022112002008340 10.1083/jcb.200204041 10.1007/s101890170054 10.1039/c2sm26112j 10.1063/1.2359232 10.1016/S0021-9290(99)00163-3 10.1021/jp709576j 10.1016/0009-2509(67)80208-2 10.1080/00218460008034522 10.1016/S0006-3495(97)78924-0 10.1016/j.jcis.2007.08.029 10.1007/BF01590642 10.1098/rsif.2007.0222 10.1038/nature01605 10.1016/0301-9322(73)90004-9 10.1016/j.mbs.2013.07.018 10.1098/rspb.1988.0038 10.1146/annurev.ph.57.030195.004143 10.1103/PhysRevLett.109.258101 10.1016/j.mbs.2004.12.008 10.1016/0142-9612(96)85572-4 10.2174/138161207780765909 10.1093/oso/9780195064667.001.0001 |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg 2016 |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7TM 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ JQ2 K7- K9. L6V LK8 M0S M1P M7N M7P M7S M7Z P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 |
DOI | 10.1007/s00285-016-0983-7 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Biochemistry Abstracts 1 Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Computer Science Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Mathematics |
EISSN | 1432-1416 |
EndPage | 1052 |
ExternalDocumentID | 4176817171 26965247 10_1007_s00285_016_0983_7 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Australian Research Council Discovery grant grantid: DP150102385 – fundername: Adelaide University startup funds |
GroupedDBID | --- -52 -5D -5G -BR -EM -Y2 -~C -~X .86 06D 0R~ 0VY 186 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 3-Y 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 7X7 88A 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAGAY AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP D0L DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMB EMOBN EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAS LK8 LLZTM M0L M1P M4Y M7P M7S MA- MQGED MVM N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQQKQ PROAC PSQYO PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 T16 TN5 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WIP WJK WK6 WK8 YLTOR YQT Z45 Z7U ZMTXR ZWQNP ZXP ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7TK 7TM 7U9 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ H94 JQ2 K9. M7N M7Z P64 PKEHL PQEST PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c372t-897062ce5bd6f8c8d8fd77ca8ea8e68988bf7af26e0d694c2682a5354594da6d3 |
IEDL.DBID | U2A |
ISSN | 0303-6812 1432-1416 |
IngestDate | Thu Jul 10 18:16:01 EDT 2025 Fri Jul 25 18:54:12 EDT 2025 Mon Jul 21 06:04:52 EDT 2025 Tue Jul 01 02:03:13 EDT 2025 Thu Apr 24 22:58:56 EDT 2025 Fri Feb 21 02:36:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Sticking probability Binding kinetics 92C05 Surface deformation Adhesion Micro hydrodynamics Bistability |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-897062ce5bd6f8c8d8fd77ca8ea8e68988bf7af26e0d694c2682a5354594da6d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26965247 |
PQID | 1818041750 |
PQPubID | 54026 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_1818339465 proquest_journals_1818041750 pubmed_primary_26965247 crossref_citationtrail_10_1007_s00285_016_0983_7 crossref_primary_10_1007_s00285_016_0983_7 springer_journals_10_1007_s00285_016_0983_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20161000 2016-10-00 20161001 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: 20161000 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | Journal of mathematical biology |
