Saturated Ti-coordinated {001} facets-dependent photocatalytic water reduction over NH2-MIL-125(Ti) sheets: Observation and unraveling of facets effect

Facets-dependent photocatalytic H2 evolution rates of inorganic semiconductors have been well recognized, but it remains unclear for metal-organic frameworks (MOFs). Herein, we controllably prepared a series of NH2-MIL-125(Ti) MOF sheets with different ratios of {001}/{111} facets exposure, on which...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 338; p. 123094
Main Authors Liu, Lifang, Du, Shiwen, Xiao, Yejun, Guo, Xiangyang, Jin, Shengye, Shao, Guosheng, Zhang, Fuxiang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 05.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Facets-dependent photocatalytic H2 evolution rates of inorganic semiconductors have been well recognized, but it remains unclear for metal-organic frameworks (MOFs). Herein, we controllably prepared a series of NH2-MIL-125(Ti) MOF sheets with different ratios of {001}/{111} facets exposure, on which the photocatalytic H2 evolution rates from water are demonstrated to be almost linearly increased with enhanced proportion of {001} facets. Notably, the optimized activity of ca. 2640 μmol h-1 g-1 is by far superior to all the NH2-MIL-125(Ti)-based photocatalysts reported. The discovery of facets-dependent photocatalytic water splitting performance (i.e. facets effect) was unravelled to mainly result from their distinct charge separation abilities according to the experimental facts that the saturated six-coordinated Ti atoms (Ti6c) in the {001} facets can more efficiently accept and store the photogenerated electrons by the reduction of Ti4+ into Ti3+ with respect to the low-coordinated Ti atoms (Ti4c and Ti5c) in the {111} facets. [Display omitted] •A series of NH2-MIL-125(Ti) MOF sheets with different exposed ratios of {001}/{111} facets were controllably synthesized.•The facets dependence of the photocatalytic H2 evolution is demonstrated.•The saturated Ti6c atoms in the {001} facets are favorable for promoted charge separation with respect to the {111} facets.
AbstractList Facets-dependent photocatalytic H2 evolution rates of inorganic semiconductors have been well recognized, but it remains unclear for metal-organic frameworks (MOFs). Herein, we controllably prepared a series of NH2-MIL-125(Ti) MOF sheets with different ratios of {001}/{111} facets exposure, on which the photocatalytic H2 evolution rates from water are demonstrated to be almost linearly increased with enhanced proportion of {001} facets. Notably, the optimized activity of ca. 2640 μmol h-1 g-1 is by far superior to all the NH2-MIL-125(Ti)-based photocatalysts reported. The discovery of facets-dependent photocatalytic water splitting performance (i.e. facets effect) was unravelled to mainly result from their distinct charge separation abilities according to the experimental facts that the saturated six-coordinated Ti atoms (Ti6c) in the {001} facets can more efficiently accept and store the photogenerated electrons by the reduction of Ti4+ into Ti3+ with respect to the low-coordinated Ti atoms (Ti4c and Ti5c) in the {111} facets. [Display omitted] •A series of NH2-MIL-125(Ti) MOF sheets with different exposed ratios of {001}/{111} facets were controllably synthesized.•The facets dependence of the photocatalytic H2 evolution is demonstrated.•The saturated Ti6c atoms in the {001} facets are favorable for promoted charge separation with respect to the {111} facets.
ArticleNumber 123094
Author Du, Shiwen
Liu, Lifang
Xiao, Yejun
Guo, Xiangyang
Shao, Guosheng
Jin, Shengye
Zhang, Fuxiang
Author_xml – sequence: 1
  givenname: Lifang
  surname: Liu
  fullname: Liu, Lifang
  organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, The Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
– sequence: 2
  givenname: Shiwen
  surname: Du
  fullname: Du, Shiwen
  organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, The Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
– sequence: 3
  givenname: Yejun
  surname: Xiao
  fullname: Xiao, Yejun
  organization: State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
– sequence: 4
  givenname: Xiangyang
  surname: Guo
  fullname: Guo, Xiangyang
  organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, The Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
– sequence: 5
  givenname: Shengye
  surname: Jin
  fullname: Jin, Shengye
  organization: State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
– sequence: 6
  givenname: Guosheng
  orcidid: 0000-0003-1498-7929
  surname: Shao
  fullname: Shao, Guosheng
  organization: State Center for International Cooperation on Designer Low-Carbon and Environmental Materials (CDLCEM) School of Materials Science and Engineering Zhengzhou University, Zhengzhou 450001, China
– sequence: 7
  givenname: Fuxiang
  orcidid: 0000-0002-7859-0616
  surname: Zhang
  fullname: Zhang, Fuxiang
  email: fxzhang@dicp.ac.cn
  organization: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, The Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
BookMark eNqFUMtOWzEUtCoqNdD-QRdetgsHP3JtXxZIFSoFKcCCsLZ87ePiKNiR7aRCqN_R3-0lYcUCVkcjzePMHKKDlBMg9JXRKaNMHi-ndu1sG6accjFlXNB-9gFNmFaCCK3FAZrQnksihBKf0GGtS0pHJtcT9O_Wtk2xDTxeROJyLj6mHXyilP3FwTpolXhYQ_KQGl7f55bHMLt6bNHhPyO34AJ-41rMCeftCK8vOLm6nBPGu2-L-B3XexhNTvDNUKFs7Y5ok8ebVOwWVjH9xjm8RGEIAVz7jD4Gu6rw5eUeobvzn4uzCzK_-XV59mNOnFC8Ed3xIJWEGaPBDw406wYpOhY6Cb2SfQdaMq35oKzy1HXOK3Cqh8DkTASmxRE62fu6kmstEIyLbfdhKzauDKPmeWKzNPuJzfPEZj_xKJ69Eq9LfLDl8T3Z6V4GY7FthGKqi5Ac-FjG6sbn-LbBfzH1m2Q
CitedBy_id crossref_primary_10_1002_ange_202422940
crossref_primary_10_1016_j_chemosphere_2024_143389
crossref_primary_10_1016_j_fuel_2024_132117
crossref_primary_10_1039_D4MH01116C
crossref_primary_10_1016_j_jallcom_2023_172627
crossref_primary_10_1002_anie_202422940
crossref_primary_10_1016_j_ijhydene_2024_06_416
crossref_primary_10_1002_smll_202311449
crossref_primary_10_1016_j_ccr_2024_216361
crossref_primary_10_1039_D4SC07011A
crossref_primary_10_1016_j_apcatb_2024_124815
crossref_primary_10_1002_adfm_202315911
crossref_primary_10_1016_j_cej_2024_154689
crossref_primary_10_1021_acs_inorgchem_4c03269
crossref_primary_10_1016_j_cej_2025_160059
crossref_primary_10_1039_D4TC02536A
crossref_primary_10_1002_anie_202501141
crossref_primary_10_1002_ange_202501141
crossref_primary_10_1039_D4CS00095A
crossref_primary_10_1039_D4YA00184B
Cites_doi 10.1021/jp3046005
10.1016/j.snb.2014.05.017
10.1039/C6EE00526H
10.1002/smtd.202000486
10.1021/cr200324t
10.1038/ncomms2401
10.1126/science.1230444
10.1016/j.apcatb.2015.06.045
10.1038/nature06964
10.1021/acscatal.2c02789
10.1021/acs.chemrev.2c00460
10.1126/science.1077229
10.1016/j.ccr.2017.12.013
10.1002/adma.200701301
10.1002/anie.201102619
10.1002/anie.201904921
10.1021/acs.chemrev.9b00201
10.1021/jp511529u
10.1039/C8CS00268A
10.1016/j.joule.2020.10.002
10.1016/j.ccr.2018.10.001
10.1021/acs.jpcc.6b10963
10.1016/j.apcatb.2021.120524
10.1021/jacs.1c13508
10.1021/jacs.2c06312
10.1126/science.1140484
10.1021/acs.chemrev.7b00582
10.1021/acs.inorgchem.9b01564
10.1016/j.apcatb.2019.04.040
10.1002/chem.201001636
10.1002/adma.202203320
10.1021/cr300014x
10.1126/science.1246913
10.1039/C8SC05060K
10.1002/anie.201108357
10.1016/j.apcatb.2018.05.052
10.1021/ja2002132
10.1021/ja903726m
10.1021/jz5012065
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.apcatb.2023.123094
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
ExternalDocumentID 10_1016_j_apcatb_2023_123094
S0926337323007373
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPD
SSG
SSZ
T5K
~02
~G-
53G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SSH
VH1
WUQ
XPP
ID FETCH-LOGICAL-c372t-852f676e410fdbce815b6351f56e97695e861882b7a7d0c5cd7ec79ef1643f183
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Thu Apr 24 23:03:06 EDT 2025
Tue Jul 01 04:35:32 EDT 2025
Sat Mar 02 16:01:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Water splitting
Hydrogen
Photocatalyst
Metal–organic frameworks
Charge separation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-852f676e410fdbce815b6351f56e97695e861882b7a7d0c5cd7ec79ef1643f183
ORCID 0000-0003-1498-7929
0000-0002-7859-0616
ParticipantIDs crossref_citationtrail_10_1016_j_apcatb_2023_123094
crossref_primary_10_1016_j_apcatb_2023_123094
elsevier_sciencedirect_doi_10_1016_j_apcatb_2023_123094
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-05
PublicationDateYYYYMMDD 2023-12-05
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-05
  day: 05
PublicationDecade 2020
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Deng, Wen, Willman, Liu, Gong, Zhong, Lu, Zhou (bib34) 2019; 58
Furukawa, Cordova, O'Keeffe, Yaghi (bib16) 2013; 341
Kollias, Rousseau, Glezakou, Salvalaglio (bib31) 2022; 144
Wang, Domen (bib39) 2020; 120
Xiao, Lu, Xue, Tian, Zhou, Lin, Lin, Sun (bib7) 2020; 4
Dan-Hardi, Serre, Frot, Rozes, Maurin, Sanchez, Férey (bib42) 2009; 131
Yang, Sun, Qiao, Zou, Liu, Smith, Cheng, Lu (bib4) 2008; 453
Li, Le, Chen, Li, Wang, Liu, Wu, Xu, Zhang (bib22) 2018; 236
Guo, Guo, Wang, Kang, Liu, Zhao, Sun (bib30) 2019; 10
Shi, Yang, Cao, Zhao (bib17) 2019; 390
Zhang, Xie, Gao, Tao, Ding, Fan, Jiang (bib26) 2022; 61
Cheng, Zhang, Dao, Wang, Zhao, Sun (bib38) 2022; 431
Kim, Choi (bib41) 2014; 343
Bi, Ouyang, Umezawa, Cao, Ye (bib5) 2011; 133
Navalón, Dhakshinamoorthy, Álvaro, Ferrer, García (bib40) 2023; 123
Guo, Liu, Xiao, Qi, Duan, Zhang (bib19) 2021; 435
Guo, Yang, Li, He, Wang, Sun (bib24) 2022; 12
Qu, Wang, Mu, Hu, Zeng, Lu, Sui, Li, Li (bib9) 2022; 34
Li, Zhang, Wang, Yang, Li, Zhu, Zhou, Han, Li (bib8) 2013; 4
Xiong, Xia (bib2) 2007; 19
Wallace, McKenna (bib11) 2015; 119
Li, Wang, Liu, Ye (bib14) 2020; 4
Xu, Wang, Jin, Jin, Li, Mao, Hu (bib28) 2014; 201
Kreno, Leong, Farha, Allendorf, Van Duyne, Hupp (bib27) 2012; 112
Sun, Xia (bib1) 2002; 298
Zhu, Li, Guo, Zhao, Zou (bib20) 2018; 359
Gomez-Aviles, Penas-Garzon, Bedia, Dionysiou, Rodriguez, Belver (bib23) 2019; 253
Wei, You, Duan, Xie, Xia, Chen, Zhao, Ning, Cooper, Li (bib33) 2022
Tian, Zhou, Sun, Ding, Wang (bib3) 2007; 316
Cheng, Gu, Zhang, Dao, Wang, Ma, Zhao, Sun (bib37) 2021; 298
Amirjalayer, Tafipolsky, Schmid (bib35) 2014; 5
Li, Yu, Huang, Li, Feng, Wang, Wang, Ma, Guo, Zhang (bib12) 2019; 58
Fu, Sun, Chen, Huang, Ding, Fu, Li (bib21) 2012; 51
Pei, Weng, Liu (bib43) 2016; 180
Horiuchi, Toyao, Saito, Mochizuki, Iwata, Higashimura, Anpo, Matsuoka (bib25) 2012; 116
Zhou, Li (bib6) 2012; 51
Mu, Zhao, Li, Wang, Wang, Yang, Wang, Liu, Chen, Zhu, Fan, Li, Li (bib13) 2016; 9
Zhao, Huang, Peng, Huang, Ma, Zhang (bib32) 2018; 47
Wang, Jiang, Zong, Xu, Ma, Li, Li (bib10) 2011; 17
Zhang, Jin, Shi, Li, Li, Duan (bib18) 2019; 380
Van Vleet, Weng, Li, Schmidt (bib29) 2018; 118
Motevalli, Taherifar, Wang, Liu (bib36) 2017; 121
Zhou, Long, Yaghi (bib15) 2012; 112
Tian (10.1016/j.apcatb.2023.123094_bib3) 2007; 316
Xiao (10.1016/j.apcatb.2023.123094_bib7) 2020; 4
Amirjalayer (10.1016/j.apcatb.2023.123094_bib35) 2014; 5
Wei (10.1016/j.apcatb.2023.123094_bib33) 2022
Zhao (10.1016/j.apcatb.2023.123094_bib32) 2018; 47
Xiong (10.1016/j.apcatb.2023.123094_bib2) 2007; 19
Dan-Hardi (10.1016/j.apcatb.2023.123094_bib42) 2009; 131
Guo (10.1016/j.apcatb.2023.123094_bib19) 2021; 435
Yang (10.1016/j.apcatb.2023.123094_bib4) 2008; 453
Xu (10.1016/j.apcatb.2023.123094_bib28) 2014; 201
Guo (10.1016/j.apcatb.2023.123094_bib30) 2019; 10
Shi (10.1016/j.apcatb.2023.123094_bib17) 2019; 390
Zhang (10.1016/j.apcatb.2023.123094_bib18) 2019; 380
Horiuchi (10.1016/j.apcatb.2023.123094_bib25) 2012; 116
Wang (10.1016/j.apcatb.2023.123094_bib10) 2011; 17
Wallace (10.1016/j.apcatb.2023.123094_bib11) 2015; 119
Zhang (10.1016/j.apcatb.2023.123094_bib26) 2022; 61
Fu (10.1016/j.apcatb.2023.123094_bib21) 2012; 51
Cheng (10.1016/j.apcatb.2023.123094_bib38) 2022; 431
Wang (10.1016/j.apcatb.2023.123094_bib39) 2020; 120
Van Vleet (10.1016/j.apcatb.2023.123094_bib29) 2018; 118
Kreno (10.1016/j.apcatb.2023.123094_bib27) 2012; 112
Zhou (10.1016/j.apcatb.2023.123094_bib6) 2012; 51
Guo (10.1016/j.apcatb.2023.123094_bib24) 2022; 12
Navalón (10.1016/j.apcatb.2023.123094_bib40) 2023; 123
Li (10.1016/j.apcatb.2023.123094_bib12) 2019; 58
Sun (10.1016/j.apcatb.2023.123094_bib1) 2002; 298
Zhou (10.1016/j.apcatb.2023.123094_bib15) 2012; 112
Bi (10.1016/j.apcatb.2023.123094_bib5) 2011; 133
Zhu (10.1016/j.apcatb.2023.123094_bib20) 2018; 359
Mu (10.1016/j.apcatb.2023.123094_bib13) 2016; 9
Furukawa (10.1016/j.apcatb.2023.123094_bib16) 2013; 341
Deng (10.1016/j.apcatb.2023.123094_bib34) 2019; 58
Qu (10.1016/j.apcatb.2023.123094_bib9) 2022; 34
Kollias (10.1016/j.apcatb.2023.123094_bib31) 2022; 144
Pei (10.1016/j.apcatb.2023.123094_bib43) 2016; 180
Li (10.1016/j.apcatb.2023.123094_bib14) 2020; 4
Li (10.1016/j.apcatb.2023.123094_bib22) 2018; 236
Li (10.1016/j.apcatb.2023.123094_bib8) 2013; 4
Motevalli (10.1016/j.apcatb.2023.123094_bib36) 2017; 121
Cheng (10.1016/j.apcatb.2023.123094_bib37) 2021; 298
Kim (10.1016/j.apcatb.2023.123094_bib41) 2014; 343
Gomez-Aviles (10.1016/j.apcatb.2023.123094_bib23) 2019; 253
References_xml – volume: 5
  start-page: 3206
  year: 2014
  end-page: 3210
  ident: bib35
  publication-title: J. Phys. Chem. Lett.
– volume: 253
  start-page: 253
  year: 2019
  end-page: 262
  ident: bib23
  publication-title: Appl. Catal. B
– volume: 51
  start-page: 3364
  year: 2012
  end-page: 3367
  ident: bib21
  publication-title: Angew. Chem. Int. Ed.
– volume: 112
  start-page: 1105
  year: 2012
  end-page: 1125
  ident: bib27
  publication-title: Chem. Rev.
– volume: 131
  start-page: 10857
  year: 2009
  end-page: 10859
  ident: bib42
  publication-title: J. Am. Chem. Soc.
– volume: 58
  start-page: 9517
  year: 2019
  end-page: 9521
  ident: bib12
  publication-title: Angew. Chem. Int. Ed.
– volume: 431
  year: 2022
  ident: bib38
  publication-title: Chem. Eng. J.
– volume: 4
  start-page: 2000486
  year: 2020
  end-page: 2000514
  ident: bib14
  publication-title: Small Methods
– volume: 123
  start-page: 445
  year: 2023
  end-page: 490
  ident: bib40
  publication-title: Chem. Rev.
– volume: 4
  start-page: 2562
  year: 2020
  end-page: 2598
  ident: bib7
  publication-title: Joule
– volume: 47
  start-page: 6267
  year: 2018
  end-page: 6295
  ident: bib32
  publication-title: Chem. Soc. Rev.
– volume: 298
  year: 2021
  ident: bib37
  publication-title: Appl. Catal. B
– volume: 341
  start-page: 974
  year: 2013
  ident: bib16
  publication-title: Science
– volume: 12
  start-page: 9486
  year: 2022
  end-page: 9493
  ident: bib24
  publication-title: ACS Catal.
– volume: 343
  start-page: 990
  year: 2014
  end-page: 994
  ident: bib41
  publication-title: Science
– volume: 133
  start-page: 6490
  year: 2011
  end-page: 6492
  ident: bib5
  publication-title: J. Am. Chem. Soc.
– volume: 380
  start-page: 201
  year: 2019
  end-page: 229
  ident: bib18
  publication-title: Coord. Chem. Rev.
– volume: 119
  start-page: 1913
  year: 2015
  end-page: 1920
  ident: bib11
  publication-title: J. Phys. Chem. C.
– volume: 17
  start-page: 1275
  year: 2011
  end-page: 1282
  ident: bib10
  publication-title: Chem. Eur. J.
– volume: 58
  start-page: 11020
  year: 2019
  end-page: 11027
  ident: bib34
  publication-title: Inorg. Chem.
– volume: 453
  start-page: 638
  year: 2008
  end-page: 641
  ident: bib4
  publication-title: Nature
– volume: 201
  start-page: 274
  year: 2014
  end-page: 280
  ident: bib28
  publication-title: Sens. Actuators B
– volume: 180
  start-page: 463
  year: 2016
  end-page: 470
  ident: bib43
  publication-title: Appl. Catal. B
– start-page: 17487
  year: 2022
  end-page: 17495
  ident: bib33
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 2463
  year: 2016
  end-page: 2469
  ident: bib13
  publication-title: Energy Environ. Sci.
– volume: 435
  year: 2021
  ident: bib19
  publication-title: Coord. Chem. Rev.
– volume: 390
  start-page: 50
  year: 2019
  end-page: 75
  ident: bib17
  publication-title: Coord. Chem. Rev
– volume: 116
  start-page: 20848
  year: 2012
  end-page: 20853
  ident: bib25
  publication-title: J. Phys. Chem. C.
– volume: 316
  start-page: 732
  year: 2007
  end-page: 735
  ident: bib3
  publication-title: Science
– volume: 359
  start-page: 80
  year: 2018
  end-page: 101
  ident: bib20
  publication-title: Coord. Chem. Rev.
– volume: 10
  start-page: 4834
  year: 2019
  end-page: 4838
  ident: bib30
  publication-title: Chem. Sci.
– volume: 298
  start-page: 2176
  year: 2002
  end-page: 2179
  ident: bib1
  publication-title: Science
– volume: 51
  start-page: 602
  year: 2012
  end-page: 613
  ident: bib6
  publication-title: Angew. Chem. Int. Ed.
– volume: 121
  start-page: 2221
  year: 2017
  end-page: 2227
  ident: bib36
  publication-title: J. Phys. Chem. C.
– volume: 19
  start-page: 3385
  year: 2007
  end-page: 3391
  ident: bib2
  publication-title: Adv. Mater.
– volume: 112
  start-page: 673
  year: 2012
  end-page: 674
  ident: bib15
  publication-title: Chem. Rev.
– volume: 118
  start-page: 3681
  year: 2018
  end-page: 3721
  ident: bib29
  publication-title: Chem. Rev.
– volume: 120
  start-page: 919
  year: 2020
  end-page: 985
  ident: bib39
  publication-title: Chem. Rev.
– volume: 236
  start-page: 501
  year: 2018
  end-page: 508
  ident: bib22
  publication-title: Appl. Catal. B
– volume: 61
  year: 2022
  ident: bib26
  publication-title: Angew. Chem. Int. Ed.
– volume: 144
  start-page: 11099
  year: 2022
  end-page: 11109
  ident: bib31
  publication-title: J. Am. Chem. Soc.
– volume: 34
  start-page: 2203320
  year: 2022
  ident: bib9
  publication-title: Adv. Mater.
– volume: 4
  start-page: 1432
  year: 2013
  ident: bib8
  publication-title: Nat. Commun.
– volume: 61
  year: 2022
  ident: 10.1016/j.apcatb.2023.123094_bib26
  publication-title: Angew. Chem. Int. Ed.
– volume: 116
  start-page: 20848
  year: 2012
  ident: 10.1016/j.apcatb.2023.123094_bib25
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp3046005
– volume: 201
  start-page: 274
  year: 2014
  ident: 10.1016/j.apcatb.2023.123094_bib28
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2014.05.017
– volume: 9
  start-page: 2463
  year: 2016
  ident: 10.1016/j.apcatb.2023.123094_bib13
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE00526H
– volume: 4
  start-page: 2000486
  year: 2020
  ident: 10.1016/j.apcatb.2023.123094_bib14
  publication-title: Small Methods
  doi: 10.1002/smtd.202000486
– volume: 112
  start-page: 1105
  year: 2012
  ident: 10.1016/j.apcatb.2023.123094_bib27
  publication-title: Chem. Rev.
  doi: 10.1021/cr200324t
– volume: 4
  start-page: 1432
  year: 2013
  ident: 10.1016/j.apcatb.2023.123094_bib8
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2401
– volume: 341
  start-page: 974
  year: 2013
  ident: 10.1016/j.apcatb.2023.123094_bib16
  publication-title: Science
  doi: 10.1126/science.1230444
– volume: 431
  year: 2022
  ident: 10.1016/j.apcatb.2023.123094_bib38
  publication-title: Chem. Eng. J.
– volume: 180
  start-page: 463
  year: 2016
  ident: 10.1016/j.apcatb.2023.123094_bib43
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2015.06.045
– volume: 453
  start-page: 638
  year: 2008
  ident: 10.1016/j.apcatb.2023.123094_bib4
  publication-title: Nature
  doi: 10.1038/nature06964
– volume: 12
  start-page: 9486
  year: 2022
  ident: 10.1016/j.apcatb.2023.123094_bib24
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c02789
– volume: 123
  start-page: 445
  year: 2023
  ident: 10.1016/j.apcatb.2023.123094_bib40
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.2c00460
– volume: 298
  start-page: 2176
  year: 2002
  ident: 10.1016/j.apcatb.2023.123094_bib1
  publication-title: Science
  doi: 10.1126/science.1077229
– volume: 359
  start-page: 80
  year: 2018
  ident: 10.1016/j.apcatb.2023.123094_bib20
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2017.12.013
– volume: 19
  start-page: 3385
  year: 2007
  ident: 10.1016/j.apcatb.2023.123094_bib2
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200701301
– volume: 51
  start-page: 602
  year: 2012
  ident: 10.1016/j.apcatb.2023.123094_bib6
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201102619
– volume: 58
  start-page: 9517
  year: 2019
  ident: 10.1016/j.apcatb.2023.123094_bib12
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201904921
– volume: 120
  start-page: 919
  year: 2020
  ident: 10.1016/j.apcatb.2023.123094_bib39
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00201
– volume: 119
  start-page: 1913
  year: 2015
  ident: 10.1016/j.apcatb.2023.123094_bib11
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp511529u
– volume: 47
  start-page: 6267
  year: 2018
  ident: 10.1016/j.apcatb.2023.123094_bib32
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00268A
– volume: 4
  start-page: 2562
  year: 2020
  ident: 10.1016/j.apcatb.2023.123094_bib7
  publication-title: Joule
  doi: 10.1016/j.joule.2020.10.002
– volume: 380
  start-page: 201
  year: 2019
  ident: 10.1016/j.apcatb.2023.123094_bib18
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2018.10.001
– volume: 435
  year: 2021
  ident: 10.1016/j.apcatb.2023.123094_bib19
  publication-title: Coord. Chem. Rev.
– volume: 121
  start-page: 2221
  year: 2017
  ident: 10.1016/j.apcatb.2023.123094_bib36
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.6b10963
– volume: 298
  year: 2021
  ident: 10.1016/j.apcatb.2023.123094_bib37
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2021.120524
– volume: 144
  start-page: 11099
  year: 2022
  ident: 10.1016/j.apcatb.2023.123094_bib31
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c13508
– start-page: 17487
  year: 2022
  ident: 10.1016/j.apcatb.2023.123094_bib33
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c06312
– volume: 316
  start-page: 732
  year: 2007
  ident: 10.1016/j.apcatb.2023.123094_bib3
  publication-title: Science
  doi: 10.1126/science.1140484
– volume: 118
  start-page: 3681
  year: 2018
  ident: 10.1016/j.apcatb.2023.123094_bib29
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00582
– volume: 58
  start-page: 11020
  year: 2019
  ident: 10.1016/j.apcatb.2023.123094_bib34
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.9b01564
– volume: 253
  start-page: 253
  year: 2019
  ident: 10.1016/j.apcatb.2023.123094_bib23
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2019.04.040
– volume: 17
  start-page: 1275
  year: 2011
  ident: 10.1016/j.apcatb.2023.123094_bib10
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201001636
– volume: 34
  start-page: 2203320
  year: 2022
  ident: 10.1016/j.apcatb.2023.123094_bib9
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202203320
– volume: 112
  start-page: 673
  year: 2012
  ident: 10.1016/j.apcatb.2023.123094_bib15
  publication-title: Chem. Rev.
  doi: 10.1021/cr300014x
– volume: 343
  start-page: 990
  year: 2014
  ident: 10.1016/j.apcatb.2023.123094_bib41
  publication-title: Science
  doi: 10.1126/science.1246913
– volume: 10
  start-page: 4834
  year: 2019
  ident: 10.1016/j.apcatb.2023.123094_bib30
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC05060K
– volume: 390
  start-page: 50
  year: 2019
  ident: 10.1016/j.apcatb.2023.123094_bib17
– volume: 51
  start-page: 3364
  year: 2012
  ident: 10.1016/j.apcatb.2023.123094_bib21
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201108357
– volume: 236
  start-page: 501
  year: 2018
  ident: 10.1016/j.apcatb.2023.123094_bib22
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2018.05.052
– volume: 133
  start-page: 6490
  year: 2011
  ident: 10.1016/j.apcatb.2023.123094_bib5
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2002132
– volume: 131
  start-page: 10857
  year: 2009
  ident: 10.1016/j.apcatb.2023.123094_bib42
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja903726m
– volume: 5
  start-page: 3206
  year: 2014
  ident: 10.1016/j.apcatb.2023.123094_bib35
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz5012065
SSID ssj0002328
Score 2.5492172
Snippet Facets-dependent photocatalytic H2 evolution rates of inorganic semiconductors have been well recognized, but it remains unclear for metal-organic frameworks...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 123094
SubjectTerms Charge separation
Hydrogen
Metal–organic frameworks
Photocatalyst
Water splitting
Title Saturated Ti-coordinated {001} facets-dependent photocatalytic water reduction over NH2-MIL-125(Ti) sheets: Observation and unraveling of facets effect
URI https://dx.doi.org/10.1016/j.apcatb.2023.123094
Volume 338
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhPaQ9lGTb0LRJ0CGH9qBd27Isb29hSdi8todsIDcjySPiUuxl16GU0v6N_t3O-JEHhBZylJmxjGc88408D8YOQgWBSyAVXgZWUIQgrIm10LkJwQTSekUFzhezZHoVn16r6zU26WthKK2ys_2tTW-sdXdl1L3N0aIoRpfBOEqk1BJBNOqppo6fcaxJy4e_79M8EDE01hiJBVH35XNNjpdZOFPbIY0QH6IJD8bx0-7pgcs53mSvO6zID9vH2WJrUA7YxqQf0TZgrx50Exyw7aP7ojVk677a1Rv255K6dyKozPm8EK7CeLMom-VPdB-_uDcO6pXo5-HWfHFT1VVzsPMDt-bfkXbJl9TklcTIKeuTz6aRuDg5FwhdPs6LT3x1A3iTz_yLvTvn5abM-W1JA46o6J1XvtuKt1kkb9nV8dF8MhXdQAbhpI5qkarIJzqBOAx8bh2kobIIWEKvEkBYM1aQJiFCdquNzgOnXK7B6TF4jMmkR-OxzdbLqoR3jIMEQKRC-MbFRlPFr_bO0l9gDSlEO0z2cshc162chmZ8y_q0tK9ZK72MpJe10tth4o5r0Xbr-A-97kWcPdK6DB3KPznfP5vzA3tJqyYlRu2y9Xp5C3sIbGq732juPntxeHI2nf0FWsH4yA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6Vcig9VLBQUZ4-gAQH7-blOIvEAZVWu3R3OXQr9RZsZ6wGVclqN1VVVfA3-CH8QcZ5tEVCICH1mMTjOJ7xzGdnHgCvfIGeiTHhNvQ0dzsErlUkucyUj8oLtRUuwHk6i0dH0adjcbwGP7tYGOdW2er-RqfX2rq9M2hnc7DI88GhNwziMJQhgWiSU9lVsD7Ai3Pat63ejz8Sk18Hwf7efHfE29IC3IQyqHgiAhvLGCPfs5k2mPhCk-n1rYiRDPRQYBL7BD61VDLzjDCZRCOHaGl3EVpaBtTvHbgbkbpwZRP636_9Sgii1OqfRsfd8Lp4vdqpTC2MqnTf1Szvk83whtGf7eENG7d_H7ZacMo-NN__ANaw6MHGblcTrgebN9IX9mB77zpKjshaNbF6CD8OXbpQQrEZm-fclDRReVFfXpK9-sasMliteFeAt2KLk7Iq65OkC3o1O6e2S7Z0WWWd3DDnZspmo4BPxxNOWOnNPH_LVidInbxjn_XVwTJTRcbOCldRyUXZs9K2r2KN28ojOLoVNm3DelEW-BgYhogEjRygMpGSLsRYWqPdb2eJCQY7EHZ8SE2bHt1V6ThNOz-4r2nDvdRxL224twP8imrRpAf5R3vZsTj9TcxTsmB_pXzy35QvYWM0n07SyXh28BTuuSe1P454BuvV8gyfE6qq9Itaihl8ue1l8ws0EDPT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Saturated+Ti-coordinated+%7B001%7D+facets-dependent+photocatalytic+water+reduction+over+NH2-MIL-125%28Ti%29+sheets%3A+Observation+and+unraveling+of+facets+effect&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Liu%2C+Lifang&rft.au=Du%2C+Shiwen&rft.au=Xiao%2C+Yejun&rft.au=Guo%2C+Xiangyang&rft.date=2023-12-05&rft.issn=0926-3373&rft.volume=338&rft.spage=123094&rft_id=info:doi/10.1016%2Fj.apcatb.2023.123094&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2023_123094
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon