Generalizable Sample-Efficient Siamese Autoencoder for Tinnitus Diagnosis in Listeners With Subjective Tinnitus

Electroencephalogram (EEG)-based neurofeedback has been widely studied for tinnitus therapy in recent years. Most existing research relies on experts' cognitive prediction, and studies based on machine learning and deep learning are either data-hungry or not well generalizable to new subjects....

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 29; pp. 1452 - 1461
Main Authors Liu, Zhe, Yao, Lina, Wang, Xianzhi, Monaghan, Jessica J. M., Schaette, Roland, He, Zihuai, McAlpine, David
Format Journal Article
LanguageEnglish
Published New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electroencephalogram (EEG)-based neurofeedback has been widely studied for tinnitus therapy in recent years. Most existing research relies on experts' cognitive prediction, and studies based on machine learning and deep learning are either data-hungry or not well generalizable to new subjects. In this paper, we propose a robust, data-efficient model for distinguishing tinnitus from the healthy state based on EEG-based tinnitus neurofeedback. We propose trend descriptor, a feature extractor with lower fineness, to reduce the effect of electrode noises on EEG signals, and a siamese encoder-decoder network boosted in a supervised manner to learn accurate alignment and to acquire high-quality transferable mappings across subjects and EEG signal channels. Our experiments show the proposed method significantly outperforms state-of-the-art algorithms when analyzing subjects' EEG neurofeedback to 90dB and 100dB sound, achieving an accuracy of 91.67%-94.44% in predicting tinnitus and control subjects in a subject-independent setting. Our ablation studies on mixed subjects and parameters show the method's stability in performance.
AbstractList Electroencephalogram (EEG)-based neurofeedback has been widely studied for tinnitus therapy in recent years. Most existing research relies on experts' cognitive prediction, and studies based on machine learning and deep learning are either data-hungry or not well generalizable to new subjects. In this paper, we propose a robust, data-efficient model for distinguishing tinnitus from the healthy state based on EEG-based tinnitus neurofeedback. We propose trend descriptor, a feature extractor with lower fineness, to reduce the effect of electrode noises on EEG signals, and a siamese encoder-decoder network boosted in a supervised manner to learn accurate alignment and to acquire high-quality transferable mappings across subjects and EEG signal channels. Our experiments show the proposed method significantly outperforms state-of-the-art algorithms when analyzing subjects' EEG neurofeedback to 90dB and 100dB sound, achieving an accuracy of 91.67%-94.44% in predicting tinnitus and control subjects in a subject-independent setting. Our ablation studies on mixed subjects and parameters show the method's stability in performance.Electroencephalogram (EEG)-based neurofeedback has been widely studied for tinnitus therapy in recent years. Most existing research relies on experts' cognitive prediction, and studies based on machine learning and deep learning are either data-hungry or not well generalizable to new subjects. In this paper, we propose a robust, data-efficient model for distinguishing tinnitus from the healthy state based on EEG-based tinnitus neurofeedback. We propose trend descriptor, a feature extractor with lower fineness, to reduce the effect of electrode noises on EEG signals, and a siamese encoder-decoder network boosted in a supervised manner to learn accurate alignment and to acquire high-quality transferable mappings across subjects and EEG signal channels. Our experiments show the proposed method significantly outperforms state-of-the-art algorithms when analyzing subjects' EEG neurofeedback to 90dB and 100dB sound, achieving an accuracy of 91.67%-94.44% in predicting tinnitus and control subjects in a subject-independent setting. Our ablation studies on mixed subjects and parameters show the method's stability in performance.
Electroencephalogram (EEG)-based neurofeedback has been widely studied for tinnitus therapy in recent years. Most existing research relies on experts’ cognitive prediction, and studies based on machine learning and deep learning are either data-hungry or not well generalizable to new subjects. In this paper, we propose a robust, data-efficient model for distinguishing tinnitus from the healthy state based on EEG-based tinnitus neurofeedback. We propose trend descriptor, a feature extractor with lower fineness, to reduce the effect of electrode noises on EEG signals, and a siamese encoder-decoder network boosted in a supervised manner to learn accurate alignment and to acquire high-quality transferable mappings across subjects and EEG signal channels. Our experiments show the proposed method significantly outperforms state-of-the-art algorithms when analyzing subjects’ EEG neurofeedback to 90dB and 100dB sound, achieving an accuracy of 91.67%–94.44% in predicting tinnitus and control subjects in a subject-independent setting. Our ablation studies on mixed subjects and parameters show the method’s stability in performance.
Author McAlpine, David
Liu, Zhe
Monaghan, Jessica J. M.
Yao, Lina
Wang, Xianzhi
He, Zihuai
Schaette, Roland
Author_xml – sequence: 1
  givenname: Zhe
  surname: Liu
  fullname: Liu, Zhe
  email: zhe.liu@student.unsw.edu.au
  organization: School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia
– sequence: 2
  givenname: Lina
  orcidid: 0000-0002-4149-839X
  surname: Yao
  fullname: Yao, Lina
  email: lina.yao@unsw.edu.au
  organization: School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia
– sequence: 3
  givenname: Xianzhi
  orcidid: 0000-0001-9582-3445
  surname: Wang
  fullname: Wang, Xianzhi
  organization: School of Computer Science, University of Technology Sydney, Ultimo, NSW, Australia
– sequence: 4
  givenname: Jessica J. M.
  surname: Monaghan
  fullname: Monaghan, Jessica J. M.
  organization: National Acoustic Laboratories, Macquarie Park, NSW, Australia
– sequence: 5
  givenname: Roland
  surname: Schaette
  fullname: Schaette, Roland
  organization: University College London (UCL) Ear Institute, London, U.K
– sequence: 6
  givenname: Zihuai
  surname: He
  fullname: He, Zihuai
  organization: School of Medicine, Stanford University, Stanford, CA, USA
– sequence: 7
  givenname: David
  surname: McAlpine
  fullname: McAlpine, David
  organization: Department of Linguistics, Macquarie University, Sydney, NSW, Australia
BookMark eNp9kU2LFDEQhoOsuB_6B_QS8OKlx3x0Jp3jso6rMCg4Ix6bSrZaa-hJxiQt6K-3x1n2sAdPKcLzvFXwXrKzmCIy9lKKhZTCvd1-2nxZLZRQcqGFM8p1T9iFNKZr5i9xdpx127RaiXN2WcpOCGmXxj5j57pVWnWdvmDpFiNmGOkP-BH5BvaHEZvVMFAgjJVvCPZYkF9PNWEM6Q4zH1LmW4qR6lT4O4LvMRUqnCJfU6nHvMK_Uf3BN5PfYaj0Cx_45-zpAGPBF_fvFfv6frW9-dCsP99-vLleN0FbVRvrwQ-grVMI3jrjncfWLUGjbY1D5wJafacUdFr5YfBL67wxIM1sQUDQV-zNKfeQ088JS-33VAKOI0RMU-mVmeOcFMrN6OtH6C5NOc7XzZQxVtlWqZlSJyrkVErGoT9k2kP-3UvRH-vo_9XRH-vo7-uYpe6RFKhCpRRrBhr_r746qYSID7tca42zUv8FPPSa5A
CODEN ITNSB3
CitedBy_id crossref_primary_10_1016_j_heares_2024_108967
crossref_primary_10_1109_TNSRE_2022_3201158
crossref_primary_10_3390_biomedicines12071404
crossref_primary_10_1109_TIM_2024_3394496
crossref_primary_10_3233_JIFS_231794
crossref_primary_10_1002_ima_22882
crossref_primary_10_1109_JBHI_2023_3264521
crossref_primary_10_1109_JBHI_2022_3225089
Cites_doi 10.1109/CVPR.2018.00887
10.1088/1741-2552/aace8c
10.1002/14651858.CD004739.pub4
10.1007/s10484-006-9002-x
10.1007/s11063-018-9845-1
10.1109/SMC.2018.00196
10.1007/978-3-319-49685-6_19
10.4108/eai.7-11-2017.2273696
10.1109/LSP.2019.2906824
10.1016/j.eswa.2013.02.023
10.1016/0013-4694(80)90225-4
10.1007/978-3-319-70093-9_84
10.1523/JNEUROSCI.2156-11.2011
10.1016/0166-4328(86)90228-7
10.1016/S0378-5955(97)00043-9
10.1007/s001060050704
10.1007/s00106-004-1066-4
10.1044/jshr.3401.197
10.1080/14992020802581974
10.1109/TNSRE.2007.911086
10.1109/TNSRE.2019.2905894
10.1109/TNSRE.2017.2721116
10.1007/s10484-015-9318-5
10.1177/1087054711427530
10.1177/014556130408300713
10.1162/089976602760128081
10.3766/jaaa.23.2.7
10.1109/IJCNN.2015.7280593
10.1002/hbm.23730
10.1609/aaai.v34i04.6069
10.1109/TNSRE.2005.857690
10.3766/jaaa.25.1.5
10.1055/s-0042-1748042
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TNSRE.2021.3095298
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 1461
ExternalDocumentID 10_1109_TNSRE_2021_3095298
9475971
Genre orig-research
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c372t-7babfa3792eab795b9be496a3e7459e99ce73d22a832bffb679b55a15bfaacea3
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Fri Jul 11 14:36:27 EDT 2025
Fri Jul 25 04:31:57 EDT 2025
Thu Apr 24 22:51:26 EDT 2025
Tue Jul 01 00:43:23 EDT 2025
Wed Aug 27 02:40:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-7babfa3792eab795b9be496a3e7459e99ce73d22a832bffb679b55a15bfaacea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4149-839X
0000-0001-9582-3445
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9475971
PMID 34232883
PQID 2555727422
PQPubID 85423
PageCount 10
ParticipantIDs crossref_primary_10_1109_TNSRE_2021_3095298
proquest_miscellaneous_2549691029
proquest_journals_2555727422
crossref_citationtrail_10_1109_TNSRE_2021_3095298
ieee_primary_9475971
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref15
ref36
ref14
ref31
ref33
ref11
ref32
ref10
taigman (ref23) 2016
ref2
ref39
ref17
ref38
ref19
ref18
viirre (ref12) 2009
hartmann (ref30) 2018
ref24
liu (ref29) 2021
ref26
ref25
ref20
ref22
ref21
jastreboff (ref1) 1996; 17
jastreboff (ref9) 2000; 11
ref28
ref27
ref8
ref7
ref4
crisp (ref37) 2000
ref3
ref6
ref5
ref40
weiler (ref16) 2002; 8
References_xml – ident: ref35
  doi: 10.1109/CVPR.2018.00887
– volume: 17
  start-page: 236
  year: 1996
  ident: ref1
  article-title: Neurophysiological approach to tinnitus patients
  publication-title: Amer J Otol
– ident: ref39
  doi: 10.1088/1741-2552/aace8c
– ident: ref2
  doi: 10.1002/14651858.CD004739.pub4
– ident: ref24
  doi: 10.1007/s10484-006-9002-x
– ident: ref20
  doi: 10.1007/s11063-018-9845-1
– year: 2009
  ident: ref12
  article-title: Eeg feedback controlled sound therapy for tinnitus
– ident: ref36
  doi: 10.1109/SMC.2018.00196
– ident: ref18
  doi: 10.1007/978-3-319-49685-6_19
– ident: ref22
  doi: 10.4108/eai.7-11-2017.2273696
– ident: ref19
  doi: 10.1109/LSP.2019.2906824
– start-page: 8723
  year: 2021
  ident: ref29
  article-title: Task aligned generative meta-learning for zero-shot learning
  publication-title: Proc 31th AAAI Conf Artif Intell
– ident: ref31
  doi: 10.1016/j.eswa.2013.02.023
– ident: ref8
  doi: 10.1016/0013-4694(80)90225-4
– ident: ref27
  doi: 10.1007/978-3-319-70093-9_84
– ident: ref4
  doi: 10.1523/JNEUROSCI.2156-11.2011
– ident: ref6
  doi: 10.1016/0166-4328(86)90228-7
– start-page: 244
  year: 2000
  ident: ref37
  article-title: A geometric interpretation of v-SVM classifiers
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref14
  doi: 10.1016/S0378-5955(97)00043-9
– ident: ref15
  doi: 10.1007/s001060050704
– ident: ref17
  doi: 10.1007/s00106-004-1066-4
– ident: ref5
  doi: 10.1044/jshr.3401.197
– ident: ref13
  doi: 10.1080/14992020802581974
– ident: ref7
  doi: 10.1109/TNSRE.2007.911086
– ident: ref38
  doi: 10.1109/TNSRE.2019.2905894
– ident: ref28
  doi: 10.1109/TNSRE.2017.2721116
– ident: ref26
  doi: 10.1007/s10484-015-9318-5
– ident: ref25
  doi: 10.1177/1087054711427530
– year: 2016
  ident: ref23
  article-title: Unsupervised cross-domain image generation
  publication-title: arXiv 1611 02200
– ident: ref3
  doi: 10.1177/014556130408300713
– ident: ref33
  doi: 10.1162/089976602760128081
– volume: 8
  start-page: 87
  year: 2002
  ident: ref16
  article-title: Neurofeedback and quantitative electroencephalography
  publication-title: Int Tinnitus J
– ident: ref10
  doi: 10.3766/jaaa.23.2.7
– ident: ref21
  doi: 10.1109/IJCNN.2015.7280593
– ident: ref40
  doi: 10.1002/hbm.23730
– ident: ref34
  doi: 10.1609/aaai.v34i04.6069
– ident: ref32
  doi: 10.1109/TNSRE.2005.857690
– year: 2018
  ident: ref30
  article-title: EEG-GAN: Generative adversarial networks for electroencephalograhic (EEG) brain signals
  publication-title: arXiv 1806 01875
– ident: ref11
  doi: 10.3766/jaaa.25.1.5
– volume: 11
  start-page: 162
  year: 2000
  ident: ref9
  article-title: Tinnitus retraining therapy (TRT) as a method for treatment of tinnitus and hyperacusis patients
  publication-title: J Amer Acad Audiol
  doi: 10.1055/s-0042-1748042
SSID ssj0017657
Score 2.377319
Snippet Electroencephalogram (EEG)-based neurofeedback has been widely studied for tinnitus therapy in recent years. Most existing research relies on experts'...
Electroencephalogram (EEG)-based neurofeedback has been widely studied for tinnitus therapy in recent years. Most existing research relies on experts’...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1452
SubjectTerms Ablation
Algorithms
Auditory system
Brain modeling
Coders
Cognitive ability
Deep learning
domain alignment
EEG
Electroencephalography
Encoders-Decoders
Feature extraction
Feedback
Fineness
Learning algorithms
Machine learning
Medical diagnosis
Medical treatment
Neurofeedback
Predictive control
siamese autoencoder
subject-independent
Tinnitus
Training
trend descriptor
Title Generalizable Sample-Efficient Siamese Autoencoder for Tinnitus Diagnosis in Listeners With Subjective Tinnitus
URI https://ieeexplore.ieee.org/document/9475971
https://www.proquest.com/docview/2555727422
https://www.proquest.com/docview/2549691029
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLfGnniBfYA4GFOQgBforZcmzeVxGjdNiO1hdxN7q5LWFYWpRbv2ZX89dtqrGEyIt6p10jZ2HDt2fgZ4q1O6X9g0srFCclCUjrxULiLWz8lejzEPcAznF-nZlfp8ra-34ON4FgYRQ_IZTvkyxPKLJu94q-zIMjgdHxh_RI5bf1ZrjBiYNKB60gRWkUpkvDkgE9uj1cXyckGuoJxNE7IopOUifYx8x5V2761HocDKX1o5LDWnT-F885F9hsmPadf6aX73B37j__7FDjwZbE5x3AvJLmxhvQfvfscXFqseXEC8F5f3oLv3oRmAqTn76wbF0jGccLQIyBP0HrGsOM8WxXHXNgyKWeCtIENYrKqatEW3Fp_6ZL5qLapafGGpov7W4mvVfhOktr73GnekfwZXp4vVyVk0VGmI8sTINjLe-dIlxkp03ljtrUdlU5egUdqitTmapJDSke7wZelTY73WbqaplcvRJc9hu25qfAGiKEvpcptiWpakwB25gsrPHZkQ88SRSE1gtuFVlg_jwJU0brLgysQ2C6zOmNXZwOoJfBjb_OwBPP5Jvc8MGykHXk3gYCMS2TDH1xk5Y9pwpFtO4M34mGYnh1xcjU3HNDQUZJFJ-_Lhnl_BY35_v6lzANvtbYevycxp_WHYHjgMUv4LehT71g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwELam7QFeYDAQ3QYYCXiBdKljx_XjBJ0KtH1YM7G3yE4uImxK0Jq87Ndz56QRA4R4i5Jz4vjO5zvf-TvGXqsY7-cmDkwoAR0UqQInpA2Q9VO010PIPBzDchXPL-TnS3W5w94PZ2EAwCefwZgufSw_r7OWtspODIHT0YHxPVz31aQ7rTXEDHTscT1xCstARiLcHpEJzUmyWp_P0BkUk3GENoUwVKaPsO-o1u6dFcmXWPlDL_vF5uwhW2672eWYXI3bxo2z298QHP_3P_bZg97q5KedmDxiO1A9Zm9-RRjmSQcvwN_y8zvg3Qes7qGpKf_rGvjaEqBwMPPYE_gdvi4p0xb4advUBIuZww1HU5gnZYX6ot3wj106X7nhZcUXJFf4vg3_WjbfOCqu753OHeifsIuzWfJhHvR1GoIs0qIJtLOusJE2AqzTRjnjQJrYRqClMmBMBjrKhbCoPVxRuFgbp5SdKGxlM7DRU7Zb1RU8YzwvCmEzE0NcFKjCLTqD0k0tGhHTyKJQjdhky6s068eBamlcp96ZCU3qWZ0Sq9Oe1SP2bmjzo4Pw-Cf1ATFsoOx5NWLHW5FI-1m-SdEdU5pi3WLEXg2PcX5S0MVWULdEg0OBNpkwh39_80t2b54sF-ni0-rLEbtPfem2eI7ZbnPTwnM0ehr3wsv6T8uE_io
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalizable+Sample-Efficient+Siamese+Autoencoder+for+Tinnitus+Diagnosis+in+Listeners+With+Subjective+Tinnitus&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Liu%2C+Zhe&rft.au=Yao%2C+Lina&rft.au=Wang%2C+Xianzhi&rft.au=Monaghan%2C+Jessica+J.+M.&rft.date=2021&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=29&rft.spage=1452&rft.epage=1461&rft_id=info:doi/10.1109%2FTNSRE.2021.3095298&rft_id=info%3Apmid%2F34232883&rft.externalDocID=9475971
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon