Eye Blink Artifact Detection With Novel Optimized Multi-Dimensional Electroencephalogram Features

Accurate eye blink artifact detection is essential for electroencephalogram (EEG) analysis and auxiliary analysis of nervous system diseases, especially in the presence of the frontal epileptiform discharges. In this paper, we develop a novel eye blink artifact detection algorithm based on optimally...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 29; pp. 1494 - 1503
Main Authors Wang, Jianhui, Cao, Jiuwen, Hu, Dinghan, Jiang, Tiejia, Gao, Feng
Format Journal Article
LanguageEnglish
Published New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate eye blink artifact detection is essential for electroencephalogram (EEG) analysis and auxiliary analysis of nervous system diseases, especially in the presence of the frontal epileptiform discharges. In this paper, we develop a novel eye blink artifact detection algorithm based on optimally selected multi-dimensional EEG features. Specific efforts have been paid to filtering the frontal epileptiform discharges, where an unsupervised learning exploiting the EEG signal physiological characteristics and smooth nonlinear energy operator (SNEO) based on the K-means clustering has been firstly proposed. Multiple statistical EEG features derived from the frontal electrodes and other electrodes are then extracted to characterize eye blink artifacts. Discriminative feature selection scheme based on the variance filtering and Relief algorithms has been respectively studied, and the average correlation coefficient (ACC) is applied for feature optimization evaluation. The eye blink artifact detection is finally achieved based on the support vector machine (SVM) trained on the optimized EEG features. The effectiveness of the proposed algorithm is demonstrated by experiments carried out on the EEG database of 11 subjects recorded from the Children's Hospital, Zhejiang University School of Medicine (CHZU). Comparisons to several state-of-the-art (SOTA) eye blink artifact detection methods are also presented.
AbstractList Accurate eye blink artifact detection is essential for electroencephalogram (EEG) analysis and auxiliary analysis of nervous system diseases, especially in the presence of the frontal epileptiform discharges. In this paper, we develop a novel eye blink artifact detection algorithm based on optimally selected multi-dimensional EEG features. Specific efforts have been paid to filtering the frontal epileptiform discharges, where an unsupervised learning exploiting the EEG signal physiological characteristics and smooth nonlinear energy operator (SNEO) based on the K-means clustering has been firstly proposed. Multiple statistical EEG features derived from the frontal electrodes and other electrodes are then extracted to characterize eye blink artifacts. Discriminative feature selection scheme based on the variance filtering and Relief algorithms has been respectively studied, and the average correlation coefficient (ACC) is applied for feature optimization evaluation. The eye blink artifact detection is finally achieved based on the support vector machine (SVM) trained on the optimized EEG features. The effectiveness of the proposed algorithm is demonstrated by experiments carried out on the EEG database of 11 subjects recorded from the Children's Hospital, Zhejiang University School of Medicine (CHZU). Comparisons to several state-of-the-art (SOTA) eye blink artifact detection methods are also presented.
Accurate eye blink artifact detection is essential for electroencephalogram (EEG) analysis and auxiliary analysis of nervous system diseases, especially in the presence of the frontal epileptiform discharges. In this paper, we develop a novel eye blink artifact detection algorithm based on optimally selected multi-dimensional EEG features. Specific efforts have been paid to filtering the frontal epileptiform discharges, where an unsupervised learning exploiting the EEG signal physiological characteristics and smooth nonlinear energy operator (SNEO) based on the K-means clustering has been firstly proposed. Multiple statistical EEG features derived from the frontal electrodes and other electrodes are then extracted to characterize eye blink artifacts. Discriminative feature selection scheme based on the variance filtering and Relief algorithms has been respectively studied, and the average correlation coefficient (ACC) is applied for feature optimization evaluation. The eye blink artifact detection is finally achieved based on the support vector machine (SVM) trained on the optimized EEG features. The effectiveness of the proposed algorithm is demonstrated by experiments carried out on the EEG database of 11 subjects recorded from the Children's Hospital, Zhejiang University School of Medicine (CHZU). Comparisons to several state-of-the-art (SOTA) eye blink artifact detection methods are also presented.Accurate eye blink artifact detection is essential for electroencephalogram (EEG) analysis and auxiliary analysis of nervous system diseases, especially in the presence of the frontal epileptiform discharges. In this paper, we develop a novel eye blink artifact detection algorithm based on optimally selected multi-dimensional EEG features. Specific efforts have been paid to filtering the frontal epileptiform discharges, where an unsupervised learning exploiting the EEG signal physiological characteristics and smooth nonlinear energy operator (SNEO) based on the K-means clustering has been firstly proposed. Multiple statistical EEG features derived from the frontal electrodes and other electrodes are then extracted to characterize eye blink artifacts. Discriminative feature selection scheme based on the variance filtering and Relief algorithms has been respectively studied, and the average correlation coefficient (ACC) is applied for feature optimization evaluation. The eye blink artifact detection is finally achieved based on the support vector machine (SVM) trained on the optimized EEG features. The effectiveness of the proposed algorithm is demonstrated by experiments carried out on the EEG database of 11 subjects recorded from the Children's Hospital, Zhejiang University School of Medicine (CHZU). Comparisons to several state-of-the-art (SOTA) eye blink artifact detection methods are also presented.
Author Hu, Dinghan
Gao, Feng
Cao, Jiuwen
Jiang, Tiejia
Wang, Jianhui
Author_xml – sequence: 1
  givenname: Jianhui
  surname: Wang
  fullname: Wang, Jianhui
  email: 15968194550@163.com
  organization: Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, China
– sequence: 2
  givenname: Jiuwen
  orcidid: 0000-0002-6480-5794
  surname: Cao
  fullname: Cao, Jiuwen
  email: jwcao@hdu.edu.cn
  organization: Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, China
– sequence: 3
  givenname: Dinghan
  orcidid: 0000-0003-1493-0041
  surname: Hu
  fullname: Hu, Dinghan
  email: sunnydinghan@163.com
  organization: Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, China
– sequence: 4
  givenname: Tiejia
  surname: Jiang
  fullname: Jiang, Tiejia
  email: jiangyouze@zju.edu.cn
  organization: Department of Neurology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
– sequence: 5
  givenname: Feng
  orcidid: 0000-0003-4907-7212
  surname: Gao
  fullname: Gao, Feng
  email: epilepsy@zju.edu.cn
  organization: Department of Neurology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
BookMark eNp9kU1v1DAQhi1URD_gD8DFEhcuWexx7NjH0m4LUmklWIlj5HUm1MWJF9tBKr--Sbfi0AMnj6znGc3Me0wOxjgiIW85W3HOzMfN9fdv6xUw4CvBjAEBL8gRl1JX8xc7WGpRV7UAdkiOc75jjDdKNq_IoagFZ4LDEbHre6Sfgh9_0dNUfG9doedY0BUfR_rDl1t6Hf9goDe74gf_Fzv6dQrFV-d-wDHPkA10HWY-RRwd7m5tiD-THegF2jIlzK_Jy96GjG-e3hOyuVhvzj5XVzeXX85OryonGiiVVm4eSjonOgudqa1peqtAOr5lsDWqrx1sHdNCa9V1zAJCJ4HLBphA3YgT8mHfdpfi7wlzaQefHYZgR4xTbkFKqYRhnM_o-2foXZzSvMgjpWqtlF4ovadcijkn7Fvni13OUpL1oeWsXVJoH1NolxTapxRmFZ6pu-QHm-7_L73bSx4R_wmmNoI3WjwAwU6TOA
CODEN ITNSB3
CitedBy_id crossref_primary_10_1109_TETCI_2024_3372387
crossref_primary_10_1109_JSEN_2024_3358911
crossref_primary_10_1007_s11045_022_00839_7
crossref_primary_10_1109_TNSRE_2022_3193666
crossref_primary_10_1109_TNSRE_2023_3305363
crossref_primary_10_1016_j_bspc_2023_104657
crossref_primary_10_1109_TNSRE_2022_3164126
crossref_primary_10_1109_TCDS_2022_3175636
crossref_primary_10_1016_j_neuri_2022_100115
crossref_primary_10_1016_j_bspc_2024_106617
crossref_primary_10_1109_JSEN_2023_3305118
crossref_primary_10_1109_TNSRE_2021_3107142
crossref_primary_10_3390_a16020086
crossref_primary_10_1016_j_neunet_2022_05_029
crossref_primary_10_1016_j_neunet_2022_03_014
crossref_primary_10_1049_ccs2_12035
Cites_doi 10.1109/TNSRE.2003.814799
10.1016/j.jneumeth.2007.05.033
10.1109/IEMBS.2010.5626481
10.1109/LSP.2005.855539
10.1109/TPAMI.2002.1017616
10.1109/NER.2013.6696203
10.1007/978-3-642-15819-3_59
10.1088/0967-3334/37/3/401
10.1109/ICSDA.2013.6709849
10.1016/j.medengphy.2005.11.006
10.1109/81.904882
10.1109/JBHI.2014.2333010
10.1109/JBHI.2017.2723420
10.1109/IECBES.2014.7047645
10.1109/JBHI.2020.2995235
10.1016/j.cmpb.2015.10.011
10.1007/s13534-013-0090-2
10.1109/10.841330
10.1016/j.compbiomed.2013.07.031
10.1016/j.jneumeth.2010.07.015
10.1109/JBHI.2015.2450196
10.1016/j.physa.2013.07.075
10.1088/0967-3334/27/4/008
10.1016/j.jbi.2018.07.014
10.1109/JBHI.2015.2457093
10.1109/JBHI.2021.3057891
10.1088/1741-2552/aa69d1
10.1016/0013-4694(70)90185-9
10.1016/j.bspc.2011.02.001
10.1016/j.pnsc.2008.11.013
10.1049/iet-spr.2018.5111
10.1088/1741-2560/12/3/031001
10.1007/11427469_72
10.1109/JBHI.2014.2370646
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TNSRE.2021.3099232
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 1503
ExternalDocumentID 10_1109_TNSRE_2021_3099232
9493178
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2021YFE0100100
  funderid: 10.13039/501100012166
– fundername: Open Research Projects of Zhejiang Lab
  grantid: 2021MC0AB04
– fundername: Key Research and Development Program of Zhejiang Province
  grantid: 2020C03038
– fundername: National Natural Science Foundation of China
  grantid: U1909209
  funderid: 10.13039/501100001809
– fundername: Zhejiang Provincial Natural Science Foundation
  grantid: LBY21H090002
  funderid: 10.13039/501100004731
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c372t-86c4315cc3da2d94a97fa625c1b02b96f4c2bc083886dd0a2e2d52157203e873
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Fri Jul 11 02:47:51 EDT 2025
Fri Jul 25 04:32:55 EDT 2025
Tue Jul 01 00:43:23 EDT 2025
Thu Apr 24 23:13:01 EDT 2025
Wed Aug 27 02:40:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-86c4315cc3da2d94a97fa625c1b02b96f4c2bc083886dd0a2e2d52157203e873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1493-0041
0000-0002-6480-5794
0000-0003-4907-7212
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9493178
PMID 34310312
PQID 2556486681
PQPubID 85423
PageCount 10
ParticipantIDs crossref_citationtrail_10_1109_TNSRE_2021_3099232
ieee_primary_9493178
proquest_miscellaneous_2555639011
proquest_journals_2556486681
crossref_primary_10_1109_TNSRE_2021_3099232
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
wallstrom (ref10) 2004; 53
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref2
ref17
ref16
ref19
ref18
hirsch (ref1) 2011
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref3
  doi: 10.1109/TNSRE.2003.814799
– ident: ref15
  doi: 10.1016/j.jneumeth.2007.05.033
– ident: ref5
  doi: 10.1109/IEMBS.2010.5626481
– ident: ref27
  doi: 10.1109/LSP.2005.855539
– ident: ref31
  doi: 10.1109/TPAMI.2002.1017616
– ident: ref34
  doi: 10.1109/NER.2013.6696203
– ident: ref12
  doi: 10.1007/978-3-642-15819-3_59
– ident: ref14
  doi: 10.1088/0967-3334/37/3/401
– ident: ref20
  doi: 10.1109/ICSDA.2013.6709849
– ident: ref23
  doi: 10.1016/j.medengphy.2005.11.006
– year: 2011
  ident: ref1
  publication-title: Atlas of EEG in Critical Care
– ident: ref32
  doi: 10.1109/81.904882
– ident: ref4
  doi: 10.1109/JBHI.2014.2333010
– ident: ref28
  doi: 10.1109/JBHI.2017.2723420
– ident: ref33
  doi: 10.1109/IECBES.2014.7047645
– ident: ref18
  doi: 10.1109/JBHI.2020.2995235
– ident: ref6
  doi: 10.1016/j.cmpb.2015.10.011
– ident: ref29
  doi: 10.1007/s13534-013-0090-2
– ident: ref21
  doi: 10.1109/10.841330
– ident: ref13
  doi: 10.1016/j.compbiomed.2013.07.031
– ident: ref7
  doi: 10.1016/j.jneumeth.2010.07.015
– ident: ref26
  doi: 10.1109/JBHI.2015.2450196
– ident: ref35
  doi: 10.1016/j.physa.2013.07.075
– ident: ref22
  doi: 10.1088/0967-3334/27/4/008
– ident: ref36
  doi: 10.1016/j.jbi.2018.07.014
– ident: ref17
  doi: 10.1109/JBHI.2015.2457093
– ident: ref19
  doi: 10.1109/JBHI.2021.3057891
– ident: ref2
  doi: 10.1088/1741-2552/aa69d1
– volume: 53
  start-page: 105
  year: 2004
  ident: ref10
  article-title: Automatic correction of ocular artifacts in the EEG: A comparison of regression-based and component-based methods
  publication-title: Int J Neurophysiol
– ident: ref9
  doi: 10.1016/0013-4694(70)90185-9
– ident: ref8
  doi: 10.1016/j.bspc.2011.02.001
– ident: ref24
  doi: 10.1016/j.pnsc.2008.11.013
– ident: ref16
  doi: 10.1049/iet-spr.2018.5111
– ident: ref11
  doi: 10.1088/1741-2560/12/3/031001
– ident: ref30
  doi: 10.1007/11427469_72
– ident: ref25
  doi: 10.1109/JBHI.2014.2370646
SSID ssj0017657
Score 2.427123
Snippet Accurate eye blink artifact detection is essential for electroencephalogram (EEG) analysis and auxiliary analysis of nervous system diseases, especially in the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1494
SubjectTerms Algorithms
Cluster analysis
Clustering
Correlation coefficient
Correlation coefficients
Detection algorithms
Discharge
Discharges (electric)
EEG
Electrodes
Electroencephalography
Epilepsy
Eye blink artifact detection
Feature extraction
Filtration
Firing pattern
frontal epileptiform discharge screening
multi-dimensional feature extraction and optimization
Nervous system
Nervous system diseases
Optimization
SNEO
Support vector machines
Vector quantization
Title Eye Blink Artifact Detection With Novel Optimized Multi-Dimensional Electroencephalogram Features
URI https://ieeexplore.ieee.org/document/9493178
https://www.proquest.com/docview/2556486681
https://www.proquest.com/docview/2555639011
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BB8SltNCq21JkJNoLzZLYjmMfW1iEkNhKsFW5RbbjCFTIIppUKr--YzsbFVpV3CLF8SPjxzcznm8AdjWruSlqkeBc4Qk3hiU-ojgRDKGctIWOpoHTqTj-yk8u8osl-DjEwjjnwuUzN_aPwZdfzW3nTWX7iis87uQyLKPiFmO1Bo9BIQKrJy5gbJLRdBEgk6r92fT8bIKqIM3GDAERYog1WGXcZ9jK6IPzKCRY-WtXDkfN0TqcLjoZb5h8H3etGdv7R_yNTx3Fc3jWY07yKU6SF7Dkmg14_ye_MJlFcgHygZw9oO7eBD355chn7-cNFfhACHLo2nCDqyHfrtpLMp3_dNfkC24-N1f3riIhqDc59HkDIucHmcRkO34Xub3UgSb7hnj02aG2_xJmR5PZwXHS52VILCtom0hh8efl1rJK00pxrYpaox5lM5NSo0TNLTUWsZ2UoqpSTR2tECXk3uPrZMFewUozb9xrINRQmdc6E8ZpTrWSwkiX88zkqqaaZSPIFsIpbT9wnzrjugy6S6rKINvSy7bsZTuCveGb28jY8d_Sm15CQ8leOCPYWsyBsl_UP0rP1salEBL7tTO8xuXofSy6cfMulMmFtyNlb_5d81tY8-1HK84WrLR3nXuHuKY128EesB2m9W-uKvM8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIkEv5VEqtrRgJOAC2caPOPaR0q0W6C5SCaK3yHYctaLNVpAgtb--fmQjCghxixQnsTNj-5sZzzcALxStmc5rnjhdYQnTmiY-ozjh1EE5YXIVXQOzOZ9-YR-Os-MVeDPkwlhrw-EzO_aXIZZfLUznXWW7kkm33YlbcNvt-xmO2VpDzCDngdfTTWH3UUrSZYpMKneL-eejiTMGCR5TB4kciliDO5T5GluY3NiRQomVP9blsNkc3IPZspvxjMm3cdfqsbn6jcHxf8dxH9Z71IneRjV5ACu2eQgvf2UYRkWkF0Cv0NEN8u4NUJNLi_Z8pDe8wKdCoH3bhjNcDfp62p6g-eKnPUOf3PJzfnplKxTSepN9Xzkgsn6gSSy349eRixMViLLPkcefnbP3H0FxMCneTZO-MkNiaE7aRHDjfl5mDK0UqSRTMq-Vs6QM1inRktfMEG0cuhOCV1WqiCWVwwmZj_lakdNNWG0WjX0MiGgislphrq1iREnBtbAZwzqTNVEUjwAvhVOafuC-eMZZGayXVJZBtqWXbdnLdgSvh2cuImfHP1tveAkNLXvhjGB7qQNlP61_lJ6vjQnOhevX8-G2m5A-yqIau-hCm4x7TxLe-vubn8HdaTE7LA_fzz8-gTXfl-jT2YbV9ntndxzKafXToNzXxe_1kA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Eye+Blink+Artifact+Detection+With+Novel+Optimized+Multi-Dimensional+Electroencephalogram+Features&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Wang%2C+Jianhui&rft.au=Cao%2C+Jiuwen&rft.au=Hu%2C+Dinghan&rft.au=Jiang%2C+Tiejia&rft.date=2021&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=29&rft.spage=1494&rft.epage=1503&rft_id=info:doi/10.1109%2FTNSRE.2021.3099232&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSRE_2021_3099232
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon