Eye Blink Artifact Detection With Novel Optimized Multi-Dimensional Electroencephalogram Features
Accurate eye blink artifact detection is essential for electroencephalogram (EEG) analysis and auxiliary analysis of nervous system diseases, especially in the presence of the frontal epileptiform discharges. In this paper, we develop a novel eye blink artifact detection algorithm based on optimally...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 29; pp. 1494 - 1503 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate eye blink artifact detection is essential for electroencephalogram (EEG) analysis and auxiliary analysis of nervous system diseases, especially in the presence of the frontal epileptiform discharges. In this paper, we develop a novel eye blink artifact detection algorithm based on optimally selected multi-dimensional EEG features. Specific efforts have been paid to filtering the frontal epileptiform discharges, where an unsupervised learning exploiting the EEG signal physiological characteristics and smooth nonlinear energy operator (SNEO) based on the K-means clustering has been firstly proposed. Multiple statistical EEG features derived from the frontal electrodes and other electrodes are then extracted to characterize eye blink artifacts. Discriminative feature selection scheme based on the variance filtering and Relief algorithms has been respectively studied, and the average correlation coefficient (ACC) is applied for feature optimization evaluation. The eye blink artifact detection is finally achieved based on the support vector machine (SVM) trained on the optimized EEG features. The effectiveness of the proposed algorithm is demonstrated by experiments carried out on the EEG database of 11 subjects recorded from the Children's Hospital, Zhejiang University School of Medicine (CHZU). Comparisons to several state-of-the-art (SOTA) eye blink artifact detection methods are also presented. |
---|---|
AbstractList | Accurate eye blink artifact detection is essential for electroencephalogram (EEG) analysis and auxiliary analysis of nervous system diseases, especially in the presence of the frontal epileptiform discharges. In this paper, we develop a novel eye blink artifact detection algorithm based on optimally selected multi-dimensional EEG features. Specific efforts have been paid to filtering the frontal epileptiform discharges, where an unsupervised learning exploiting the EEG signal physiological characteristics and smooth nonlinear energy operator (SNEO) based on the K-means clustering has been firstly proposed. Multiple statistical EEG features derived from the frontal electrodes and other electrodes are then extracted to characterize eye blink artifacts. Discriminative feature selection scheme based on the variance filtering and Relief algorithms has been respectively studied, and the average correlation coefficient (ACC) is applied for feature optimization evaluation. The eye blink artifact detection is finally achieved based on the support vector machine (SVM) trained on the optimized EEG features. The effectiveness of the proposed algorithm is demonstrated by experiments carried out on the EEG database of 11 subjects recorded from the Children's Hospital, Zhejiang University School of Medicine (CHZU). Comparisons to several state-of-the-art (SOTA) eye blink artifact detection methods are also presented. Accurate eye blink artifact detection is essential for electroencephalogram (EEG) analysis and auxiliary analysis of nervous system diseases, especially in the presence of the frontal epileptiform discharges. In this paper, we develop a novel eye blink artifact detection algorithm based on optimally selected multi-dimensional EEG features. Specific efforts have been paid to filtering the frontal epileptiform discharges, where an unsupervised learning exploiting the EEG signal physiological characteristics and smooth nonlinear energy operator (SNEO) based on the K-means clustering has been firstly proposed. Multiple statistical EEG features derived from the frontal electrodes and other electrodes are then extracted to characterize eye blink artifacts. Discriminative feature selection scheme based on the variance filtering and Relief algorithms has been respectively studied, and the average correlation coefficient (ACC) is applied for feature optimization evaluation. The eye blink artifact detection is finally achieved based on the support vector machine (SVM) trained on the optimized EEG features. The effectiveness of the proposed algorithm is demonstrated by experiments carried out on the EEG database of 11 subjects recorded from the Children's Hospital, Zhejiang University School of Medicine (CHZU). Comparisons to several state-of-the-art (SOTA) eye blink artifact detection methods are also presented.Accurate eye blink artifact detection is essential for electroencephalogram (EEG) analysis and auxiliary analysis of nervous system diseases, especially in the presence of the frontal epileptiform discharges. In this paper, we develop a novel eye blink artifact detection algorithm based on optimally selected multi-dimensional EEG features. Specific efforts have been paid to filtering the frontal epileptiform discharges, where an unsupervised learning exploiting the EEG signal physiological characteristics and smooth nonlinear energy operator (SNEO) based on the K-means clustering has been firstly proposed. Multiple statistical EEG features derived from the frontal electrodes and other electrodes are then extracted to characterize eye blink artifacts. Discriminative feature selection scheme based on the variance filtering and Relief algorithms has been respectively studied, and the average correlation coefficient (ACC) is applied for feature optimization evaluation. The eye blink artifact detection is finally achieved based on the support vector machine (SVM) trained on the optimized EEG features. The effectiveness of the proposed algorithm is demonstrated by experiments carried out on the EEG database of 11 subjects recorded from the Children's Hospital, Zhejiang University School of Medicine (CHZU). Comparisons to several state-of-the-art (SOTA) eye blink artifact detection methods are also presented. |
Author | Hu, Dinghan Gao, Feng Cao, Jiuwen Jiang, Tiejia Wang, Jianhui |
Author_xml | – sequence: 1 givenname: Jianhui surname: Wang fullname: Wang, Jianhui email: 15968194550@163.com organization: Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, China – sequence: 2 givenname: Jiuwen orcidid: 0000-0002-6480-5794 surname: Cao fullname: Cao, Jiuwen email: jwcao@hdu.edu.cn organization: Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, China – sequence: 3 givenname: Dinghan orcidid: 0000-0003-1493-0041 surname: Hu fullname: Hu, Dinghan email: sunnydinghan@163.com organization: Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, China – sequence: 4 givenname: Tiejia surname: Jiang fullname: Jiang, Tiejia email: jiangyouze@zju.edu.cn organization: Department of Neurology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China – sequence: 5 givenname: Feng orcidid: 0000-0003-4907-7212 surname: Gao fullname: Gao, Feng email: epilepsy@zju.edu.cn organization: Department of Neurology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China |
BookMark | eNp9kU1v1DAQhi1URD_gD8DFEhcuWexx7NjH0m4LUmklWIlj5HUm1MWJF9tBKr--Sbfi0AMnj6znGc3Me0wOxjgiIW85W3HOzMfN9fdv6xUw4CvBjAEBL8gRl1JX8xc7WGpRV7UAdkiOc75jjDdKNq_IoagFZ4LDEbHre6Sfgh9_0dNUfG9doedY0BUfR_rDl1t6Hf9goDe74gf_Fzv6dQrFV-d-wDHPkA10HWY-RRwd7m5tiD-THegF2jIlzK_Jy96GjG-e3hOyuVhvzj5XVzeXX85OryonGiiVVm4eSjonOgudqa1peqtAOr5lsDWqrx1sHdNCa9V1zAJCJ4HLBphA3YgT8mHfdpfi7wlzaQefHYZgR4xTbkFKqYRhnM_o-2foXZzSvMgjpWqtlF4ovadcijkn7Fvni13OUpL1oeWsXVJoH1NolxTapxRmFZ6pu-QHm-7_L73bSx4R_wmmNoI3WjwAwU6TOA |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_1109_TETCI_2024_3372387 crossref_primary_10_1109_JSEN_2024_3358911 crossref_primary_10_1007_s11045_022_00839_7 crossref_primary_10_1109_TNSRE_2022_3193666 crossref_primary_10_1109_TNSRE_2023_3305363 crossref_primary_10_1016_j_bspc_2023_104657 crossref_primary_10_1109_TNSRE_2022_3164126 crossref_primary_10_1109_TCDS_2022_3175636 crossref_primary_10_1016_j_neuri_2022_100115 crossref_primary_10_1016_j_bspc_2024_106617 crossref_primary_10_1109_JSEN_2023_3305118 crossref_primary_10_1109_TNSRE_2021_3107142 crossref_primary_10_3390_a16020086 crossref_primary_10_1016_j_neunet_2022_05_029 crossref_primary_10_1016_j_neunet_2022_03_014 crossref_primary_10_1049_ccs2_12035 |
Cites_doi | 10.1109/TNSRE.2003.814799 10.1016/j.jneumeth.2007.05.033 10.1109/IEMBS.2010.5626481 10.1109/LSP.2005.855539 10.1109/TPAMI.2002.1017616 10.1109/NER.2013.6696203 10.1007/978-3-642-15819-3_59 10.1088/0967-3334/37/3/401 10.1109/ICSDA.2013.6709849 10.1016/j.medengphy.2005.11.006 10.1109/81.904882 10.1109/JBHI.2014.2333010 10.1109/JBHI.2017.2723420 10.1109/IECBES.2014.7047645 10.1109/JBHI.2020.2995235 10.1016/j.cmpb.2015.10.011 10.1007/s13534-013-0090-2 10.1109/10.841330 10.1016/j.compbiomed.2013.07.031 10.1016/j.jneumeth.2010.07.015 10.1109/JBHI.2015.2450196 10.1016/j.physa.2013.07.075 10.1088/0967-3334/27/4/008 10.1016/j.jbi.2018.07.014 10.1109/JBHI.2015.2457093 10.1109/JBHI.2021.3057891 10.1088/1741-2552/aa69d1 10.1016/0013-4694(70)90185-9 10.1016/j.bspc.2011.02.001 10.1016/j.pnsc.2008.11.013 10.1049/iet-spr.2018.5111 10.1088/1741-2560/12/3/031001 10.1007/11427469_72 10.1109/JBHI.2014.2370646 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TNSRE.2021.3099232 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 1503 |
ExternalDocumentID | 10_1109_TNSRE_2021_3099232 9493178 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2021YFE0100100 funderid: 10.13039/501100012166 – fundername: Open Research Projects of Zhejiang Lab grantid: 2021MC0AB04 – fundername: Key Research and Development Program of Zhejiang Province grantid: 2020C03038 – fundername: National Natural Science Foundation of China grantid: U1909209 funderid: 10.13039/501100001809 – fundername: Zhejiang Provincial Natural Science Foundation grantid: LBY21H090002 funderid: 10.13039/501100004731 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c372t-86c4315cc3da2d94a97fa625c1b02b96f4c2bc083886dd0a2e2d52157203e873 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Fri Jul 11 02:47:51 EDT 2025 Fri Jul 25 04:32:55 EDT 2025 Tue Jul 01 00:43:23 EDT 2025 Thu Apr 24 23:13:01 EDT 2025 Wed Aug 27 02:40:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-86c4315cc3da2d94a97fa625c1b02b96f4c2bc083886dd0a2e2d52157203e873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1493-0041 0000-0002-6480-5794 0000-0003-4907-7212 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9493178 |
PMID | 34310312 |
PQID | 2556486681 |
PQPubID | 85423 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1109_TNSRE_2021_3099232 ieee_primary_9493178 proquest_miscellaneous_2555639011 proquest_journals_2556486681 crossref_primary_10_1109_TNSRE_2021_3099232 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 wallstrom (ref10) 2004; 53 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref2 ref17 ref16 ref19 ref18 hirsch (ref1) 2011 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref3 doi: 10.1109/TNSRE.2003.814799 – ident: ref15 doi: 10.1016/j.jneumeth.2007.05.033 – ident: ref5 doi: 10.1109/IEMBS.2010.5626481 – ident: ref27 doi: 10.1109/LSP.2005.855539 – ident: ref31 doi: 10.1109/TPAMI.2002.1017616 – ident: ref34 doi: 10.1109/NER.2013.6696203 – ident: ref12 doi: 10.1007/978-3-642-15819-3_59 – ident: ref14 doi: 10.1088/0967-3334/37/3/401 – ident: ref20 doi: 10.1109/ICSDA.2013.6709849 – ident: ref23 doi: 10.1016/j.medengphy.2005.11.006 – year: 2011 ident: ref1 publication-title: Atlas of EEG in Critical Care – ident: ref32 doi: 10.1109/81.904882 – ident: ref4 doi: 10.1109/JBHI.2014.2333010 – ident: ref28 doi: 10.1109/JBHI.2017.2723420 – ident: ref33 doi: 10.1109/IECBES.2014.7047645 – ident: ref18 doi: 10.1109/JBHI.2020.2995235 – ident: ref6 doi: 10.1016/j.cmpb.2015.10.011 – ident: ref29 doi: 10.1007/s13534-013-0090-2 – ident: ref21 doi: 10.1109/10.841330 – ident: ref13 doi: 10.1016/j.compbiomed.2013.07.031 – ident: ref7 doi: 10.1016/j.jneumeth.2010.07.015 – ident: ref26 doi: 10.1109/JBHI.2015.2450196 – ident: ref35 doi: 10.1016/j.physa.2013.07.075 – ident: ref22 doi: 10.1088/0967-3334/27/4/008 – ident: ref36 doi: 10.1016/j.jbi.2018.07.014 – ident: ref17 doi: 10.1109/JBHI.2015.2457093 – ident: ref19 doi: 10.1109/JBHI.2021.3057891 – ident: ref2 doi: 10.1088/1741-2552/aa69d1 – volume: 53 start-page: 105 year: 2004 ident: ref10 article-title: Automatic correction of ocular artifacts in the EEG: A comparison of regression-based and component-based methods publication-title: Int J Neurophysiol – ident: ref9 doi: 10.1016/0013-4694(70)90185-9 – ident: ref8 doi: 10.1016/j.bspc.2011.02.001 – ident: ref24 doi: 10.1016/j.pnsc.2008.11.013 – ident: ref16 doi: 10.1049/iet-spr.2018.5111 – ident: ref11 doi: 10.1088/1741-2560/12/3/031001 – ident: ref30 doi: 10.1007/11427469_72 – ident: ref25 doi: 10.1109/JBHI.2014.2370646 |
SSID | ssj0017657 |
Score | 2.427123 |
Snippet | Accurate eye blink artifact detection is essential for electroencephalogram (EEG) analysis and auxiliary analysis of nervous system diseases, especially in the... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1494 |
SubjectTerms | Algorithms Cluster analysis Clustering Correlation coefficient Correlation coefficients Detection algorithms Discharge Discharges (electric) EEG Electrodes Electroencephalography Epilepsy Eye blink artifact detection Feature extraction Filtration Firing pattern frontal epileptiform discharge screening multi-dimensional feature extraction and optimization Nervous system Nervous system diseases Optimization SNEO Support vector machines Vector quantization |
Title | Eye Blink Artifact Detection With Novel Optimized Multi-Dimensional Electroencephalogram Features |
URI | https://ieeexplore.ieee.org/document/9493178 https://www.proquest.com/docview/2556486681 https://www.proquest.com/docview/2555639011 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BB8SltNCq21JkJNoLzZLYjmMfW1iEkNhKsFW5RbbjCFTIIppUKr--YzsbFVpV3CLF8SPjxzcznm8AdjWruSlqkeBc4Qk3hiU-ojgRDKGctIWOpoHTqTj-yk8u8osl-DjEwjjnwuUzN_aPwZdfzW3nTWX7iis87uQyLKPiFmO1Bo9BIQKrJy5gbJLRdBEgk6r92fT8bIKqIM3GDAERYog1WGXcZ9jK6IPzKCRY-WtXDkfN0TqcLjoZb5h8H3etGdv7R_yNTx3Fc3jWY07yKU6SF7Dkmg14_ye_MJlFcgHygZw9oO7eBD355chn7-cNFfhACHLo2nCDqyHfrtpLMp3_dNfkC24-N1f3riIhqDc59HkDIucHmcRkO34Xub3UgSb7hnj02aG2_xJmR5PZwXHS52VILCtom0hh8efl1rJK00pxrYpaox5lM5NSo0TNLTUWsZ2UoqpSTR2tECXk3uPrZMFewUozb9xrINRQmdc6E8ZpTrWSwkiX88zkqqaaZSPIFsIpbT9wnzrjugy6S6rKINvSy7bsZTuCveGb28jY8d_Sm15CQ8leOCPYWsyBsl_UP0rP1salEBL7tTO8xuXofSy6cfMulMmFtyNlb_5d81tY8-1HK84WrLR3nXuHuKY128EesB2m9W-uKvM8 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIkEv5VEqtrRgJOAC2caPOPaR0q0W6C5SCaK3yHYctaLNVpAgtb--fmQjCghxixQnsTNj-5sZzzcALxStmc5rnjhdYQnTmiY-ozjh1EE5YXIVXQOzOZ9-YR-Os-MVeDPkwlhrw-EzO_aXIZZfLUznXWW7kkm33YlbcNvt-xmO2VpDzCDngdfTTWH3UUrSZYpMKneL-eejiTMGCR5TB4kciliDO5T5GluY3NiRQomVP9blsNkc3IPZspvxjMm3cdfqsbn6jcHxf8dxH9Z71IneRjV5ACu2eQgvf2UYRkWkF0Cv0NEN8u4NUJNLi_Z8pDe8wKdCoH3bhjNcDfp62p6g-eKnPUOf3PJzfnplKxTSepN9Xzkgsn6gSSy349eRixMViLLPkcefnbP3H0FxMCneTZO-MkNiaE7aRHDjfl5mDK0UqSRTMq-Vs6QM1inRktfMEG0cuhOCV1WqiCWVwwmZj_lakdNNWG0WjX0MiGgislphrq1iREnBtbAZwzqTNVEUjwAvhVOafuC-eMZZGayXVJZBtqWXbdnLdgSvh2cuImfHP1tveAkNLXvhjGB7qQNlP61_lJ6vjQnOhevX8-G2m5A-yqIau-hCm4x7TxLe-vubn8HdaTE7LA_fzz8-gTXfl-jT2YbV9ntndxzKafXToNzXxe_1kA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Eye+Blink+Artifact+Detection+With+Novel+Optimized+Multi-Dimensional+Electroencephalogram+Features&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Wang%2C+Jianhui&rft.au=Cao%2C+Jiuwen&rft.au=Hu%2C+Dinghan&rft.au=Jiang%2C+Tiejia&rft.date=2021&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=29&rft.spage=1494&rft.epage=1503&rft_id=info:doi/10.1109%2FTNSRE.2021.3099232&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSRE_2021_3099232 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |