Reconstruction by inpainting for visual anomaly detection
•A reconstruction-by-inpainting-based anomaly detection method (RIAD) was proposed.•RIAD achieves state-of-the-art performance on anomaly detection and localization.•We compare RIAD anomaly detection results with recent anomaly detection methods.•The generality of RIAD is demonstrated by applying it...
Saved in:
Published in | Pattern recognition Vol. 112; p. 107706 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0031-3203 1873-5142 |
DOI | 10.1016/j.patcog.2020.107706 |
Cover
Loading…
Abstract | •A reconstruction-by-inpainting-based anomaly detection method (RIAD) was proposed.•RIAD achieves state-of-the-art performance on anomaly detection and localization.•We compare RIAD anomaly detection results with recent anomaly detection methods.•The generality of RIAD is demonstrated by applying it on video anomaly detection.
Visual anomaly detection addresses the problem of classification or localization of regions in an image that deviate from their normal appearance. A popular approach trains an auto-encoder on anomaly-free images and performs anomaly detection by calculating the difference between the input and the reconstructed image. This approach assumes that the auto-encoder will be unable to accurately reconstruct anomalous regions. But in practice neural networks generalize well even to anomalies and reconstruct them sufficiently well, thus reducing the detection capabilities. Accurate reconstruction is far less likely if the anomaly pixels were not visible to the auto-encoder. We thus cast anomaly detection as a self-supervised reconstruction-by-inpainting problem. Our approach (RIAD) randomly removes partial image regions and reconstructs the image from partial inpaintings, thus addressing the drawbacks of auto-enocoding methods. RIAD is extensively evaluated on several benchmarks and sets a new state-of-the art on a recent highly challenging anomaly detection benchmark. |
---|---|
AbstractList | •A reconstruction-by-inpainting-based anomaly detection method (RIAD) was proposed.•RIAD achieves state-of-the-art performance on anomaly detection and localization.•We compare RIAD anomaly detection results with recent anomaly detection methods.•The generality of RIAD is demonstrated by applying it on video anomaly detection.
Visual anomaly detection addresses the problem of classification or localization of regions in an image that deviate from their normal appearance. A popular approach trains an auto-encoder on anomaly-free images and performs anomaly detection by calculating the difference between the input and the reconstructed image. This approach assumes that the auto-encoder will be unable to accurately reconstruct anomalous regions. But in practice neural networks generalize well even to anomalies and reconstruct them sufficiently well, thus reducing the detection capabilities. Accurate reconstruction is far less likely if the anomaly pixels were not visible to the auto-encoder. We thus cast anomaly detection as a self-supervised reconstruction-by-inpainting problem. Our approach (RIAD) randomly removes partial image regions and reconstructs the image from partial inpaintings, thus addressing the drawbacks of auto-enocoding methods. RIAD is extensively evaluated on several benchmarks and sets a new state-of-the art on a recent highly challenging anomaly detection benchmark. |
ArticleNumber | 107706 |
Author | Zavrtanik, Vitjan Skočaj, Danijel Kristan, Matej |
Author_xml | – sequence: 1 givenname: Vitjan surname: Zavrtanik fullname: Zavrtanik, Vitjan email: vitjan.zavrtanik@fri.uni-lj.si – sequence: 2 givenname: Matej surname: Kristan fullname: Kristan, Matej email: matej.kristan@fri.uni-lj.si – sequence: 3 givenname: Danijel surname: Skočaj fullname: Skočaj, Danijel email: danijel.skocaj@fri.uni-lj.si |
BookMark | eNqFkFFLwzAQx4NMcJt-Ax_6BTovSZu0PggydAoDQfQ5pEk6MrpkJNmg397W-uSDPh3c3e-4_2-BZs47g9AthhUGzO72q6NMyu9WBMjY4hzYBZrjitO8xAWZoTkAxTklQK_QIsY9AObDYI7qd6O8iymcVLLeZU2fWXeU1iXrdlnrQ3a28SS7TDp_kF2faZPM9-o1umxlF83NT12iz-enj_VLvn3bvK4ft7minKScm0bXjCuuFCguOSsajpksCSW4kJRpTgpaVVwrUjUAdamJrsu6AFK2mjKgS3Q_3VXBxxhMK5RNcvwgBWk7gUGMEsReTBLEKEFMEga4-AUfgz3I0P-HPUyYGYKdrQkiKmucMtqGIb3Q3v594AuF3XoX |
CitedBy_id | crossref_primary_10_1007_s11760_024_03608_0 crossref_primary_10_1093_jcde_qwac073 crossref_primary_10_1016_j_cie_2022_108512 crossref_primary_10_3233_JIFS_222595 crossref_primary_10_1007_s00521_024_09838_0 crossref_primary_10_1016_j_aei_2024_102759 crossref_primary_10_1007_s10489_024_05332_1 crossref_primary_10_1007_s10844_022_00722_8 crossref_primary_10_1016_j_engappai_2023_105835 crossref_primary_10_1145_3706574 crossref_primary_10_1016_j_neucom_2022_10_069 crossref_primary_10_52396_JUSTC_2022_0165 crossref_primary_10_1109_JIOT_2024_3401217 crossref_primary_10_1021_acs_analchem_2c05785 crossref_primary_10_1016_j_compind_2024_104192 crossref_primary_10_1016_j_patrec_2021_11_030 crossref_primary_10_1109_TIM_2023_3336758 crossref_primary_10_3390_app11146545 crossref_primary_10_1109_TCSVT_2023_3327448 crossref_primary_10_1007_s00138_025_01670_3 crossref_primary_10_1109_TIM_2023_3280508 crossref_primary_10_1109_TIM_2024_3481573 crossref_primary_10_1016_j_jvcir_2024_104368 crossref_primary_10_1016_j_patcog_2023_110124 crossref_primary_10_1016_j_vrih_2022_07_006 crossref_primary_10_1016_j_jpowsour_2024_235982 crossref_primary_10_1016_j_optlastec_2025_112633 crossref_primary_10_1016_j_patcog_2023_109373 crossref_primary_10_1007_s11432_024_4291_4 crossref_primary_10_1007_s40747_024_01659_x crossref_primary_10_1016_j_engappai_2024_109235 crossref_primary_10_1016_j_eswa_2025_127261 crossref_primary_10_1109_TIM_2024_3390695 crossref_primary_10_3390_electronics13193914 crossref_primary_10_1109_TII_2024_3397360 crossref_primary_10_1109_TITS_2023_3267433 crossref_primary_10_1016_j_optlaseng_2024_108457 crossref_primary_10_1049_ell2_13289 crossref_primary_10_1109_JSEN_2022_3227547 crossref_primary_10_1016_j_media_2023_102836 crossref_primary_10_1016_j_measurement_2024_114689 crossref_primary_10_1142_S021800142451011X crossref_primary_10_3390_s23229281 crossref_primary_10_1109_JSEN_2024_3494772 crossref_primary_10_3390_s24237435 crossref_primary_10_1007_s40747_023_01285_z crossref_primary_10_1007_s13042_023_01913_7 crossref_primary_10_1109_TIM_2023_3300458 crossref_primary_10_1016_j_rineng_2025_104309 crossref_primary_10_1016_j_optlaseng_2023_107655 crossref_primary_10_1109_TCSVT_2023_3314801 crossref_primary_10_1016_j_neucom_2024_128845 crossref_primary_10_1007_s00371_024_03757_w crossref_primary_10_1109_TII_2022_3182385 crossref_primary_10_1007_s12204_025_2795_7 crossref_primary_10_1016_j_autcon_2024_105332 crossref_primary_10_1109_JSEN_2024_3489971 crossref_primary_10_1016_j_patcog_2024_110761 crossref_primary_10_1111_cote_12705 crossref_primary_10_1109_TCSVT_2024_3408034 crossref_primary_10_1117_1_JEI_32_6_063020 crossref_primary_10_1177_00405175221149450 crossref_primary_10_1109_JSEN_2023_3348118 crossref_primary_10_1109_TIM_2023_3343832 crossref_primary_10_1007_s00371_024_03281_x crossref_primary_10_1016_j_patcog_2021_108500 crossref_primary_10_1016_j_patcog_2024_111295 crossref_primary_10_1007_s00138_023_01454_7 crossref_primary_10_1007_s10489_025_06294_8 crossref_primary_10_1016_j_imavis_2023_104817 crossref_primary_10_1109_TASE_2022_3204368 crossref_primary_10_1016_j_eswa_2024_123410 crossref_primary_10_1109_TII_2024_3459612 crossref_primary_10_1016_j_knosys_2023_110611 crossref_primary_10_1007_s42979_024_02945_8 crossref_primary_10_1109_TIM_2023_3268658 crossref_primary_10_1007_s10489_024_05700_x crossref_primary_10_1109_TAI_2022_3227142 crossref_primary_10_1016_j_eswa_2023_121509 crossref_primary_10_1117_1_JEI_32_6_063017 crossref_primary_10_1007_s11063_024_11466_7 crossref_primary_10_1109_OJIM_2022_3205680 crossref_primary_10_1016_j_neucom_2024_128622 crossref_primary_10_1016_j_neucom_2024_127532 crossref_primary_10_1016_j_compind_2024_104151 crossref_primary_10_1016_j_knosys_2023_110982 crossref_primary_10_1109_TCSVT_2023_3284165 crossref_primary_10_1109_TIM_2024_3370756 crossref_primary_10_1109_TIM_2023_3295468 crossref_primary_10_1016_j_jmsy_2024_02_001 crossref_primary_10_1016_j_patcog_2024_110862 crossref_primary_10_1109_TCSVT_2022_3218587 crossref_primary_10_3390_s22239327 crossref_primary_10_1016_j_patcog_2023_109335 crossref_primary_10_1109_TII_2024_3413965 crossref_primary_10_1111_exsy_13624 crossref_primary_10_1016_j_eswa_2025_126537 crossref_primary_10_1016_j_dsp_2024_104470 crossref_primary_10_1088_1361_6501_ad26c6 crossref_primary_10_1016_j_neucom_2021_12_093 crossref_primary_10_1109_TIM_2021_3128961 crossref_primary_10_1109_TPAMI_2023_3335152 crossref_primary_10_3390_s21196679 crossref_primary_10_1016_j_ins_2022_12_011 crossref_primary_10_1016_j_procir_2024_08_383 crossref_primary_10_1016_j_knosys_2024_111563 crossref_primary_10_1016_j_knosys_2024_112650 crossref_primary_10_1007_s11042_023_17253_1 crossref_primary_10_1016_j_eswa_2025_126665 crossref_primary_10_3390_s24010264 crossref_primary_10_1109_TIM_2023_3250225 crossref_primary_10_1109_TBDATA_2024_3350539 crossref_primary_10_1109_TASE_2024_3368142 crossref_primary_10_1109_JSEN_2024_3351767 crossref_primary_10_1109_TASE_2024_3468464 crossref_primary_10_3390_s23218750 crossref_primary_10_1109_TII_2022_3199228 crossref_primary_10_1007_s42514_024_00185_z crossref_primary_10_1016_j_knosys_2024_111533 crossref_primary_10_1109_ACCESS_2022_3171559 crossref_primary_10_1109_LRA_2024_3352358 crossref_primary_10_1016_j_media_2024_103089 crossref_primary_10_3788_LOP231318 crossref_primary_10_1016_j_aei_2024_103064 crossref_primary_10_1109_TIM_2023_3269755 crossref_primary_10_3390_electronics13163224 crossref_primary_10_1108_IJCST_12_2023_0187 crossref_primary_10_1016_j_bspc_2024_106489 crossref_primary_10_1109_TIM_2021_3107586 crossref_primary_10_1109_TIM_2023_3338681 crossref_primary_10_1016_j_patcog_2023_109559 crossref_primary_10_1109_TIM_2023_3273681 crossref_primary_10_1109_TIM_2024_3406792 crossref_primary_10_1016_j_patcog_2025_111500 crossref_primary_10_1109_TCSVT_2024_3479887 crossref_primary_10_1016_j_inffus_2024_102631 crossref_primary_10_3390_s23010355 crossref_primary_10_1016_j_compeleceng_2024_109759 crossref_primary_10_1109_TMM_2023_3292596 crossref_primary_10_1007_s00138_023_01425_y crossref_primary_10_32604_cmc_2024_046924 crossref_primary_10_1016_j_knosys_2025_113134 crossref_primary_10_1016_j_patcog_2021_108339 crossref_primary_10_3233_JIFS_232677 crossref_primary_10_1109_TIM_2024_3502773 crossref_primary_10_2478_amns_2024_2222 crossref_primary_10_3390_app132212436 crossref_primary_10_1016_j_neucom_2025_129479 crossref_primary_10_1016_j_cja_2024_06_007 crossref_primary_10_1007_s10845_024_02445_9 crossref_primary_10_1109_TPAMI_2024_3382009 crossref_primary_10_1016_j_knosys_2022_108846 crossref_primary_10_1109_TII_2024_3399934 crossref_primary_10_1109_TII_2024_3423331 crossref_primary_10_1016_j_engappai_2025_110480 crossref_primary_10_1038_s41598_024_69698_5 crossref_primary_10_1109_TII_2024_3384583 crossref_primary_10_1109_TIM_2023_3348901 crossref_primary_10_3390_jimaging7040069 crossref_primary_10_1007_s11042_023_16340_7 crossref_primary_10_1016_j_patrec_2024_03_018 crossref_primary_10_1016_j_optlastec_2023_110296 crossref_primary_10_1016_j_measurement_2024_115276 crossref_primary_10_1049_ipr2_13309 crossref_primary_10_1016_j_knosys_2023_111186 crossref_primary_10_1109_TMI_2023_3310716 crossref_primary_10_3390_app13063838 crossref_primary_10_1109_LRA_2023_3296935 crossref_primary_10_1016_j_patcog_2023_109765 crossref_primary_10_1016_j_patrec_2023_04_019 crossref_primary_10_1109_TIM_2022_3196436 crossref_primary_10_1016_j_patcog_2022_108874 crossref_primary_10_1109_ACCESS_2024_3406438 crossref_primary_10_1016_j_patcog_2022_109046 crossref_primary_10_1109_TII_2024_3438261 crossref_primary_10_2493_jjspe_91_378 crossref_primary_10_1109_TII_2023_3318302 crossref_primary_10_1088_1742_6596_2166_1_012062 crossref_primary_10_1209_0295_5075_acc88c crossref_primary_10_1016_j_eswa_2025_126465 crossref_primary_10_1109_TITS_2024_3398037 crossref_primary_10_1109_TII_2024_3413322 crossref_primary_10_3390_math12243988 crossref_primary_10_1007_s10515_021_00310_0 crossref_primary_10_1016_j_patcog_2023_109992 crossref_primary_10_1038_s41598_024_58409_9 crossref_primary_10_1109_TII_2022_3142326 crossref_primary_10_1007_s11633_023_1459_z crossref_primary_10_1109_TIM_2022_3194920 crossref_primary_10_1016_j_eswa_2025_126911 crossref_primary_10_1049_ipr2_13210 crossref_primary_10_1109_JSEN_2024_3446249 crossref_primary_10_1016_j_neucom_2023_126526 crossref_primary_10_1016_j_compind_2021_103459 crossref_primary_10_1016_j_ultras_2024_107528 crossref_primary_10_1016_j_engappai_2024_109890 crossref_primary_10_1016_j_aei_2023_102161 crossref_primary_10_1109_JSEN_2024_3450749 crossref_primary_10_1109_TIM_2021_3098381 crossref_primary_10_1109_TIE_2021_3094452 crossref_primary_10_1109_TPAMI_2024_3386971 crossref_primary_10_1007_s11042_023_17294_6 crossref_primary_10_1360_SSI_2021_0336 crossref_primary_10_1016_j_procs_2023_08_067 crossref_primary_10_1016_j_measurement_2023_113611 crossref_primary_10_1109_TII_2023_3241579 crossref_primary_10_1109_TIM_2023_3334368 crossref_primary_10_1007_s00371_024_03412_4 crossref_primary_10_1109_ACCESS_2025_3551371 crossref_primary_10_1109_JESTIE_2024_3365030 crossref_primary_10_1016_j_engappai_2023_107810 crossref_primary_10_1109_TASE_2023_3295872 crossref_primary_10_1109_ACCESS_2024_3406376 crossref_primary_10_1007_s00371_024_03778_5 crossref_primary_10_1177_09544089241258027 crossref_primary_10_1587_transinf_2024EDP7049 crossref_primary_10_1109_TCSVT_2024_3420775 crossref_primary_10_1109_TNNLS_2023_3344118 crossref_primary_10_2139_ssrn_4109686 crossref_primary_10_1016_j_patcog_2022_108897 crossref_primary_10_1007_s00521_022_07885_z crossref_primary_10_1109_ACCESS_2023_3332475 crossref_primary_10_1109_ACCESS_2023_3339780 crossref_primary_10_1109_TCYB_2024_3357213 crossref_primary_10_1016_j_knosys_2024_112364 crossref_primary_10_1016_j_knosys_2025_113176 crossref_primary_10_1016_j_compind_2023_103990 crossref_primary_10_4274_jcp_2024_81489 crossref_primary_10_1109_JSEN_2023_3276762 crossref_primary_10_1007_s44196_023_00328_0 crossref_primary_10_1109_TGRS_2023_3258067 crossref_primary_10_1007_s10845_022_01962_9 crossref_primary_10_1109_TMM_2022_3175611 crossref_primary_10_1080_0951192X_2024_2397821 crossref_primary_10_1002_tee_24267 crossref_primary_10_1016_j_procs_2022_01_057 crossref_primary_10_1016_j_measurement_2025_116702 crossref_primary_10_1109_ACCESS_2024_3415503 crossref_primary_10_1080_10589759_2024_2355334 crossref_primary_10_1109_TIM_2024_3522399 crossref_primary_10_1109_TII_2023_3292904 crossref_primary_10_1109_ACCESS_2024_3424664 crossref_primary_10_1109_TIM_2025_3547481 crossref_primary_10_1111_cote_12744 crossref_primary_10_1007_s00034_024_02855_3 crossref_primary_10_1109_TIM_2025_3545987 crossref_primary_10_1109_ACCESS_2024_3454753 crossref_primary_10_3390_s24082440 crossref_primary_10_1080_17445760_2024_2328530 crossref_primary_10_3390_app14167301 crossref_primary_10_1016_j_engappai_2024_109852 crossref_primary_10_1016_j_engappai_2024_108762 crossref_primary_10_3390_aerospace9090480 crossref_primary_10_1007_s00371_024_03743_2 crossref_primary_10_1016_j_cviu_2025_104308 crossref_primary_10_1016_j_cviu_2024_103958 crossref_primary_10_3390_math12162480 crossref_primary_10_3934_era_2024169 |
Cites_doi | 10.1016/j.patcog.2016.09.016 10.1016/j.media.2019.01.010 10.1109/TIP.2003.819861 10.1109/CVPR42600.2020.00975 10.1109/IJCNN.2019.8851808 10.1109/CVPR42600.2020.00867 10.1109/TIP.2013.2293423 10.5220/0007364503720380 |
ContentType | Journal Article |
Copyright | 2020 |
Copyright_xml | – notice: 2020 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.patcog.2020.107706 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-5142 |
ExternalDocumentID | 10_1016_j_patcog_2020_107706 S0031320320305094 |
GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c372t-7ebd967c7cc0c7a764b716a523214a36d7243887dc28b0095d2d9594025fd3603 |
IEDL.DBID | .~1 |
ISSN | 0031-3203 |
IngestDate | Thu Apr 24 23:12:26 EDT 2025 Tue Jul 01 02:36:33 EDT 2025 Fri Feb 23 02:48:17 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Video anomaly detection CNN Inpainting Anomaly detection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-7ebd967c7cc0c7a764b716a523214a36d7243887dc28b0095d2d9594025fd3603 |
ParticipantIDs | crossref_citationtrail_10_1016_j_patcog_2020_107706 crossref_primary_10_1016_j_patcog_2020_107706 elsevier_sciencedirect_doi_10_1016_j_patcog_2020_107706 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2021 2021-04-00 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
PublicationDecade | 2020 |
PublicationTitle | Pattern recognition |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Liu, Luo, Lian, Gao (bib0014) 2018 Noroozi, Favaro (bib0018) 2016 Hinami, Mei, Satoh (bib0032) 2017 Sun, Liu, Harada (bib0037) 2017; 64 Ruff, Vandermeulen, Goernitz, Deecke, Siddiqui, Binder, Müller, Kloft (bib0017) 2018; vol. 80 K. He, H. Fan, Y. Wu, S. Xie, R. Girshick, Momentum contrast for unsupervised visual representation learning, arXiv P. Bergmann, S. Löwe, M. Fauser, D. Sattlegger, C. Steger, Improving unsupervised defect segmentation by applying structural similarity to autoencoders, arXiv Pathak, Krahenbuhl, Donahue, Darrell, Efros (bib0019) 2016 Nguyen, Meunier (bib0013) 2019 Bergmann, Fauser, Sattlegger, Steger (bib0029) 2019 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib0010) 2014 Schlegl, Seeböck, Waldstein, Schmidt-Erfurth, Langs (bib0011) 2017 Hendrycks, Mazeika, Kadavath, Song (bib0007) 2019 Zenati, Romain, Foo, Lecouat, Chandrasekhar (bib0003) 2018 C. Huang, J. Cao, F. Ye, M. Li, Y. Zhang, C. Lu, Inverse-transform autoencoder for anomaly detection, arXiv Schlegl, Seeböck, Waldstein, Langs, Schmidt-Erfurth (bib0012) 2019; 54 Caron, Bojanowski, Joulin, Douze (bib0021) 2018 Ronneberger, Fischer, Brox (bib0027) 2015 Hasan, Choi, Neumann, Roy-Chowdhury, Davis (bib0036) 2016 S. Akçay, A. Atapour-Abarghouei, T. P. Breckon, Skip-GANomaly: skip connected and adversarially trained encoder-decoder anomaly detection, arXiv O.J. Hénaff, A. Razavi, C. Doersch, S. Eslami, A.v. d. Oord, Data-efficient image recognition with contrastive predictive coding, arXiv Ji, Henriques, Vedaldi (bib0023) 2019 Ionescu, Khan, Georgescu, Shao (bib0033) 2019 P. Bergmann, M. Fauser, D. Sattlegger, C. Steger, Uninformed students: student-teacher anomaly detection with discriminative latent embeddings, arXiv (2015). Caron, Bojanowski, Mairal, Joulin (bib0022) 2019 Wang, Bovik, Sheikh, Simoncelli (bib0028) 2004; 13 Zhang, Isola, Efros (bib0020) 2016 W. Liu, R. Li, M. Zheng, S. Karanam, Z. Wu, B. Bhanu, R.J. Radke, O. Camps, Towards visually explaining variational autoencoders, arXiv A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep convolutional generative adversarial networks, arXiv Akcay, Atapour-Abarghouei, Breckon (bib0001) 2018 A.v. d. Oord, Y. Li, O. Vinyals, Representation learning with contrastive predictive coding, arXiv Lu, Shi, Jia (bib0031) 2013 (2019). Gong, Liu, Le, Saha, Mansour, Venkatesh, Hengel (bib0005) 2019 (2018). Mahadevan, Li, Bhalodia, Vasconcelos (bib0030) 2010 Xue, Zhang, Mou, Bovik (bib0009) 2013; 23 Accepted at CVPR 2020. (2019). Golan, El-Yaniv (bib0006) 2018 Gidaris, Singh, Komodakis (bib0008) 2018 Gong (10.1016/j.patcog.2020.107706_bib0005) 2019 Nguyen (10.1016/j.patcog.2020.107706_bib0013) 2019 10.1016/j.patcog.2020.107706_bib0004 10.1016/j.patcog.2020.107706_bib0026 10.1016/j.patcog.2020.107706_bib0025 Caron (10.1016/j.patcog.2020.107706_bib0021) 2018 Schlegl (10.1016/j.patcog.2020.107706_bib0012) 2019; 54 Ronneberger (10.1016/j.patcog.2020.107706_bib0027) 2015 Liu (10.1016/j.patcog.2020.107706_bib0014) 2018 Lu (10.1016/j.patcog.2020.107706_bib0031) 2013 Zhang (10.1016/j.patcog.2020.107706_bib0020) 2016 Hinami (10.1016/j.patcog.2020.107706_bib0032) 2017 Mahadevan (10.1016/j.patcog.2020.107706_bib0030) 2010 Gidaris (10.1016/j.patcog.2020.107706_bib0008) 2018 10.1016/j.patcog.2020.107706_bib0035 Hasan (10.1016/j.patcog.2020.107706_bib0036) 2016 10.1016/j.patcog.2020.107706_bib0034 Zenati (10.1016/j.patcog.2020.107706_bib0003) 2018 Hendrycks (10.1016/j.patcog.2020.107706_bib0007) 2019 Goodfellow (10.1016/j.patcog.2020.107706_bib0010) 2014 10.1016/j.patcog.2020.107706_bib0016 Sun (10.1016/j.patcog.2020.107706_bib0037) 2017; 64 10.1016/j.patcog.2020.107706_bib0015 Xue (10.1016/j.patcog.2020.107706_bib0009) 2013; 23 Ionescu (10.1016/j.patcog.2020.107706_bib0033) 2019 Ji (10.1016/j.patcog.2020.107706_bib0023) 2019 Schlegl (10.1016/j.patcog.2020.107706_bib0011) 2017 Bergmann (10.1016/j.patcog.2020.107706_bib0029) 2019 Ruff (10.1016/j.patcog.2020.107706_bib0017) 2018; vol. 80 Caron (10.1016/j.patcog.2020.107706_bib0022) 2019 Akcay (10.1016/j.patcog.2020.107706_bib0001) 2018 Pathak (10.1016/j.patcog.2020.107706_bib0019) 2016 Wang (10.1016/j.patcog.2020.107706_bib0028) 2004; 13 10.1016/j.patcog.2020.107706_bib0002 Noroozi (10.1016/j.patcog.2020.107706_bib0018) 2016 10.1016/j.patcog.2020.107706_bib0024 Golan (10.1016/j.patcog.2020.107706_bib0006) 2018 |
References_xml | – start-page: 2959 year: 2019 end-page: 2968 ident: bib0022 article-title: Unsupervised pre-training of image features on non-curated data publication-title: Proceedings of the IEEE International Conference on Computer Vision – start-page: 2720 year: 2013 end-page: 2727 ident: bib0031 article-title: Abnormal event detection at 150 FPS in MATLAB publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 13 start-page: 600 year: 2004 end-page: 612 ident: bib0028 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. – reference: S. Akçay, A. Atapour-Abarghouei, T. P. Breckon, Skip-GANomaly: skip connected and adversarially trained encoder-decoder anomaly detection, arXiv: – year: 2019 ident: bib0023 article-title: Invariant information clustering for unsupervised image classification and segmentation publication-title: ICCV – reference: (2019). – volume: 54 start-page: 30 year: 2019 end-page: 44 ident: bib0012 article-title: f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks publication-title: Med. Image Anal. – start-page: 649 year: 2016 end-page: 666 ident: bib0020 article-title: Colorful image colorization publication-title: European Conference on Computer Vision – start-page: 15637 year: 2019 end-page: 15648 ident: bib0007 article-title: Using self-supervised learning can improve model robustness and uncertainty publication-title: Advances in Neural Information Processing Systems – start-page: 9592 year: 2019 end-page: 9600 ident: bib0029 article-title: MVTec AD–A comprehensive real-world dataset for unsupervised anomaly detection publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – reference: (2015). – start-page: 234 year: 2015 end-page: 241 ident: bib0027 article-title: U-Net: convolutional networks for biomedical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 3619 year: 2017 end-page: 3627 ident: bib0032 article-title: Joint detection and recounting of abnormal events by learning deep generic knowledge publication-title: Proceedings of the IEEE International Conference on Computer Vision – start-page: 9758 year: 2018 end-page: 9769 ident: bib0006 article-title: Deep anomaly detection using geometric transformations publication-title: Advances in Neural Information Processing Systems 31 – start-page: 132 year: 2018 end-page: 149 ident: bib0021 article-title: Deep clustering for unsupervised learning of visual features publication-title: Proceedings of the European Conference on Computer Vision (ECCV) – start-page: 7842 year: 2019 end-page: 7851 ident: bib0033 article-title: Object-centric auto-encoders and dummy anomalies for abnormal event detection in video publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 1975 year: 2010 end-page: 1981 ident: bib0030 article-title: Anomaly detection in crowded scenes publication-title: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition – start-page: 622 year: 2018 end-page: 637 ident: bib0001 article-title: GANomaly: semi-supervised anomaly detection via adversarial training publication-title: Asian Conference on Computer Vision – volume: 64 start-page: 187 year: 2017 end-page: 201 ident: bib0037 article-title: Online growing neural gas for anomaly detection in changing surveillance scenes publication-title: Pattern Recognit. – start-page: 2672 year: 2014 end-page: 2680 ident: bib0010 article-title: Generative adversarial nets publication-title: Advances in Neural Information Processing Systems – reference: O.J. Hénaff, A. Razavi, C. Doersch, S. Eslami, A.v. d. Oord, Data-efficient image recognition with contrastive predictive coding, arXiv: – reference: P. Bergmann, S. Löwe, M. Fauser, D. Sattlegger, C. Steger, Improving unsupervised defect segmentation by applying structural similarity to autoencoders, arXiv: – start-page: 727 year: 2018 end-page: 736 ident: bib0003 article-title: Adversarially learned anomaly detection publication-title: 2018 IEEE International Conference on Data Mining (ICDM) – start-page: 6536 year: 2018 end-page: 6545 ident: bib0014 article-title: Future frame prediction for anomaly detection–a new baseline publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 1705 year: 2019 end-page: 1714 ident: bib0005 article-title: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 23 start-page: 684 year: 2013 end-page: 695 ident: bib0009 article-title: Gradient magnitude similarity deviation: a highly efficient perceptual image quality index publication-title: IEEE Trans. Image Process. – reference: A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep convolutional generative adversarial networks, arXiv: – start-page: 2536 year: 2016 end-page: 2544 ident: bib0019 article-title: Context encoders: feature learning by inpainting publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – reference: (2018). – start-page: 146 year: 2017 end-page: 157 ident: bib0011 article-title: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery publication-title: International Conference on Information Processing in Medical Imaging – reference: P. Bergmann, M. Fauser, D. Sattlegger, C. Steger, Uninformed students: student-teacher anomaly detection with discriminative latent embeddings, arXiv: – start-page: 69 year: 2016 end-page: 84 ident: bib0018 article-title: Unsupervised learning of visual representations by solving jigsaw puzzles publication-title: European Conference on Computer Vision – reference: K. He, H. Fan, Y. Wu, S. Xie, R. Girshick, Momentum contrast for unsupervised visual representation learning, arXiv: – year: 2018 ident: bib0008 article-title: Unsupervised representation learning by predicting image rotations publication-title: International Conference of Learning Representations – volume: vol. 80 start-page: 4393 year: 2018 end-page: 4402 ident: bib0017 article-title: Deep one-class classification publication-title: Proceedings of the 35th International Conference on Machine Learning – reference: W. Liu, R. Li, M. Zheng, S. Karanam, Z. Wu, B. Bhanu, R.J. Radke, O. Camps, Towards visually explaining variational autoencoders, arXiv: – reference: , Accepted at CVPR 2020. (2019). – reference: A.v. d. Oord, Y. Li, O. Vinyals, Representation learning with contrastive predictive coding, arXiv: – reference: C. Huang, J. Cao, F. Ye, M. Li, Y. Zhang, C. Lu, Inverse-transform autoencoder for anomaly detection, arXiv: – start-page: 1273 year: 2019 end-page: 1283 ident: bib0013 article-title: Anomaly detection in video sequence with appearance-motion correspondence publication-title: Proceedings of the IEEE International Conference on Computer Vision – start-page: 733 year: 2016 end-page: 742 ident: bib0036 article-title: Learning temporal regularity in video sequences publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 9758 year: 2018 ident: 10.1016/j.patcog.2020.107706_bib0006 article-title: Deep anomaly detection using geometric transformations – start-page: 733 year: 2016 ident: 10.1016/j.patcog.2020.107706_bib0036 article-title: Learning temporal regularity in video sequences – start-page: 3619 year: 2017 ident: 10.1016/j.patcog.2020.107706_bib0032 article-title: Joint detection and recounting of abnormal events by learning deep generic knowledge – start-page: 727 year: 2018 ident: 10.1016/j.patcog.2020.107706_bib0003 article-title: Adversarially learned anomaly detection – volume: vol. 80 start-page: 4393 year: 2018 ident: 10.1016/j.patcog.2020.107706_bib0017 article-title: Deep one-class classification – ident: 10.1016/j.patcog.2020.107706_bib0016 – start-page: 6536 year: 2018 ident: 10.1016/j.patcog.2020.107706_bib0014 article-title: Future frame prediction for anomaly detection–a new baseline – volume: 64 start-page: 187 year: 2017 ident: 10.1016/j.patcog.2020.107706_bib0037 article-title: Online growing neural gas for anomaly detection in changing surveillance scenes publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.09.016 – start-page: 69 year: 2016 ident: 10.1016/j.patcog.2020.107706_bib0018 article-title: Unsupervised learning of visual representations by solving jigsaw puzzles – start-page: 1705 year: 2019 ident: 10.1016/j.patcog.2020.107706_bib0005 article-title: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection – start-page: 1273 year: 2019 ident: 10.1016/j.patcog.2020.107706_bib0013 article-title: Anomaly detection in video sequence with appearance-motion correspondence – start-page: 1975 year: 2010 ident: 10.1016/j.patcog.2020.107706_bib0030 article-title: Anomaly detection in crowded scenes – year: 2018 ident: 10.1016/j.patcog.2020.107706_bib0008 article-title: Unsupervised representation learning by predicting image rotations – start-page: 146 year: 2017 ident: 10.1016/j.patcog.2020.107706_bib0011 article-title: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery – volume: 54 start-page: 30 year: 2019 ident: 10.1016/j.patcog.2020.107706_bib0012 article-title: f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.01.010 – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 10.1016/j.patcog.2020.107706_bib0028 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – ident: 10.1016/j.patcog.2020.107706_bib0024 doi: 10.1109/CVPR42600.2020.00975 – start-page: 7842 year: 2019 ident: 10.1016/j.patcog.2020.107706_bib0033 article-title: Object-centric auto-encoders and dummy anomalies for abnormal event detection in video – ident: 10.1016/j.patcog.2020.107706_bib0026 – start-page: 234 year: 2015 ident: 10.1016/j.patcog.2020.107706_bib0027 article-title: U-Net: convolutional networks for biomedical image segmentation – start-page: 2720 year: 2013 ident: 10.1016/j.patcog.2020.107706_bib0031 article-title: Abnormal event detection at 150 FPS in MATLAB – ident: 10.1016/j.patcog.2020.107706_bib0025 – ident: 10.1016/j.patcog.2020.107706_bib0002 doi: 10.1109/IJCNN.2019.8851808 – start-page: 2959 year: 2019 ident: 10.1016/j.patcog.2020.107706_bib0022 article-title: Unsupervised pre-training of image features on non-curated data – start-page: 9592 year: 2019 ident: 10.1016/j.patcog.2020.107706_bib0029 article-title: MVTec AD–A comprehensive real-world dataset for unsupervised anomaly detection – start-page: 2672 year: 2014 ident: 10.1016/j.patcog.2020.107706_bib0010 article-title: Generative adversarial nets – start-page: 2536 year: 2016 ident: 10.1016/j.patcog.2020.107706_bib0019 article-title: Context encoders: feature learning by inpainting – ident: 10.1016/j.patcog.2020.107706_bib0035 doi: 10.1109/CVPR42600.2020.00867 – start-page: 622 year: 2018 ident: 10.1016/j.patcog.2020.107706_bib0001 article-title: GANomaly: semi-supervised anomaly detection via adversarial training – start-page: 132 year: 2018 ident: 10.1016/j.patcog.2020.107706_bib0021 article-title: Deep clustering for unsupervised learning of visual features – ident: 10.1016/j.patcog.2020.107706_bib0015 – start-page: 649 year: 2016 ident: 10.1016/j.patcog.2020.107706_bib0020 article-title: Colorful image colorization – year: 2019 ident: 10.1016/j.patcog.2020.107706_bib0023 article-title: Invariant information clustering for unsupervised image classification and segmentation – volume: 23 start-page: 684 issue: 2 year: 2013 ident: 10.1016/j.patcog.2020.107706_bib0009 article-title: Gradient magnitude similarity deviation: a highly efficient perceptual image quality index publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2013.2293423 – ident: 10.1016/j.patcog.2020.107706_bib0034 doi: 10.5220/0007364503720380 – start-page: 15637 year: 2019 ident: 10.1016/j.patcog.2020.107706_bib0007 article-title: Using self-supervised learning can improve model robustness and uncertainty – ident: 10.1016/j.patcog.2020.107706_bib0004 |
SSID | ssj0017142 |
Score | 2.704343 |
Snippet | •A reconstruction-by-inpainting-based anomaly detection method (RIAD) was proposed.•RIAD achieves state-of-the-art performance on anomaly detection and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107706 |
SubjectTerms | Anomaly detection CNN Inpainting Video anomaly detection |
Title | Reconstruction by inpainting for visual anomaly detection |
URI | https://dx.doi.org/10.1016/j.patcog.2020.107706 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXrz4Fuuj5OA1djfJbppjKZaq2JOF3pbNY6VStwtWoRd_uzP7qAqi4G0JmWWZZCfzwZfvI-Qy5C6M-t4yrTPJZJSGzGRxAE9WW64hpvRYup_E46m8nUWzFhk2d2GQVlnX_qqml9W6HunV2ewV8zne8UXZQTQAFyhigpqgqF4He_rqfUPzQH_vSjFchAynNtfnSo5XAeVu-QgokeOQUuh79NPx9OXIGe2RnbpXpIPqc_ZJy-cHZLfxYaD1b3lINGLITyVYatZ0nhcA-ZHSTKErpW_zl1d4U5ovn9PFmjq_KhlY-RGZjq4fhmNWWyIwKxRfMeWN07GyytrAqlTF0gDgSQFN8lCmInaKSwF1w1neN9g-Oe50pAEkRpkTcSCOSTtf5v6E0NgZqQGeaquFtNwbrX2m-takGXRlgekQ0WQisbVeONpWLJKGGPaUVPlLMH9Jlb8OYZuootLL-GO-apKcfFv3BEr6r5Gn_448I9scmSkl_-actGF5_AW0FivTLfdOl2wNbu7Gkw-JKMzv |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFL3M7UFf_BbnZx58DWuTtFkex3B07uNpg72VJmllol3BKezfm7TpVBAF30rILeWmPbmHnpwLcOcT7QfdVGEhMoZZkPhYZqFnrpRQRJiYssfSZBpGc_awCBYN6NdnYays0mF_heklWruRjstmp1gu7RlfaztoG4BTa2LCdqBl3alYE1q94Siabn8mcJ9VpuHUx3Z2fYKulHkVBvFWj4YoEjvEuW199NMO9WXXGRzCvisXUa96oiNopPkxHNStGJD7Mk9AWBr5aQaL5AYt88KwfqtqRqYwRe_L1zdzpyRfvSTPG6TTdSnCyk9hPrif9SPsuiJgRTlZY55KLUKuuFKe4gkPmTScJzGEkvgsoaHmhFEDHVqRrrQVlCZaBMLwxCDTNPToGTTzVZ6eAwq1ZMIwVKEEZYqkUog0410lk8wUZp5sA60zEStnGW47VzzHtTbsKa7yF9v8xVX-2oC3UUVlmfHHfF4nOf629LFB9V8jL_4deQu70WwyjsfD6egS9ogVqpRynCtomqVKr02lsZY37k36AKNrz6A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstruction+by+inpainting+for+visual+anomaly+detection&rft.jtitle=Pattern+recognition&rft.au=Zavrtanik%2C+Vitjan&rft.au=Kristan%2C+Matej&rft.au=Sko%C4%8Daj%2C+Danijel&rft.date=2021-04-01&rft.issn=0031-3203&rft.volume=112&rft.spage=107706&rft_id=info:doi/10.1016%2Fj.patcog.2020.107706&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2020_107706 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |