Longitudinal Neuroimaging Hippocampal Markers for Diagnosing Alzheimer’s Disease

Hippocampal atrophy measures from magnetic resonance imaging (MRI) are powerful tools for monitoring Alzheimer’s disease (AD) progression. In this paper, we introduce a longitudinal image analysis framework based on robust registration and simultaneous hippocampal segmentation and longitudinal marke...

Full description

Saved in:
Bibliographic Details
Published inNeuroinformatics (Totowa, N.J.) Vol. 17; no. 1; pp. 43 - 61
Main Authors Platero, Carlos, Lin, Lin, Tobar, M. Carmen
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1539-2791
1559-0089
1559-0089
DOI10.1007/s12021-018-9380-2

Cover

Abstract Hippocampal atrophy measures from magnetic resonance imaging (MRI) are powerful tools for monitoring Alzheimer’s disease (AD) progression. In this paper, we introduce a longitudinal image analysis framework based on robust registration and simultaneous hippocampal segmentation and longitudinal marker classification of brain MRI of an arbitrary number of time points. The framework comprises two innovative parts: a longitudinal segmentation and a longitudinal classification step. The results show that both steps of the longitudinal pipeline improved the reliability and the accuracy of the discrimination between clinical groups. We introduce a novel approach to the joint segmentation of the hippocampus across multiple time points; this approach is based on graph cuts of longitudinal MRI scans with constraints on hippocampal atrophy and supported by atlases. Furthermore, we use linear mixed effect (LME) modeling for differential diagnosis between clinical groups. The classifiers are trained from the average residue between the longitudinal marker of the subjects and the LME model. In our experiments, we analyzed MRI-derived longitudinal hippocampal markers from two publicly available datasets (Alzheimer’s Disease Neuroimaging Initiative, ADNI and Minimal Interval Resonance Imaging in Alzheimer’s Disease, MIRIAD). In test/retest reliability experiments, the proposed method yielded lower volume errors and significantly higher dice overlaps than the cross-sectional approach (volume errors: 1.55% vs 0.8%; dice overlaps: 0.945 vs 0.975). To diagnose AD, the discrimination ability of our proposal gave an area under the receiver operating characteristic (ROC) curve (AUC) = 0.947 for the control vs AD, AUC = 0.720 for mild cognitive impairment (MCI) vs AD, and AUC = 0.805 for the control vs MCI.
AbstractList Hippocampal atrophy measures from magnetic resonance imaging (MRI) are powerful tools for monitoring Alzheimer's disease (AD) progression. In this paper, we introduce a longitudinal image analysis framework based on robust registration and simultaneous hippocampal segmentation and longitudinal marker classification of brain MRI of an arbitrary number of time points. The framework comprises two innovative parts: a longitudinal segmentation and a longitudinal classification step. The results show that both steps of the longitudinal pipeline improved the reliability and the accuracy of the discrimination between clinical groups. We introduce a novel approach to the joint segmentation of the hippocampus across multiple time points; this approach is based on graph cuts of longitudinal MRI scans with constraints on hippocampal atrophy and supported by atlases. Furthermore, we use linear mixed effect (LME) modeling for differential diagnosis between clinical groups. The classifiers are trained from the average residue between the longitudinal marker of the subjects and the LME model. In our experiments, we analyzed MRI-derived longitudinal hippocampal markers from two publicly available datasets (Alzheimer's Disease Neuroimaging Initiative, ADNI and Minimal Interval Resonance Imaging in Alzheimer's Disease, MIRIAD). In test/retest reliability experiments, the proposed method yielded lower volume errors and significantly higher dice overlaps than the cross-sectional approach (volume errors: 1.55% vs 0.8%; dice overlaps: 0.945 vs 0.975). To diagnose AD, the discrimination ability of our proposal gave an area under the receiver operating characteristic (ROC) curve (AUC) [Formula: see text] 0.947 for the control vs AD, AUC [Formula: see text] 0.720 for mild cognitive impairment (MCI) vs AD, and AUC [Formula: see text] 0.805 for the control vs MCI.
Hippocampal atrophy measures from magnetic resonance imaging (MRI) are powerful tools for monitoring Alzheimer’s disease (AD) progression. In this paper, we introduce a longitudinal image analysis framework based on robust registration and simultaneous hippocampal segmentation and longitudinal marker classification of brain MRI of an arbitrary number of time points. The framework comprises two innovative parts: a longitudinal segmentation and a longitudinal classification step. The results show that both steps of the longitudinal pipeline improved the reliability and the accuracy of the discrimination between clinical groups. We introduce a novel approach to the joint segmentation of the hippocampus across multiple time points; this approach is based on graph cuts of longitudinal MRI scans with constraints on hippocampal atrophy and supported by atlases. Furthermore, we use linear mixed effect (LME) modeling for differential diagnosis between clinical groups. The classifiers are trained from the average residue between the longitudinal marker of the subjects and the LME model. In our experiments, we analyzed MRI-derived longitudinal hippocampal markers from two publicly available datasets (Alzheimer’s Disease Neuroimaging Initiative, ADNI and Minimal Interval Resonance Imaging in Alzheimer’s Disease, MIRIAD). In test/retest reliability experiments, the proposed method yielded lower volume errors and significantly higher dice overlaps than the cross-sectional approach (volume errors: 1.55% vs 0.8%; dice overlaps: 0.945 vs 0.975). To diagnose AD, the discrimination ability of our proposal gave an area under the receiver operating characteristic (ROC) curve (AUC) = 0.947 for the control vs AD, AUC = 0.720 for mild cognitive impairment (MCI) vs AD, and AUC = 0.805 for the control vs MCI.
Hippocampal atrophy measures from magnetic resonance imaging (MRI) are powerful tools for monitoring Alzheimer's disease (AD) progression. In this paper, we introduce a longitudinal image analysis framework based on robust registration and simultaneous hippocampal segmentation and longitudinal marker classification of brain MRI of an arbitrary number of time points. The framework comprises two innovative parts: a longitudinal segmentation and a longitudinal classification step. The results show that both steps of the longitudinal pipeline improved the reliability and the accuracy of the discrimination between clinical groups. We introduce a novel approach to the joint segmentation of the hippocampus across multiple time points; this approach is based on graph cuts of longitudinal MRI scans with constraints on hippocampal atrophy and supported by atlases. Furthermore, we use linear mixed effect (LME) modeling for differential diagnosis between clinical groups. The classifiers are trained from the average residue between the longitudinal marker of the subjects and the LME model. In our experiments, we analyzed MRI-derived longitudinal hippocampal markers from two publicly available datasets (Alzheimer's Disease Neuroimaging Initiative, ADNI and Minimal Interval Resonance Imaging in Alzheimer's Disease, MIRIAD). In test/retest reliability experiments, the proposed method yielded lower volume errors and significantly higher dice overlaps than the cross-sectional approach (volume errors: 1.55% vs 0.8%; dice overlaps: 0.945 vs 0.975). To diagnose AD, the discrimination ability of our proposal gave an area under the receiver operating characteristic (ROC) curve (AUC) [Formula: see text] 0.947 for the control vs AD, AUC [Formula: see text] 0.720 for mild cognitive impairment (MCI) vs AD, and AUC [Formula: see text] 0.805 for the control vs MCI.Hippocampal atrophy measures from magnetic resonance imaging (MRI) are powerful tools for monitoring Alzheimer's disease (AD) progression. In this paper, we introduce a longitudinal image analysis framework based on robust registration and simultaneous hippocampal segmentation and longitudinal marker classification of brain MRI of an arbitrary number of time points. The framework comprises two innovative parts: a longitudinal segmentation and a longitudinal classification step. The results show that both steps of the longitudinal pipeline improved the reliability and the accuracy of the discrimination between clinical groups. We introduce a novel approach to the joint segmentation of the hippocampus across multiple time points; this approach is based on graph cuts of longitudinal MRI scans with constraints on hippocampal atrophy and supported by atlases. Furthermore, we use linear mixed effect (LME) modeling for differential diagnosis between clinical groups. The classifiers are trained from the average residue between the longitudinal marker of the subjects and the LME model. In our experiments, we analyzed MRI-derived longitudinal hippocampal markers from two publicly available datasets (Alzheimer's Disease Neuroimaging Initiative, ADNI and Minimal Interval Resonance Imaging in Alzheimer's Disease, MIRIAD). In test/retest reliability experiments, the proposed method yielded lower volume errors and significantly higher dice overlaps than the cross-sectional approach (volume errors: 1.55% vs 0.8%; dice overlaps: 0.945 vs 0.975). To diagnose AD, the discrimination ability of our proposal gave an area under the receiver operating characteristic (ROC) curve (AUC) [Formula: see text] 0.947 for the control vs AD, AUC [Formula: see text] 0.720 for mild cognitive impairment (MCI) vs AD, and AUC [Formula: see text] 0.805 for the control vs MCI.
Hippocampal atrophy measures from magnetic resonance imaging (MRI) are powerful tools for monitoring Alzheimer’s disease (AD) progression. In this paper, we introduce a longitudinal image analysis framework based on robust registration and simultaneous hippocampal segmentation and longitudinal marker classification of brain MRI of an arbitrary number of time points. The framework comprises two innovative parts: a longitudinal segmentation and a longitudinal classification step. The results show that both steps of the longitudinal pipeline improved the reliability and the accuracy of the discrimination between clinical groups. We introduce a novel approach to the joint segmentation of the hippocampus across multiple time points; this approach is based on graph cuts of longitudinal MRI scans with constraints on hippocampal atrophy and supported by atlases. Furthermore, we use linear mixed effect (LME) modeling for differential diagnosis between clinical groups. The classifiers are trained from the average residue between the longitudinal marker of the subjects and the LME model. In our experiments, we analyzed MRI-derived longitudinal hippocampal markers from two publicly available datasets (Alzheimer’s Disease Neuroimaging Initiative, ADNI and Minimal Interval Resonance Imaging in Alzheimer’s Disease, MIRIAD). In test/retest reliability experiments, the proposed method yielded lower volume errors and significantly higher dice overlaps than the cross-sectional approach (volume errors: 1.55% vs 0.8%; dice overlaps: 0.945 vs 0.975). To diagnose AD, the discrimination ability of our proposal gave an area under the receiver operating characteristic (ROC) curve (AUC) =\(=\) 0.947 for the control vs AD, AUC =\(=\) 0.720 for mild cognitive impairment (MCI) vs AD, and AUC =\(=\) 0.805 for the control vs MCI.
Author Lin, Lin
Tobar, M. Carmen
Platero, Carlos
Author_xml – sequence: 1
  givenname: Carlos
  orcidid: 0000-0003-3712-8297
  surname: Platero
  fullname: Platero, Carlos
  email: carlos.platero@upm.es
  organization: Health Science Technology Group, Universidad Politécnica de Madrid
– sequence: 2
  givenname: Lin
  surname: Lin
  fullname: Lin, Lin
  organization: Universidad Politécnica de Madrid
– sequence: 3
  givenname: M. Carmen
  surname: Tobar
  fullname: Tobar, M. Carmen
  organization: Health Science Technology Group, Universidad Politécnica de Madrid
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29785624$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9O3DAQxq0KVNhtH6AXtFIvXALjcdaOj4g_BWkLEuJuOYmTGhI7tZNDe-I1eD2epA4LqoTUnsbS_L5vPPMtyI7zzhDyhcIRBRDHkSIgzYAWmWQFZPiB7NP1WmYAhdyZ30xmKCTdI4sY7wGQC4CPZA-lKNYc831yu_GuteNUW6e71bWZgre9bq1rV5d2GHyl-yE1vuvwYEJcNT6szqxunY8zctL9_mFsb8Lz41NMjWh0NJ_IbqO7aD6_1iW5uzi_O73MNjffrk5PNlnFBI6ZqFlagnFhCtSiROTYaNpIKHjOC8MBWV3zooRaN5iXFDSTIGuKktXYlGxJDre2Q_A_JxNH1dtYma7TzvgpKoQcRS6R0oR-fYfe-ymkhV8oKvmapmlLcvBKTWVvajWEdInwS70dKwFiC1TBxxhMoyo76tF6NwZtO0VBzbGobSwqxaLmWNRsTd8p38z_p8GtJibWtSb8_fS_RX8A6emd_A
CitedBy_id crossref_primary_10_1016_j_cmpb_2020_105348
crossref_primary_10_1002_ima_22390
crossref_primary_10_1177_13872877241289790
crossref_primary_10_1016_j_jneumeth_2020_108698
crossref_primary_10_1186_s40708_022_00168_2
crossref_primary_10_1007_s00221_022_06543_z
crossref_primary_10_18632_aging_103212
crossref_primary_10_1111_ggi_14670
crossref_primary_10_3389_fnagi_2022_818871
crossref_primary_10_3390_biomedicines10020315
crossref_primary_10_1007_s10462_023_10415_5
crossref_primary_10_1016_j_jns_2024_123361
crossref_primary_10_2139_ssrn_4104978
crossref_primary_10_1016_j_nicl_2024_103623
crossref_primary_10_1088_1757_899X_982_1_012007
crossref_primary_10_1162_imag_a_00294
crossref_primary_10_1016_j_acra_2024_06_012
crossref_primary_10_33851_JMIS_2021_8_4_233
crossref_primary_10_1212_WNL_0000000000008817
crossref_primary_10_3389_fnagi_2018_00320
crossref_primary_10_3389_fonc_2021_641359
Cites_doi 10.3233/JAD-2011-0004
10.1016/j.neuropsychologia.2007.11.037
10.1016/S1474-4422(07)70178-3
10.1016/j.neuroimage.2016.07.020
10.1007/s12021-017-9323-3
10.1023/A:1007958904918
10.1001/archneurol.2011.167
10.1016/j.jalz.2011.03.005
10.1109/TPAMI.2012.143
10.1016/S0896-6273(02)00569-X
10.1038/nrneurol.2009.215
10.1016/j.neuroimage.2009.10.026
10.1016/j.neuroimage.2012.12.044
10.1016/j.jalz.2011.03.008
10.1016/j.neuroimage.2012.10.081
10.1109/TMI.2009.2035616
10.1016/j.neuroimage.2015.10.065
10.1016/j.jalz.2012.06.004
10.1016/j.neuroimage.2010.06.013
10.1371/journal.pone.0071354
10.1016/j.neuroimage.2012.02.084
10.1016/j.neuroimage.2015.03.035
10.3233/JAD-150087
10.1212/01.wnl.0000256697.20968.d7
10.1016/j.neuroimage.2008.07.058
10.1109/42.668698
10.1016/j.neuroimage.2008.12.037
10.1016/j.neuroimage.2012.01.024
10.1016/j.neuroimage.2014.04.015
10.1016/j.neuroimage.2010.06.024
10.1016/j.neuroimage.2010.09.018
10.1016/j.neuroimage.2010.04.193
10.1115/1.1760520
10.1016/j.neuroimage.2014.10.002
10.1016/0022-3956(75)90026-6
10.1016/j.neurobiolaging.2014.04.034
10.1016/j.pscychresns.2015.08.014
10.1016/j.neuroimage.2010.07.020
10.1016/j.neuroimage.2015.07.076
10.1109/TPAMI.2004.60
10.1006/nimg.2002.1132
10.1016/j.neuroimage.2010.04.006
10.1176/appi.ajp.2011.10111690
10.1016/j.neuroimage.2010.03.018
10.1016/j.neuroimage.2011.01.077
10.1371/journal.pone.0138866
10.1002/jmri.21049
10.1016/j.artmed.2015.04.005
10.1016/j.neuroimage.2012.10.065
10.1109/TMI.2014.2382581
10.1016/j.jalz.2014.05.1756
10.1016/j.jneumeth.2016.06.013
10.1109/TMI.2009.2014372
10.1212/01.WNL.0000110315.26026.EF
10.1016/j.neuroimage.2013.05.065
10.1016/j.neuroimage.2009.12.125
10.3233/JAD-170261
10.1007/978-3-319-47118-1_5
10.2307/2531595
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Neuroinformatics is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Neuroinformatics is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88A
88E
88G
8AO
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7X8
DOI 10.1007/s12021-018-9380-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
ProQuest One Psychology
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central - New (Subscription)
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1559-0089
EndPage 61
ExternalDocumentID 29785624
10_1007_s12021_018_9380_2
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GroupedDBID ---
-56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
1N0
203
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
53G
5VS
67N
6NX
7X7
88A
88E
8AO
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHMBA
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AZQEC
B-.
BA0
BBNVY
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HLICF
HMCUK
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
LK8
LLZTM
M0L
M1P
M2M
M4Y
M7P
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
OVD
P2P
PF-
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
Q2X
QOR
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3A
S3B
SAP
SBL
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TEORI
TSG
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z83
Z88
ZMTXR
ZOVNA
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FK
ABRTQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c372t-7d3100367e82a7b2262fa1f9086468e6023dd68b0daf24b10a3909d1293d2fb3
IEDL.DBID BENPR
ISSN 1539-2791
1559-0089
IngestDate Thu Sep 04 21:30:25 EDT 2025
Fri Jul 25 10:19:47 EDT 2025
Thu Apr 03 07:05:02 EDT 2025
Tue Jul 01 04:24:53 EDT 2025
Thu Apr 24 23:06:29 EDT 2025
Fri Feb 21 02:26:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Hippocampal segmentation
Longitudinal analysis
Alzheimer’s disease
MRI
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-7d3100367e82a7b2262fa1f9086468e6023dd68b0daf24b10a3909d1293d2fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3712-8297
PMID 29785624
PQID 2041965102
PQPubID 54206
PageCount 19
ParticipantIDs proquest_miscellaneous_2042749211
proquest_journals_2041965102
pubmed_primary_29785624
crossref_citationtrail_10_1007_s12021_018_9380_2
crossref_primary_10_1007_s12021_018_9380_2
springer_journals_10_1007_s12021_018_9380_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190100
2019-1-00
2019-01-00
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 1
  year: 2019
  text: 20190100
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Totowa
PublicationTitle Neuroinformatics (Totowa, N.J.)
PublicationTitleAbbrev Neuroinform
PublicationTitleAlternate Neuroinformatics
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Giraud, Ta, Papadakis, Manjón, Louis Collins, Coupé (CR27) 2016; 124
La Joie, Fouquet, Mézenge, Landeau, Villain, Mevel, Pélerin, Eustache, Desgranges, Chételat (CR35) 2010; 53
Leung, Barnes, Ridgway, Bartlett, Clarkson, Macdonald, Schuff, Fox, Ourselin (CR38) 2010; 51
Mert, Sabuncu, Desikan, Sepulcre, Yeo, Liu, Schmansky, Reuter, Weiner, Buckner, Sperling (CR42) 2011; 68
CR36
Reuter, Diana Rosas, Fischl (CR52) 2010; 53
Moradi, Pepe, Gaser, Huttunen, Tohka (CR44) 2015; 104
Frisoni, Fox, Jack, Scheltens, Thompson (CR25) 2010; 6
Iglesias, Van Leemput, Augustinack, Insausti, Fischl, Reuter (CR28) 2016; 141
Dubois, Feldman, Jacova, DeKosky, Barberger-Gateau, Cummings, Delacourte, Galasko, Gauthier, Jicha (CR17) 2007; 6
Bernal-Rusiel, Greve, Reuter, Fischl, Sabuncu (CR6) 2013; 66
Barnes, Shechtman, Finkelstein, Goldman (CR5) 2009; 28
Fox, Ridgway, Schott (CR22) 2011; 57
Platero, Carmen Tobar (CR49) 2015; 64
Devanand, Pradhaban, Liu, Khandji, De Santi, Segal, Rusinek, Pelton, Honig, Mayeux (CR16) 2007; 68
Jack, Shiung, Gunter, Obrien, Weigand, Knopman, Boeve, Ivnik, Smith, Cha (CR29) 2004; 62
Clifford, Jack, Bernstein, Fox, Thompson, Alexander, Harvey, Borowski, Britson, Whitwell, Ward (CR12) 2008; 27
Malone, Cash, Ridgway, MacManus, Ourselin, Fox, Schott (CR41) 2013; 70
Evans, Janke, Louis Collins, Baillet (CR19) 2012; 62
Frankó, Joly (CR23) 2013; 8
Lawrence, Vegvari, Ower, Hadjichrysanthou, De Wolf, Anderson (CR37) 2017; 59
CR45
Chételat, Fouquet, Kalpouzos, Denghien, De La Sayette, Viader, Mézenge, Landeau, Baron, Eustache (CR10) 2008; 46
Boykov, Kolmogorov (CR8) 2004; 26
Klein, Staring, Murphy, Viergever, Pluim (CR33) 2010; 29
Perrotin, de Flores, Lamberton, Poisnel, La Joie, de la Sayette, Mezenge, Tomadesso, Landeau, Desgranges (CR48) 2015; 48
Song, Tustison, Avants, Gee (CR57) 2006; 4191
Lotjonen, Wolz, Koikkalainen, Thurfjell, Waldemar, Soininen, Rueckert (CR39) 2010; 49
Thompson, Hallmayer, O’Hara (CR58) 2011; 168
Cuingnet, Gerardin, Tessieras, Auzias, Lehéricy, Habert, Chupin, Benali, Colliot (CR14) 2011; 56
McKhann, Knopman, Chertkow, Hyman, Jack, Kawas, Klunk, Koroshetz, Manly, Mayeux (CR43) 2011; 7
van der Lijn, den Heijer, Breteler, Niessen (CR59) 2008; 43
Wolz, Heckemann, Aljabar, Hajnal, Hammers, Lötjönen, Rueckert (CR63) 2010; 52
CR15
Sabuncu, Bernal-Rusiel, Reuter, Greve, Fischl (CR54) 2014; 97
Louis Collins, Pruessner (CR40) 2010; 52
Reuter, Schmansky, Diana Rosas, Fischl (CR53) 2012; 61
Artaechevarria, Muñoz-barrutia, Ortiz-de Solorzano (CR3) 2009; 28
Platero, Tobar (CR51) 2017; 15
Jenkinson, Bannister, Brady, Smith (CR30) 2002; 17
Korolev, Symonds, Bozoki (CR34) 2016; 11
Apostolova, Morra, Green, Hwang, Avedissian, Woo, Cummings, Toga, Jack, Weiner (CR2) 2010; 51
Bradley, Wyman, Harvey, Crawford, Bernstein, Carmichael, Cole, Crane, DeCarli, Fox, Gunter (CR9) 2013; 9
Fraser, Shaw, Cherbuin (CR24) 2015; 112
Fischl, Salat, Busa, Albert, Dieterich, Haselgrove, Van Der Kouwe, Killiany, Kennedy, Klaveness (CR20) 2002; 33
Viola, Wells (CR60) 1997; 24
Albert, DeKosky, Dickson, Dubois, Feldman, Fox, Gamst, Holtzman, Jagust, Petersen (CR1) 2011; 7
Aubert-Broche, Fonov, García-Lorenzo, Mouiha, Guizard, Coupé, Eskildsen, Louis Collins (CR4) 2013; 82
Kim, Valdes-Hernandez, Royle, Park (CR31) 2015; 34
Platero, Carmen Tobar (CR50) 2016; 270
Sled, Zijdenbos, Evans (CR56) 1998; 17
Eskildsen, Coupé, Fonov, Pruessner, Louis Collins (CR18) 2015; 36
Boccardi, Ganzola, Bocchetta, Pievani, Redolfi, Bartzokis, Camicioli, Csernansky, de Leon, de Toledo-Morrell (CR7) 2011; 26
Chincarini, Sensi, Rei, Gemme, Squarcia, Longo, Brun, Tangaro, Bellotti, Amoroso (CR11) 2016; 125
Osher, Fedkiw, Piechor (CR47) 2004; 57
Nestor, Gibson, Gao, Kiss, Black (CR46) 2013; 66
Schröder, Pantel (CR55) 2016; 247
CR62
Coupé, Manjón, Fonov, Pruessner, Robles, Louis Collins (CR13) 2011; 54
Folstein, Folstein, McHugh (CR21) 1975; 12
Frisoni, Jack, Bocchetta, Bauer, Frederiksen, Liu, Preboske, Swihart, Blair, Cavedo (CR26) 2015; 11
Wang, Suh, Das, Pluta, Craige, Yushkevich (CR61) 2013; 35
Klein, Andersson, Ardekani, Ashburner, Avants, Chiang, Christensen, Louis Collins, Gee, Hellier (CR32) 2009; 46
MR Sabuncu (9380_CR54) 2014; 97
CR Jack (9380_CR29) 2004; 62
R Clifford (9380_CR12) 2008; 27
9380_CR45
SM Nestor (9380_CR46) 2013; 66
IO Korolev (9380_CR34) 2016; 11
C Platero (9380_CR49) 2015; 64
J Kim (9380_CR31) 2015; 34
JG Sled (9380_CR56) 1998; 17
F Lijn van der (9380_CR59) 2008; 43
R Mert (9380_CR42) 2011; 68
DP Devanand (9380_CR16) 2007; 68
NC Fox (9380_CR22) 2011; 57
M Jenkinson (9380_CR30) 2002; 17
A Perrotin (9380_CR48) 2015; 48
MA Fraser (9380_CR24) 2015; 112
R Wolz (9380_CR63) 2010; 52
MS Albert (9380_CR1) 2011; 7
S Osher (9380_CR47) 2004; 57
9380_CR36
R La Joie (9380_CR35) 2010; 53
LG Apostolova (9380_CR2) 2010; 51
M Reuter (9380_CR52) 2010; 53
G Chételat (9380_CR10) 2008; 46
S Klein (9380_CR33) 2010; 29
JE Iglesias (9380_CR28) 2016; 141
SF Eskildsen (9380_CR18) 2015; 36
B Aubert-Broche (9380_CR4) 2013; 82
9380_CR62
A Chincarini (9380_CR11) 2016; 125
D Louis Collins (9380_CR40) 2010; 52
E Moradi (9380_CR44) 2015; 104
WK Thompson (9380_CR58) 2011; 168
GB Frisoni (9380_CR26) 2015; 11
P Viola (9380_CR60) 1997; 24
R Giraud (9380_CR27) 2016; 124
Z Song (9380_CR57) 2006; 4191
JMP Lotjonen (9380_CR39) 2010; 49
KK Leung (9380_CR38) 2010; 51
E Frankó (9380_CR23) 2013; 8
M Reuter (9380_CR53) 2012; 61
MF Folstein (9380_CR21) 1975; 12
IB Malone (9380_CR41) 2013; 70
9380_CR15
R Cuingnet (9380_CR14) 2011; 56
AC Evans (9380_CR19) 2012; 62
B Dubois (9380_CR17) 2007; 6
H Wang (9380_CR61) 2013; 35
A Klein (9380_CR32) 2009; 46
T Bradley (9380_CR9) 2013; 9
Y Boykov (9380_CR8) 2004; 26
C Platero (9380_CR51) 2017; 15
X Artaechevarria (9380_CR3) 2009; 28
M Boccardi (9380_CR7) 2011; 26
C Barnes (9380_CR5) 2009; 28
JL Bernal-Rusiel (9380_CR6) 2013; 66
P Coupé (9380_CR13) 2011; 54
GM McKhann (9380_CR43) 2011; 7
E Lawrence (9380_CR37) 2017; 59
J Schröder (9380_CR55) 2016; 247
B Fischl (9380_CR20) 2002; 33
GB Frisoni (9380_CR25) 2010; 6
C Platero (9380_CR50) 2016; 270
References_xml – volume: 26
  start-page: 61
  year: 2011
  end-page: 75
  ident: CR7
  article-title: Survey of protocols for the manual segmentation of the hippocampus: preparatory steps towards a joint EADC-ADNI harmonized protocol
  publication-title: Journal of Alzheimer’s Disease
  doi: 10.3233/JAD-2011-0004
– ident: CR45
– volume: 46
  start-page: 1721
  issue: 6
  year: 2008
  end-page: 1731
  ident: CR10
  article-title: Three-dimensional surface mapping of hippocampal atrophy progression from MCI to AD and over normal aging as assessed using voxel-based morphometry
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2007.11.037
– volume: 6
  start-page: 734
  issue: 8
  year: 2007
  end-page: 746
  ident: CR17
  article-title: Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS–ADRDA criteria
  publication-title: The Lancet Neurology
  doi: 10.1016/S1474-4422(07)70178-3
– volume: 141
  start-page: 542
  year: 2016
  end-page: 555
  ident: CR28
  article-title: ADNI, et al. Bayesian longitudinal segmentation of hippocampal substructures in brain MRI using subject-specific atlases
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.07.020
– volume: 15
  start-page: 165
  issue: 2
  year: 2017
  end-page: 183
  ident: CR51
  article-title: Combining a patch-based approach with a non-rigid registration-based label fusion method for the hippocampal segmentation in Alzheimer’s Disease
  publication-title: Neuroinfor matics
  doi: 10.1007/s12021-017-9323-3
– volume: 24
  start-page: 137
  issue: 2
  year: 1997
  end-page: 154
  ident: CR60
  article-title: Alignment by maximization of mutual information
  publication-title: International Journal of Computer Vision
  doi: 10.1023/A:1007958904918
– volume: 68
  start-page: 1040
  issue: 8
  year: 2011
  end-page: 1048
  ident: CR42
  article-title: The dynamics of cortical and hippocampal atrophy in Alzheimer disease
  publication-title: Archives of neurology
  doi: 10.1001/archneurol.2011.167
– volume: 7
  start-page: 263
  issue: 3
  year: 2011
  end-page: 269
  ident: CR43
  article-title: The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease
  publication-title: Alzheimer’s & Dementia
  doi: 10.1016/j.jalz.2011.03.005
– volume: 35
  start-page: 611
  issue: 3
  year: 2013
  end-page: 623
  ident: CR61
  article-title: Multi-atlas segmentation with joint label fusion
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2012.143
– volume: 33
  start-page: 341
  issue: 3
  year: 2002
  end-page: 355
  ident: CR20
  article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00569-X
– volume: 6
  start-page: 67
  issue: 2
  year: 2010
  end-page: 77
  ident: CR25
  article-title: The clinical use of structural MRI in Alzheimer disease
  publication-title: Nature Reviews Neurology
  doi: 10.1038/nrneurol.2009.215
– volume: 49
  start-page: 2352
  issue: 3
  year: 2010
  end-page: 2365
  ident: CR39
  article-title: Fast and robust multi-atlas segmentation of brain magnetic resonance images
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.10.026
– volume: 70
  start-page: 33
  year: 2013
  end-page: 36
  ident: CR41
  article-title: MIRIAD - Public release of a multiple time point Alzheimer’s MR imaging dataset
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.12.044
– volume: 7
  start-page: 270
  issue: 3
  year: 2011
  end-page: 279
  ident: CR1
  article-title: The diagnosis of mild cognitive impairment due to alzheimer’s disease: recommendations from the national institute on aging-alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease
  publication-title: Alzheimer’s & Dementia
  doi: 10.1016/j.jalz.2011.03.008
– volume: 66
  start-page: 50
  year: 2013
  end-page: 70
  ident: CR46
  article-title: A direct morphometric comparison of five labeling protocols for multi-atlas driven automatic segmentation of the hippocampus in Alzheimer’s disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.10.081
– volume: 29
  start-page: 196
  issue: 1
  year: 2010
  end-page: 205
  ident: CR33
  article-title: Elastix: a toolbox for intensity-based medical image registration
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2009.2035616
– ident: CR15
– volume: 125
  start-page: 834
  year: 2016
  end-page: 847
  ident: CR11
  article-title: Integrating longitudinal information in hippocampal volume measurements for the early detection of Alzheimer’s disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.10.065
– volume: 9
  start-page: 332
  issue: 3
  year: 2013
  end-page: 337
  ident: CR9
  article-title: Standardization of analysis sets for reporting results from ADNI MRI data
  publication-title: Alzheimer’s & Dementia
  doi: 10.1016/j.jalz.2012.06.004
– ident: CR36
– volume: 56
  start-page: 766
  issue: 2
  year: 2011
  end-page: 781
  ident: CR14
  article-title: Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.06.013
– volume: 8
  start-page: e71354
  issue: 8
  year: 2013
  ident: CR23
  article-title: Evaluating Alzheimer’s disease progression using rate of regional hippocampal atrophy
  publication-title: PloS one
  doi: 10.1371/journal.pone.0071354
– volume: 61
  start-page: 1402
  issue: 4
  year: 2012
  end-page: 1418
  ident: CR53
  article-title: Within-subject template estimation for unbiased longitudinal image analysis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.02.084
– volume: 4191
  start-page: 831
  year: 2006
  end-page: 838
  ident: CR57
  article-title: Integrated graph cuts for brain MRI segmentation
  publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI
– volume: 112
  start-page: 364
  year: 2015
  end-page: 374
  ident: CR24
  article-title: A systematic review and meta-analysis of longitudinal hippocampal atrophy in healthy human ageing
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.03.035
– volume: 48
  start-page: S141
  issue: s1
  year: 2015
  end-page: S150
  ident: CR48
  article-title: Hippocampal subfield volumetry and 3D surface mapping in subjective cognitive decline
  publication-title: Journal of Alzheimer’s Disease
  doi: 10.3233/JAD-150087
– volume: 68
  start-page: 828
  issue: 11
  year: 2007
  end-page: 836
  ident: CR16
  article-title: Hippocampal and entorhinal atrophy in mild cognitive impairment prediction of Alzheimer disease
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000256697.20968.d7
– volume: 43
  start-page: 708
  issue: 4
  year: 2008
  end-page: 720
  ident: CR59
  article-title: Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.07.058
– volume: 17
  start-page: 87
  issue: 1
  year: 1998
  end-page: 97
  ident: CR56
  article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data
  publication-title: IEEE transactions on medical imaging
  doi: 10.1109/42.668698
– volume: 46
  start-page: 786
  issue: 3
  year: 2009
  end-page: 802
  ident: CR32
  article-title: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.12.037
– volume: 62
  start-page: 911
  issue: 2
  year: 2012
  end-page: 922
  ident: CR19
  article-title: Brain templates and atlases
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.01.024
– volume: 97
  start-page: 9
  year: 2014
  end-page: 18
  ident: CR54
  article-title: ADNI, et al. Event time analysis of longitudinal neuroimage data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.04.015
– volume: 53
  start-page: 506
  issue: 2
  year: 2010
  end-page: 514
  ident: CR35
  article-title: Differential effect of age on hippocampal subfields assessed using a new high-resolution 3T MR sequence
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.06.024
– volume: 54
  start-page: 940
  issue: 2
  year: 2011
  end-page: 954
  ident: CR13
  article-title: Patch-based segmentation using expert priors application to hippocampus and ventricle segmentation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.09.018
– volume: 52
  start-page: 1355
  issue: 4
  year: 2010
  end-page: 1366
  ident: CR40
  article-title: Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.04.193
– volume: 57
  start-page: B15
  year: 2004
  ident: CR47
  article-title: Level set methods and dynamic implicit surfaces
  publication-title: Applied Mechanics Reviews
  doi: 10.1115/1.1760520
– volume: 104
  start-page: 398
  year: 2015
  end-page: 412
  ident: CR44
  article-title: Alzheimer’s Disease Neuroimaging Initiative et al. Machine learning framework for early mri-based alzheimer’s conversion prediction in mci subjects
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.10.002
– volume: 12
  start-page: 189
  issue: 3
  year: 1975
  end-page: 198
  ident: CR21
  article-title: Mini-mental state: a practical method for grading the cognitive state of patients for the clinician
  publication-title: Journal of Psychiatric Research
  doi: 10.1016/0022-3956(75)90026-6
– volume: 36
  start-page: S23
  year: 2015
  end-page: S31
  ident: CR18
  article-title: Structural imaging biomarkers of alzheimer’s disease: predicting disease progression
  publication-title: Neurobiology of Aging
  doi: 10.1016/j.neurobiolaging.2014.04.034
– volume: 247
  start-page: 71
  year: 2016
  end-page: 78
  ident: CR55
  article-title: Neuroimaging of hippocampal atrophy in early recognition of Alzheimer´s disease–a critical appraisal after two decades of research
  publication-title: Psychiatry Research: Neuroimaging
  doi: 10.1016/j.pscychresns.2015.08.014
– volume: 53
  start-page: 1181
  issue: 4
  year: 2010
  end-page: 1196
  ident: CR52
  article-title: Highly accurate inverse consistent registration: a robust approach
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.07.020
– volume: 124
  start-page: 770
  year: 2016
  end-page: 782
  ident: CR27
  article-title: An optimized patchmatch for multi-scale and multi-feature label fusion
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.07.076
– volume: 26
  start-page: 1124
  issue: 9
  year: 2004
  end-page: 1137
  ident: CR8
  article-title: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2004.60
– volume: 17
  start-page: 825
  issue: 2
  year: 2002
  end-page: 841
  ident: CR30
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1132
– volume: 52
  start-page: 109
  issue: 1
  year: 2010
  end-page: 118
  ident: CR63
  article-title: Measurement of hippocampal atrophy using 4D graph-cut segmentation: application to ADNI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.04.006
– volume: 168
  start-page: 894
  issue: 9
  year: 2011
  end-page: 903
  ident: CR58
  article-title: Design considerations for characterizing psychiatric trajectories across the lifespan Application to effects of APOE-ε4 on cerebral cortical thickness in Alzheimer’s disease
  publication-title: American Journal of Psychiatry
  doi: 10.1176/appi.ajp.2011.10111690
– volume: 51
  start-page: 1345
  issue: 4
  year: 2010
  end-page: 1359
  ident: CR38
  article-title: Automated cross-sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and Alzheimer’s disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.03.018
– volume: 57
  start-page: 15
  issue: 1
  year: 2011
  end-page: 18
  ident: CR22
  article-title: Algorithms, atrophy and Alzheimer’s disease: cautionary tales for clinical trials
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.01.077
– volume: 11
  start-page: e0138866
  issue: 2
  year: 2016
  ident: CR34
  article-title: Alzheimer?s Disease Neuroimaging Initiative, et al. Predicting progression from mild cognitive impairment to alzheimer’s dementia using clinical, mri, and plasma biomarkers via probabilistic pattern classification
  publication-title: Plos One
  doi: 10.1371/journal.pone.0138866
– volume: 27
  start-page: 685
  issue: 4
  year: 2008
  end-page: 691
  ident: CR12
  article-title: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods
  publication-title: Journal of Magnetic Resonance Imaging
  doi: 10.1002/jmri.21049
– volume: 64
  start-page: 117
  issue: 2
  year: 2015
  end-page: 129
  ident: CR49
  article-title: A label fusion method using conditional random fields with higher-order potentials Application to hippocampal segmentation
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/j.artmed.2015.04.005
– volume: 66
  start-page: 249
  year: 2013
  end-page: 260
  ident: CR6
  article-title: Alzheimer’s Disease Neuroimaging Initiative, et al. Statistical analysis of longitudinal neuroimage data with linear mixed effects models
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.10.065
– volume: 34
  start-page: 1242
  issue: 6
  year: 2015
  end-page: 1261
  ident: CR31
  article-title: Hippocampal shape modeling based on a progressive template surface deformation and its verification
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2014.2382581
– volume: 11
  start-page: 111
  issue: 2
  year: 2015
  end-page: 125
  ident: CR26
  article-title: The EADC-ADNI Harmonized Protocol for manual hippocampal segmentation on magnetic resonance: Evidence of validity
  publication-title: Alzheimer’s & Dementia
  doi: 10.1016/j.jalz.2014.05.1756
– volume: 270
  start-page: 61
  year: 2016
  end-page: 75
  ident: CR50
  article-title: A fast approach for hippocampal segmentation from t1-MRI for predicting progression in Alzheimer’s disease from elderly controls
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2016.06.013
– volume: 28
  start-page: 1266
  issue: 8
  year: 2009
  end-page: 1277
  ident: CR3
  article-title: Combination strategies in multi-atlas image segmentation: Application to brain MR data
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2009.2014372
– volume: 62
  start-page: 591
  issue: 4
  year: 2004
  end-page: 600
  ident: CR29
  article-title: Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000110315.26026.EF
– volume: 82
  start-page: 393
  year: 2013
  end-page: 402
  ident: CR4
  article-title: A new method for structural volume analysis of longitudinal brain mri data and its application in studying the growth trajectories of anatomical brain structures in childhood
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.065
– volume: 51
  start-page: 488
  issue: 1
  year: 2010
  end-page: 499
  ident: CR2
  article-title: Automated 3D mapping of baseline and 12-month associations between three verbal memory measures and hippocampal atrophy in 490 ADNI subjects
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.12.125
– volume: 28
  start-page: 24
  issue: 3
  year: 2009
  ident: CR5
  article-title: Patchmatch: a randomized correspondence algorithm for structural image editing
  publication-title: ACM Transactions on Graphics-TOG
– ident: CR62
– volume: 59
  start-page: 1359
  issue: 4
  year: 2017
  end-page: 1379
  ident: CR37
  article-title: A systematic review of longitudinal studies which measure alzheimers disease biomarkers
  publication-title: Journal of Alzheimer’s Disease
  doi: 10.3233/JAD-170261
– volume: 52
  start-page: 109
  issue: 1
  year: 2010
  ident: 9380_CR63
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.04.006
– volume: 82
  start-page: 393
  year: 2013
  ident: 9380_CR4
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.065
– volume: 17
  start-page: 825
  issue: 2
  year: 2002
  ident: 9380_CR30
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1132
– volume: 7
  start-page: 270
  issue: 3
  year: 2011
  ident: 9380_CR1
  publication-title: Alzheimer’s & Dementia
  doi: 10.1016/j.jalz.2011.03.008
– volume: 51
  start-page: 488
  issue: 1
  year: 2010
  ident: 9380_CR2
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.12.125
– volume: 125
  start-page: 834
  year: 2016
  ident: 9380_CR11
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.10.065
– volume: 29
  start-page: 196
  issue: 1
  year: 2010
  ident: 9380_CR33
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2009.2035616
– ident: 9380_CR62
  doi: 10.1007/978-3-319-47118-1_5
– volume: 34
  start-page: 1242
  issue: 6
  year: 2015
  ident: 9380_CR31
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2014.2382581
– volume: 36
  start-page: S23
  year: 2015
  ident: 9380_CR18
  publication-title: Neurobiology of Aging
  doi: 10.1016/j.neurobiolaging.2014.04.034
– volume: 57
  start-page: 15
  issue: 1
  year: 2011
  ident: 9380_CR22
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.01.077
– volume: 46
  start-page: 1721
  issue: 6
  year: 2008
  ident: 9380_CR10
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2007.11.037
– volume: 24
  start-page: 137
  issue: 2
  year: 1997
  ident: 9380_CR60
  publication-title: International Journal of Computer Vision
  doi: 10.1023/A:1007958904918
– volume: 53
  start-page: 1181
  issue: 4
  year: 2010
  ident: 9380_CR52
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.07.020
– volume: 43
  start-page: 708
  issue: 4
  year: 2008
  ident: 9380_CR59
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.07.058
– volume: 26
  start-page: 1124
  issue: 9
  year: 2004
  ident: 9380_CR8
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2004.60
– volume: 104
  start-page: 398
  year: 2015
  ident: 9380_CR44
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.10.002
– volume: 51
  start-page: 1345
  issue: 4
  year: 2010
  ident: 9380_CR38
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.03.018
– ident: 9380_CR45
– volume: 57
  start-page: B15
  year: 2004
  ident: 9380_CR47
  publication-title: Applied Mechanics Reviews
  doi: 10.1115/1.1760520
– volume: 46
  start-page: 786
  issue: 3
  year: 2009
  ident: 9380_CR32
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.12.037
– volume: 124
  start-page: 770
  year: 2016
  ident: 9380_CR27
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.07.076
– volume: 52
  start-page: 1355
  issue: 4
  year: 2010
  ident: 9380_CR40
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.04.193
– volume: 27
  start-page: 685
  issue: 4
  year: 2008
  ident: 9380_CR12
  publication-title: Journal of Magnetic Resonance Imaging
  doi: 10.1002/jmri.21049
– ident: 9380_CR15
  doi: 10.2307/2531595
– volume: 12
  start-page: 189
  issue: 3
  year: 1975
  ident: 9380_CR21
  publication-title: Journal of Psychiatric Research
  doi: 10.1016/0022-3956(75)90026-6
– volume: 66
  start-page: 249
  year: 2013
  ident: 9380_CR6
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.10.065
– volume: 6
  start-page: 67
  issue: 2
  year: 2010
  ident: 9380_CR25
  publication-title: Nature Reviews Neurology
  doi: 10.1038/nrneurol.2009.215
– volume: 59
  start-page: 1359
  issue: 4
  year: 2017
  ident: 9380_CR37
  publication-title: Journal of Alzheimer’s Disease
  doi: 10.3233/JAD-170261
– volume: 53
  start-page: 506
  issue: 2
  year: 2010
  ident: 9380_CR35
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.06.024
– volume: 64
  start-page: 117
  issue: 2
  year: 2015
  ident: 9380_CR49
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/j.artmed.2015.04.005
– volume: 7
  start-page: 263
  issue: 3
  year: 2011
  ident: 9380_CR43
  publication-title: Alzheimer’s & Dementia
  doi: 10.1016/j.jalz.2011.03.005
– volume: 247
  start-page: 71
  year: 2016
  ident: 9380_CR55
  publication-title: Psychiatry Research: Neuroimaging
  doi: 10.1016/j.pscychresns.2015.08.014
– volume: 17
  start-page: 87
  issue: 1
  year: 1998
  ident: 9380_CR56
  publication-title: IEEE transactions on medical imaging
  doi: 10.1109/42.668698
– volume: 4191
  start-page: 831
  year: 2006
  ident: 9380_CR57
  publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI
– volume: 28
  start-page: 24
  issue: 3
  year: 2009
  ident: 9380_CR5
  publication-title: ACM Transactions on Graphics-TOG
– volume: 54
  start-page: 940
  issue: 2
  year: 2011
  ident: 9380_CR13
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.09.018
– volume: 68
  start-page: 828
  issue: 11
  year: 2007
  ident: 9380_CR16
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000256697.20968.d7
– volume: 9
  start-page: 332
  issue: 3
  year: 2013
  ident: 9380_CR9
  publication-title: Alzheimer’s & Dementia
  doi: 10.1016/j.jalz.2012.06.004
– volume: 11
  start-page: e0138866
  issue: 2
  year: 2016
  ident: 9380_CR34
  publication-title: Plos One
  doi: 10.1371/journal.pone.0138866
– volume: 56
  start-page: 766
  issue: 2
  year: 2011
  ident: 9380_CR14
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.06.013
– volume: 11
  start-page: 111
  issue: 2
  year: 2015
  ident: 9380_CR26
  publication-title: Alzheimer’s & Dementia
  doi: 10.1016/j.jalz.2014.05.1756
– volume: 70
  start-page: 33
  year: 2013
  ident: 9380_CR41
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.12.044
– ident: 9380_CR36
– volume: 15
  start-page: 165
  issue: 2
  year: 2017
  ident: 9380_CR51
  publication-title: Neuroinfor matics
  doi: 10.1007/s12021-017-9323-3
– volume: 168
  start-page: 894
  issue: 9
  year: 2011
  ident: 9380_CR58
  publication-title: American Journal of Psychiatry
  doi: 10.1176/appi.ajp.2011.10111690
– volume: 141
  start-page: 542
  year: 2016
  ident: 9380_CR28
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.07.020
– volume: 49
  start-page: 2352
  issue: 3
  year: 2010
  ident: 9380_CR39
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.10.026
– volume: 61
  start-page: 1402
  issue: 4
  year: 2012
  ident: 9380_CR53
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.02.084
– volume: 270
  start-page: 61
  year: 2016
  ident: 9380_CR50
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2016.06.013
– volume: 97
  start-page: 9
  year: 2014
  ident: 9380_CR54
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.04.015
– volume: 62
  start-page: 911
  issue: 2
  year: 2012
  ident: 9380_CR19
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.01.024
– volume: 33
  start-page: 341
  issue: 3
  year: 2002
  ident: 9380_CR20
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00569-X
– volume: 112
  start-page: 364
  year: 2015
  ident: 9380_CR24
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.03.035
– volume: 48
  start-page: S141
  issue: s1
  year: 2015
  ident: 9380_CR48
  publication-title: Journal of Alzheimer’s Disease
  doi: 10.3233/JAD-150087
– volume: 8
  start-page: e71354
  issue: 8
  year: 2013
  ident: 9380_CR23
  publication-title: PloS one
  doi: 10.1371/journal.pone.0071354
– volume: 62
  start-page: 591
  issue: 4
  year: 2004
  ident: 9380_CR29
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000110315.26026.EF
– volume: 28
  start-page: 1266
  issue: 8
  year: 2009
  ident: 9380_CR3
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2009.2014372
– volume: 6
  start-page: 734
  issue: 8
  year: 2007
  ident: 9380_CR17
  publication-title: The Lancet Neurology
  doi: 10.1016/S1474-4422(07)70178-3
– volume: 68
  start-page: 1040
  issue: 8
  year: 2011
  ident: 9380_CR42
  publication-title: Archives of neurology
  doi: 10.1001/archneurol.2011.167
– volume: 26
  start-page: 61
  year: 2011
  ident: 9380_CR7
  publication-title: Journal of Alzheimer’s Disease
  doi: 10.3233/JAD-2011-0004
– volume: 35
  start-page: 611
  issue: 3
  year: 2013
  ident: 9380_CR61
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2012.143
– volume: 66
  start-page: 50
  year: 2013
  ident: 9380_CR46
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.10.081
SSID ssj0026700
Score 2.2927926
Snippet Hippocampal atrophy measures from magnetic resonance imaging (MRI) are powerful tools for monitoring Alzheimer’s disease (AD) progression. In this paper, we...
Hippocampal atrophy measures from magnetic resonance imaging (MRI) are powerful tools for monitoring Alzheimer's disease (AD) progression. In this paper, we...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 43
SubjectTerms Aged
Alzheimer Disease - diagnostic imaging
Alzheimer Disease - pathology
Alzheimer's disease
Atrophy
Bioinformatics
Biomedical and Life Sciences
Biomedicine
Classification
Cognitive ability
Cognitive Dysfunction - diagnostic imaging
Cognitive Dysfunction - pathology
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Differential diagnosis
Disease Progression
Female
Hippocampus
Hippocampus - diagnostic imaging
Hippocampus - pathology
Humans
Image Interpretation, Computer-Assisted - methods
Image processing
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Medical imaging
Neuroimaging
Neuroimaging - methods
Neurology
Neurosciences
NMR
Nuclear magnetic resonance
Original Article
Reproducibility of Results
ROC Curve
Segmentation
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2hcuHCVpawyUiIAyjIcdwkPlZsFdsBFQlOURwnoqJNqy4HeuI3-D2-hLGTtIICEsfIE8exPZ43i2cADoKYxj6PU1ulCN9Q3nJbiFib4QRPU6WENHbI2zuv8cCvHmuPxT3uQRntXrokzUk9vezGdDgBdZBB3YDaeO7O15xABBWYr18-XZ9P9Kzi5gnysrCZL5zSmflTJ1_F0QzGnPGPGrFzsQTNcsB5tMnLyWgoT-Lxt1yO__yjZVgsYCip5_tmBeaSbBWq9QxV8M4rOSQmMNRY3Ktwf9PVRY1GShfQIiabR6tjihuRRqvXQ2GIR0qb6Fs_iCUJomBylgfwaZJ6e_yctDpJ_-PtfYANxh-0Bs2L8-Zpwy5KMdix67Oh7SvtCHA9PwlY5EvEbCyNnFSgQsS9IPFQ8ivlBZKqKGVcOjRyBRVKgwnFUumuQyXrZskmEMUjiiRUaaCDayUlPiLOEFQpl8eRBbRckDAu0pTrahntcJpgWU9biNMW6mkLmQVHk1d6eY6Ov4h3ylUOC3YdhIxynVkRwZYF-5NmZDTtPYmypDsyNKjBC1SYLdjId8fkawx1cQSS3ILjcqWnnf86lK1_UW_DAoI1kZt_dqAy7I-SXQREQ7lXMMAnvET_Cg
  priority: 102
  providerName: Springer Nature
Title Longitudinal Neuroimaging Hippocampal Markers for Diagnosing Alzheimer’s Disease
URI https://link.springer.com/article/10.1007/s12021-018-9380-2
https://www.ncbi.nlm.nih.gov/pubmed/29785624
https://www.proquest.com/docview/2041965102
https://www.proquest.com/docview/2042749211
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTttAEB4BufRSUUJbQ4gWCXEosrRZb23voUJuCUS0jVAEUnqybK-tRkocQ5JDe-I1eD2ehJm1nQhF5Gh7bK9md2e--dkZgBM_4Yknk8zWGcI31LfSViohN5ySWaa1io0f8nff7d3J6-HX4Rb067MwlFZZy0QjqPU0IR85GumSit-hPjwv7m3qGkXR1bqFRlS1VtDfTImxbWigSPZx3Te-d_s3g6UJVh1KwW2ubOGpTh3nNIfpBKUr8A4KAMfntnitqdbg51ro1Giky114X0FJFpRz_wG20nwPmkGOZvTkHztlJrnTeM2bMPg1pcZEC01NsJipyDGamAZFrDcqClRoKBbGjE7uIB5kiGTZRZmERyTB-P_fdDRJH54fn2b4wMR09uH2snv7o2dX7RTsxPHE3PY0OfMd10t9EXkx4i6RRZ1MoVEjXT91UXtr7fox11EmZNzhkaO40gQItMhi5yPs5NM8_QxMy4gjCdcEVpCpcYyXiBUU19qRSWQBrzkXJlWpcep4MQ5XRZKJ2SEyOyRmh8KCL8tXirLOxibiVj0dYbXlZuFqgVhwvHyMm4UiIFGeTheGBq1whUavBZ_KaVz-TaA9jWBQWnBWz-vq428O5WDzUA7hHSIsVfpsWrAzf1ikR4hi5nEbtr2h14ZGcPXnZ7ddLVS8eyeCF5OZ76Q
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6V5ACXClp-DG1ZJOAAsrRZb23voapS0iolP0JVkHpb2d61iJQ4oUmEyonX4GF4GZ6EmbWdqKrorUdr12trZnfmm5mdGYC3ccazSGa5b3KEb6hvpa9URm44JfPcGJU6P-RgGHa_ys-Xh5db8KfOhaFrlbVMdILazDLykaORLqn4HerD4_l3n7pGUXS1bqGRVK0VzJErMVYldvTs9Q804RZH5x3k9zshzk5Hn7p-1WXAz4JILP3IkI87CCMbiyRKEY6IPGnlCrG-DGMbolIzJoxTbpJcyLTFk0BxZUhPGpGnAS77AJqSElwb0Dw5HX65WFt8VQ4MShXli0i16rCqy90TdDuCt1DeBDH3xU3FeAvt3orUOgV49hi2K-TK2uVWewJbttiB3XaBVvv0mr1n7i6pc9LvwkV_Rn2QVoZ6bjFXAGQ8df2QWHc8n6P-RCk0YZQohPCTIXBmnfLOH01pT35-s-Opvfr76_cCB1wI6SmM7oOuz6BRzAr7ApiRCccp3BA2QqKmKT4iNFHcmEBmiQe8ppzOqsrm1GBjojc1mYnYGomtidhaePBh_cq8LOtx1-S9mh26OuELvdmPHrxZD-PZpIBLUtjZys1Bo1-hje3B85KN668JNN8Re0oPPtZ83Sz-3195efevvIaH3dGgr_vnw94reITgTpXuoj1oLK9Wdh8B1DI9qLYpA33PB-MfFakm8g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFD4anYS4QYPxE7aBkYALUDTX8ZL4YkKFrurYqKZpSLuLktgWldq0W1uhccVr8Eh7DZ6EcxynFZrY3S4jO050bJ_znX-AN2nJy0SWNtQW4RvKWxkqVZIZTklrtVaFs0N-HcT9b_LL-d75Glw3uTAUVtnwRMeo9aQkGzkq6ZKK36E83LU-LOKk2_s4vQipgxR5Wpt2Grlvs6D3Xbkxn-RxZK5-oDo32z_s4t6_FaJ3cPa5H_qOA2EZJWIeJprs3VGcmFTkSYHQRNi8bRXifhmnJkYBp3WcFlznVsiizfNIcaVJZmphiwiXvQfrCQpJ2YL1TweDk9Ol9ufzYZDDqFAkqt24WF0en6BICd5G3hOlPBT_CskbyPeG19YJw94GPPQolnXqY_cI1kz1GDY7FWrw4yv2jrm4Umew34TT4wn1RFpo6r_FXDGQ4dj1RmL94XSKshQ50ohR0hBCUYYgmnXr-D-a0hn9_G6GY3P559fvGQ44d9ITOLsLuj6FVjWpzHNgWuYcp3BNOAmJWhT4iDBFca0jWeYB8IZyWemrnFOzjVG2qs9MxM6Q2BkROxMBvF--Mq1LfNw2ebvZjszf9lm2OpsBvF4O4z0l50temcnCzRGJVKhvB_Cs3sbl1wSq8ohDZQAfmn1dLf7fX3lx-6-8gvt4QbLjw8HRFjxAnKdqy9E2tOaXC7ODWGpevPSnlEF2x_fiL-wEKx4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Longitudinal+Neuroimaging+Hippocampal+Markers+for+Diagnosing+Alzheimer%E2%80%99s+Disease&rft.jtitle=Neuroinformatics+%28Totowa%2C+N.J.%29&rft.au=Platero%2C+Carlos&rft.au=Lin%2C+Lin&rft.au=Tobar%2C+M+Carmen&rft.date=2019-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1539-2791&rft.eissn=1559-0089&rft.volume=17&rft.issue=1&rft.spage=43&rft.epage=61&rft_id=info:doi/10.1007%2Fs12021-018-9380-2&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-2791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-2791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-2791&client=summon