Longitudinal Neuroimaging Hippocampal Markers for Diagnosing Alzheimer’s Disease
Hippocampal atrophy measures from magnetic resonance imaging (MRI) are powerful tools for monitoring Alzheimer’s disease (AD) progression. In this paper, we introduce a longitudinal image analysis framework based on robust registration and simultaneous hippocampal segmentation and longitudinal marke...
Saved in:
Published in | Neuroinformatics (Totowa, N.J.) Vol. 17; no. 1; pp. 43 - 61 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1539-2791 1559-0089 1559-0089 |
DOI | 10.1007/s12021-018-9380-2 |
Cover
Abstract | Hippocampal atrophy measures from magnetic resonance imaging (MRI) are powerful tools for monitoring Alzheimer’s disease (AD) progression. In this paper, we introduce a longitudinal image analysis framework based on robust registration and simultaneous hippocampal segmentation and longitudinal marker classification of brain MRI of an arbitrary number of time points. The framework comprises two innovative parts: a longitudinal segmentation and a longitudinal classification step. The results show that both steps of the longitudinal pipeline improved the reliability and the accuracy of the discrimination between clinical groups. We introduce a novel approach to the joint segmentation of the hippocampus across multiple time points; this approach is based on graph cuts of longitudinal MRI scans with constraints on hippocampal atrophy and supported by atlases. Furthermore, we use linear mixed effect (LME) modeling for differential diagnosis between clinical groups. The classifiers are trained from the average residue between the longitudinal marker of the subjects and the LME model. In our experiments, we analyzed MRI-derived longitudinal hippocampal markers from two publicly available datasets (Alzheimer’s Disease Neuroimaging Initiative, ADNI and Minimal Interval Resonance Imaging in Alzheimer’s Disease, MIRIAD). In test/retest reliability experiments, the proposed method yielded lower volume errors and significantly higher dice overlaps than the cross-sectional approach (volume errors: 1.55% vs 0.8%; dice overlaps: 0.945 vs 0.975). To diagnose AD, the discrimination ability of our proposal gave an area under the receiver operating characteristic (ROC) curve (AUC)
=
0.947 for the control vs AD, AUC
=
0.720 for mild cognitive impairment (MCI) vs AD, and AUC
=
0.805 for the control vs MCI. |
---|---|
AbstractList | Hippocampal atrophy measures from magnetic resonance imaging (MRI) are powerful tools for monitoring Alzheimer's disease (AD) progression. In this paper, we introduce a longitudinal image analysis framework based on robust registration and simultaneous hippocampal segmentation and longitudinal marker classification of brain MRI of an arbitrary number of time points. The framework comprises two innovative parts: a longitudinal segmentation and a longitudinal classification step. The results show that both steps of the longitudinal pipeline improved the reliability and the accuracy of the discrimination between clinical groups. We introduce a novel approach to the joint segmentation of the hippocampus across multiple time points; this approach is based on graph cuts of longitudinal MRI scans with constraints on hippocampal atrophy and supported by atlases. Furthermore, we use linear mixed effect (LME) modeling for differential diagnosis between clinical groups. The classifiers are trained from the average residue between the longitudinal marker of the subjects and the LME model. In our experiments, we analyzed MRI-derived longitudinal hippocampal markers from two publicly available datasets (Alzheimer's Disease Neuroimaging Initiative, ADNI and Minimal Interval Resonance Imaging in Alzheimer's Disease, MIRIAD). In test/retest reliability experiments, the proposed method yielded lower volume errors and significantly higher dice overlaps than the cross-sectional approach (volume errors: 1.55% vs 0.8%; dice overlaps: 0.945 vs 0.975). To diagnose AD, the discrimination ability of our proposal gave an area under the receiver operating characteristic (ROC) curve (AUC) [Formula: see text] 0.947 for the control vs AD, AUC [Formula: see text] 0.720 for mild cognitive impairment (MCI) vs AD, and AUC [Formula: see text] 0.805 for the control vs MCI. Hippocampal atrophy measures from magnetic resonance imaging (MRI) are powerful tools for monitoring Alzheimer’s disease (AD) progression. In this paper, we introduce a longitudinal image analysis framework based on robust registration and simultaneous hippocampal segmentation and longitudinal marker classification of brain MRI of an arbitrary number of time points. The framework comprises two innovative parts: a longitudinal segmentation and a longitudinal classification step. The results show that both steps of the longitudinal pipeline improved the reliability and the accuracy of the discrimination between clinical groups. We introduce a novel approach to the joint segmentation of the hippocampus across multiple time points; this approach is based on graph cuts of longitudinal MRI scans with constraints on hippocampal atrophy and supported by atlases. Furthermore, we use linear mixed effect (LME) modeling for differential diagnosis between clinical groups. The classifiers are trained from the average residue between the longitudinal marker of the subjects and the LME model. In our experiments, we analyzed MRI-derived longitudinal hippocampal markers from two publicly available datasets (Alzheimer’s Disease Neuroimaging Initiative, ADNI and Minimal Interval Resonance Imaging in Alzheimer’s Disease, MIRIAD). In test/retest reliability experiments, the proposed method yielded lower volume errors and significantly higher dice overlaps than the cross-sectional approach (volume errors: 1.55% vs 0.8%; dice overlaps: 0.945 vs 0.975). To diagnose AD, the discrimination ability of our proposal gave an area under the receiver operating characteristic (ROC) curve (AUC) = 0.947 for the control vs AD, AUC = 0.720 for mild cognitive impairment (MCI) vs AD, and AUC = 0.805 for the control vs MCI. Hippocampal atrophy measures from magnetic resonance imaging (MRI) are powerful tools for monitoring Alzheimer's disease (AD) progression. In this paper, we introduce a longitudinal image analysis framework based on robust registration and simultaneous hippocampal segmentation and longitudinal marker classification of brain MRI of an arbitrary number of time points. The framework comprises two innovative parts: a longitudinal segmentation and a longitudinal classification step. The results show that both steps of the longitudinal pipeline improved the reliability and the accuracy of the discrimination between clinical groups. We introduce a novel approach to the joint segmentation of the hippocampus across multiple time points; this approach is based on graph cuts of longitudinal MRI scans with constraints on hippocampal atrophy and supported by atlases. Furthermore, we use linear mixed effect (LME) modeling for differential diagnosis between clinical groups. The classifiers are trained from the average residue between the longitudinal marker of the subjects and the LME model. In our experiments, we analyzed MRI-derived longitudinal hippocampal markers from two publicly available datasets (Alzheimer's Disease Neuroimaging Initiative, ADNI and Minimal Interval Resonance Imaging in Alzheimer's Disease, MIRIAD). In test/retest reliability experiments, the proposed method yielded lower volume errors and significantly higher dice overlaps than the cross-sectional approach (volume errors: 1.55% vs 0.8%; dice overlaps: 0.945 vs 0.975). To diagnose AD, the discrimination ability of our proposal gave an area under the receiver operating characteristic (ROC) curve (AUC) [Formula: see text] 0.947 for the control vs AD, AUC [Formula: see text] 0.720 for mild cognitive impairment (MCI) vs AD, and AUC [Formula: see text] 0.805 for the control vs MCI.Hippocampal atrophy measures from magnetic resonance imaging (MRI) are powerful tools for monitoring Alzheimer's disease (AD) progression. In this paper, we introduce a longitudinal image analysis framework based on robust registration and simultaneous hippocampal segmentation and longitudinal marker classification of brain MRI of an arbitrary number of time points. The framework comprises two innovative parts: a longitudinal segmentation and a longitudinal classification step. The results show that both steps of the longitudinal pipeline improved the reliability and the accuracy of the discrimination between clinical groups. We introduce a novel approach to the joint segmentation of the hippocampus across multiple time points; this approach is based on graph cuts of longitudinal MRI scans with constraints on hippocampal atrophy and supported by atlases. Furthermore, we use linear mixed effect (LME) modeling for differential diagnosis between clinical groups. The classifiers are trained from the average residue between the longitudinal marker of the subjects and the LME model. In our experiments, we analyzed MRI-derived longitudinal hippocampal markers from two publicly available datasets (Alzheimer's Disease Neuroimaging Initiative, ADNI and Minimal Interval Resonance Imaging in Alzheimer's Disease, MIRIAD). In test/retest reliability experiments, the proposed method yielded lower volume errors and significantly higher dice overlaps than the cross-sectional approach (volume errors: 1.55% vs 0.8%; dice overlaps: 0.945 vs 0.975). To diagnose AD, the discrimination ability of our proposal gave an area under the receiver operating characteristic (ROC) curve (AUC) [Formula: see text] 0.947 for the control vs AD, AUC [Formula: see text] 0.720 for mild cognitive impairment (MCI) vs AD, and AUC [Formula: see text] 0.805 for the control vs MCI. Hippocampal atrophy measures from magnetic resonance imaging (MRI) are powerful tools for monitoring Alzheimer’s disease (AD) progression. In this paper, we introduce a longitudinal image analysis framework based on robust registration and simultaneous hippocampal segmentation and longitudinal marker classification of brain MRI of an arbitrary number of time points. The framework comprises two innovative parts: a longitudinal segmentation and a longitudinal classification step. The results show that both steps of the longitudinal pipeline improved the reliability and the accuracy of the discrimination between clinical groups. We introduce a novel approach to the joint segmentation of the hippocampus across multiple time points; this approach is based on graph cuts of longitudinal MRI scans with constraints on hippocampal atrophy and supported by atlases. Furthermore, we use linear mixed effect (LME) modeling for differential diagnosis between clinical groups. The classifiers are trained from the average residue between the longitudinal marker of the subjects and the LME model. In our experiments, we analyzed MRI-derived longitudinal hippocampal markers from two publicly available datasets (Alzheimer’s Disease Neuroimaging Initiative, ADNI and Minimal Interval Resonance Imaging in Alzheimer’s Disease, MIRIAD). In test/retest reliability experiments, the proposed method yielded lower volume errors and significantly higher dice overlaps than the cross-sectional approach (volume errors: 1.55% vs 0.8%; dice overlaps: 0.945 vs 0.975). To diagnose AD, the discrimination ability of our proposal gave an area under the receiver operating characteristic (ROC) curve (AUC) =\(=\) 0.947 for the control vs AD, AUC =\(=\) 0.720 for mild cognitive impairment (MCI) vs AD, and AUC =\(=\) 0.805 for the control vs MCI. |
Author | Lin, Lin Tobar, M. Carmen Platero, Carlos |
Author_xml | – sequence: 1 givenname: Carlos orcidid: 0000-0003-3712-8297 surname: Platero fullname: Platero, Carlos email: carlos.platero@upm.es organization: Health Science Technology Group, Universidad Politécnica de Madrid – sequence: 2 givenname: Lin surname: Lin fullname: Lin, Lin organization: Universidad Politécnica de Madrid – sequence: 3 givenname: M. Carmen surname: Tobar fullname: Tobar, M. Carmen organization: Health Science Technology Group, Universidad Politécnica de Madrid |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29785624$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9O3DAQxq0KVNhtH6AXtFIvXALjcdaOj4g_BWkLEuJuOYmTGhI7tZNDe-I1eD2epA4LqoTUnsbS_L5vPPMtyI7zzhDyhcIRBRDHkSIgzYAWmWQFZPiB7NP1WmYAhdyZ30xmKCTdI4sY7wGQC4CPZA-lKNYc831yu_GuteNUW6e71bWZgre9bq1rV5d2GHyl-yE1vuvwYEJcNT6szqxunY8zctL9_mFsb8Lz41NMjWh0NJ_IbqO7aD6_1iW5uzi_O73MNjffrk5PNlnFBI6ZqFlagnFhCtSiROTYaNpIKHjOC8MBWV3zooRaN5iXFDSTIGuKktXYlGxJDre2Q_A_JxNH1dtYma7TzvgpKoQcRS6R0oR-fYfe-ymkhV8oKvmapmlLcvBKTWVvajWEdInwS70dKwFiC1TBxxhMoyo76tF6NwZtO0VBzbGobSwqxaLmWNRsTd8p38z_p8GtJibWtSb8_fS_RX8A6emd_A |
CitedBy_id | crossref_primary_10_1016_j_cmpb_2020_105348 crossref_primary_10_1002_ima_22390 crossref_primary_10_1177_13872877241289790 crossref_primary_10_1016_j_jneumeth_2020_108698 crossref_primary_10_1186_s40708_022_00168_2 crossref_primary_10_1007_s00221_022_06543_z crossref_primary_10_18632_aging_103212 crossref_primary_10_1111_ggi_14670 crossref_primary_10_3389_fnagi_2022_818871 crossref_primary_10_3390_biomedicines10020315 crossref_primary_10_1007_s10462_023_10415_5 crossref_primary_10_1016_j_jns_2024_123361 crossref_primary_10_2139_ssrn_4104978 crossref_primary_10_1016_j_nicl_2024_103623 crossref_primary_10_1088_1757_899X_982_1_012007 crossref_primary_10_1162_imag_a_00294 crossref_primary_10_1016_j_acra_2024_06_012 crossref_primary_10_33851_JMIS_2021_8_4_233 crossref_primary_10_1212_WNL_0000000000008817 crossref_primary_10_3389_fnagi_2018_00320 crossref_primary_10_3389_fonc_2021_641359 |
Cites_doi | 10.3233/JAD-2011-0004 10.1016/j.neuropsychologia.2007.11.037 10.1016/S1474-4422(07)70178-3 10.1016/j.neuroimage.2016.07.020 10.1007/s12021-017-9323-3 10.1023/A:1007958904918 10.1001/archneurol.2011.167 10.1016/j.jalz.2011.03.005 10.1109/TPAMI.2012.143 10.1016/S0896-6273(02)00569-X 10.1038/nrneurol.2009.215 10.1016/j.neuroimage.2009.10.026 10.1016/j.neuroimage.2012.12.044 10.1016/j.jalz.2011.03.008 10.1016/j.neuroimage.2012.10.081 10.1109/TMI.2009.2035616 10.1016/j.neuroimage.2015.10.065 10.1016/j.jalz.2012.06.004 10.1016/j.neuroimage.2010.06.013 10.1371/journal.pone.0071354 10.1016/j.neuroimage.2012.02.084 10.1016/j.neuroimage.2015.03.035 10.3233/JAD-150087 10.1212/01.wnl.0000256697.20968.d7 10.1016/j.neuroimage.2008.07.058 10.1109/42.668698 10.1016/j.neuroimage.2008.12.037 10.1016/j.neuroimage.2012.01.024 10.1016/j.neuroimage.2014.04.015 10.1016/j.neuroimage.2010.06.024 10.1016/j.neuroimage.2010.09.018 10.1016/j.neuroimage.2010.04.193 10.1115/1.1760520 10.1016/j.neuroimage.2014.10.002 10.1016/0022-3956(75)90026-6 10.1016/j.neurobiolaging.2014.04.034 10.1016/j.pscychresns.2015.08.014 10.1016/j.neuroimage.2010.07.020 10.1016/j.neuroimage.2015.07.076 10.1109/TPAMI.2004.60 10.1006/nimg.2002.1132 10.1016/j.neuroimage.2010.04.006 10.1176/appi.ajp.2011.10111690 10.1016/j.neuroimage.2010.03.018 10.1016/j.neuroimage.2011.01.077 10.1371/journal.pone.0138866 10.1002/jmri.21049 10.1016/j.artmed.2015.04.005 10.1016/j.neuroimage.2012.10.065 10.1109/TMI.2014.2382581 10.1016/j.jalz.2014.05.1756 10.1016/j.jneumeth.2016.06.013 10.1109/TMI.2009.2014372 10.1212/01.WNL.0000110315.26026.EF 10.1016/j.neuroimage.2013.05.065 10.1016/j.neuroimage.2009.12.125 10.3233/JAD-170261 10.1007/978-3-319-47118-1_5 10.2307/2531595 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2018 Neuroinformatics is a copyright of Springer, (2018). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018 – notice: Neuroinformatics is a copyright of Springer, (2018). All Rights Reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88A 88E 88G 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U 7X8 |
DOI | 10.1007/s12021-018-9380-2 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central - New (Subscription) url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1559-0089 |
EndPage | 61 |
ExternalDocumentID | 29785624 10_1007_s12021_018_9380_2 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GroupedDBID | --- -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 1N0 203 29N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 53G 5VS 67N 6NX 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACCUX ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHMBA AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AZQEC B-. BA0 BBNVY BDATZ BENPR BGNMA BHPHI BPHCQ BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG6 HLICF HMCUK HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV LK8 LLZTM M0L M1P M2M M4Y M7P MA- NPVJJ NQJWS NU0 O9- O9J OVD P2P PF- PQQKQ PROAC PSQYO PSYQQ PT4 Q2X QOR QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3A S3B SAP SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 TEORI TSG TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z83 Z88 ZMTXR ZOVNA ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FK ABRTQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO |
ID | FETCH-LOGICAL-c372t-7d3100367e82a7b2262fa1f9086468e6023dd68b0daf24b10a3909d1293d2fb3 |
IEDL.DBID | BENPR |
ISSN | 1539-2791 1559-0089 |
IngestDate | Thu Sep 04 21:30:25 EDT 2025 Fri Jul 25 10:19:47 EDT 2025 Thu Apr 03 07:05:02 EDT 2025 Tue Jul 01 04:24:53 EDT 2025 Thu Apr 24 23:06:29 EDT 2025 Fri Feb 21 02:26:54 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Hippocampal segmentation Longitudinal analysis Alzheimer’s disease MRI |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-7d3100367e82a7b2262fa1f9086468e6023dd68b0daf24b10a3909d1293d2fb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3712-8297 |
PMID | 29785624 |
PQID | 2041965102 |
PQPubID | 54206 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_2042749211 proquest_journals_2041965102 pubmed_primary_29785624 crossref_citationtrail_10_1007_s12021_018_9380_2 crossref_primary_10_1007_s12021_018_9380_2 springer_journals_10_1007_s12021_018_9380_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190100 2019-1-00 2019-01-00 20190101 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 1 year: 2019 text: 20190100 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States – name: Totowa |
PublicationTitle | Neuroinformatics (Totowa, N.J.) |
PublicationTitleAbbrev | Neuroinform |
PublicationTitleAlternate | Neuroinformatics |
PublicationYear | 2019 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Giraud, Ta, Papadakis, Manjón, Louis Collins, Coupé (CR27) 2016; 124 La Joie, Fouquet, Mézenge, Landeau, Villain, Mevel, Pélerin, Eustache, Desgranges, Chételat (CR35) 2010; 53 Leung, Barnes, Ridgway, Bartlett, Clarkson, Macdonald, Schuff, Fox, Ourselin (CR38) 2010; 51 Mert, Sabuncu, Desikan, Sepulcre, Yeo, Liu, Schmansky, Reuter, Weiner, Buckner, Sperling (CR42) 2011; 68 CR36 Reuter, Diana Rosas, Fischl (CR52) 2010; 53 Moradi, Pepe, Gaser, Huttunen, Tohka (CR44) 2015; 104 Frisoni, Fox, Jack, Scheltens, Thompson (CR25) 2010; 6 Iglesias, Van Leemput, Augustinack, Insausti, Fischl, Reuter (CR28) 2016; 141 Dubois, Feldman, Jacova, DeKosky, Barberger-Gateau, Cummings, Delacourte, Galasko, Gauthier, Jicha (CR17) 2007; 6 Bernal-Rusiel, Greve, Reuter, Fischl, Sabuncu (CR6) 2013; 66 Barnes, Shechtman, Finkelstein, Goldman (CR5) 2009; 28 Fox, Ridgway, Schott (CR22) 2011; 57 Platero, Carmen Tobar (CR49) 2015; 64 Devanand, Pradhaban, Liu, Khandji, De Santi, Segal, Rusinek, Pelton, Honig, Mayeux (CR16) 2007; 68 Jack, Shiung, Gunter, Obrien, Weigand, Knopman, Boeve, Ivnik, Smith, Cha (CR29) 2004; 62 Clifford, Jack, Bernstein, Fox, Thompson, Alexander, Harvey, Borowski, Britson, Whitwell, Ward (CR12) 2008; 27 Malone, Cash, Ridgway, MacManus, Ourselin, Fox, Schott (CR41) 2013; 70 Evans, Janke, Louis Collins, Baillet (CR19) 2012; 62 Frankó, Joly (CR23) 2013; 8 Lawrence, Vegvari, Ower, Hadjichrysanthou, De Wolf, Anderson (CR37) 2017; 59 CR45 Chételat, Fouquet, Kalpouzos, Denghien, De La Sayette, Viader, Mézenge, Landeau, Baron, Eustache (CR10) 2008; 46 Boykov, Kolmogorov (CR8) 2004; 26 Klein, Staring, Murphy, Viergever, Pluim (CR33) 2010; 29 Perrotin, de Flores, Lamberton, Poisnel, La Joie, de la Sayette, Mezenge, Tomadesso, Landeau, Desgranges (CR48) 2015; 48 Song, Tustison, Avants, Gee (CR57) 2006; 4191 Lotjonen, Wolz, Koikkalainen, Thurfjell, Waldemar, Soininen, Rueckert (CR39) 2010; 49 Thompson, Hallmayer, O’Hara (CR58) 2011; 168 Cuingnet, Gerardin, Tessieras, Auzias, Lehéricy, Habert, Chupin, Benali, Colliot (CR14) 2011; 56 McKhann, Knopman, Chertkow, Hyman, Jack, Kawas, Klunk, Koroshetz, Manly, Mayeux (CR43) 2011; 7 van der Lijn, den Heijer, Breteler, Niessen (CR59) 2008; 43 Wolz, Heckemann, Aljabar, Hajnal, Hammers, Lötjönen, Rueckert (CR63) 2010; 52 CR15 Sabuncu, Bernal-Rusiel, Reuter, Greve, Fischl (CR54) 2014; 97 Louis Collins, Pruessner (CR40) 2010; 52 Reuter, Schmansky, Diana Rosas, Fischl (CR53) 2012; 61 Artaechevarria, Muñoz-barrutia, Ortiz-de Solorzano (CR3) 2009; 28 Platero, Tobar (CR51) 2017; 15 Jenkinson, Bannister, Brady, Smith (CR30) 2002; 17 Korolev, Symonds, Bozoki (CR34) 2016; 11 Apostolova, Morra, Green, Hwang, Avedissian, Woo, Cummings, Toga, Jack, Weiner (CR2) 2010; 51 Bradley, Wyman, Harvey, Crawford, Bernstein, Carmichael, Cole, Crane, DeCarli, Fox, Gunter (CR9) 2013; 9 Fraser, Shaw, Cherbuin (CR24) 2015; 112 Fischl, Salat, Busa, Albert, Dieterich, Haselgrove, Van Der Kouwe, Killiany, Kennedy, Klaveness (CR20) 2002; 33 Viola, Wells (CR60) 1997; 24 Albert, DeKosky, Dickson, Dubois, Feldman, Fox, Gamst, Holtzman, Jagust, Petersen (CR1) 2011; 7 Aubert-Broche, Fonov, García-Lorenzo, Mouiha, Guizard, Coupé, Eskildsen, Louis Collins (CR4) 2013; 82 Kim, Valdes-Hernandez, Royle, Park (CR31) 2015; 34 Platero, Carmen Tobar (CR50) 2016; 270 Sled, Zijdenbos, Evans (CR56) 1998; 17 Eskildsen, Coupé, Fonov, Pruessner, Louis Collins (CR18) 2015; 36 Boccardi, Ganzola, Bocchetta, Pievani, Redolfi, Bartzokis, Camicioli, Csernansky, de Leon, de Toledo-Morrell (CR7) 2011; 26 Chincarini, Sensi, Rei, Gemme, Squarcia, Longo, Brun, Tangaro, Bellotti, Amoroso (CR11) 2016; 125 Osher, Fedkiw, Piechor (CR47) 2004; 57 Nestor, Gibson, Gao, Kiss, Black (CR46) 2013; 66 Schröder, Pantel (CR55) 2016; 247 CR62 Coupé, Manjón, Fonov, Pruessner, Robles, Louis Collins (CR13) 2011; 54 Folstein, Folstein, McHugh (CR21) 1975; 12 Frisoni, Jack, Bocchetta, Bauer, Frederiksen, Liu, Preboske, Swihart, Blair, Cavedo (CR26) 2015; 11 Wang, Suh, Das, Pluta, Craige, Yushkevich (CR61) 2013; 35 Klein, Andersson, Ardekani, Ashburner, Avants, Chiang, Christensen, Louis Collins, Gee, Hellier (CR32) 2009; 46 MR Sabuncu (9380_CR54) 2014; 97 CR Jack (9380_CR29) 2004; 62 R Clifford (9380_CR12) 2008; 27 9380_CR45 SM Nestor (9380_CR46) 2013; 66 IO Korolev (9380_CR34) 2016; 11 C Platero (9380_CR49) 2015; 64 J Kim (9380_CR31) 2015; 34 JG Sled (9380_CR56) 1998; 17 F Lijn van der (9380_CR59) 2008; 43 R Mert (9380_CR42) 2011; 68 DP Devanand (9380_CR16) 2007; 68 NC Fox (9380_CR22) 2011; 57 M Jenkinson (9380_CR30) 2002; 17 A Perrotin (9380_CR48) 2015; 48 MA Fraser (9380_CR24) 2015; 112 R Wolz (9380_CR63) 2010; 52 MS Albert (9380_CR1) 2011; 7 S Osher (9380_CR47) 2004; 57 9380_CR36 R La Joie (9380_CR35) 2010; 53 LG Apostolova (9380_CR2) 2010; 51 M Reuter (9380_CR52) 2010; 53 G Chételat (9380_CR10) 2008; 46 S Klein (9380_CR33) 2010; 29 JE Iglesias (9380_CR28) 2016; 141 SF Eskildsen (9380_CR18) 2015; 36 B Aubert-Broche (9380_CR4) 2013; 82 9380_CR62 A Chincarini (9380_CR11) 2016; 125 D Louis Collins (9380_CR40) 2010; 52 E Moradi (9380_CR44) 2015; 104 WK Thompson (9380_CR58) 2011; 168 GB Frisoni (9380_CR26) 2015; 11 P Viola (9380_CR60) 1997; 24 R Giraud (9380_CR27) 2016; 124 Z Song (9380_CR57) 2006; 4191 JMP Lotjonen (9380_CR39) 2010; 49 KK Leung (9380_CR38) 2010; 51 E Frankó (9380_CR23) 2013; 8 M Reuter (9380_CR53) 2012; 61 MF Folstein (9380_CR21) 1975; 12 IB Malone (9380_CR41) 2013; 70 9380_CR15 R Cuingnet (9380_CR14) 2011; 56 AC Evans (9380_CR19) 2012; 62 B Dubois (9380_CR17) 2007; 6 H Wang (9380_CR61) 2013; 35 A Klein (9380_CR32) 2009; 46 T Bradley (9380_CR9) 2013; 9 Y Boykov (9380_CR8) 2004; 26 C Platero (9380_CR51) 2017; 15 X Artaechevarria (9380_CR3) 2009; 28 M Boccardi (9380_CR7) 2011; 26 C Barnes (9380_CR5) 2009; 28 JL Bernal-Rusiel (9380_CR6) 2013; 66 P Coupé (9380_CR13) 2011; 54 GM McKhann (9380_CR43) 2011; 7 E Lawrence (9380_CR37) 2017; 59 J Schröder (9380_CR55) 2016; 247 B Fischl (9380_CR20) 2002; 33 GB Frisoni (9380_CR25) 2010; 6 C Platero (9380_CR50) 2016; 270 |
References_xml | – volume: 26 start-page: 61 year: 2011 end-page: 75 ident: CR7 article-title: Survey of protocols for the manual segmentation of the hippocampus: preparatory steps towards a joint EADC-ADNI harmonized protocol publication-title: Journal of Alzheimer’s Disease doi: 10.3233/JAD-2011-0004 – ident: CR45 – volume: 46 start-page: 1721 issue: 6 year: 2008 end-page: 1731 ident: CR10 article-title: Three-dimensional surface mapping of hippocampal atrophy progression from MCI to AD and over normal aging as assessed using voxel-based morphometry publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2007.11.037 – volume: 6 start-page: 734 issue: 8 year: 2007 end-page: 746 ident: CR17 article-title: Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS–ADRDA criteria publication-title: The Lancet Neurology doi: 10.1016/S1474-4422(07)70178-3 – volume: 141 start-page: 542 year: 2016 end-page: 555 ident: CR28 article-title: ADNI, et al. Bayesian longitudinal segmentation of hippocampal substructures in brain MRI using subject-specific atlases publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.07.020 – volume: 15 start-page: 165 issue: 2 year: 2017 end-page: 183 ident: CR51 article-title: Combining a patch-based approach with a non-rigid registration-based label fusion method for the hippocampal segmentation in Alzheimer’s Disease publication-title: Neuroinfor matics doi: 10.1007/s12021-017-9323-3 – volume: 24 start-page: 137 issue: 2 year: 1997 end-page: 154 ident: CR60 article-title: Alignment by maximization of mutual information publication-title: International Journal of Computer Vision doi: 10.1023/A:1007958904918 – volume: 68 start-page: 1040 issue: 8 year: 2011 end-page: 1048 ident: CR42 article-title: The dynamics of cortical and hippocampal atrophy in Alzheimer disease publication-title: Archives of neurology doi: 10.1001/archneurol.2011.167 – volume: 7 start-page: 263 issue: 3 year: 2011 end-page: 269 ident: CR43 article-title: The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease publication-title: Alzheimer’s & Dementia doi: 10.1016/j.jalz.2011.03.005 – volume: 35 start-page: 611 issue: 3 year: 2013 end-page: 623 ident: CR61 article-title: Multi-atlas segmentation with joint label fusion publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2012.143 – volume: 33 start-page: 341 issue: 3 year: 2002 end-page: 355 ident: CR20 article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain publication-title: Neuron doi: 10.1016/S0896-6273(02)00569-X – volume: 6 start-page: 67 issue: 2 year: 2010 end-page: 77 ident: CR25 article-title: The clinical use of structural MRI in Alzheimer disease publication-title: Nature Reviews Neurology doi: 10.1038/nrneurol.2009.215 – volume: 49 start-page: 2352 issue: 3 year: 2010 end-page: 2365 ident: CR39 article-title: Fast and robust multi-atlas segmentation of brain magnetic resonance images publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.10.026 – volume: 70 start-page: 33 year: 2013 end-page: 36 ident: CR41 article-title: MIRIAD - Public release of a multiple time point Alzheimer’s MR imaging dataset publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.12.044 – volume: 7 start-page: 270 issue: 3 year: 2011 end-page: 279 ident: CR1 article-title: The diagnosis of mild cognitive impairment due to alzheimer’s disease: recommendations from the national institute on aging-alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease publication-title: Alzheimer’s & Dementia doi: 10.1016/j.jalz.2011.03.008 – volume: 66 start-page: 50 year: 2013 end-page: 70 ident: CR46 article-title: A direct morphometric comparison of five labeling protocols for multi-atlas driven automatic segmentation of the hippocampus in Alzheimer’s disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.10.081 – volume: 29 start-page: 196 issue: 1 year: 2010 end-page: 205 ident: CR33 article-title: Elastix: a toolbox for intensity-based medical image registration publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2009.2035616 – ident: CR15 – volume: 125 start-page: 834 year: 2016 end-page: 847 ident: CR11 article-title: Integrating longitudinal information in hippocampal volume measurements for the early detection of Alzheimer’s disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.10.065 – volume: 9 start-page: 332 issue: 3 year: 2013 end-page: 337 ident: CR9 article-title: Standardization of analysis sets for reporting results from ADNI MRI data publication-title: Alzheimer’s & Dementia doi: 10.1016/j.jalz.2012.06.004 – ident: CR36 – volume: 56 start-page: 766 issue: 2 year: 2011 end-page: 781 ident: CR14 article-title: Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.06.013 – volume: 8 start-page: e71354 issue: 8 year: 2013 ident: CR23 article-title: Evaluating Alzheimer’s disease progression using rate of regional hippocampal atrophy publication-title: PloS one doi: 10.1371/journal.pone.0071354 – volume: 61 start-page: 1402 issue: 4 year: 2012 end-page: 1418 ident: CR53 article-title: Within-subject template estimation for unbiased longitudinal image analysis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.02.084 – volume: 4191 start-page: 831 year: 2006 end-page: 838 ident: CR57 article-title: Integrated graph cuts for brain MRI segmentation publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI – volume: 112 start-page: 364 year: 2015 end-page: 374 ident: CR24 article-title: A systematic review and meta-analysis of longitudinal hippocampal atrophy in healthy human ageing publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.03.035 – volume: 48 start-page: S141 issue: s1 year: 2015 end-page: S150 ident: CR48 article-title: Hippocampal subfield volumetry and 3D surface mapping in subjective cognitive decline publication-title: Journal of Alzheimer’s Disease doi: 10.3233/JAD-150087 – volume: 68 start-page: 828 issue: 11 year: 2007 end-page: 836 ident: CR16 article-title: Hippocampal and entorhinal atrophy in mild cognitive impairment prediction of Alzheimer disease publication-title: Neurology doi: 10.1212/01.wnl.0000256697.20968.d7 – volume: 43 start-page: 708 issue: 4 year: 2008 end-page: 720 ident: CR59 article-title: Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.07.058 – volume: 17 start-page: 87 issue: 1 year: 1998 end-page: 97 ident: CR56 article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data publication-title: IEEE transactions on medical imaging doi: 10.1109/42.668698 – volume: 46 start-page: 786 issue: 3 year: 2009 end-page: 802 ident: CR32 article-title: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.12.037 – volume: 62 start-page: 911 issue: 2 year: 2012 end-page: 922 ident: CR19 article-title: Brain templates and atlases publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.01.024 – volume: 97 start-page: 9 year: 2014 end-page: 18 ident: CR54 article-title: ADNI, et al. Event time analysis of longitudinal neuroimage data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.04.015 – volume: 53 start-page: 506 issue: 2 year: 2010 end-page: 514 ident: CR35 article-title: Differential effect of age on hippocampal subfields assessed using a new high-resolution 3T MR sequence publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.06.024 – volume: 54 start-page: 940 issue: 2 year: 2011 end-page: 954 ident: CR13 article-title: Patch-based segmentation using expert priors application to hippocampus and ventricle segmentation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.09.018 – volume: 52 start-page: 1355 issue: 4 year: 2010 end-page: 1366 ident: CR40 article-title: Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.04.193 – volume: 57 start-page: B15 year: 2004 ident: CR47 article-title: Level set methods and dynamic implicit surfaces publication-title: Applied Mechanics Reviews doi: 10.1115/1.1760520 – volume: 104 start-page: 398 year: 2015 end-page: 412 ident: CR44 article-title: Alzheimer’s Disease Neuroimaging Initiative et al. Machine learning framework for early mri-based alzheimer’s conversion prediction in mci subjects publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.10.002 – volume: 12 start-page: 189 issue: 3 year: 1975 end-page: 198 ident: CR21 article-title: Mini-mental state: a practical method for grading the cognitive state of patients for the clinician publication-title: Journal of Psychiatric Research doi: 10.1016/0022-3956(75)90026-6 – volume: 36 start-page: S23 year: 2015 end-page: S31 ident: CR18 article-title: Structural imaging biomarkers of alzheimer’s disease: predicting disease progression publication-title: Neurobiology of Aging doi: 10.1016/j.neurobiolaging.2014.04.034 – volume: 247 start-page: 71 year: 2016 end-page: 78 ident: CR55 article-title: Neuroimaging of hippocampal atrophy in early recognition of Alzheimer´s disease–a critical appraisal after two decades of research publication-title: Psychiatry Research: Neuroimaging doi: 10.1016/j.pscychresns.2015.08.014 – volume: 53 start-page: 1181 issue: 4 year: 2010 end-page: 1196 ident: CR52 article-title: Highly accurate inverse consistent registration: a robust approach publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.07.020 – volume: 124 start-page: 770 year: 2016 end-page: 782 ident: CR27 article-title: An optimized patchmatch for multi-scale and multi-feature label fusion publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.07.076 – volume: 26 start-page: 1124 issue: 9 year: 2004 end-page: 1137 ident: CR8 article-title: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2004.60 – volume: 17 start-page: 825 issue: 2 year: 2002 end-page: 841 ident: CR30 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: NeuroImage doi: 10.1006/nimg.2002.1132 – volume: 52 start-page: 109 issue: 1 year: 2010 end-page: 118 ident: CR63 article-title: Measurement of hippocampal atrophy using 4D graph-cut segmentation: application to ADNI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.04.006 – volume: 168 start-page: 894 issue: 9 year: 2011 end-page: 903 ident: CR58 article-title: Design considerations for characterizing psychiatric trajectories across the lifespan Application to effects of APOE-ε4 on cerebral cortical thickness in Alzheimer’s disease publication-title: American Journal of Psychiatry doi: 10.1176/appi.ajp.2011.10111690 – volume: 51 start-page: 1345 issue: 4 year: 2010 end-page: 1359 ident: CR38 article-title: Automated cross-sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and Alzheimer’s disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.03.018 – volume: 57 start-page: 15 issue: 1 year: 2011 end-page: 18 ident: CR22 article-title: Algorithms, atrophy and Alzheimer’s disease: cautionary tales for clinical trials publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.01.077 – volume: 11 start-page: e0138866 issue: 2 year: 2016 ident: CR34 article-title: Alzheimer?s Disease Neuroimaging Initiative, et al. Predicting progression from mild cognitive impairment to alzheimer’s dementia using clinical, mri, and plasma biomarkers via probabilistic pattern classification publication-title: Plos One doi: 10.1371/journal.pone.0138866 – volume: 27 start-page: 685 issue: 4 year: 2008 end-page: 691 ident: CR12 article-title: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods publication-title: Journal of Magnetic Resonance Imaging doi: 10.1002/jmri.21049 – volume: 64 start-page: 117 issue: 2 year: 2015 end-page: 129 ident: CR49 article-title: A label fusion method using conditional random fields with higher-order potentials Application to hippocampal segmentation publication-title: Artificial Intelligence in Medicine doi: 10.1016/j.artmed.2015.04.005 – volume: 66 start-page: 249 year: 2013 end-page: 260 ident: CR6 article-title: Alzheimer’s Disease Neuroimaging Initiative, et al. Statistical analysis of longitudinal neuroimage data with linear mixed effects models publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.10.065 – volume: 34 start-page: 1242 issue: 6 year: 2015 end-page: 1261 ident: CR31 article-title: Hippocampal shape modeling based on a progressive template surface deformation and its verification publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2014.2382581 – volume: 11 start-page: 111 issue: 2 year: 2015 end-page: 125 ident: CR26 article-title: The EADC-ADNI Harmonized Protocol for manual hippocampal segmentation on magnetic resonance: Evidence of validity publication-title: Alzheimer’s & Dementia doi: 10.1016/j.jalz.2014.05.1756 – volume: 270 start-page: 61 year: 2016 end-page: 75 ident: CR50 article-title: A fast approach for hippocampal segmentation from t1-MRI for predicting progression in Alzheimer’s disease from elderly controls publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2016.06.013 – volume: 28 start-page: 1266 issue: 8 year: 2009 end-page: 1277 ident: CR3 article-title: Combination strategies in multi-atlas image segmentation: Application to brain MR data publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2009.2014372 – volume: 62 start-page: 591 issue: 4 year: 2004 end-page: 600 ident: CR29 article-title: Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD publication-title: Neurology doi: 10.1212/01.WNL.0000110315.26026.EF – volume: 82 start-page: 393 year: 2013 end-page: 402 ident: CR4 article-title: A new method for structural volume analysis of longitudinal brain mri data and its application in studying the growth trajectories of anatomical brain structures in childhood publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.065 – volume: 51 start-page: 488 issue: 1 year: 2010 end-page: 499 ident: CR2 article-title: Automated 3D mapping of baseline and 12-month associations between three verbal memory measures and hippocampal atrophy in 490 ADNI subjects publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.12.125 – volume: 28 start-page: 24 issue: 3 year: 2009 ident: CR5 article-title: Patchmatch: a randomized correspondence algorithm for structural image editing publication-title: ACM Transactions on Graphics-TOG – ident: CR62 – volume: 59 start-page: 1359 issue: 4 year: 2017 end-page: 1379 ident: CR37 article-title: A systematic review of longitudinal studies which measure alzheimers disease biomarkers publication-title: Journal of Alzheimer’s Disease doi: 10.3233/JAD-170261 – volume: 52 start-page: 109 issue: 1 year: 2010 ident: 9380_CR63 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.04.006 – volume: 82 start-page: 393 year: 2013 ident: 9380_CR4 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.065 – volume: 17 start-page: 825 issue: 2 year: 2002 ident: 9380_CR30 publication-title: NeuroImage doi: 10.1006/nimg.2002.1132 – volume: 7 start-page: 270 issue: 3 year: 2011 ident: 9380_CR1 publication-title: Alzheimer’s & Dementia doi: 10.1016/j.jalz.2011.03.008 – volume: 51 start-page: 488 issue: 1 year: 2010 ident: 9380_CR2 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.12.125 – volume: 125 start-page: 834 year: 2016 ident: 9380_CR11 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.10.065 – volume: 29 start-page: 196 issue: 1 year: 2010 ident: 9380_CR33 publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2009.2035616 – ident: 9380_CR62 doi: 10.1007/978-3-319-47118-1_5 – volume: 34 start-page: 1242 issue: 6 year: 2015 ident: 9380_CR31 publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2014.2382581 – volume: 36 start-page: S23 year: 2015 ident: 9380_CR18 publication-title: Neurobiology of Aging doi: 10.1016/j.neurobiolaging.2014.04.034 – volume: 57 start-page: 15 issue: 1 year: 2011 ident: 9380_CR22 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.01.077 – volume: 46 start-page: 1721 issue: 6 year: 2008 ident: 9380_CR10 publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2007.11.037 – volume: 24 start-page: 137 issue: 2 year: 1997 ident: 9380_CR60 publication-title: International Journal of Computer Vision doi: 10.1023/A:1007958904918 – volume: 53 start-page: 1181 issue: 4 year: 2010 ident: 9380_CR52 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.07.020 – volume: 43 start-page: 708 issue: 4 year: 2008 ident: 9380_CR59 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.07.058 – volume: 26 start-page: 1124 issue: 9 year: 2004 ident: 9380_CR8 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2004.60 – volume: 104 start-page: 398 year: 2015 ident: 9380_CR44 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.10.002 – volume: 51 start-page: 1345 issue: 4 year: 2010 ident: 9380_CR38 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.03.018 – ident: 9380_CR45 – volume: 57 start-page: B15 year: 2004 ident: 9380_CR47 publication-title: Applied Mechanics Reviews doi: 10.1115/1.1760520 – volume: 46 start-page: 786 issue: 3 year: 2009 ident: 9380_CR32 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.12.037 – volume: 124 start-page: 770 year: 2016 ident: 9380_CR27 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.07.076 – volume: 52 start-page: 1355 issue: 4 year: 2010 ident: 9380_CR40 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.04.193 – volume: 27 start-page: 685 issue: 4 year: 2008 ident: 9380_CR12 publication-title: Journal of Magnetic Resonance Imaging doi: 10.1002/jmri.21049 – ident: 9380_CR15 doi: 10.2307/2531595 – volume: 12 start-page: 189 issue: 3 year: 1975 ident: 9380_CR21 publication-title: Journal of Psychiatric Research doi: 10.1016/0022-3956(75)90026-6 – volume: 66 start-page: 249 year: 2013 ident: 9380_CR6 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.10.065 – volume: 6 start-page: 67 issue: 2 year: 2010 ident: 9380_CR25 publication-title: Nature Reviews Neurology doi: 10.1038/nrneurol.2009.215 – volume: 59 start-page: 1359 issue: 4 year: 2017 ident: 9380_CR37 publication-title: Journal of Alzheimer’s Disease doi: 10.3233/JAD-170261 – volume: 53 start-page: 506 issue: 2 year: 2010 ident: 9380_CR35 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.06.024 – volume: 64 start-page: 117 issue: 2 year: 2015 ident: 9380_CR49 publication-title: Artificial Intelligence in Medicine doi: 10.1016/j.artmed.2015.04.005 – volume: 7 start-page: 263 issue: 3 year: 2011 ident: 9380_CR43 publication-title: Alzheimer’s & Dementia doi: 10.1016/j.jalz.2011.03.005 – volume: 247 start-page: 71 year: 2016 ident: 9380_CR55 publication-title: Psychiatry Research: Neuroimaging doi: 10.1016/j.pscychresns.2015.08.014 – volume: 17 start-page: 87 issue: 1 year: 1998 ident: 9380_CR56 publication-title: IEEE transactions on medical imaging doi: 10.1109/42.668698 – volume: 4191 start-page: 831 year: 2006 ident: 9380_CR57 publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI – volume: 28 start-page: 24 issue: 3 year: 2009 ident: 9380_CR5 publication-title: ACM Transactions on Graphics-TOG – volume: 54 start-page: 940 issue: 2 year: 2011 ident: 9380_CR13 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.09.018 – volume: 68 start-page: 828 issue: 11 year: 2007 ident: 9380_CR16 publication-title: Neurology doi: 10.1212/01.wnl.0000256697.20968.d7 – volume: 9 start-page: 332 issue: 3 year: 2013 ident: 9380_CR9 publication-title: Alzheimer’s & Dementia doi: 10.1016/j.jalz.2012.06.004 – volume: 11 start-page: e0138866 issue: 2 year: 2016 ident: 9380_CR34 publication-title: Plos One doi: 10.1371/journal.pone.0138866 – volume: 56 start-page: 766 issue: 2 year: 2011 ident: 9380_CR14 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.06.013 – volume: 11 start-page: 111 issue: 2 year: 2015 ident: 9380_CR26 publication-title: Alzheimer’s & Dementia doi: 10.1016/j.jalz.2014.05.1756 – volume: 70 start-page: 33 year: 2013 ident: 9380_CR41 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.12.044 – ident: 9380_CR36 – volume: 15 start-page: 165 issue: 2 year: 2017 ident: 9380_CR51 publication-title: Neuroinfor matics doi: 10.1007/s12021-017-9323-3 – volume: 168 start-page: 894 issue: 9 year: 2011 ident: 9380_CR58 publication-title: American Journal of Psychiatry doi: 10.1176/appi.ajp.2011.10111690 – volume: 141 start-page: 542 year: 2016 ident: 9380_CR28 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.07.020 – volume: 49 start-page: 2352 issue: 3 year: 2010 ident: 9380_CR39 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.10.026 – volume: 61 start-page: 1402 issue: 4 year: 2012 ident: 9380_CR53 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.02.084 – volume: 270 start-page: 61 year: 2016 ident: 9380_CR50 publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2016.06.013 – volume: 97 start-page: 9 year: 2014 ident: 9380_CR54 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.04.015 – volume: 62 start-page: 911 issue: 2 year: 2012 ident: 9380_CR19 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.01.024 – volume: 33 start-page: 341 issue: 3 year: 2002 ident: 9380_CR20 publication-title: Neuron doi: 10.1016/S0896-6273(02)00569-X – volume: 112 start-page: 364 year: 2015 ident: 9380_CR24 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.03.035 – volume: 48 start-page: S141 issue: s1 year: 2015 ident: 9380_CR48 publication-title: Journal of Alzheimer’s Disease doi: 10.3233/JAD-150087 – volume: 8 start-page: e71354 issue: 8 year: 2013 ident: 9380_CR23 publication-title: PloS one doi: 10.1371/journal.pone.0071354 – volume: 62 start-page: 591 issue: 4 year: 2004 ident: 9380_CR29 publication-title: Neurology doi: 10.1212/01.WNL.0000110315.26026.EF – volume: 28 start-page: 1266 issue: 8 year: 2009 ident: 9380_CR3 publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2009.2014372 – volume: 6 start-page: 734 issue: 8 year: 2007 ident: 9380_CR17 publication-title: The Lancet Neurology doi: 10.1016/S1474-4422(07)70178-3 – volume: 68 start-page: 1040 issue: 8 year: 2011 ident: 9380_CR42 publication-title: Archives of neurology doi: 10.1001/archneurol.2011.167 – volume: 26 start-page: 61 year: 2011 ident: 9380_CR7 publication-title: Journal of Alzheimer’s Disease doi: 10.3233/JAD-2011-0004 – volume: 35 start-page: 611 issue: 3 year: 2013 ident: 9380_CR61 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2012.143 – volume: 66 start-page: 50 year: 2013 ident: 9380_CR46 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.10.081 |
SSID | ssj0026700 |
Score | 2.2927926 |
Snippet | Hippocampal atrophy measures from magnetic resonance imaging (MRI) are powerful tools for monitoring Alzheimer’s disease (AD) progression. In this paper, we... Hippocampal atrophy measures from magnetic resonance imaging (MRI) are powerful tools for monitoring Alzheimer's disease (AD) progression. In this paper, we... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 43 |
SubjectTerms | Aged Alzheimer Disease - diagnostic imaging Alzheimer Disease - pathology Alzheimer's disease Atrophy Bioinformatics Biomedical and Life Sciences Biomedicine Classification Cognitive ability Cognitive Dysfunction - diagnostic imaging Cognitive Dysfunction - pathology Computational Biology/Bioinformatics Computer Appl. in Life Sciences Differential diagnosis Disease Progression Female Hippocampus Hippocampus - diagnostic imaging Hippocampus - pathology Humans Image Interpretation, Computer-Assisted - methods Image processing Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Medical imaging Neuroimaging Neuroimaging - methods Neurology Neurosciences NMR Nuclear magnetic resonance Original Article Reproducibility of Results ROC Curve Segmentation |
SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2hcuHCVpawyUiIAyjIcdwkPlZsFdsBFQlOURwnoqJNqy4HeuI3-D2-hLGTtIICEsfIE8exPZ43i2cADoKYxj6PU1ulCN9Q3nJbiFib4QRPU6WENHbI2zuv8cCvHmuPxT3uQRntXrokzUk9vezGdDgBdZBB3YDaeO7O15xABBWYr18-XZ9P9Kzi5gnysrCZL5zSmflTJ1_F0QzGnPGPGrFzsQTNcsB5tMnLyWgoT-Lxt1yO__yjZVgsYCip5_tmBeaSbBWq9QxV8M4rOSQmMNRY3Ktwf9PVRY1GShfQIiabR6tjihuRRqvXQ2GIR0qb6Fs_iCUJomBylgfwaZJ6e_yctDpJ_-PtfYANxh-0Bs2L8-Zpwy5KMdix67Oh7SvtCHA9PwlY5EvEbCyNnFSgQsS9IPFQ8ivlBZKqKGVcOjRyBRVKgwnFUumuQyXrZskmEMUjiiRUaaCDayUlPiLOEFQpl8eRBbRckDAu0pTrahntcJpgWU9biNMW6mkLmQVHk1d6eY6Ov4h3ylUOC3YdhIxynVkRwZYF-5NmZDTtPYmypDsyNKjBC1SYLdjId8fkawx1cQSS3ILjcqWnnf86lK1_UW_DAoI1kZt_dqAy7I-SXQREQ7lXMMAnvET_Cg priority: 102 providerName: Springer Nature |
Title | Longitudinal Neuroimaging Hippocampal Markers for Diagnosing Alzheimer’s Disease |
URI | https://link.springer.com/article/10.1007/s12021-018-9380-2 https://www.ncbi.nlm.nih.gov/pubmed/29785624 https://www.proquest.com/docview/2041965102 https://www.proquest.com/docview/2042749211 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTttAEB4BufRSUUJbQ4gWCXEosrRZb23voUJuCUS0jVAEUnqybK-tRkocQ5JDe-I1eD2ehJm1nQhF5Gh7bK9md2e--dkZgBM_4Yknk8zWGcI31LfSViohN5ySWaa1io0f8nff7d3J6-HX4Rb067MwlFZZy0QjqPU0IR85GumSit-hPjwv7m3qGkXR1bqFRlS1VtDfTImxbWigSPZx3Te-d_s3g6UJVh1KwW2ubOGpTh3nNIfpBKUr8A4KAMfntnitqdbg51ro1Giky114X0FJFpRz_wG20nwPmkGOZvTkHztlJrnTeM2bMPg1pcZEC01NsJipyDGamAZFrDcqClRoKBbGjE7uIB5kiGTZRZmERyTB-P_fdDRJH54fn2b4wMR09uH2snv7o2dX7RTsxPHE3PY0OfMd10t9EXkx4i6RRZ1MoVEjXT91UXtr7fox11EmZNzhkaO40gQItMhi5yPs5NM8_QxMy4gjCdcEVpCpcYyXiBUU19qRSWQBrzkXJlWpcep4MQ5XRZKJ2SEyOyRmh8KCL8tXirLOxibiVj0dYbXlZuFqgVhwvHyMm4UiIFGeTheGBq1whUavBZ_KaVz-TaA9jWBQWnBWz-vq428O5WDzUA7hHSIsVfpsWrAzf1ikR4hi5nEbtr2h14ZGcPXnZ7ddLVS8eyeCF5OZ76Q |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6V5ACXClp-DG1ZJOAAsrRZb23voapS0iolP0JVkHpb2d61iJQ4oUmEyonX4GF4GZ6EmbWdqKrorUdr12trZnfmm5mdGYC3ccazSGa5b3KEb6hvpa9URm44JfPcGJU6P-RgGHa_ys-Xh5db8KfOhaFrlbVMdILazDLykaORLqn4HerD4_l3n7pGUXS1bqGRVK0VzJErMVYldvTs9Q804RZH5x3k9zshzk5Hn7p-1WXAz4JILP3IkI87CCMbiyRKEY6IPGnlCrG-DGMbolIzJoxTbpJcyLTFk0BxZUhPGpGnAS77AJqSElwb0Dw5HX65WFt8VQ4MShXli0i16rCqy90TdDuCt1DeBDH3xU3FeAvt3orUOgV49hi2K-TK2uVWewJbttiB3XaBVvv0mr1n7i6pc9LvwkV_Rn2QVoZ6bjFXAGQ8df2QWHc8n6P-RCk0YZQohPCTIXBmnfLOH01pT35-s-Opvfr76_cCB1wI6SmM7oOuz6BRzAr7ApiRCccp3BA2QqKmKT4iNFHcmEBmiQe8ppzOqsrm1GBjojc1mYnYGomtidhaePBh_cq8LOtx1-S9mh26OuELvdmPHrxZD-PZpIBLUtjZys1Bo1-hje3B85KN668JNN8Re0oPPtZ83Sz-3195efevvIaH3dGgr_vnw94reITgTpXuoj1oLK9Wdh8B1DI9qLYpA33PB-MfFakm8g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFD4anYS4QYPxE7aBkYALUDTX8ZL4YkKFrurYqKZpSLuLktgWldq0W1uhccVr8Eh7DZ6EcxynFZrY3S4jO050bJ_znX-AN2nJy0SWNtQW4RvKWxkqVZIZTklrtVaFs0N-HcT9b_LL-d75Glw3uTAUVtnwRMeo9aQkGzkq6ZKK36E83LU-LOKk2_s4vQipgxR5Wpt2Grlvs6D3Xbkxn-RxZK5-oDo32z_s4t6_FaJ3cPa5H_qOA2EZJWIeJprs3VGcmFTkSYHQRNi8bRXifhmnJkYBp3WcFlznVsiizfNIcaVJZmphiwiXvQfrCQpJ2YL1TweDk9Ol9ufzYZDDqFAkqt24WF0en6BICd5G3hOlPBT_CskbyPeG19YJw94GPPQolnXqY_cI1kz1GDY7FWrw4yv2jrm4Umew34TT4wn1RFpo6r_FXDGQ4dj1RmL94XSKshQ50ohR0hBCUYYgmnXr-D-a0hn9_G6GY3P559fvGQ44d9ITOLsLuj6FVjWpzHNgWuYcp3BNOAmJWhT4iDBFca0jWeYB8IZyWemrnFOzjVG2qs9MxM6Q2BkROxMBvF--Mq1LfNw2ebvZjszf9lm2OpsBvF4O4z0l50temcnCzRGJVKhvB_Cs3sbl1wSq8ohDZQAfmn1dLf7fX3lx-6-8gvt4QbLjw8HRFjxAnKdqy9E2tOaXC7ODWGpevPSnlEF2x_fiL-wEKx4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Longitudinal+Neuroimaging+Hippocampal+Markers+for+Diagnosing+Alzheimer%E2%80%99s+Disease&rft.jtitle=Neuroinformatics+%28Totowa%2C+N.J.%29&rft.au=Platero%2C+Carlos&rft.au=Lin%2C+Lin&rft.au=Tobar%2C+M+Carmen&rft.date=2019-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1539-2791&rft.eissn=1559-0089&rft.volume=17&rft.issue=1&rft.spage=43&rft.epage=61&rft_id=info:doi/10.1007%2Fs12021-018-9380-2&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-2791&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-2791&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-2791&client=summon |