Predator–prey models with component Allee effect for predator reproduction
We present four predator–prey models with component Allee effect for predator reproduction. Using numerical simulation results for our models, we describe how the customary definitions of component and demographic Allee effects, which work well for single species models, can be extended to predators...
Saved in:
Published in | Journal of mathematical biology Vol. 71; no. 6-7; pp. 1325 - 1352 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2015
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0303-6812 1432-1416 1432-1416 |
DOI | 10.1007/s00285-015-0856-5 |
Cover
Loading…
Abstract | We present four predator–prey models with component Allee effect for predator reproduction. Using numerical simulation results for our models, we describe how the customary definitions of component and demographic Allee effects, which work well for single species models, can be extended to predators in predator–prey models by assuming that the prey population is held fixed. We also find that when the prey population is not held fixed, then these customary definitions may lead to conceptual problems. After this discussion of definitions, we explore our four models, analytically and numerically. Each of our models has a fixed point that represents predator extinction, which is always locally stable. We prove that the predator will always die out either if the initial predator population is sufficiently small or if the initial prey population is sufficiently small. Through numerical simulations, we explore co-existence fixed points. In addition, we demonstrate, by simulation, the existence of a stable limit cycle in one of our models. Finally, we derive analytical conditions for a co-existence trapping region in three of our models, and show that the fourth model cannot possess a particular kind of co-existence trapping region. We punctuate our results with comments on their real-world implications; in particular, we mention the possibility of prey resurgence from mortality events, and the possibility of failure in a biological pest control program. |
---|---|
AbstractList | We present four predator-prey models with component Allee effect for predator reproduction. Using numerical simulation results for our models, we describe how the customary definitions of component and demographic Allee effects, which work well for single species models, can be extended to predators in predator-prey models by assuming that the prey population is held fixed. We also find that when the prey population is not held fixed, then these customary definitions may lead to conceptual problems. After this discussion of definitions, we explore our four models, analytically and numerically. Each of our models has a fixed point that represents predator extinction, which is always locally stable. We prove that the predator will always die out either if the initial predator population is sufficiently small or if the initial prey population is sufficiently small. Through numerical simulations, we explore co-existence fixed points. In addition, we demonstrate, by simulation, the existence of a stable limit cycle in one of our models. Finally, we derive analytical conditions for a co-existence trapping region in three of our models, and show that the fourth model cannot possess a particular kind of co-existence trapping region. We punctuate our results with comments on their real-world implications; in particular, we mention the possibility of prey resurgence from mortality events, and the possibility of failure in a biological pest control program.We present four predator-prey models with component Allee effect for predator reproduction. Using numerical simulation results for our models, we describe how the customary definitions of component and demographic Allee effects, which work well for single species models, can be extended to predators in predator-prey models by assuming that the prey population is held fixed. We also find that when the prey population is not held fixed, then these customary definitions may lead to conceptual problems. After this discussion of definitions, we explore our four models, analytically and numerically. Each of our models has a fixed point that represents predator extinction, which is always locally stable. We prove that the predator will always die out either if the initial predator population is sufficiently small or if the initial prey population is sufficiently small. Through numerical simulations, we explore co-existence fixed points. In addition, we demonstrate, by simulation, the existence of a stable limit cycle in one of our models. Finally, we derive analytical conditions for a co-existence trapping region in three of our models, and show that the fourth model cannot possess a particular kind of co-existence trapping region. We punctuate our results with comments on their real-world implications; in particular, we mention the possibility of prey resurgence from mortality events, and the possibility of failure in a biological pest control program. We present four predator–prey models with component Allee effect for predator reproduction. Using numerical simulation results for our models, we describe how the customary definitions of component and demographic Allee effects, which work well for single species models, can be extended to predators in predator–prey models by assuming that the prey population is held fixed. We also find that when the prey population is not held fixed, then these customary definitions may lead to conceptual problems. After this discussion of definitions, we explore our four models, analytically and numerically. Each of our models has a fixed point that represents predator extinction, which is always locally stable. We prove that the predator will always die out either if the initial predator population is sufficiently small or if the initial prey population is sufficiently small. Through numerical simulations, we explore co-existence fixed points. In addition, we demonstrate, by simulation, the existence of a stable limit cycle in one of our models. Finally, we derive analytical conditions for a co-existence trapping region in three of our models, and show that the fourth model cannot possess a particular kind of co-existence trapping region. We punctuate our results with comments on their real-world implications; in particular, we mention the possibility of prey resurgence from mortality events, and the possibility of failure in a biological pest control program. |
Author | Terry, Alan J. |
Author_xml | – sequence: 1 givenname: Alan J. surname: Terry fullname: Terry, Alan J. email: aterry.maths@outlook.com organization: Division of Mathematics, University of Dundee |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25697834$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1q3TAQRkVJaW7SPkA3wZBNN25nJFuyliGkP3ChXWQvZGvcOtiWI8mE7PIOecM-SXW5t6UEkoXQ5pxvhvlO2NHsZ2LsPcJHBFCfIgBv6hIwv6aWZf2KbbASvMQK5RHbgABRygb5MTuJ8QYAVa3xDTvmtdSqEdWGbX8Ecjb58PvhcQl0X0ze0RiLuyH9Kjo_LXninIqLcSQqqO-pS0XvQ7EctCLQErxbuzT4-S173dsx0rvDf8quP19dX34tt9-_fLu82JadUDyVqnWyQuxkoyvH-0aT1FbwfhcPtQXHVdNQ1Upre127VistXFWh1UoobMUp-7CPzZNvV4rJTEPsaBztTH6NBpXAnAAAGT1_gt74Ncx5uUzxnAeKy0ydHai1nciZJQyTDffm75kygHugCz7GQP0_BMHsqjD7KkyuwuyqMHV21BOnG5LdnSkFO4wvmnxvxjxl_knhv6Wflf4ANMOdHQ |
CitedBy_id | crossref_primary_10_1007_s00285_023_01957_x crossref_primary_10_1088_1402_4896_adb654 crossref_primary_10_1142_S1793524518500572 crossref_primary_10_1007_s00285_019_01425_5 crossref_primary_10_1080_23737867_2017_1282843 crossref_primary_10_1016_j_chaos_2025_116125 crossref_primary_10_1142_S0218127421502497 crossref_primary_10_1016_j_nonrwa_2020_103249 crossref_primary_10_1142_S0218127419500810 crossref_primary_10_1007_s11538_021_00893_5 crossref_primary_10_1007_s12346_023_00832_w crossref_primary_10_1007_s40808_024_01973_w crossref_primary_10_1007_s11587_016_0273_0 crossref_primary_10_2139_ssrn_4007052 crossref_primary_10_3390_math10040655 crossref_primary_10_1007_s40314_024_02603_y crossref_primary_10_1007_s12190_021_01520_1 crossref_primary_10_1007_s11071_016_3270_7 crossref_primary_10_1016_j_apm_2021_07_037 crossref_primary_10_1007_s00285_016_1063_8 crossref_primary_10_1016_j_chaos_2023_114004 crossref_primary_10_3934_dcdsb_2023161 crossref_primary_10_1007_s12346_017_0223_6 crossref_primary_10_1155_jom_7899943 crossref_primary_10_1016_j_cnsns_2022_106644 crossref_primary_10_1016_j_nonrwa_2019_06_008 crossref_primary_10_1142_S0218339023500201 crossref_primary_10_1186_s13662_021_03490_x crossref_primary_10_1007_s00285_025_02197_x crossref_primary_10_1088_1742_6596_1821_1_012051 crossref_primary_10_1007_s10255_023_1084_1 crossref_primary_10_1142_S0218127420500844 crossref_primary_10_1142_S1793524517500371 crossref_primary_10_1016_j_physa_2019_121350 crossref_primary_10_1016_j_ecolmodel_2019_05_011 crossref_primary_10_1016_j_matcom_2021_10_027 crossref_primary_10_1007_s11071_024_09451_9 crossref_primary_10_1016_j_cnsns_2022_106454 crossref_primary_10_1016_j_matcom_2019_03_010 crossref_primary_10_1016_j_amc_2015_09_006 crossref_primary_10_1016_j_ecocom_2021_100939 crossref_primary_10_1007_s12080_017_0361_0 crossref_primary_10_3934_math_2020394 crossref_primary_10_12677_AAM_2021_1010376 crossref_primary_10_1016_j_jtbi_2023_111610 crossref_primary_10_1016_j_mbs_2023_109075 crossref_primary_10_1063_5_0152946 crossref_primary_10_3390_math10091500 crossref_primary_10_1016_j_matcom_2024_07_034 crossref_primary_10_1088_1751_8121_ad43ca crossref_primary_10_1140_epjp_s13360_024_05628_8 |
Cites_doi | 10.1111/j.1523-1739.1989.tb00242.x 10.1016/S0304-3800(97)00104-X 10.1093/acprof:oso/9780198570301.001.0001 10.1016/j.chaos.2004.07.018 10.1016/j.mbs.2007.02.006 10.1007/978-1-4020-8992-3_9 10.1007/s11538-010-9577-5 10.1016/j.mbs.2011.07.003 10.1007/978-1-4757-3516-1 10.1641/0006-3568(2000)050[0053:EAECON]2.3.CO;2 10.1016/j.amc.2010.09.029 10.1080/10236190412331335373 10.1137/0523008 10.1016/j.jmaa.2011.01.018 10.1137/070705210 10.1007/s00285-004-0278-2 10.1016/j.mbs.2005.03.002 10.1016/j.biosystems.2008.03.008 10.1080/00036811.2010.483557 10.1016/j.tpb.2004.06.007 10.1006/jtbi.2002.3084 10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2 10.1038/nrg1201 10.1016/j.nonrwa.2013.04.006 10.1016/S0169-5347(99)01683-3 10.1016/j.jtbi.2009.10.022 10.2307/3773 10.1016/j.matcom.2013.05.009 10.1007/978-1-4471-0049-2 10.1016/0304-3800(81)90013-2 10.1137/0148008 10.1016/S0169-5347(00)01908-X 10.1007/s00285-011-0416-6 10.1016/j.ecolmodel.2010.01.005 10.1046/j.1461-0248.2003.00405.x 10.1016/j.ecocom.2012.01.002 10.1155/2013/984960 10.1016/j.nonrwa.2009.01.005 10.1142/2284 10.1155/2013/340980 10.1007/s00285-009-0325-0 10.1016/j.ecocom.2010.04.005 10.1016/j.mbs.2014.08.009 10.1016/j.nonrwa.2011.04.003 10.1016/j.apm.2010.07.001 10.1016/j.mbs.2013.12.002 10.1111/j.1939-7445.1989.tb00119.x 10.1007/s00285-010-0332-1 |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg 2015 |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7TM 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ JQ2 K7- K9. L6V LK8 M0S M1P M7N M7P M7S M7Z P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 |
DOI | 10.1007/s00285-015-0856-5 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection ProQuest Biological Science Collection Health & Medical Collection (Alumni) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Biochemistry Abstracts 1 ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Computer Science Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Mathematics |
EISSN | 1432-1416 |
EndPage | 1352 |
ExternalDocumentID | 3856904841 25697834 10_1007_s00285_015_0856_5 |
Genre | Journal Article |
GroupedDBID | --- -52 -5D -5G -BR -EM -Y2 -~C -~X .86 06D 0R~ 0VY 186 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 3-Y 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 7X7 88A 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAGAY AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP D0L DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMB EMOBN EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAS LK8 LLZTM M0L M1P M4Y M7P M7S MA- MQGED MVM N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQQKQ PROAC PSQYO PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 T16 TN5 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WIP WJK WK6 WK8 YLTOR YQT Z45 Z7U ZMTXR ZWQNP ZXP ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7TK 7TM 7U9 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ H94 JQ2 K9. M7N M7Z P64 PKEHL PQEST PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c372t-7bd6411c6894d2f89e69a32feffe05a0d2788e4b6aaf95db9793d441a97371b3 |
IEDL.DBID | 7X7 |
ISSN | 0303-6812 1432-1416 |
IngestDate | Wed Jul 30 10:29:19 EDT 2025 Fri Jul 25 19:08:41 EDT 2025 Mon Jul 21 05:58:57 EDT 2025 Tue Jul 01 02:03:12 EDT 2025 Thu Apr 24 22:52:17 EDT 2025 Fri Feb 21 02:33:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6-7 |
Keywords | Prey resurgence Allee effect Predator birth rate Trapping region 34C60 Predator–prey model 92D40 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-7bd6411c6894d2f89e69a32feffe05a0d2788e4b6aaf95db9793d441a97371b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 25697834 |
PQID | 1729730726 |
PQPubID | 54026 |
PageCount | 28 |
ParticipantIDs | proquest_miscellaneous_1731788000 proquest_journals_1729730726 pubmed_primary_25697834 crossref_primary_10_1007_s00285_015_0856_5 crossref_citationtrail_10_1007_s00285_015_0856_5 springer_journals_10_1007_s00285_015_0856_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-12-01 |
PublicationDateYYYYMMDD | 2015-12-01 |
PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | Journal of mathematical biology |
PublicationTitleAbbrev | J. Math. Biol |
PublicationTitleAlternate | J Math Biol |
PublicationYear | 2015 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Pimentel, Kim, McPheron (CR29) 1993 Sieber, Hilker (CR34) 2012; 64 Dobson, Lyles (CR15) 1989; 3 Roderick, Navajas (CR32) 2003; 4 Bazykin (CR5) 1998 Zhou, Liu, Wang (CR51) 2005; 67 CR39 CR38 CR37 CR31 Terry (CR40) 2011; 378 Beddington, Hassell, Lawton (CR6) 1976; 45 Skalski, Gilliam (CR35) 2001; 82 CR49 CR48 CR47 Zu, Mimura, Wakano (CR52) 2010; 262 CR43 Deng, Jessie, Ledder, Rand, Srodulski (CR13) 2007; 208 McCarthy (CR27) 1997; 103 CR42 Pimentel, Lach, Zuniga, Morrison (CR30) 2000; 50 van Voorn, Hemerik, Boer, Kooi (CR45) 2007; 209 Brauer, Castillo-Chávez (CR8) 2001 Abrams, Ginzburg (CR1) 2000; 15 Aguirre, Gonzalez-Olivares, Saez (CR2) 2009; 69 Sen, Banerjee, Morozov (CR33) 2012; 11 Liebhold, Bascompte (CR25) 2003; 6 CR18 CR17 Lai, Liu, Lin (CR24) 2010; 89 Hainzl (CR20) 1988; 48 Gonzalez-Olivares, Rojas-Palma (CR16) 2011; 73 Orr, Peshin, Dhawan (CR28) 2009 Courchamp, Berec, Gascoigne (CR12) 2008 Boukal, Berec (CR7) 2002; 218 Terry (CR41) 2013; 14 Zhang, Georgescu, Chen (CR50) 2008; 93 Burgman, Ferson, Akcakaya (CR10) 1993 Smith (CR36) 1995 Dennis (CR14) 1989; 3 Hainzl (CR21) 1992; 23 Lopez-Ruiz, Fournier-Prunaret (CR26) 2005; 24 Zu (CR54) 2013; 94 Courchamp, Clutton-Brock, Grenfell (CR11) 1999; 14 Gourley, Kuang (CR19) 2004; 49 Zu, Mimura (CR53) 2010; 217 Allen, Fagan, Hognas, Fagerholm (CR3) 2005; 11 Haque (CR22) 2011; 234 Ives, Gross, Jansen (CR23) 2000; 81 Britton (CR9) 2003 Turchin (CR44) 2003 Bazykin, Berezovskaya, Denisov, Kuznetzov (CR4) 1981; 14 Verdy (CR46) 2010; 221 JR Beddington (856_CR6) 1976; 45 P Turchin (856_CR44) 2003 MA McCarthy (856_CR27) 1997; 103 M Sieber (856_CR34) 2012; 64 PA Abrams (856_CR1) 2000; 15 X Lai (856_CR24) 2010; 89 F Courchamp (856_CR11) 1999; 14 S-R Zhou (856_CR51) 2005; 67 J Zu (856_CR52) 2010; 262 856_CR18 AD Bazykin (856_CR5) 1998 GK Roderick (856_CR32) 2003; 4 D Pimentel (856_CR30) 2000; 50 AP Dobson (856_CR15) 1989; 3 856_CR17 A Liebhold (856_CR25) 2003; 6 J Hainzl (856_CR21) 1992; 23 HL Smith (856_CR36) 1995 N Britton (856_CR9) 2003 P Aguirre (856_CR2) 2009; 69 856_CR47 856_CR48 856_CR49 856_CR43 J Hainzl (856_CR20) 1988; 48 AR Ives (856_CR23) 2000; 81 D Pimentel (856_CR29) 1993 F Brauer (856_CR8) 2001 AJ Terry (856_CR40) 2011; 378 856_CR42 B Dennis (856_CR14) 1989; 3 M Haque (856_CR22) 2011; 234 B Deng (856_CR13) 2007; 208 MA Burgman (856_CR10) 1993 AJ Terry (856_CR41) 2013; 14 M Sen (856_CR33) 2012; 11 GAK Voorn van (856_CR45) 2007; 209 H Zhang (856_CR50) 2008; 93 856_CR37 856_CR38 856_CR39 AD Bazykin (856_CR4) 1981; 14 DS Boukal (856_CR7) 2002; 218 A Verdy (856_CR46) 2010; 221 856_CR31 E Gonzalez-Olivares (856_CR16) 2011; 73 J Zu (856_CR53) 2010; 217 GT Skalski (856_CR35) 2001; 82 J Zu (856_CR54) 2013; 94 D Orr (856_CR28) 2009 SA Gourley (856_CR19) 2004; 49 LJS Allen (856_CR3) 2005; 11 R Lopez-Ruiz (856_CR26) 2005; 24 F Courchamp (856_CR12) 2008 20830610 - Bull Math Biol. 2011 Jun;73(6):1378-97 18467020 - Biosystems. 2008 Sep;93(3):151-71 19852972 - J Theor Biol. 2010 Feb 7;262(3):528-43 21129023 - Conserv Biol. 1989 Dec;3(4):362-80 24345496 - Math Biosci. 2014 Feb;248:57-66 10884706 - Trends Ecol Evol. 2000 Aug;15(8):337-341 17521681 - Math Biosci. 2007 Oct;209(2):451-69 21416386 - J Math Biol. 2012 Jan;64(1-2):341-60 10481205 - Trends Ecol Evol. 1999 Oct;14(10):405-410 12381437 - J Theor Biol. 2002 Oct 7;218(3):375-94 14634636 - Nat Rev Genet. 2003 Nov;4(11):889-99 21810431 - Math Biosci. 2011 Nov;234(1):1-16 15649521 - Theor Popul Biol. 2005 Feb;67(1):23-31 20224917 - J Math Biol. 2011 Mar;62(3):291-331 25195089 - Math Biosci. 2014 Oct;256:102-15 17188309 - Math Biosci. 2007 Jul;208(1):26-32 20087594 - J Math Biol. 2010 Dec;61(6):843-75 15293018 - J Math Biol. 2004 Aug;49(2):188-200 |
References_xml | – volume: 3 start-page: 362 year: 1989 end-page: 380 ident: CR15 article-title: The population dynamics and conservation of primate populations publication-title: Conserv Biol doi: 10.1111/j.1523-1739.1989.tb00242.x – volume: 103 start-page: 99 year: 1997 end-page: 102 ident: CR27 article-title: The Allee effect, finding mates and theoretical models publication-title: Ecol Model doi: 10.1016/S0304-3800(97)00104-X – ident: CR49 – ident: CR39 – year: 2008 ident: CR12 publication-title: Allee effects in ecology and conservation doi: 10.1093/acprof:oso/9780198570301.001.0001 – year: 1995 ident: CR36 publication-title: Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems – volume: 24 start-page: 85 year: 2005 end-page: 101 ident: CR26 article-title: Indirect Allee effect, bistability and chaotic oscillations in a predator-prey discrete model of logistic type publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2004.07.018 – ident: CR42 – year: 2003 ident: CR44 publication-title: Complex population dynamics: a theoretical/empirical synthesis – volume: 209 start-page: 451 year: 2007 end-page: 469 ident: CR45 article-title: Heteroclinic orbits indicate overexploitation in predator–prey systems with a strong Allee effect publication-title: Math Biosci doi: 10.1016/j.mbs.2007.02.006 – start-page: 207 year: 2009 end-page: 239 ident: CR28 article-title: Biological control and integrated pest management publication-title: Integrated pest management: innovation-development process doi: 10.1007/978-1-4020-8992-3_9 – volume: 73 start-page: 1378 year: 2011 end-page: 1397 ident: CR16 article-title: Multiple limit cycles in a Gause type predator–prey model with Holling type III functional response and Allee effect on prey publication-title: Bull Math Biol doi: 10.1007/s11538-010-9577-5 – year: 1998 ident: CR5 publication-title: Nonlinear dynamics of interacting populations – volume: 234 start-page: 1 year: 2011 end-page: 16 ident: CR22 article-title: A detailed study of the Beddington–DeAngelis predator–prey model publication-title: Math Biosci doi: 10.1016/j.mbs.2011.07.003 – year: 2001 ident: CR8 publication-title: Mathematical models in population biology and epidemiology doi: 10.1007/978-1-4757-3516-1 – volume: 50 start-page: 53 year: 2000 end-page: 65 ident: CR30 article-title: Environmental and economic costs of non-indigenous species in the United States publication-title: BioScience doi: 10.1641/0006-3568(2000)050[0053:EAECON]2.3.CO;2 – volume: 217 start-page: 3542 year: 2010 end-page: 3556 ident: CR53 article-title: The impact of Allee effect on a predator–prey system with Holling type II functional response publication-title: Appl Math Comput doi: 10.1016/j.amc.2010.09.029 – volume: 11 start-page: 273 year: 2005 end-page: 293 ident: CR3 article-title: Population extinction in discrete-time stochastic population models with an Allee effect publication-title: J Differ Equ Appl doi: 10.1080/10236190412331335373 – volume: 3 start-page: 481 year: 1989 end-page: 538 ident: CR14 article-title: Allee effect population growth, critical density, and chance of extinction publication-title: Nat Resour Model – volume: 23 start-page: 150 year: 1992 end-page: 180 ident: CR21 article-title: Multiparameter bifurcation of a predator–prey system publication-title: SIAM J Math Anal doi: 10.1137/0523008 – year: 1993 ident: CR10 publication-title: Risk assessment in conservation biology – volume: 378 start-page: 1 year: 2011 end-page: 15 ident: CR40 article-title: Dynamics of a structured population on two patches publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2011.01.018 – volume: 69 start-page: 1244 year: 2009 end-page: 1262 ident: CR2 article-title: Three limit cycles in a Leslie–Gower predator–prey model with additive Allee effect publication-title: SIAM J Appl Math doi: 10.1137/070705210 – volume: 49 start-page: 188 year: 2004 end-page: 200 ident: CR19 article-title: A stage structured predator–prey model and its dependence on maturation delay and death rate publication-title: J Math Biol doi: 10.1007/s00285-004-0278-2 – volume: 208 start-page: 26 year: 2007 end-page: 32 ident: CR13 article-title: Biological control does not imply paradox publication-title: Math Biosci doi: 10.1016/j.mbs.2005.03.002 – volume: 93 start-page: 151 year: 2008 end-page: 171 ident: CR50 article-title: On the impulsive controllability and bifurcation of a predator–pest model of IPM publication-title: BioSystems doi: 10.1016/j.biosystems.2008.03.008 – ident: CR18 – ident: CR43 – ident: CR47 – volume: 89 start-page: 1271 year: 2010 end-page: 1292 ident: CR24 article-title: Rich dynamical behaviours for predator-prey model with weak Allee effect publication-title: Appl Anal doi: 10.1080/00036811.2010.483557 – ident: CR37 – start-page: 165 year: 1993 end-page: 181 ident: CR29 article-title: Habitat factors in new pest invasions publication-title: Evolution of insect pests—patterns of variation – volume: 67 start-page: 23 year: 2005 end-page: 31 ident: CR51 article-title: The stability of predator–prey systems subject to the Allee effects publication-title: Theor Popul Biol doi: 10.1016/j.tpb.2004.06.007 – volume: 218 start-page: 375 year: 2002 end-page: 394 ident: CR7 article-title: Single-species models of the Allee effect: extinction boundaries, sex ratios and mate encounters publication-title: J Theor Biol doi: 10.1006/jtbi.2002.3084 – volume: 82 start-page: 3083 year: 2001 end-page: 3092 ident: CR35 article-title: Functional responses with predator interference: viable alternatives to the Holling type II model publication-title: Ecology doi: 10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2 – volume: 4 start-page: 889 year: 2003 end-page: 899 ident: CR32 article-title: Genes in new environments: genetics and evolution in biological control publication-title: Nat Rev Genet doi: 10.1038/nrg1201 – volume: 14 start-page: 2180 year: 2013 end-page: 2203 ident: CR41 article-title: Prey resurgence from mortality events in predator–prey models publication-title: Nonlinear Anal Real World Appl doi: 10.1016/j.nonrwa.2013.04.006 – volume: 14 start-page: 405 year: 1999 end-page: 410 ident: CR11 article-title: Inverse density dependence and the Allee effect publication-title: Trends Ecol Evol doi: 10.1016/S0169-5347(99)01683-3 – volume: 262 start-page: 528 year: 2010 end-page: 543 ident: CR52 article-title: The evolution of phenotypic traits in a predator prey system subject to Allee effect publication-title: J Theor Biol doi: 10.1016/j.jtbi.2009.10.022 – volume: 45 start-page: 165 year: 1976 end-page: 185 ident: CR6 article-title: The components of arthropod predation: II. The predator rate of increase publication-title: J Anim Ecol doi: 10.2307/3773 – volume: 81 start-page: 3330 year: 2000 end-page: 3340 ident: CR23 article-title: Periodic mortality events in predator–prey systems publication-title: Ecology – volume: 94 start-page: 33 year: 2013 end-page: 54 ident: CR54 article-title: Global qualitative analysis of a predator prey system with Allee effect on the prey species publication-title: Math Comput Simul doi: 10.1016/j.matcom.2013.05.009 – year: 2003 ident: CR9 publication-title: Essential mathematical biology doi: 10.1007/978-1-4471-0049-2 – volume: 14 start-page: 39 year: 1981 end-page: 57 ident: CR4 article-title: The influence of predator saturation effect and competition among predators on predator–prey system dynamics publication-title: Ecol Model doi: 10.1016/0304-3800(81)90013-2 – ident: CR48 – volume: 48 start-page: 170 year: 1988 end-page: 190 ident: CR20 article-title: Stability and Hopf bifurcation in a predator–prey system with several parameters publication-title: SIAM J Appl Math doi: 10.1137/0148008 – volume: 15 start-page: 337 year: 2000 end-page: 341 ident: CR1 article-title: The nature of predation: prey dependent, ratio dependent or neither? publication-title: Trends Ecol Evol doi: 10.1016/S0169-5347(00)01908-X – volume: 64 start-page: 341 year: 2012 end-page: 360 ident: CR34 article-title: The hydra effect in predator–prey models publication-title: J Math Biol doi: 10.1007/s00285-011-0416-6 – ident: CR38 – ident: CR17 – ident: CR31 – volume: 221 start-page: 1098 year: 2010 end-page: 1107 ident: CR46 article-title: Modulation of predator–prey interactions by the Allee effect publication-title: Ecol Model doi: 10.1016/j.ecolmodel.2010.01.005 – volume: 6 start-page: 133 year: 2003 end-page: 140 ident: CR25 article-title: The Allee effect, stochastic dynamics and the eradication of alien species publication-title: Ecol Lett doi: 10.1046/j.1461-0248.2003.00405.x – volume: 11 start-page: 12 year: 2012 end-page: 27 ident: CR33 article-title: Bifurcation analysis of a ratio-dependent prey-predator model with the Allee effect publication-title: Ecol Complex doi: 10.1016/j.ecocom.2012.01.002 – volume: 234 start-page: 1 year: 2011 ident: 856_CR22 publication-title: Math Biosci doi: 10.1016/j.mbs.2011.07.003 – volume: 14 start-page: 2180 year: 2013 ident: 856_CR41 publication-title: Nonlinear Anal Real World Appl doi: 10.1016/j.nonrwa.2013.04.006 – volume: 64 start-page: 341 year: 2012 ident: 856_CR34 publication-title: J Math Biol doi: 10.1007/s00285-011-0416-6 – start-page: 165 volume-title: Evolution of insect pests—patterns of variation year: 1993 ident: 856_CR29 – volume: 11 start-page: 12 year: 2012 ident: 856_CR33 publication-title: Ecol Complex doi: 10.1016/j.ecocom.2012.01.002 – volume: 82 start-page: 3083 year: 2001 ident: 856_CR35 publication-title: Ecology doi: 10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2 – volume: 15 start-page: 337 year: 2000 ident: 856_CR1 publication-title: Trends Ecol Evol doi: 10.1016/S0169-5347(00)01908-X – ident: 856_CR49 doi: 10.1155/2013/984960 – ident: 856_CR38 doi: 10.1016/j.nonrwa.2009.01.005 – volume: 378 start-page: 1 year: 2011 ident: 856_CR40 publication-title: J Math Anal Appl doi: 10.1016/j.jmaa.2011.01.018 – volume-title: Mathematical models in population biology and epidemiology year: 2001 ident: 856_CR8 doi: 10.1007/978-1-4757-3516-1 – volume: 45 start-page: 165 year: 1976 ident: 856_CR6 publication-title: J Anim Ecol doi: 10.2307/3773 – volume-title: Nonlinear dynamics of interacting populations year: 1998 ident: 856_CR5 doi: 10.1142/2284 – volume: 14 start-page: 405 year: 1999 ident: 856_CR11 publication-title: Trends Ecol Evol doi: 10.1016/S0169-5347(99)01683-3 – ident: 856_CR31 doi: 10.1155/2013/340980 – volume: 24 start-page: 85 year: 2005 ident: 856_CR26 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2004.07.018 – ident: 856_CR39 doi: 10.1007/s00285-009-0325-0 – volume: 94 start-page: 33 year: 2013 ident: 856_CR54 publication-title: Math Comput Simul doi: 10.1016/j.matcom.2013.05.009 – ident: 856_CR47 doi: 10.1016/j.ecocom.2010.04.005 – ident: 856_CR43 doi: 10.1016/j.mbs.2014.08.009 – volume: 209 start-page: 451 year: 2007 ident: 856_CR45 publication-title: Math Biosci doi: 10.1016/j.mbs.2007.02.006 – volume: 221 start-page: 1098 year: 2010 ident: 856_CR46 publication-title: Ecol Model doi: 10.1016/j.ecolmodel.2010.01.005 – volume: 217 start-page: 3542 year: 2010 ident: 856_CR53 publication-title: Appl Math Comput doi: 10.1016/j.amc.2010.09.029 – volume: 11 start-page: 273 year: 2005 ident: 856_CR3 publication-title: J Differ Equ Appl doi: 10.1080/10236190412331335373 – volume: 69 start-page: 1244 year: 2009 ident: 856_CR2 publication-title: SIAM J Appl Math doi: 10.1137/070705210 – volume: 48 start-page: 170 year: 1988 ident: 856_CR20 publication-title: SIAM J Appl Math doi: 10.1137/0148008 – volume: 93 start-page: 151 year: 2008 ident: 856_CR50 publication-title: BioSystems doi: 10.1016/j.biosystems.2008.03.008 – volume: 81 start-page: 3330 year: 2000 ident: 856_CR23 publication-title: Ecology – volume-title: Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems year: 1995 ident: 856_CR36 – volume: 6 start-page: 133 year: 2003 ident: 856_CR25 publication-title: Ecol Lett doi: 10.1046/j.1461-0248.2003.00405.x – volume: 23 start-page: 150 year: 1992 ident: 856_CR21 publication-title: SIAM J Math Anal doi: 10.1137/0523008 – volume-title: Allee effects in ecology and conservation year: 2008 ident: 856_CR12 doi: 10.1093/acprof:oso/9780198570301.001.0001 – volume: 73 start-page: 1378 year: 2011 ident: 856_CR16 publication-title: Bull Math Biol doi: 10.1007/s11538-010-9577-5 – volume: 208 start-page: 26 year: 2007 ident: 856_CR13 publication-title: Math Biosci doi: 10.1016/j.mbs.2005.03.002 – volume: 67 start-page: 23 year: 2005 ident: 856_CR51 publication-title: Theor Popul Biol doi: 10.1016/j.tpb.2004.06.007 – volume: 218 start-page: 375 year: 2002 ident: 856_CR7 publication-title: J Theor Biol doi: 10.1006/jtbi.2002.3084 – ident: 856_CR37 – volume-title: Complex population dynamics: a theoretical/empirical synthesis year: 2003 ident: 856_CR44 – volume: 14 start-page: 39 year: 1981 ident: 856_CR4 publication-title: Ecol Model doi: 10.1016/0304-3800(81)90013-2 – ident: 856_CR17 doi: 10.1016/j.nonrwa.2011.04.003 – volume: 49 start-page: 188 year: 2004 ident: 856_CR19 publication-title: J Math Biol doi: 10.1007/s00285-004-0278-2 – ident: 856_CR18 doi: 10.1016/j.apm.2010.07.001 – volume-title: Essential mathematical biology year: 2003 ident: 856_CR9 doi: 10.1007/978-1-4471-0049-2 – start-page: 207 volume-title: Integrated pest management: innovation-development process year: 2009 ident: 856_CR28 doi: 10.1007/978-1-4020-8992-3_9 – volume: 262 start-page: 528 year: 2010 ident: 856_CR52 publication-title: J Theor Biol doi: 10.1016/j.jtbi.2009.10.022 – volume: 4 start-page: 889 year: 2003 ident: 856_CR32 publication-title: Nat Rev Genet doi: 10.1038/nrg1201 – volume-title: Risk assessment in conservation biology year: 1993 ident: 856_CR10 – ident: 856_CR42 doi: 10.1016/j.mbs.2013.12.002 – volume: 3 start-page: 362 year: 1989 ident: 856_CR15 publication-title: Conserv Biol doi: 10.1111/j.1523-1739.1989.tb00242.x – volume: 103 start-page: 99 year: 1997 ident: 856_CR27 publication-title: Ecol Model doi: 10.1016/S0304-3800(97)00104-X – volume: 89 start-page: 1271 year: 2010 ident: 856_CR24 publication-title: Appl Anal doi: 10.1080/00036811.2010.483557 – volume: 3 start-page: 481 year: 1989 ident: 856_CR14 publication-title: Nat Resour Model doi: 10.1111/j.1939-7445.1989.tb00119.x – volume: 50 start-page: 53 year: 2000 ident: 856_CR30 publication-title: BioScience doi: 10.1641/0006-3568(2000)050[0053:EAECON]2.3.CO;2 – ident: 856_CR48 doi: 10.1007/s00285-010-0332-1 – reference: 15649521 - Theor Popul Biol. 2005 Feb;67(1):23-31 – reference: 20087594 - J Math Biol. 2010 Dec;61(6):843-75 – reference: 20830610 - Bull Math Biol. 2011 Jun;73(6):1378-97 – reference: 18467020 - Biosystems. 2008 Sep;93(3):151-71 – reference: 17521681 - Math Biosci. 2007 Oct;209(2):451-69 – reference: 19852972 - J Theor Biol. 2010 Feb 7;262(3):528-43 – reference: 10481205 - Trends Ecol Evol. 1999 Oct;14(10):405-410 – reference: 15293018 - J Math Biol. 2004 Aug;49(2):188-200 – reference: 24345496 - Math Biosci. 2014 Feb;248:57-66 – reference: 21129023 - Conserv Biol. 1989 Dec;3(4):362-80 – reference: 10884706 - Trends Ecol Evol. 2000 Aug;15(8):337-341 – reference: 21810431 - Math Biosci. 2011 Nov;234(1):1-16 – reference: 14634636 - Nat Rev Genet. 2003 Nov;4(11):889-99 – reference: 20224917 - J Math Biol. 2011 Mar;62(3):291-331 – reference: 25195089 - Math Biosci. 2014 Oct;256:102-15 – reference: 21416386 - J Math Biol. 2012 Jan;64(1-2):341-60 – reference: 12381437 - J Theor Biol. 2002 Oct 7;218(3):375-94 – reference: 17188309 - Math Biosci. 2007 Jul;208(1):26-32 |
SSID | ssj0017591 |
Score | 2.3590598 |
Snippet | We present four predator–prey models with component Allee effect for predator reproduction. Using numerical simulation results for our models, we describe how... We present four predator-prey models with component Allee effect for predator reproduction. Using numerical simulation results for our models, we describe how... We present four Predator-prey models with component Allee effect for predator reproduction. Using numerical simulation results for our models, we describe how... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1325 |
SubjectTerms | Animals Applications of Mathematics Computer Simulation Ecosystem Female Food Chain Genetic Fitness Male Mathematical and Computational Biology Mathematical Concepts Mathematics Mathematics and Statistics Models, Biological Pest Control, Biological Population Dynamics Predatory Behavior - physiology Reproduction |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSsQwEB50RdCD6PpXXSWCJyXQpk2bHBdxWcQVD7uwt5I26Wmpy3b34M138A19Eif9Q1kVPPTUJA0zSeabzPQbgGvjC-NpX9E0YSk6KDqgUuqIai0yy74i3JKnYPQUDifBw5RP6_-4iybbvQlJlid1-7ObdQ9sohk-goeUb8IWt647LuIJ67ehg4hXZfLwbKaWXKsJZf40xHdjtIYw16KjpdEZ7MNejRZJv1LvAWyYvAvbVf3I1y7sjlrS1eIQHp8XRlsf-uPtfY4aImWVm4LYq1ZiU8dfcrQwpD-bGUOqPA6CkJXM627EElyW_K-oqyMYD-7Hd0NaF0ugqR-xJY0SHQael4ZCBpplQppQKp9ldjiXK1czdHZNkIRKZZLrROLG1IiFlIz8yEv8Y-jkOI1TwAlohEHMjzKVBEYo4QsEjTwVaOzcVHMH3EZocVoTidt6FrO4pUAu5RyjnGMr5xi73LRd5hWLxl-Ne40m4npDFTHiLJyoG7HQgav2NW4FG99QuXlZ2TYIhvA8cl0HTioNtl9DZGcvuQIHbhuVfhn8t6mc_av1Oewwu7bKZJcedJaLlblAyLJMLssl-gkw7OFy priority: 102 providerName: Springer Nature |
Title | Predator–prey models with component Allee effect for predator reproduction |
URI | https://link.springer.com/article/10.1007/s00285-015-0856-5 https://www.ncbi.nlm.nih.gov/pubmed/25697834 https://www.proquest.com/docview/1729730726 https://www.proquest.com/docview/1731788000 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60IngR31ZrieBJCW6zr-xJWmkVxVKkQj0t2U32VLbV1oP_3pnsQ0XsYXcPeWyYSTLfJMM3ABfGlaajXcXTRKTooGiPR5EOudYyI_YV6ViegqdhcP_iPUz8SXngtijDKqs90W7UepbSGfk1GtoIZ2Mogpv5G6esUXS7WqbQWIcNoi6jkK5wUjtcaBmLjHm4TXPi2apuNR1LIiokha3hI_2A-7_t0h-w-eei1NqfwQ5sl8CRdQtN78Kayfdgs0gl-bkPD6N3o8mB5nNUDrMJbhaMTlkZRY3PcjQurDudGsOKEA6GaJXNy0aMuC0t9Suq6QDGg_749p6XeRJ46oZiycNEB16nkwYy8rTIZGSCSLkio-4cXzlaoJ9rvCRQKot8nUS4JjXCIIUCDTuJewiNHIdxDDgAjQhIuGGmEs9IJV2JeNFPJdo5J9V-E5xKSHFacohTKotpXLMfW7nGKNeY5Bpjk8u6ybwg0FhVuVVJPi7X0iL-1nwTzutiXAV0taFyM_ugOoiDcCtynCYcFRqr_4agjs63vCZcVSr80fl_QzlZPZRT2BI0eWxgSwsay_cPc4bwZJm07RzEtxzctWGjO-j1hvS9e33s47fXH46esfRFdL8ABS3lEg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xUEUvCFoKW15Gohcqi6ydh31ACAHb5akethI3y4md02p3yy6q-FH8R2acR4tQuXHIKXFijT97Pnsm3wDse6l810nLi1wUuEFxMdfaZdw5VZL6ioqCTsHNbdr_FV_eJXdz8NT8C0Nplc2aGBZqNy7ojPwQHa1GNGYiPZ785lQ1iqKrTQmNChZX_vEPbtmmRxdnOL7fhOidD077vK4qwAuZiRnPcpfG3W6RKh07USrtU22lKCl_Ikps5ATuCn2cp9aWOnG5RgQ7JA0WP591c4mvnYfFWEpNE0r1frRBiyypCvShV-Ak69UEUaOgWSoUZcnhpZKUJy_d4Ctu-youG9xdbwWWa57KTipgrcKcH32CD1XlysfPcPnz3jvar_MJYoGFejpTRoe6jJLUxyP0ZexkOPSeVRkjDMkxm9SNGElpBqVZRMUaDN7DgF9gYYTd2ADsgEPCJWRW2jz2yiqpkJ4mhUK3GhUu6UDUGMkUtWQ5Vc4YmlZsOdjVoF0N2dVgk4O2yaTS63jr4a3G8qaeulPzF2gd2Gtv46SjSIod-fEDPYO0C1e-KOrAejVi7deQQ9JxWtyB780Q_vPy_3Xl69td2YWl_uDm2lxf3F5twkdBQAo5NVuwMLt_8NvIjGb5TsAjA_PO-H8GV80bJg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEB58oHgR39ZnBL0owd3sK3sQEbX4xoNCbyG7yZ5KW21F_Gn-O2eyDxXRm4eeutkOky-Zb5LpNwC7NpDWN4HmeSZyTFBMyNPUJNwYWZD6ivScTsHtXXzxGF51os4YvNf_haGyynpPdBu16ed0Rn6IgTZFNCYiPiyqsoj7s_bx4IlTBym6aa3baZQQubZvr5i-DY8uz3Cu94Ronz-cXvCqwwDPg0SMeJKZOPT9PJZpaEQhUxunOhAF1VJ4kfaMwAzRhlmsdZFGJksRzQYJhEZTEj8L8LXjMJkEkU9LLOk0uR4G5bJZH0YIThJf9YWq5_RLhaSKOfzIKObR95D4g-f-uKN1oa89B7MVZ2UnJcjmYcz2FmCq7GL5tghX98_WUO7OB4gL5nrrDBkd8DIqWO_3MK6xk27XWlZWjzAkymxQDWIkq-lUZxEhS_DwHw5chokemrEKaIBB8iWCpNBZaKWWgUSqGuUSQ6yXm6gFXu0klVfy5dRFo6sa4WXnV4V-VeRXhUP2myGDUrvjr4c3as-rahkP1SfoWrDTfI0LkG5VdM_2X-gZpGC4C3peC1bKGWt-DfkkHa2FLTiop_DLy38zZe1vU7ZhGpGvbi7vrtdhRhCOXHnNBkyMnl_sJpKkUbbl4MhA_TP8PwCA0B9T |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predator-prey+models+with+component+Allee+effect+for+predator+reproduction&rft.jtitle=Journal+of+mathematical+biology&rft.au=Terry%2C+Alan+J&rft.date=2015-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0303-6812&rft.eissn=1432-1416&rft.volume=71&rft.issue=6-7&rft.spage=1325&rft_id=info:doi/10.1007%2Fs00285-015-0856-5&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3856904841 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0303-6812&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0303-6812&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0303-6812&client=summon |