PublicationTitleAbbrev | J. Math. Biol |
PublicationTitleAlternate | J Math Biol |
PublicationYear | 2016 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Kim, Karrila (CR21) 2005 Gregory (CR13) 2006 Moncho-Jordá, Odriozola, Martínez-López, Schmitt, Hidalgo-Álvarez (CR27) 2001; 5 Shao, Ting-Beall, Hochmuth (CR33) 1998; 95 Jadhav, Eggleton, Konstantopoulos (CR17) 2005; 88 Davis, Schonberg, Rallison (CR7) 1989; 1 Jadhav, Eggleton, Konstantopoulos (CR18) 2007; 13 Odriozola, Moncho-Jordá, Schmitt, Callejas-Fernández, Martínez-García, Hidalgo-Álvarez (CR29) 2007; 53 CR31 Forest, Sircar, Wang, Zhou (CR11) 2006; 18 Jones, Smith, McIntire (CR20) 1996; 17 Hammer, Tirrell (CR15) 1996; 26 Jia, Gauer, Wu, Morbidelli, Chittofrati, Apostolo (CR19) 2006; 302 Somasundaran, Runkanan, Kapur, Stechemesser, Dobiáš (CR35) 2005; 126 Bihr, Seifert, Smith (CR2) 2012; 109 Springer (CR36) 1995; 57 Coombs, Dembo, Wofsy, Goldstein (CR4) 2004; 86 Brunk, Hammer (CR3) 1997; 72 Corezzi, Fioretto, Sciortino (CR5) 2012; 8 Gilbert, Lu, Kim (CR12) 2007; 313 Marshall, Long, Piper, Yago, McEver, Zhu (CR26) 2003; 423 Korn, Schwarz (CR23) 2006; 97 Davis, Zinchenko (CR8) 2009; 334 Hodges, Jensen (CR16) 2002; 460 O’Neill, Majumdar (CR30) 1970; 21 Haber, Hetsroni, Solan (CR14) 1973; 1 Mani, Gopinath, Mahadevan (CR25) 2012; 108 Sircar, Bortz (CR34) 2013; 245 Bäbler, Morbidelli (CR1) 2007; 316 Cox, Brenner (CR6) 1967; 22 Moss, Anderson (CR28) 2000; 74 Varenberg, Gorb (CR37) 2007; 4 Lauffenburger, Linderman (CR24) 1993 King, Sumagin, Green, Simon (CR22) 2005; 194 Dembo, Torney, Saxman, Hammer (CR9) 1988; 234 Duval, Pinheiro, Van Leeuwen (CR10) 2008; 112 Reboux, Richardson, Jensen (CR32) 2008; 464 Zhu (CR39) 2000; 33 Yago (CR38) 2002; 158 MU Bäbler (983_CR1) 2007; 316 T Bihr (983_CR2) 2012; 109 C Korn (983_CR23) 2006; 97 BT Marshall (983_CR26) 2003; 423 DA Hammer (983_CR15) 1996; 26 M Mani (983_CR25) 2012; 108 RH Davis (983_CR7) 1989; 1 M Dembo (983_CR9) 1988; 234 Z Jia (983_CR19) 2006; 302 S Reboux (983_CR32) 2008; 464 MG Forest (983_CR11) 2006; 18 DA Jones (983_CR20) 1996; 17 TA Springer (983_CR36) 1995; 57 DA Lauffenburger (983_CR24) 1993 M Varenberg (983_CR37) 2007; 4 983_CR31 T Yago (983_CR38) 2002; 158 SR Hodges (983_CR16) 2002; 460 S Jadhav (983_CR17) 2005; 88 JFL Duval (983_CR10) 2008; 112 G Odriozola (983_CR29) 2007; 53 C Zhu (983_CR39) 2000; 33 B Gilbert (983_CR12) 2007; 313 S Haber (983_CR14) 1973; 1 S Kim (983_CR21) 2005 DK Brunk (983_CR3) 1997; 72 R Cox (983_CR6) 1967; 22 MR King (983_CR22) 2005; 194 A Moncho-Jordá (983_CR27) 2001; 5 JY Shao (983_CR33) 1998; 95 S Corezzi (983_CR5) 2012; 8 RH Davis (983_CR8) 2009; 334 S Jadhav (983_CR18) 2007; 13 P Somasundaran (983_CR35) 2005; 126 S Sircar (983_CR34) 2013; 245 D Coombs (983_CR4) 2004; 86 J Gregory (983_CR13) 2006 MA Moss (983_CR28) 2000; 74 ME O’Neill (983_CR30) 1970; 21 9618492 - Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6797-802 12736689 - Nature. 2003 May 8;423(6936):190-3 9168056 - Biophys J. 1997 Jun;72(6):2820-33 7778885 - Annu Rev Physiol. 1995;57:827-72 23368503 - Phys Rev Lett. 2012 Dec 21;109(25):258101 15489302 - Biophys J. 2005 Jan;88(1):96-104 14990470 - Biophys J. 2004 Mar;86(3):1408-23 2901109 - Proc R Soc Lond B Biol Sci. 1988 Jun 22;234(1274):55-83 18636700 - J Phys Chem A. 2008 Aug 7;112(31):7137-51 23917245 - Math Biosci. 2013 Oct;245(2):314-21 17511999 - J Colloid Interface Sci. 2007 Sep 1;313(1):152-9 17804007 - J Colloid Interface Sci. 2007 Dec 15;316(2):428-41 17327201 - J R Soc Interface. 2007 Aug 22;4(15):721-5 16870204 - J Colloid Interface Sci. 2006 Oct 1;302(1):187-202 10609515 - J Biomech. 2000 Jan;33(1):23-33 23003628 - Phys Rev Lett. 2012 Jun 1;108(22):226104 19406427 - J Colloid Interface Sci. 2009 Jun 15;334(2):113-23 12177042 - J Cell Biol. 2002 Aug 19;158(4):787-99 17026079 - Phys Rev Lett. 2006 Sep 29;97(13):138103 17504147 - Curr Pharm Des. 2007;13(15):1511-26 15836865 - Math Biosci. 2005 Mar;194(1):71-9 8745331 - Biomaterials. 1996 Feb;17(3):337-47 |
References_xml | – volume: 26 start-page: 651 issue: 1 year: 1996 end-page: 691 ident: CR15 article-title: Biological adhesion at interfaces publication-title: Ann Rev Mater Sci doi: 10.1146/annurev.ms.26.080196.003251 – volume: 88 start-page: 96 issue: 1 year: 2005 end-page: 104 ident: CR17 article-title: A 3-D computational model predicts that cell deformation affects selectin-mediated leukocyte rolling publication-title: Biophys J doi: 10.1529/biophysj.104.051029 – volume: 464 start-page: 447 issue: 2090 year: 2008 end-page: 467 ident: CR32 article-title: Bond tilting and sliding friction in a model of cell adhesion publication-title: Proc R Soc A Math Phys Eng Sci doi: 10.1098/rspa.2007.0210 – volume: 334 start-page: 113 issue: 2 year: 2009 end-page: 123 ident: CR8 article-title: Motion of deformable drops through granular media and other confined geometries publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2009.02.062 – volume: 97 start-page: 1 issue: 13 year: 2006 end-page: 4 ident: CR23 article-title: Efficiency of initiating cell adhesion in hydrodynamic flow publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.97.138103 – volume: 1 start-page: 77 year: 1989 end-page: 81 ident: CR7 article-title: The lubrication force between two viscous drops publication-title: Phys Fluids doi: 10.1063/1.857525 – volume: 86 start-page: 1408 issue: 3 year: 2004 end-page: 1423 ident: CR4 article-title: Equilibrium thermodynamics of cell-cell adhesion mediated by multiple ligand-receptor pairs publication-title: Biophys J doi: 10.1016/S0006-3495(04)74211-3 – volume: 302 start-page: 187 issue: 1 year: 2006 end-page: 202 ident: CR19 article-title: A generalized model for the stability of polymer colloids publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2006.06.011 – year: 2006 ident: CR13 publication-title: Particles in water: properties and processes – volume: 313 start-page: 152 issue: 1 year: 2007 end-page: 159 ident: CR12 article-title: Stable cluster formation in aqueous suspensions of iron oxyhydroxide nanoparticles publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2007.04.038 – year: 1993 ident: CR24 publication-title: Receptors: models for binding, trafficking and signalling – volume: 53 start-page: 797 issue: 6 year: 2007 end-page: 803 ident: CR29 article-title: A probabilistic aggregation kernel for the computer-simulated transition from DLCA to RLCA publication-title: Europhys Lett doi: 10.1209/epl/i2001-00210-x – volume: 108 start-page: 226104 issue: 22 year: 2012 end-page: 226108 ident: CR25 article-title: How things get stuck: kinetics, elastohydrodynamics, and soft adhesion publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.108.226104 – volume: 95 start-page: 6797 issue: 12 year: 1998 end-page: 6802 ident: CR33 article-title: Static and dynamic lengths of neutrophil microvilli publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.95.12.6797 – volume: 460 start-page: 381 year: 2002 end-page: 409 ident: CR16 article-title: Spreading and peeling dynamics in a model of cell adhesion publication-title: J Fluid Mech doi: 10.1017/S0022112002008340 – volume: 158 start-page: 787 issue: 4 year: 2002 end-page: 799 ident: CR38 article-title: Distinct molecular and cellular contributions to stabilizing selectin-mediated rolling under flow publication-title: J Cell Biol doi: 10.1083/jcb.200204041 – volume: 5 start-page: 471 issue: 4 year: 2001 end-page: 480 ident: CR27 article-title: The DLCA-RLCA transition arising in 2D-aggregation: simulations and mean field theory publication-title: Eur Phys J E doi: 10.1007/s101890170054 – year: 2005 ident: CR21 publication-title: Microhydrodynamics: principles and selected applications – volume: 8 start-page: 11207 issue: 44 year: 2012 end-page: 11216 ident: CR5 article-title: Chemical and physical aggregation of small-functionality particles publication-title: Soft Matter doi: 10.1039/c2sm26112j – volume: 18 start-page: 103102 issue: 10 year: 2006 ident: CR11 article-title: Monodomain dynamics for rigid rod and platelet suspensions in strongly coupled coplanar linear flow and magnetic fields. II. Kinetic theory publication-title: Phys Fluids doi: 10.1063/1.2359232 – volume: 33 start-page: 23 issue: 1 year: 2000 end-page: 33 ident: CR39 article-title: Kinetics and mechanics of cell adhesion publication-title: J Biomech doi: 10.1016/S0021-9290(99)00163-3 – volume: 112 start-page: 7137 issue: 31 year: 2008 end-page: 7151 ident: CR10 article-title: Metal speciation dynamics in monodisperse soft colloidal ligand suspensions publication-title: J Phys Chem A doi: 10.1021/jp709576j – volume: 22 start-page: 1753 year: 1967 end-page: 1777 ident: CR6 article-title: The slow motion of a sphere through a viscous fluid towards a plane surface. Part II. Small gap widths, including inertial effects publication-title: Chem Eng Sci doi: 10.1016/0009-2509(67)80208-2 – volume: 74 start-page: 19 year: 2000 end-page: 40 ident: CR28 article-title: Adhesion of cancer cells to endothelial monolayers: a study of initial attachment versus firm adhesion publication-title: J Adhes doi: 10.1080/00218460008034522 – volume: 72 start-page: 2820 issue: 6 year: 1997 end-page: 2833 ident: CR3 article-title: Quantifying rolling adhesion with a cell-free assay: E-selectin and its carbohydrate ligands publication-title: Biophys J doi: 10.1016/S0006-3495(97)78924-0 – volume: 316 start-page: 428 issue: 2 year: 2007 end-page: 441 ident: CR1 article-title: Analysis of the aggregation-fragmentation population balance equation with application to coagulation publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2007.08.029 – volume: 21 start-page: 180 issue: 2 year: 1970 end-page: 187 ident: CR30 article-title: Asymmetrical slow viscous fluid motions caused by the translation or rotation of two spheres. Part II: asymptotic forms of the solutions when the minimum clearance between the spheres approaches zero publication-title: Zeitschrift angewandte Mathematik und Physik ZAMP doi: 10.1007/BF01590642 – ident: CR31 – volume: 4 start-page: 721 issue: 15 year: 2007 end-page: 725 ident: CR37 article-title: Shearing of fibrillar adhesive microstructure: friction and shear-related changes in pull-off force publication-title: J R Soc Interface R S doi: 10.1098/rsif.2007.0222 – volume: 423 start-page: 190 issue: 6936 year: 2003 end-page: 193 ident: CR26 article-title: Direct observation of catch bonds involving cell-adhesion molecules publication-title: Nature doi: 10.1038/nature01605 – volume: 1 start-page: 57 issue: 1 year: 1973 end-page: 71 ident: CR14 article-title: On the low reynolds number motion of two droplets publication-title: Int J Multiph Flow doi: 10.1016/0301-9322(73)90004-9 – volume: 245 start-page: 314 issue: 2 year: 2013 end-page: 321 ident: CR34 article-title: Impact of flow on ligand-mediated bacterial flocculation publication-title: Math Biosci doi: 10.1016/j.mbs.2013.07.018 – volume: 234 start-page: 55 issue: 1274 year: 1988 end-page: 83 ident: CR9 article-title: The reaction-limited kinetics of membrane-to-surface adhesion and detachment publication-title: Proc R Soc Lond Ser B doi: 10.1098/rspb.1988.0038 – volume: 57 start-page: 827 issue: 1 year: 1995 end-page: 872 ident: CR36 article-title: Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration publication-title: Ann Rev Phys doi: 10.1146/annurev.ph.57.030195.004143 – volume: 109 start-page: 1 issue: 25 year: 2012 end-page: 5 ident: CR2 article-title: Nucleation of ligand-receptor domains in membrane adhesion publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.109.258101 – volume: 194 start-page: 71 issue: 1 year: 2005 end-page: 79 ident: CR22 article-title: Rolling dynamics of a neutrophil with redistributed L-selectin publication-title: Math Biosci doi: 10.1016/j.mbs.2004.12.008 – volume: 17 start-page: 337 issue: 3 year: 1996 end-page: 347 ident: CR20 article-title: Leukocyte adhesion under flow conditions: principles important in tissue engineering publication-title: Biomaterials doi: 10.1016/0142-9612(96)85572-4 – volume: 13 start-page: 1511 issue: 15 year: 2007 end-page: 1526 ident: CR18 article-title: Mathematical modeling of cell adhesion in shear flow: application to targeted drug delivery in inflammation and cancer metastasis publication-title: Curr Pharm Des doi: 10.2174/138161207780765909 – volume: 126 start-page: 767 year: 2005 end-page: 803 ident: CR35 article-title: Flocculation and dispersion of collodial suspensions by polymers and surfactants: experimental and modeling studies publication-title: Coagul Flocculation – volume: 1 start-page: 57 issue: 1 year: 1973 ident: 983_CR14 publication-title: Int J Multiph Flow doi: 10.1016/0301-9322(73)90004-9 – volume: 460 start-page: 381 year: 2002 ident: 983_CR16 publication-title: J Fluid Mech doi: 10.1017/S0022112002008340 – volume: 334 start-page: 113 issue: 2 year: 2009 ident: 983_CR8 publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2009.02.062 – volume: 72 start-page: 2820 issue: 6 year: 1997 ident: 983_CR3 publication-title: Biophys J doi: 10.1016/S0006-3495(97)78924-0 – volume: 26 start-page: 651 issue: 1 year: 1996 ident: 983_CR15 publication-title: Ann Rev Mater Sci doi: 10.1146/annurev.ms.26.080196.003251 – volume: 17 start-page: 337 issue: 3 year: 1996 ident: 983_CR20 publication-title: Biomaterials doi: 10.1016/0142-9612(96)85572-4 – volume: 97 start-page: 1 issue: 13 year: 2006 ident: 983_CR23 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.97.138103 – volume: 5 start-page: 471 issue: 4 year: 2001 ident: 983_CR27 publication-title: Eur Phys J E doi: 10.1007/s101890170054 – volume: 313 start-page: 152 issue: 1 year: 2007 ident: 983_CR12 publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2007.04.038 – volume: 423 start-page: 190 issue: 6936 year: 2003 ident: 983_CR26 publication-title: Nature doi: 10.1038/nature01605 – volume: 22 start-page: 1753 year: 1967 ident: 983_CR6 publication-title: Chem Eng Sci doi: 10.1016/0009-2509(67)80208-2 – volume: 464 start-page: 447 issue: 2090 year: 2008 ident: 983_CR32 publication-title: Proc R Soc A Math Phys Eng Sci doi: 10.1098/rspa.2007.0210 – volume: 112 start-page: 7137 issue: 31 year: 2008 ident: 983_CR10 publication-title: J Phys Chem A doi: 10.1021/jp709576j – volume: 245 start-page: 314 issue: 2 year: 2013 ident: 983_CR34 publication-title: Math Biosci doi: 10.1016/j.mbs.2013.07.018 – volume: 53 start-page: 797 issue: 6 year: 2007 ident: 983_CR29 publication-title: Europhys Lett doi: 10.1209/epl/i2001-00210-x – volume: 316 start-page: 428 issue: 2 year: 2007 ident: 983_CR1 publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2007.08.029 – volume: 86 start-page: 1408 issue: 3 year: 2004 ident: 983_CR4 publication-title: Biophys J doi: 10.1016/S0006-3495(04)74211-3 – volume: 8 start-page: 11207 issue: 44 year: 2012 ident: 983_CR5 publication-title: Soft Matter doi: 10.1039/c2sm26112j – volume: 4 start-page: 721 issue: 15 year: 2007 ident: 983_CR37 publication-title: J R Soc Interface R S doi: 10.1098/rsif.2007.0222 – volume-title: Particles in water: properties and processes year: 2006 ident: 983_CR13 – volume: 13 start-page: 1511 issue: 15 year: 2007 ident: 983_CR18 publication-title: Curr Pharm Des doi: 10.2174/138161207780765909 – volume: 302 start-page: 187 issue: 1 year: 2006 ident: 983_CR19 publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2006.06.011 – volume: 194 start-page: 71 issue: 1 year: 2005 ident: 983_CR22 publication-title: Math Biosci doi: 10.1016/j.mbs.2004.12.008 – volume: 74 start-page: 19 year: 2000 ident: 983_CR28 publication-title: J Adhes doi: 10.1080/00218460008034522 – volume: 88 start-page: 96 issue: 1 year: 2005 ident: 983_CR17 publication-title: Biophys J doi: 10.1529/biophysj.104.051029 – volume: 1 start-page: 77 year: 1989 ident: 983_CR7 publication-title: Phys Fluids doi: 10.1063/1.857525 – volume: 234 start-page: 55 issue: 1274 year: 1988 ident: 983_CR9 publication-title: Proc R Soc Lond Ser B doi: 10.1098/rspb.1988.0038 – volume-title: Microhydrodynamics: principles and selected applications year: 2005 ident: 983_CR21 – volume: 57 start-page: 827 issue: 1 year: 1995 ident: 983_CR36 publication-title: Ann Rev Phys doi: 10.1146/annurev.ph.57.030195.004143 – volume: 33 start-page: 23 issue: 1 year: 2000 ident: 983_CR39 publication-title: J Biomech doi: 10.1016/S0021-9290(99)00163-3 – volume: 18 start-page: 103102 issue: 10 year: 2006 ident: 983_CR11 publication-title: Phys Fluids doi: 10.1063/1.2359232 – ident: 983_CR31 – volume: 108 start-page: 226104 issue: 22 year: 2012 ident: 983_CR25 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.108.226104 – volume: 21 start-page: 180 issue: 2 year: 1970 ident: 983_CR30 publication-title: Zeitschrift angewandte Mathematik und Physik ZAMP doi: 10.1007/BF01590642 – volume: 158 start-page: 787 issue: 4 year: 2002 ident: 983_CR38 publication-title: J Cell Biol doi: 10.1083/jcb.200204041 – volume: 95 start-page: 6797 issue: 12 year: 1998 ident: 983_CR33 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.95.12.6797 – volume-title: Receptors: models for binding, trafficking and signalling year: 1993 ident: 983_CR24 doi: 10.1093/oso/9780195064667.001.0001 – volume: 126 start-page: 767 year: 2005 ident: 983_CR35 publication-title: Coagul Flocculation – volume: 109 start-page: 1 issue: 25 year: 2012 ident: 983_CR2 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.109.258101 – reference: 10609515 - J Biomech. 2000 Jan;33(1):23-33 – reference: 9168056 - Biophys J. 1997 Jun;72(6):2820-33 – reference: 12736689 - Nature. 2003 May 8;423(6936):190-3 – reference: 17511999 - J Colloid Interface Sci. 2007 Sep 1;313(1):152-9 – reference: 8745331 - Biomaterials. 1996 Feb;17(3):337-47 – reference: 19406427 - J Colloid Interface Sci. 2009 Jun 15;334(2):113-23 – reference: 17026079 - Phys Rev Lett. 2006 Sep 29;97(13):138103 – reference: 23368503 - Phys Rev Lett. 2012 Dec 21;109(25):258101 – reference: 15836865 - Math Biosci. 2005 Mar;194(1):71-9 – reference: 17804007 - J Colloid Interface Sci. 2007 Dec 15;316(2):428-41 – reference: 15489302 - Biophys J. 2005 Jan;88(1):96-104 – reference: 16870204 - J Colloid Interface Sci. 2006 Oct 1;302(1):187-202 – reference: 23003628 - Phys Rev Lett. 2012 Jun 1;108(22):226104 – reference: 9618492 - Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6797-802 – reference: 17327201 - J R Soc Interface. 2007 Aug 22;4(15):721-5 – reference: 12177042 - J Cell Biol. 2002 Aug 19;158(4):787-99 – reference: 17504147 - Curr Pharm Des. 2007;13(15):1511-26 – reference: 7778885 - Annu Rev Physiol. 1995;57:827-72 – reference: 14990470 - Biophys J. 2004 Mar;86(3):1408-23 – reference: 23917245 - Math Biosci. 2013 Oct;245(2):314-21 – reference: 2901109 - Proc R Soc Lond B Biol Sci. 1988 Jun 22;234(1274):55-83 – reference: 18636700 - J Phys Chem A. 2008 Aug 7;112(31):7137-51 |
SSID | ssj0017591 |
Score | 2.240085 |
Snippet | We present a unified, multiscale model to study the attachment/detachment dynamics of two deforming, charged, near spherical cells, coated with binding ligands... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) We present a unified, multiscale model to study the attachment/detachment dynamics... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1035 |
SubjectTerms | Applications of Mathematics Biophysical Phenomena Cell Adhesion - physiology Ligands Mathematical and Computational Biology Mathematics Mathematics and Statistics Models, Biological |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA46EXwR706nRPBJCdakzeVJZDiGoC862FtJk1QHo527IP57c3pTGQ5KH9o0CeecJl9OTs6H0KV2HhZHNCTC-luYMkW0s5SkkqrQBCwRBdfh0zPvD8LHYTSsHG6zKqyyHhOLgdrmBnzkN7dwKDn0k11wN_kgwBoFu6sVhcY62oDUZbD4EsNmweULl4x5fpgmkGer3tUMiiSiVELYml9PK8mI-DsvLYHNpY3SYv7p7aDtCjji-1LTu2jNZXtos6SS_NpH3ZfFNNXGYeua84hYZxbPgLIap-P8E48yPB69wcPivIjHmhj89ljbdwdOswM06D28dvukIkgghgk6J1KJgFPjosTyVBppZWqFMFo6f3GppExSoVPKXWC5Fz3lkuqIedCkQqu5ZYeoleWZO0YYsuCYSNNEeZ0xKqQHEiKwTHPtqA6DNgpq8cSmyh4OJBbjuMl7XEg0hogxkGgs2uiq-WRSps5YVbhTyzyu_qJZ_KPzNrpoXnv7B-HozOWLsgxjKuRRGx2Vumpao1xxb4e-8utaeb8q_68rJ6u7coq2KJhNEdDXQa35dOHOPDCZJ-eF9X0DJf_ayw priority: 102 providerName: ProQuest |
Title | Surface deformation and shear flow in ligand mediated cell adhesion |
URI | https://link.springer.com/article/10.1007/s00285-016-0983-7 https://www.ncbi.nlm.nih.gov/pubmed/26965247 https://www.proquest.com/docview/1818041750 https://www.proquest.com/docview/1818339465 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3pS8MwFH94IOgH8XYeI4KflEJN2hwfN9kUxSHqYH4qaZPqYHTiNsT_3pdeKB4glBTaNCnvvSS_5F0Ax9oiLA5p4AmDRZAy5WlrqJdKqoLEZ7HIcx3e9PhlP7gahIPSj3tSWbtXKsl8pq6d3dz2wBma4Q5YSeaJeVgMcevuxLpPW7XqQIRFmjycmz0XXKtSZf7UxNfF6BvC_KYdzRed7hqslmiRtAr2rsOczTZgqcgf-b4BKzd10NXJJpzfz15TnVhibO2SSHRmyMRlrSbpaPxGhhkZDZ_cw9xlBOEmcUf3RJtn687NtqDf7TycX3pljgQvYYJOPamEz2liw9jwVCbSyNQIkWhp8eJSSRmnQqeUW99wpD7lkuqQIW5SgdHcsG1YyMaZ3QXiAuEkoaaxQrYxKiRiCeEbprm2VAd-A_yKWFFSBhB3eSxGUR36OKdv5IzGHH0j0YCT-pOXInrGX5UPKg5E5UCaRGfOFz1ApmL3R_VrHAKOODqz41lRhzEV8LABOwXn6t4oVxxFERs_rVj5qfHffmXvX7X3YZk6mcpN_A5gYfo6s4cIVaZxE-bFQGApuxdNWGx12-2eu188Xnfw3u70bu-aufh-AE-P4ms |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVgguiAItC4UaCS4gq8F2_DgghEqXLX1caKXeUsd2oNIqW7q7qvqn-I3MJJsAquitUpRD4jjWzGfP2PMCeO0TqsW5UNxEvKlKOu5TFLyywqmQydI0tQ4PDvXoWH09yU-W4FcXC0Nuld2a2CzUcRLojHzrPQUlKxR22cfzn5yqRpF1tSuh0cJiL11d4pZt-mH3M_L3jRDDnaPtEV9UFeBBGjHj1plMi5DyMurKBhttFY0J3ia8tHXWlpXxldApixrHK7QVPpeoaTgVvY4S-70DK0pKRy6Edvilt1qYvK3Qh2KBU16vzoqaNUlLhSU3Ody_Oyu5-VcOXlNurxlmG3k3fAgPFooq-9QiaxWWUv0I7ralK68ew_a3-UXlQ2Ix9fGPzNeRTalENqvGk0t2VrPx2Xd62MSnoG7LyE7AfPyR6JDuCRzfCunWYLme1OkpMMq6E3IvSocYkcJYVFxMFqXXPgmvsgFkHXmKsMhWTkUzxkWfZ7mhaEEeakTRwgzgbf_JeZuq46bGGx3Ni8WsnRZ_MDaAV_1rnG9EHF-nybxtg6xXOh_Aesur_m9CO424x87fdcz7q_P_DeXZzUPZhHujo4P9Yn_3cO853BcEocaZcAOWZxfz9AKVoln5skEig9Pbhv5vk44YVA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFD7UitIX8d61VSPoixKaJjNJ5kFEWtfWahG00Lcxk0stLLO1u0vpX-uv85y5qRT7VhjmYSaTCSdfkpOcywfw0kVUi3OZcRPwliVVcBeD5MnKIvNCVabhOvyyr3cOsk-H-eESXPSxMORW2c-JzUQdpp7OyDc2KSg5w8VObKTOLeLr9vjdyS9ODFJkae3pNFqI7MXzM9y-zd7ubmNfv5Jy_OH71g7vGAa4V0bOuS2M0NLHvAo6WW-DTcEY72zES9vC2ioZl6SOImhsu9RWulyh1lFkwemgsN4bcNMoK4g9wY4_DhYMk7dsfbhEcMrx1VtURZPAVFpymcO9fGEVN_-uiZcU3UtG2mbtG9-FO53Syt63KLsHS7G-D7daGsvzB7D1bXGanI8sxCEWkrk6sBnRZbM0mZ6x45pNjo_oYROrgnouI5sBc-FnpAO7h3BwLaJ7BMv1tI6rwCgDj8-drArEi5LGohJjRFBOuyhdJkYgevGUvstcTgQak3LIudxItCRvNZJoaUbwevjkpE3bcVXh9V7mZTeCZ-UfvI3gxfAaxx4Jx9VxumjLKFVkOh_B47avhr9JXWgcA1j5m77z_qr8f015cnVTnsNtBH35eXd_bw1WJCGo8Stch-X56SI-Rf1oXj1rgMjgx3Uj_zeqvByB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+deformation+and+shear+flow+in+ligand+mediated+cell+adhesion&rft.jtitle=Journal+of+mathematical+biology&rft.au=Sircar%2C+Sarthok&rft.au=Roberts%2C+Anthony+J.&rft.date=2016-10-01&rft.issn=0303-6812&rft.eissn=1432-1416&rft.volume=73&rft.issue=4&rft.spage=1035&rft.epage=1052&rft_id=info:doi/10.1007%2Fs00285-016-0983-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00285_016_0983_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0303-6812&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0303-6812&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0303-6812&client=summon |