Predator–prey models with component Allee effect for predator reproduction

We present four predator–prey models with component Allee effect for predator reproduction. Using numerical simulation results for our models, we describe how the customary definitions of component and demographic Allee effects, which work well for single species models, can be extended to predators...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical biology Vol. 71; no. 6-7; pp. 1325 - 1352
Main Author Terry, Alan J.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2015
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0303-6812
1432-1416
1432-1416
DOI10.1007/s00285-015-0856-5

Cover

Loading…
Abstract We present four predator–prey models with component Allee effect for predator reproduction. Using numerical simulation results for our models, we describe how the customary definitions of component and demographic Allee effects, which work well for single species models, can be extended to predators in predator–prey models by assuming that the prey population is held fixed. We also find that when the prey population is not held fixed, then these customary definitions may lead to conceptual problems. After this discussion of definitions, we explore our four models, analytically and numerically. Each of our models has a fixed point that represents predator extinction, which is always locally stable. We prove that the predator will always die out either if the initial predator population is sufficiently small or if the initial prey population is sufficiently small. Through numerical simulations, we explore co-existence fixed points. In addition, we demonstrate, by simulation, the existence of a stable limit cycle in one of our models. Finally, we derive analytical conditions for a co-existence trapping region in three of our models, and show that the fourth model cannot possess a particular kind of co-existence trapping region. We punctuate our results with comments on their real-world implications; in particular, we mention the possibility of prey resurgence from mortality events, and the possibility of failure in a biological pest control program.
AbstractList We present four predator-prey models with component Allee effect for predator reproduction. Using numerical simulation results for our models, we describe how the customary definitions of component and demographic Allee effects, which work well for single species models, can be extended to predators in predator-prey models by assuming that the prey population is held fixed. We also find that when the prey population is not held fixed, then these customary definitions may lead to conceptual problems. After this discussion of definitions, we explore our four models, analytically and numerically. Each of our models has a fixed point that represents predator extinction, which is always locally stable. We prove that the predator will always die out either if the initial predator population is sufficiently small or if the initial prey population is sufficiently small. Through numerical simulations, we explore co-existence fixed points. In addition, we demonstrate, by simulation, the existence of a stable limit cycle in one of our models. Finally, we derive analytical conditions for a co-existence trapping region in three of our models, and show that the fourth model cannot possess a particular kind of co-existence trapping region. We punctuate our results with comments on their real-world implications; in particular, we mention the possibility of prey resurgence from mortality events, and the possibility of failure in a biological pest control program.We present four predator-prey models with component Allee effect for predator reproduction. Using numerical simulation results for our models, we describe how the customary definitions of component and demographic Allee effects, which work well for single species models, can be extended to predators in predator-prey models by assuming that the prey population is held fixed. We also find that when the prey population is not held fixed, then these customary definitions may lead to conceptual problems. After this discussion of definitions, we explore our four models, analytically and numerically. Each of our models has a fixed point that represents predator extinction, which is always locally stable. We prove that the predator will always die out either if the initial predator population is sufficiently small or if the initial prey population is sufficiently small. Through numerical simulations, we explore co-existence fixed points. In addition, we demonstrate, by simulation, the existence of a stable limit cycle in one of our models. Finally, we derive analytical conditions for a co-existence trapping region in three of our models, and show that the fourth model cannot possess a particular kind of co-existence trapping region. We punctuate our results with comments on their real-world implications; in particular, we mention the possibility of prey resurgence from mortality events, and the possibility of failure in a biological pest control program.
We present four predator–prey models with component Allee effect for predator reproduction. Using numerical simulation results for our models, we describe how the customary definitions of component and demographic Allee effects, which work well for single species models, can be extended to predators in predator–prey models by assuming that the prey population is held fixed. We also find that when the prey population is not held fixed, then these customary definitions may lead to conceptual problems. After this discussion of definitions, we explore our four models, analytically and numerically. Each of our models has a fixed point that represents predator extinction, which is always locally stable. We prove that the predator will always die out either if the initial predator population is sufficiently small or if the initial prey population is sufficiently small. Through numerical simulations, we explore co-existence fixed points. In addition, we demonstrate, by simulation, the existence of a stable limit cycle in one of our models. Finally, we derive analytical conditions for a co-existence trapping region in three of our models, and show that the fourth model cannot possess a particular kind of co-existence trapping region. We punctuate our results with comments on their real-world implications; in particular, we mention the possibility of prey resurgence from mortality events, and the possibility of failure in a biological pest control program.
Author Terry, Alan J.
Author_xml – sequence: 1
  givenname: Alan J.
  surname: Terry
  fullname: Terry, Alan J.
  email: aterry.maths@outlook.com
  organization: Division of Mathematics, University of Dundee
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25697834$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1q3TAQRkVJaW7SPkA3wZBNN25nJFuyliGkP3ChXWQvZGvcOtiWI8mE7PIOecM-SXW5t6UEkoXQ5pxvhvlO2NHsZ2LsPcJHBFCfIgBv6hIwv6aWZf2KbbASvMQK5RHbgABRygb5MTuJ8QYAVa3xDTvmtdSqEdWGbX8Ecjb58PvhcQl0X0ze0RiLuyH9Kjo_LXninIqLcSQqqO-pS0XvQ7EctCLQErxbuzT4-S173dsx0rvDf8quP19dX34tt9-_fLu82JadUDyVqnWyQuxkoyvH-0aT1FbwfhcPtQXHVdNQ1Upre127VistXFWh1UoobMUp-7CPzZNvV4rJTEPsaBztTH6NBpXAnAAAGT1_gt74Ncx5uUzxnAeKy0ydHai1nciZJQyTDffm75kygHugCz7GQP0_BMHsqjD7KkyuwuyqMHV21BOnG5LdnSkFO4wvmnxvxjxl_knhv6Wflf4ANMOdHQ
CitedBy_id crossref_primary_10_1007_s00285_023_01957_x
crossref_primary_10_1088_1402_4896_adb654
crossref_primary_10_1142_S1793524518500572
crossref_primary_10_1007_s00285_019_01425_5
crossref_primary_10_1080_23737867_2017_1282843
crossref_primary_10_1016_j_chaos_2025_116125
crossref_primary_10_1142_S0218127421502497
crossref_primary_10_1016_j_nonrwa_2020_103249
crossref_primary_10_1142_S0218127419500810
crossref_primary_10_1007_s11538_021_00893_5
crossref_primary_10_1007_s12346_023_00832_w
crossref_primary_10_1007_s40808_024_01973_w
crossref_primary_10_1007_s11587_016_0273_0
crossref_primary_10_2139_ssrn_4007052
crossref_primary_10_3390_math10040655
crossref_primary_10_1007_s40314_024_02603_y
crossref_primary_10_1007_s12190_021_01520_1
crossref_primary_10_1007_s11071_016_3270_7
crossref_primary_10_1016_j_apm_2021_07_037
crossref_primary_10_1007_s00285_016_1063_8
crossref_primary_10_1016_j_chaos_2023_114004
crossref_primary_10_3934_dcdsb_2023161
crossref_primary_10_1007_s12346_017_0223_6
crossref_primary_10_1155_jom_7899943
crossref_primary_10_1016_j_cnsns_2022_106644
crossref_primary_10_1016_j_nonrwa_2019_06_008
crossref_primary_10_1142_S0218339023500201
crossref_primary_10_1186_s13662_021_03490_x
crossref_primary_10_1007_s00285_025_02197_x
crossref_primary_10_1088_1742_6596_1821_1_012051
crossref_primary_10_1007_s10255_023_1084_1
crossref_primary_10_1142_S0218127420500844
crossref_primary_10_1142_S1793524517500371
crossref_primary_10_1016_j_physa_2019_121350
crossref_primary_10_1016_j_ecolmodel_2019_05_011
crossref_primary_10_1016_j_matcom_2021_10_027
crossref_primary_10_1007_s11071_024_09451_9
crossref_primary_10_1016_j_cnsns_2022_106454
crossref_primary_10_1016_j_matcom_2019_03_010
crossref_primary_10_1016_j_amc_2015_09_006
crossref_primary_10_1016_j_ecocom_2021_100939
crossref_primary_10_1007_s12080_017_0361_0
crossref_primary_10_3934_math_2020394
crossref_primary_10_12677_AAM_2021_1010376
crossref_primary_10_1016_j_jtbi_2023_111610
crossref_primary_10_1016_j_mbs_2023_109075
crossref_primary_10_1063_5_0152946
crossref_primary_10_3390_math10091500
crossref_primary_10_1016_j_matcom_2024_07_034
crossref_primary_10_1088_1751_8121_ad43ca
crossref_primary_10_1140_epjp_s13360_024_05628_8
Cites_doi 10.1111/j.1523-1739.1989.tb00242.x
10.1016/S0304-3800(97)00104-X
10.1093/acprof:oso/9780198570301.001.0001
10.1016/j.chaos.2004.07.018
10.1016/j.mbs.2007.02.006
10.1007/978-1-4020-8992-3_9
10.1007/s11538-010-9577-5
10.1016/j.mbs.2011.07.003
10.1007/978-1-4757-3516-1
10.1641/0006-3568(2000)050[0053:EAECON]2.3.CO;2
10.1016/j.amc.2010.09.029
10.1080/10236190412331335373
10.1137/0523008
10.1016/j.jmaa.2011.01.018
10.1137/070705210
10.1007/s00285-004-0278-2
10.1016/j.mbs.2005.03.002
10.1016/j.biosystems.2008.03.008
10.1080/00036811.2010.483557
10.1016/j.tpb.2004.06.007
10.1006/jtbi.2002.3084
10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2
10.1038/nrg1201
10.1016/j.nonrwa.2013.04.006
10.1016/S0169-5347(99)01683-3
10.1016/j.jtbi.2009.10.022
10.2307/3773
10.1016/j.matcom.2013.05.009
10.1007/978-1-4471-0049-2
10.1016/0304-3800(81)90013-2
10.1137/0148008
10.1016/S0169-5347(00)01908-X
10.1007/s00285-011-0416-6
10.1016/j.ecolmodel.2010.01.005
10.1046/j.1461-0248.2003.00405.x
10.1016/j.ecocom.2012.01.002
10.1155/2013/984960
10.1016/j.nonrwa.2009.01.005
10.1142/2284
10.1155/2013/340980
10.1007/s00285-009-0325-0
10.1016/j.ecocom.2010.04.005
10.1016/j.mbs.2014.08.009
10.1016/j.nonrwa.2011.04.003
10.1016/j.apm.2010.07.001
10.1016/j.mbs.2013.12.002
10.1111/j.1939-7445.1989.tb00119.x
10.1007/s00285-010-0332-1
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2015
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7TM
7U9
7X7
7XB
88A
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
JQ2
K7-
K9.
L6V
LK8
M0S
M1P
M7N
M7P
M7S
M7Z
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
DOI 10.1007/s00285-015-0856-5
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Biochemistry Abstracts 1
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Computer Science Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Mathematics
EISSN 1432-1416
EndPage 1352
ExternalDocumentID 3856904841
25697834
10_1007_s00285_015_0856_5
Genre Journal Article
GroupedDBID ---
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
06D
0R~
0VY
186
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
3-Y
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
7X7
88A
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
D0L
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAS
LK8
LLZTM
M0L
M1P
M4Y
M7P
M7S
MA-
MQGED
MVM
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WIP
WJK
WK6
WK8
YLTOR
YQT
Z45
Z7U
ZMTXR
ZWQNP
ZXP
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7TK
7TM
7U9
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H94
JQ2
K9.
M7N
M7Z
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c372t-7bd6411c6894d2f89e69a32feffe05a0d2788e4b6aaf95db9793d441a97371b3
IEDL.DBID 7X7
ISSN 0303-6812
1432-1416
IngestDate Wed Jul 30 10:29:19 EDT 2025
Fri Jul 25 19:08:41 EDT 2025
Mon Jul 21 05:58:57 EDT 2025
Tue Jul 01 02:03:12 EDT 2025
Thu Apr 24 22:52:17 EDT 2025
Fri Feb 21 02:33:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6-7
Keywords Prey resurgence
Allee effect
Predator birth rate
Trapping region
34C60
Predator–prey model
92D40
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-7bd6411c6894d2f89e69a32feffe05a0d2788e4b6aaf95db9793d441a97371b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 25697834
PQID 1729730726
PQPubID 54026
PageCount 28
ParticipantIDs proquest_miscellaneous_1731788000
proquest_journals_1729730726
pubmed_primary_25697834
crossref_primary_10_1007_s00285_015_0856_5
crossref_citationtrail_10_1007_s00285_015_0856_5
springer_journals_10_1007_s00285_015_0856_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-12-01
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Journal of mathematical biology
PublicationTitleAbbrev J. Math. Biol
PublicationTitleAlternate J Math Biol
PublicationYear 2015
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Pimentel, Kim, McPheron (CR29) 1993
Sieber, Hilker (CR34) 2012; 64
Dobson, Lyles (CR15) 1989; 3
Roderick, Navajas (CR32) 2003; 4
Bazykin (CR5) 1998
Zhou, Liu, Wang (CR51) 2005; 67
CR39
CR38
CR37
CR31
Terry (CR40) 2011; 378
Beddington, Hassell, Lawton (CR6) 1976; 45
Skalski, Gilliam (CR35) 2001; 82
CR49
CR48
CR47
Zu, Mimura, Wakano (CR52) 2010; 262
CR43
Deng, Jessie, Ledder, Rand, Srodulski (CR13) 2007; 208
McCarthy (CR27) 1997; 103
CR42
Pimentel, Lach, Zuniga, Morrison (CR30) 2000; 50
van Voorn, Hemerik, Boer, Kooi (CR45) 2007; 209
Brauer, Castillo-Chávez (CR8) 2001
Abrams, Ginzburg (CR1) 2000; 15
Aguirre, Gonzalez-Olivares, Saez (CR2) 2009; 69
Sen, Banerjee, Morozov (CR33) 2012; 11
Liebhold, Bascompte (CR25) 2003; 6
CR18
CR17
Lai, Liu, Lin (CR24) 2010; 89
Hainzl (CR20) 1988; 48
Gonzalez-Olivares, Rojas-Palma (CR16) 2011; 73
Orr, Peshin, Dhawan (CR28) 2009
Courchamp, Berec, Gascoigne (CR12) 2008
Boukal, Berec (CR7) 2002; 218
Terry (CR41) 2013; 14
Zhang, Georgescu, Chen (CR50) 2008; 93
Burgman, Ferson, Akcakaya (CR10) 1993
Smith (CR36) 1995
Dennis (CR14) 1989; 3
Hainzl (CR21) 1992; 23
Lopez-Ruiz, Fournier-Prunaret (CR26) 2005; 24
Zu (CR54) 2013; 94
Courchamp, Clutton-Brock, Grenfell (CR11) 1999; 14
Gourley, Kuang (CR19) 2004; 49
Zu, Mimura (CR53) 2010; 217
Allen, Fagan, Hognas, Fagerholm (CR3) 2005; 11
Haque (CR22) 2011; 234
Ives, Gross, Jansen (CR23) 2000; 81
Britton (CR9) 2003
Turchin (CR44) 2003
Bazykin, Berezovskaya, Denisov, Kuznetzov (CR4) 1981; 14
Verdy (CR46) 2010; 221
JR Beddington (856_CR6) 1976; 45
P Turchin (856_CR44) 2003
MA McCarthy (856_CR27) 1997; 103
M Sieber (856_CR34) 2012; 64
PA Abrams (856_CR1) 2000; 15
X Lai (856_CR24) 2010; 89
F Courchamp (856_CR11) 1999; 14
S-R Zhou (856_CR51) 2005; 67
J Zu (856_CR52) 2010; 262
856_CR18
AD Bazykin (856_CR5) 1998
GK Roderick (856_CR32) 2003; 4
D Pimentel (856_CR30) 2000; 50
AP Dobson (856_CR15) 1989; 3
856_CR17
A Liebhold (856_CR25) 2003; 6
J Hainzl (856_CR21) 1992; 23
HL Smith (856_CR36) 1995
N Britton (856_CR9) 2003
P Aguirre (856_CR2) 2009; 69
856_CR47
856_CR48
856_CR49
856_CR43
J Hainzl (856_CR20) 1988; 48
AR Ives (856_CR23) 2000; 81
D Pimentel (856_CR29) 1993
F Brauer (856_CR8) 2001
AJ Terry (856_CR40) 2011; 378
856_CR42
B Dennis (856_CR14) 1989; 3
M Haque (856_CR22) 2011; 234
B Deng (856_CR13) 2007; 208
MA Burgman (856_CR10) 1993
AJ Terry (856_CR41) 2013; 14
M Sen (856_CR33) 2012; 11
GAK Voorn van (856_CR45) 2007; 209
H Zhang (856_CR50) 2008; 93
856_CR37
856_CR38
856_CR39
AD Bazykin (856_CR4) 1981; 14
DS Boukal (856_CR7) 2002; 218
A Verdy (856_CR46) 2010; 221
856_CR31
E Gonzalez-Olivares (856_CR16) 2011; 73
J Zu (856_CR53) 2010; 217
GT Skalski (856_CR35) 2001; 82
J Zu (856_CR54) 2013; 94
D Orr (856_CR28) 2009
SA Gourley (856_CR19) 2004; 49
LJS Allen (856_CR3) 2005; 11
R Lopez-Ruiz (856_CR26) 2005; 24
F Courchamp (856_CR12) 2008
20830610 - Bull Math Biol. 2011 Jun;73(6):1378-97
18467020 - Biosystems. 2008 Sep;93(3):151-71
19852972 - J Theor Biol. 2010 Feb 7;262(3):528-43
21129023 - Conserv Biol. 1989 Dec;3(4):362-80
24345496 - Math Biosci. 2014 Feb;248:57-66
10884706 - Trends Ecol Evol. 2000 Aug;15(8):337-341
17521681 - Math Biosci. 2007 Oct;209(2):451-69
21416386 - J Math Biol. 2012 Jan;64(1-2):341-60
10481205 - Trends Ecol Evol. 1999 Oct;14(10):405-410
12381437 - J Theor Biol. 2002 Oct 7;218(3):375-94
14634636 - Nat Rev Genet. 2003 Nov;4(11):889-99
21810431 - Math Biosci. 2011 Nov;234(1):1-16
15649521 - Theor Popul Biol. 2005 Feb;67(1):23-31
20224917 - J Math Biol. 2011 Mar;62(3):291-331
25195089 - Math Biosci. 2014 Oct;256:102-15
17188309 - Math Biosci. 2007 Jul;208(1):26-32
20087594 - J Math Biol. 2010 Dec;61(6):843-75
15293018 - J Math Biol. 2004 Aug;49(2):188-200
References_xml – volume: 3
  start-page: 362
  year: 1989
  end-page: 380
  ident: CR15
  article-title: The population dynamics and conservation of primate populations
  publication-title: Conserv Biol
  doi: 10.1111/j.1523-1739.1989.tb00242.x
– volume: 103
  start-page: 99
  year: 1997
  end-page: 102
  ident: CR27
  article-title: The Allee effect, finding mates and theoretical models
  publication-title: Ecol Model
  doi: 10.1016/S0304-3800(97)00104-X
– ident: CR49
– ident: CR39
– year: 2008
  ident: CR12
  publication-title: Allee effects in ecology and conservation
  doi: 10.1093/acprof:oso/9780198570301.001.0001
– year: 1995
  ident: CR36
  publication-title: Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems
– volume: 24
  start-page: 85
  year: 2005
  end-page: 101
  ident: CR26
  article-title: Indirect Allee effect, bistability and chaotic oscillations in a predator-prey discrete model of logistic type
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2004.07.018
– ident: CR42
– year: 2003
  ident: CR44
  publication-title: Complex population dynamics: a theoretical/empirical synthesis
– volume: 209
  start-page: 451
  year: 2007
  end-page: 469
  ident: CR45
  article-title: Heteroclinic orbits indicate overexploitation in predator–prey systems with a strong Allee effect
  publication-title: Math Biosci
  doi: 10.1016/j.mbs.2007.02.006
– start-page: 207
  year: 2009
  end-page: 239
  ident: CR28
  article-title: Biological control and integrated pest management
  publication-title: Integrated pest management: innovation-development process
  doi: 10.1007/978-1-4020-8992-3_9
– volume: 73
  start-page: 1378
  year: 2011
  end-page: 1397
  ident: CR16
  article-title: Multiple limit cycles in a Gause type predator–prey model with Holling type III functional response and Allee effect on prey
  publication-title: Bull Math Biol
  doi: 10.1007/s11538-010-9577-5
– year: 1998
  ident: CR5
  publication-title: Nonlinear dynamics of interacting populations
– volume: 234
  start-page: 1
  year: 2011
  end-page: 16
  ident: CR22
  article-title: A detailed study of the Beddington–DeAngelis predator–prey model
  publication-title: Math Biosci
  doi: 10.1016/j.mbs.2011.07.003
– year: 2001
  ident: CR8
  publication-title: Mathematical models in population biology and epidemiology
  doi: 10.1007/978-1-4757-3516-1
– volume: 50
  start-page: 53
  year: 2000
  end-page: 65
  ident: CR30
  article-title: Environmental and economic costs of non-indigenous species in the United States
  publication-title: BioScience
  doi: 10.1641/0006-3568(2000)050[0053:EAECON]2.3.CO;2
– volume: 217
  start-page: 3542
  year: 2010
  end-page: 3556
  ident: CR53
  article-title: The impact of Allee effect on a predator–prey system with Holling type II functional response
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2010.09.029
– volume: 11
  start-page: 273
  year: 2005
  end-page: 293
  ident: CR3
  article-title: Population extinction in discrete-time stochastic population models with an Allee effect
  publication-title: J Differ Equ Appl
  doi: 10.1080/10236190412331335373
– volume: 3
  start-page: 481
  year: 1989
  end-page: 538
  ident: CR14
  article-title: Allee effect population growth, critical density, and chance of extinction
  publication-title: Nat Resour Model
– volume: 23
  start-page: 150
  year: 1992
  end-page: 180
  ident: CR21
  article-title: Multiparameter bifurcation of a predator–prey system
  publication-title: SIAM J Math Anal
  doi: 10.1137/0523008
– year: 1993
  ident: CR10
  publication-title: Risk assessment in conservation biology
– volume: 378
  start-page: 1
  year: 2011
  end-page: 15
  ident: CR40
  article-title: Dynamics of a structured population on two patches
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2011.01.018
– volume: 69
  start-page: 1244
  year: 2009
  end-page: 1262
  ident: CR2
  article-title: Three limit cycles in a Leslie–Gower predator–prey model with additive Allee effect
  publication-title: SIAM J Appl Math
  doi: 10.1137/070705210
– volume: 49
  start-page: 188
  year: 2004
  end-page: 200
  ident: CR19
  article-title: A stage structured predator–prey model and its dependence on maturation delay and death rate
  publication-title: J Math Biol
  doi: 10.1007/s00285-004-0278-2
– volume: 208
  start-page: 26
  year: 2007
  end-page: 32
  ident: CR13
  article-title: Biological control does not imply paradox
  publication-title: Math Biosci
  doi: 10.1016/j.mbs.2005.03.002
– volume: 93
  start-page: 151
  year: 2008
  end-page: 171
  ident: CR50
  article-title: On the impulsive controllability and bifurcation of a predator–pest model of IPM
  publication-title: BioSystems
  doi: 10.1016/j.biosystems.2008.03.008
– ident: CR18
– ident: CR43
– ident: CR47
– volume: 89
  start-page: 1271
  year: 2010
  end-page: 1292
  ident: CR24
  article-title: Rich dynamical behaviours for predator-prey model with weak Allee effect
  publication-title: Appl Anal
  doi: 10.1080/00036811.2010.483557
– ident: CR37
– start-page: 165
  year: 1993
  end-page: 181
  ident: CR29
  article-title: Habitat factors in new pest invasions
  publication-title: Evolution of insect pests—patterns of variation
– volume: 67
  start-page: 23
  year: 2005
  end-page: 31
  ident: CR51
  article-title: The stability of predator–prey systems subject to the Allee effects
  publication-title: Theor Popul Biol
  doi: 10.1016/j.tpb.2004.06.007
– volume: 218
  start-page: 375
  year: 2002
  end-page: 394
  ident: CR7
  article-title: Single-species models of the Allee effect: extinction boundaries, sex ratios and mate encounters
  publication-title: J Theor Biol
  doi: 10.1006/jtbi.2002.3084
– volume: 82
  start-page: 3083
  year: 2001
  end-page: 3092
  ident: CR35
  article-title: Functional responses with predator interference: viable alternatives to the Holling type II model
  publication-title: Ecology
  doi: 10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2
– volume: 4
  start-page: 889
  year: 2003
  end-page: 899
  ident: CR32
  article-title: Genes in new environments: genetics and evolution in biological control
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg1201
– volume: 14
  start-page: 2180
  year: 2013
  end-page: 2203
  ident: CR41
  article-title: Prey resurgence from mortality events in predator–prey models
  publication-title: Nonlinear Anal Real World Appl
  doi: 10.1016/j.nonrwa.2013.04.006
– volume: 14
  start-page: 405
  year: 1999
  end-page: 410
  ident: CR11
  article-title: Inverse density dependence and the Allee effect
  publication-title: Trends Ecol Evol
  doi: 10.1016/S0169-5347(99)01683-3
– volume: 262
  start-page: 528
  year: 2010
  end-page: 543
  ident: CR52
  article-title: The evolution of phenotypic traits in a predator prey system subject to Allee effect
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2009.10.022
– volume: 45
  start-page: 165
  year: 1976
  end-page: 185
  ident: CR6
  article-title: The components of arthropod predation: II. The predator rate of increase
  publication-title: J Anim Ecol
  doi: 10.2307/3773
– volume: 81
  start-page: 3330
  year: 2000
  end-page: 3340
  ident: CR23
  article-title: Periodic mortality events in predator–prey systems
  publication-title: Ecology
– volume: 94
  start-page: 33
  year: 2013
  end-page: 54
  ident: CR54
  article-title: Global qualitative analysis of a predator prey system with Allee effect on the prey species
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2013.05.009
– year: 2003
  ident: CR9
  publication-title: Essential mathematical biology
  doi: 10.1007/978-1-4471-0049-2
– volume: 14
  start-page: 39
  year: 1981
  end-page: 57
  ident: CR4
  article-title: The influence of predator saturation effect and competition among predators on predator–prey system dynamics
  publication-title: Ecol Model
  doi: 10.1016/0304-3800(81)90013-2
– ident: CR48
– volume: 48
  start-page: 170
  year: 1988
  end-page: 190
  ident: CR20
  article-title: Stability and Hopf bifurcation in a predator–prey system with several parameters
  publication-title: SIAM J Appl Math
  doi: 10.1137/0148008
– volume: 15
  start-page: 337
  year: 2000
  end-page: 341
  ident: CR1
  article-title: The nature of predation: prey dependent, ratio dependent or neither?
  publication-title: Trends Ecol Evol
  doi: 10.1016/S0169-5347(00)01908-X
– volume: 64
  start-page: 341
  year: 2012
  end-page: 360
  ident: CR34
  article-title: The hydra effect in predator–prey models
  publication-title: J Math Biol
  doi: 10.1007/s00285-011-0416-6
– ident: CR38
– ident: CR17
– ident: CR31
– volume: 221
  start-page: 1098
  year: 2010
  end-page: 1107
  ident: CR46
  article-title: Modulation of predator–prey interactions by the Allee effect
  publication-title: Ecol Model
  doi: 10.1016/j.ecolmodel.2010.01.005
– volume: 6
  start-page: 133
  year: 2003
  end-page: 140
  ident: CR25
  article-title: The Allee effect, stochastic dynamics and the eradication of alien species
  publication-title: Ecol Lett
  doi: 10.1046/j.1461-0248.2003.00405.x
– volume: 11
  start-page: 12
  year: 2012
  end-page: 27
  ident: CR33
  article-title: Bifurcation analysis of a ratio-dependent prey-predator model with the Allee effect
  publication-title: Ecol Complex
  doi: 10.1016/j.ecocom.2012.01.002
– volume: 234
  start-page: 1
  year: 2011
  ident: 856_CR22
  publication-title: Math Biosci
  doi: 10.1016/j.mbs.2011.07.003
– volume: 14
  start-page: 2180
  year: 2013
  ident: 856_CR41
  publication-title: Nonlinear Anal Real World Appl
  doi: 10.1016/j.nonrwa.2013.04.006
– volume: 64
  start-page: 341
  year: 2012
  ident: 856_CR34
  publication-title: J Math Biol
  doi: 10.1007/s00285-011-0416-6
– start-page: 165
  volume-title: Evolution of insect pests—patterns of variation
  year: 1993
  ident: 856_CR29
– volume: 11
  start-page: 12
  year: 2012
  ident: 856_CR33
  publication-title: Ecol Complex
  doi: 10.1016/j.ecocom.2012.01.002
– volume: 82
  start-page: 3083
  year: 2001
  ident: 856_CR35
  publication-title: Ecology
  doi: 10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2
– volume: 15
  start-page: 337
  year: 2000
  ident: 856_CR1
  publication-title: Trends Ecol Evol
  doi: 10.1016/S0169-5347(00)01908-X
– ident: 856_CR49
  doi: 10.1155/2013/984960
– ident: 856_CR38
  doi: 10.1016/j.nonrwa.2009.01.005
– volume: 378
  start-page: 1
  year: 2011
  ident: 856_CR40
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2011.01.018
– volume-title: Mathematical models in population biology and epidemiology
  year: 2001
  ident: 856_CR8
  doi: 10.1007/978-1-4757-3516-1
– volume: 45
  start-page: 165
  year: 1976
  ident: 856_CR6
  publication-title: J Anim Ecol
  doi: 10.2307/3773
– volume-title: Nonlinear dynamics of interacting populations
  year: 1998
  ident: 856_CR5
  doi: 10.1142/2284
– volume: 14
  start-page: 405
  year: 1999
  ident: 856_CR11
  publication-title: Trends Ecol Evol
  doi: 10.1016/S0169-5347(99)01683-3
– ident: 856_CR31
  doi: 10.1155/2013/340980
– volume: 24
  start-page: 85
  year: 2005
  ident: 856_CR26
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2004.07.018
– ident: 856_CR39
  doi: 10.1007/s00285-009-0325-0
– volume: 94
  start-page: 33
  year: 2013
  ident: 856_CR54
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2013.05.009
– ident: 856_CR47
  doi: 10.1016/j.ecocom.2010.04.005
– ident: 856_CR43
  doi: 10.1016/j.mbs.2014.08.009
– volume: 209
  start-page: 451
  year: 2007
  ident: 856_CR45
  publication-title: Math Biosci
  doi: 10.1016/j.mbs.2007.02.006
– volume: 221
  start-page: 1098
  year: 2010
  ident: 856_CR46
  publication-title: Ecol Model
  doi: 10.1016/j.ecolmodel.2010.01.005
– volume: 217
  start-page: 3542
  year: 2010
  ident: 856_CR53
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2010.09.029
– volume: 11
  start-page: 273
  year: 2005
  ident: 856_CR3
  publication-title: J Differ Equ Appl
  doi: 10.1080/10236190412331335373
– volume: 69
  start-page: 1244
  year: 2009
  ident: 856_CR2
  publication-title: SIAM J Appl Math
  doi: 10.1137/070705210
– volume: 48
  start-page: 170
  year: 1988
  ident: 856_CR20
  publication-title: SIAM J Appl Math
  doi: 10.1137/0148008
– volume: 93
  start-page: 151
  year: 2008
  ident: 856_CR50
  publication-title: BioSystems
  doi: 10.1016/j.biosystems.2008.03.008
– volume: 81
  start-page: 3330
  year: 2000
  ident: 856_CR23
  publication-title: Ecology
– volume-title: Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems
  year: 1995
  ident: 856_CR36
– volume: 6
  start-page: 133
  year: 2003
  ident: 856_CR25
  publication-title: Ecol Lett
  doi: 10.1046/j.1461-0248.2003.00405.x
– volume: 23
  start-page: 150
  year: 1992
  ident: 856_CR21
  publication-title: SIAM J Math Anal
  doi: 10.1137/0523008
– volume-title: Allee effects in ecology and conservation
  year: 2008
  ident: 856_CR12
  doi: 10.1093/acprof:oso/9780198570301.001.0001
– volume: 73
  start-page: 1378
  year: 2011
  ident: 856_CR16
  publication-title: Bull Math Biol
  doi: 10.1007/s11538-010-9577-5
– volume: 208
  start-page: 26
  year: 2007
  ident: 856_CR13
  publication-title: Math Biosci
  doi: 10.1016/j.mbs.2005.03.002
– volume: 67
  start-page: 23
  year: 2005
  ident: 856_CR51
  publication-title: Theor Popul Biol
  doi: 10.1016/j.tpb.2004.06.007
– volume: 218
  start-page: 375
  year: 2002
  ident: 856_CR7
  publication-title: J Theor Biol
  doi: 10.1006/jtbi.2002.3084
– ident: 856_CR37
– volume-title: Complex population dynamics: a theoretical/empirical synthesis
  year: 2003
  ident: 856_CR44
– volume: 14
  start-page: 39
  year: 1981
  ident: 856_CR4
  publication-title: Ecol Model
  doi: 10.1016/0304-3800(81)90013-2
– ident: 856_CR17
  doi: 10.1016/j.nonrwa.2011.04.003
– volume: 49
  start-page: 188
  year: 2004
  ident: 856_CR19
  publication-title: J Math Biol
  doi: 10.1007/s00285-004-0278-2
– ident: 856_CR18
  doi: 10.1016/j.apm.2010.07.001
– volume-title: Essential mathematical biology
  year: 2003
  ident: 856_CR9
  doi: 10.1007/978-1-4471-0049-2
– start-page: 207
  volume-title: Integrated pest management: innovation-development process
  year: 2009
  ident: 856_CR28
  doi: 10.1007/978-1-4020-8992-3_9
– volume: 262
  start-page: 528
  year: 2010
  ident: 856_CR52
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2009.10.022
– volume: 4
  start-page: 889
  year: 2003
  ident: 856_CR32
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg1201
– volume-title: Risk assessment in conservation biology
  year: 1993
  ident: 856_CR10
– ident: 856_CR42
  doi: 10.1016/j.mbs.2013.12.002
– volume: 3
  start-page: 362
  year: 1989
  ident: 856_CR15
  publication-title: Conserv Biol
  doi: 10.1111/j.1523-1739.1989.tb00242.x
– volume: 103
  start-page: 99
  year: 1997
  ident: 856_CR27
  publication-title: Ecol Model
  doi: 10.1016/S0304-3800(97)00104-X
– volume: 89
  start-page: 1271
  year: 2010
  ident: 856_CR24
  publication-title: Appl Anal
  doi: 10.1080/00036811.2010.483557
– volume: 3
  start-page: 481
  year: 1989
  ident: 856_CR14
  publication-title: Nat Resour Model
  doi: 10.1111/j.1939-7445.1989.tb00119.x
– volume: 50
  start-page: 53
  year: 2000
  ident: 856_CR30
  publication-title: BioScience
  doi: 10.1641/0006-3568(2000)050[0053:EAECON]2.3.CO;2
– ident: 856_CR48
  doi: 10.1007/s00285-010-0332-1
– reference: 15649521 - Theor Popul Biol. 2005 Feb;67(1):23-31
– reference: 20087594 - J Math Biol. 2010 Dec;61(6):843-75
– reference: 20830610 - Bull Math Biol. 2011 Jun;73(6):1378-97
– reference: 18467020 - Biosystems. 2008 Sep;93(3):151-71
– reference: 17521681 - Math Biosci. 2007 Oct;209(2):451-69
– reference: 19852972 - J Theor Biol. 2010 Feb 7;262(3):528-43
– reference: 10481205 - Trends Ecol Evol. 1999 Oct;14(10):405-410
– reference: 15293018 - J Math Biol. 2004 Aug;49(2):188-200
– reference: 24345496 - Math Biosci. 2014 Feb;248:57-66
– reference: 21129023 - Conserv Biol. 1989 Dec;3(4):362-80
– reference: 10884706 - Trends Ecol Evol. 2000 Aug;15(8):337-341
– reference: 21810431 - Math Biosci. 2011 Nov;234(1):1-16
– reference: 14634636 - Nat Rev Genet. 2003 Nov;4(11):889-99
– reference: 20224917 - J Math Biol. 2011 Mar;62(3):291-331
– reference: 25195089 - Math Biosci. 2014 Oct;256:102-15
– reference: 21416386 - J Math Biol. 2012 Jan;64(1-2):341-60
– reference: 12381437 - J Theor Biol. 2002 Oct 7;218(3):375-94
– reference: 17188309 - Math Biosci. 2007 Jul;208(1):26-32
SSID ssj0017591
Score 2.3590598
Snippet We present four predator–prey models with component Allee effect for predator reproduction. Using numerical simulation results for our models, we describe how...
We present four predator-prey models with component Allee effect for predator reproduction. Using numerical simulation results for our models, we describe how...
We present four Predator-prey models with component Allee effect for predator reproduction. Using numerical simulation results for our models, we describe how...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1325
SubjectTerms Animals
Applications of Mathematics
Computer Simulation
Ecosystem
Female
Food Chain
Genetic Fitness
Male
Mathematical and Computational Biology
Mathematical Concepts
Mathematics
Mathematics and Statistics
Models, Biological
Pest Control, Biological
Population Dynamics
Predatory Behavior - physiology
Reproduction
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSsQwEB50RdCD6PpXXSWCJyXQpk2bHBdxWcQVD7uwt5I26Wmpy3b34M138A19Eif9Q1kVPPTUJA0zSeabzPQbgGvjC-NpX9E0YSk6KDqgUuqIai0yy74i3JKnYPQUDifBw5RP6_-4iybbvQlJlid1-7ObdQ9sohk-goeUb8IWt647LuIJ67ehg4hXZfLwbKaWXKsJZf40xHdjtIYw16KjpdEZ7MNejRZJv1LvAWyYvAvbVf3I1y7sjlrS1eIQHp8XRlsf-uPtfY4aImWVm4LYq1ZiU8dfcrQwpD-bGUOqPA6CkJXM627EElyW_K-oqyMYD-7Hd0NaF0ugqR-xJY0SHQael4ZCBpplQppQKp9ldjiXK1czdHZNkIRKZZLrROLG1IiFlIz8yEv8Y-jkOI1TwAlohEHMjzKVBEYo4QsEjTwVaOzcVHMH3EZocVoTidt6FrO4pUAu5RyjnGMr5xi73LRd5hWLxl-Ne40m4npDFTHiLJyoG7HQgav2NW4FG99QuXlZ2TYIhvA8cl0HTioNtl9DZGcvuQIHbhuVfhn8t6mc_av1Oewwu7bKZJcedJaLlblAyLJMLssl-gkw7OFy
  priority: 102
  providerName: Springer Nature
Title Predator–prey models with component Allee effect for predator reproduction
URI https://link.springer.com/article/10.1007/s00285-015-0856-5
https://www.ncbi.nlm.nih.gov/pubmed/25697834
https://www.proquest.com/docview/1729730726
https://www.proquest.com/docview/1731788000
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60IngR31ZrieBJCW6zr-xJWmkVxVKkQj0t2U32VLbV1oP_3pnsQ0XsYXcPeWyYSTLfJMM3ABfGlaajXcXTRKTooGiPR5EOudYyI_YV6ViegqdhcP_iPUz8SXngtijDKqs90W7UepbSGfk1GtoIZ2Mogpv5G6esUXS7WqbQWIcNoi6jkK5wUjtcaBmLjHm4TXPi2apuNR1LIiokha3hI_2A-7_t0h-w-eei1NqfwQ5sl8CRdQtN78Kayfdgs0gl-bkPD6N3o8mB5nNUDrMJbhaMTlkZRY3PcjQurDudGsOKEA6GaJXNy0aMuC0t9Suq6QDGg_749p6XeRJ46oZiycNEB16nkwYy8rTIZGSCSLkio-4cXzlaoJ9rvCRQKot8nUS4JjXCIIUCDTuJewiNHIdxDDgAjQhIuGGmEs9IJV2JeNFPJdo5J9V-E5xKSHFacohTKotpXLMfW7nGKNeY5Bpjk8u6ybwg0FhVuVVJPi7X0iL-1nwTzutiXAV0taFyM_ugOoiDcCtynCYcFRqr_4agjs63vCZcVSr80fl_QzlZPZRT2BI0eWxgSwsay_cPc4bwZJm07RzEtxzctWGjO-j1hvS9e33s47fXH46esfRFdL8ABS3lEg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xUEUvCFoKW15Gohcqi6ydh31ACAHb5akethI3y4md02p3yy6q-FH8R2acR4tQuXHIKXFijT97Pnsm3wDse6l810nLi1wUuEFxMdfaZdw5VZL6ioqCTsHNbdr_FV_eJXdz8NT8C0Nplc2aGBZqNy7ojPwQHa1GNGYiPZ785lQ1iqKrTQmNChZX_vEPbtmmRxdnOL7fhOidD077vK4qwAuZiRnPcpfG3W6RKh07USrtU22lKCl_Ikps5ATuCn2cp9aWOnG5RgQ7JA0WP591c4mvnYfFWEpNE0r1frRBiyypCvShV-Ak69UEUaOgWSoUZcnhpZKUJy_d4Ctu-youG9xdbwWWa57KTipgrcKcH32CD1XlysfPcPnz3jvar_MJYoGFejpTRoe6jJLUxyP0ZexkOPSeVRkjDMkxm9SNGElpBqVZRMUaDN7DgF9gYYTd2ADsgEPCJWRW2jz2yiqpkJ4mhUK3GhUu6UDUGMkUtWQ5Vc4YmlZsOdjVoF0N2dVgk4O2yaTS63jr4a3G8qaeulPzF2gd2Gtv46SjSIod-fEDPYO0C1e-KOrAejVi7deQQ9JxWtyB780Q_vPy_3Xl69td2YWl_uDm2lxf3F5twkdBQAo5NVuwMLt_8NvIjGb5TsAjA_PO-H8GV80bJg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEB58oHgR39ZnBL0owd3sK3sQEbX4xoNCbyG7yZ5KW21F_Gn-O2eyDxXRm4eeutkOky-Zb5LpNwC7NpDWN4HmeSZyTFBMyNPUJNwYWZD6ivScTsHtXXzxGF51os4YvNf_haGyynpPdBu16ed0Rn6IgTZFNCYiPiyqsoj7s_bx4IlTBym6aa3baZQQubZvr5i-DY8uz3Cu94Ronz-cXvCqwwDPg0SMeJKZOPT9PJZpaEQhUxunOhAF1VJ4kfaMwAzRhlmsdZFGJksRzQYJhEZTEj8L8LXjMJkEkU9LLOk0uR4G5bJZH0YIThJf9YWq5_RLhaSKOfzIKObR95D4g-f-uKN1oa89B7MVZ2UnJcjmYcz2FmCq7GL5tghX98_WUO7OB4gL5nrrDBkd8DIqWO_3MK6xk27XWlZWjzAkymxQDWIkq-lUZxEhS_DwHw5chokemrEKaIBB8iWCpNBZaKWWgUSqGuUSQ6yXm6gFXu0klVfy5dRFo6sa4WXnV4V-VeRXhUP2myGDUrvjr4c3as-rahkP1SfoWrDTfI0LkG5VdM_2X-gZpGC4C3peC1bKGWt-DfkkHa2FLTiop_DLy38zZe1vU7ZhGpGvbi7vrtdhRhCOXHnNBkyMnl_sJpKkUbbl4MhA_TP8PwCA0B9T
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predator-prey+models+with+component+Allee+effect+for+predator+reproduction&rft.jtitle=Journal+of+mathematical+biology&rft.au=Terry%2C+Alan+J&rft.date=2015-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0303-6812&rft.eissn=1432-1416&rft.volume=71&rft.issue=6-7&rft.spage=1325&rft_id=info:doi/10.1007%2Fs00285-015-0856-5&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3856904841
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0303-6812&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0303-6812&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0303-6812&client=summon