Generalizable Sample-Efficient Siamese Autoencoder for Tinnitus Diagnosis in Listeners With Subjective Tinnitus
Electroencephalogram (EEG)-based neurofeedback has been widely studied for tinnitus therapy in recent years. Most existing research relies on experts' cognitive prediction, and studies based on machine learning and deep learning are either data-hungry or not well generalizable to new subjects....
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 29; pp. 1452 - 1461 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electroencephalogram (EEG)-based neurofeedback has been widely studied for tinnitus therapy in recent years. Most existing research relies on experts' cognitive prediction, and studies based on machine learning and deep learning are either data-hungry or not well generalizable to new subjects. In this paper, we propose a robust, data-efficient model for distinguishing tinnitus from the healthy state based on EEG-based tinnitus neurofeedback. We propose trend descriptor, a feature extractor with lower fineness, to reduce the effect of electrode noises on EEG signals, and a siamese encoder-decoder network boosted in a supervised manner to learn accurate alignment and to acquire high-quality transferable mappings across subjects and EEG signal channels. Our experiments show the proposed method significantly outperforms state-of-the-art algorithms when analyzing subjects' EEG neurofeedback to 90dB and 100dB sound, achieving an accuracy of 91.67%-94.44% in predicting tinnitus and control subjects in a subject-independent setting. Our ablation studies on mixed subjects and parameters show the method's stability in performance. |
---|---|
AbstractList | Electroencephalogram (EEG)-based neurofeedback has been widely studied for tinnitus therapy in recent years. Most existing research relies on experts' cognitive prediction, and studies based on machine learning and deep learning are either data-hungry or not well generalizable to new subjects. In this paper, we propose a robust, data-efficient model for distinguishing tinnitus from the healthy state based on EEG-based tinnitus neurofeedback. We propose trend descriptor, a feature extractor with lower fineness, to reduce the effect of electrode noises on EEG signals, and a siamese encoder-decoder network boosted in a supervised manner to learn accurate alignment and to acquire high-quality transferable mappings across subjects and EEG signal channels. Our experiments show the proposed method significantly outperforms state-of-the-art algorithms when analyzing subjects' EEG neurofeedback to 90dB and 100dB sound, achieving an accuracy of 91.67%-94.44% in predicting tinnitus and control subjects in a subject-independent setting. Our ablation studies on mixed subjects and parameters show the method's stability in performance.Electroencephalogram (EEG)-based neurofeedback has been widely studied for tinnitus therapy in recent years. Most existing research relies on experts' cognitive prediction, and studies based on machine learning and deep learning are either data-hungry or not well generalizable to new subjects. In this paper, we propose a robust, data-efficient model for distinguishing tinnitus from the healthy state based on EEG-based tinnitus neurofeedback. We propose trend descriptor, a feature extractor with lower fineness, to reduce the effect of electrode noises on EEG signals, and a siamese encoder-decoder network boosted in a supervised manner to learn accurate alignment and to acquire high-quality transferable mappings across subjects and EEG signal channels. Our experiments show the proposed method significantly outperforms state-of-the-art algorithms when analyzing subjects' EEG neurofeedback to 90dB and 100dB sound, achieving an accuracy of 91.67%-94.44% in predicting tinnitus and control subjects in a subject-independent setting. Our ablation studies on mixed subjects and parameters show the method's stability in performance. Electroencephalogram (EEG)-based neurofeedback has been widely studied for tinnitus therapy in recent years. Most existing research relies on experts’ cognitive prediction, and studies based on machine learning and deep learning are either data-hungry or not well generalizable to new subjects. In this paper, we propose a robust, data-efficient model for distinguishing tinnitus from the healthy state based on EEG-based tinnitus neurofeedback. We propose trend descriptor, a feature extractor with lower fineness, to reduce the effect of electrode noises on EEG signals, and a siamese encoder-decoder network boosted in a supervised manner to learn accurate alignment and to acquire high-quality transferable mappings across subjects and EEG signal channels. Our experiments show the proposed method significantly outperforms state-of-the-art algorithms when analyzing subjects’ EEG neurofeedback to 90dB and 100dB sound, achieving an accuracy of 91.67%–94.44% in predicting tinnitus and control subjects in a subject-independent setting. Our ablation studies on mixed subjects and parameters show the method’s stability in performance. |
Author | McAlpine, David Liu, Zhe Monaghan, Jessica J. M. Yao, Lina Wang, Xianzhi He, Zihuai Schaette, Roland |
Author_xml | – sequence: 1 givenname: Zhe surname: Liu fullname: Liu, Zhe email: zhe.liu@student.unsw.edu.au organization: School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia – sequence: 2 givenname: Lina orcidid: 0000-0002-4149-839X surname: Yao fullname: Yao, Lina email: lina.yao@unsw.edu.au organization: School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia – sequence: 3 givenname: Xianzhi orcidid: 0000-0001-9582-3445 surname: Wang fullname: Wang, Xianzhi organization: School of Computer Science, University of Technology Sydney, Ultimo, NSW, Australia – sequence: 4 givenname: Jessica J. M. surname: Monaghan fullname: Monaghan, Jessica J. M. organization: National Acoustic Laboratories, Macquarie Park, NSW, Australia – sequence: 5 givenname: Roland surname: Schaette fullname: Schaette, Roland organization: University College London (UCL) Ear Institute, London, U.K – sequence: 6 givenname: Zihuai surname: He fullname: He, Zihuai organization: School of Medicine, Stanford University, Stanford, CA, USA – sequence: 7 givenname: David surname: McAlpine fullname: McAlpine, David organization: Department of Linguistics, Macquarie University, Sydney, NSW, Australia |
BookMark | eNp9kU2LFDEQhoOsuB_6B_QS8OKlx3x0Jp3jso6rMCg4Ix6bSrZaa-hJxiQt6K-3x1n2sAdPKcLzvFXwXrKzmCIy9lKKhZTCvd1-2nxZLZRQcqGFM8p1T9iFNKZr5i9xdpx127RaiXN2WcpOCGmXxj5j57pVWnWdvmDpFiNmGOkP-BH5BvaHEZvVMFAgjJVvCPZYkF9PNWEM6Q4zH1LmW4qR6lT4O4LvMRUqnCJfU6nHvMK_Uf3BN5PfYaj0Cx_45-zpAGPBF_fvFfv6frW9-dCsP99-vLleN0FbVRvrwQ-grVMI3jrjncfWLUGjbY1D5wJafacUdFr5YfBL67wxIM1sQUDQV-zNKfeQ088JS-33VAKOI0RMU-mVmeOcFMrN6OtH6C5NOc7XzZQxVtlWqZlSJyrkVErGoT9k2kP-3UvRH-vo_9XRH-vo7-uYpe6RFKhCpRRrBhr_r746qYSID7tca42zUv8FPPSa5A |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_1016_j_heares_2024_108967 crossref_primary_10_1109_TNSRE_2022_3201158 crossref_primary_10_3390_biomedicines12071404 crossref_primary_10_1109_TIM_2024_3394496 crossref_primary_10_3233_JIFS_231794 crossref_primary_10_1002_ima_22882 crossref_primary_10_1109_JBHI_2023_3264521 crossref_primary_10_1109_JBHI_2022_3225089 |
Cites_doi | 10.1109/CVPR.2018.00887 10.1088/1741-2552/aace8c 10.1002/14651858.CD004739.pub4 10.1007/s10484-006-9002-x 10.1007/s11063-018-9845-1 10.1109/SMC.2018.00196 10.1007/978-3-319-49685-6_19 10.4108/eai.7-11-2017.2273696 10.1109/LSP.2019.2906824 10.1016/j.eswa.2013.02.023 10.1016/0013-4694(80)90225-4 10.1007/978-3-319-70093-9_84 10.1523/JNEUROSCI.2156-11.2011 10.1016/0166-4328(86)90228-7 10.1016/S0378-5955(97)00043-9 10.1007/s001060050704 10.1007/s00106-004-1066-4 10.1044/jshr.3401.197 10.1080/14992020802581974 10.1109/TNSRE.2007.911086 10.1109/TNSRE.2019.2905894 10.1109/TNSRE.2017.2721116 10.1007/s10484-015-9318-5 10.1177/1087054711427530 10.1177/014556130408300713 10.1162/089976602760128081 10.3766/jaaa.23.2.7 10.1109/IJCNN.2015.7280593 10.1002/hbm.23730 10.1609/aaai.v34i04.6069 10.1109/TNSRE.2005.857690 10.3766/jaaa.25.1.5 10.1055/s-0042-1748042 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/TNSRE.2021.3095298 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 1461 |
ExternalDocumentID | 10_1109_TNSRE_2021_3095298 9475971 |
Genre | orig-research |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c372t-7babfa3792eab795b9be496a3e7459e99ce73d22a832bffb679b55a15bfaacea3 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Fri Jul 11 14:36:27 EDT 2025 Fri Jul 25 04:31:57 EDT 2025 Thu Apr 24 22:51:26 EDT 2025 Tue Jul 01 00:43:23 EDT 2025 Wed Aug 27 02:40:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-7babfa3792eab795b9be496a3e7459e99ce73d22a832bffb679b55a15bfaacea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4149-839X 0000-0001-9582-3445 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9475971 |
PMID | 34232883 |
PQID | 2555727422 |
PQPubID | 85423 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1109_TNSRE_2021_3095298 proquest_miscellaneous_2549691029 proquest_journals_2555727422 crossref_citationtrail_10_1109_TNSRE_2021_3095298 ieee_primary_9475971 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref15 ref36 ref14 ref31 ref33 ref11 ref32 ref10 taigman (ref23) 2016 ref2 ref39 ref17 ref38 ref19 ref18 viirre (ref12) 2009 hartmann (ref30) 2018 ref24 liu (ref29) 2021 ref26 ref25 ref20 ref22 ref21 jastreboff (ref1) 1996; 17 jastreboff (ref9) 2000; 11 ref28 ref27 ref8 ref7 ref4 crisp (ref37) 2000 ref3 ref6 ref5 ref40 weiler (ref16) 2002; 8 |
References_xml | – ident: ref35 doi: 10.1109/CVPR.2018.00887 – volume: 17 start-page: 236 year: 1996 ident: ref1 article-title: Neurophysiological approach to tinnitus patients publication-title: Amer J Otol – ident: ref39 doi: 10.1088/1741-2552/aace8c – ident: ref2 doi: 10.1002/14651858.CD004739.pub4 – ident: ref24 doi: 10.1007/s10484-006-9002-x – ident: ref20 doi: 10.1007/s11063-018-9845-1 – year: 2009 ident: ref12 article-title: Eeg feedback controlled sound therapy for tinnitus – ident: ref36 doi: 10.1109/SMC.2018.00196 – ident: ref18 doi: 10.1007/978-3-319-49685-6_19 – ident: ref22 doi: 10.4108/eai.7-11-2017.2273696 – ident: ref19 doi: 10.1109/LSP.2019.2906824 – start-page: 8723 year: 2021 ident: ref29 article-title: Task aligned generative meta-learning for zero-shot learning publication-title: Proc 31th AAAI Conf Artif Intell – ident: ref31 doi: 10.1016/j.eswa.2013.02.023 – ident: ref8 doi: 10.1016/0013-4694(80)90225-4 – ident: ref27 doi: 10.1007/978-3-319-70093-9_84 – ident: ref4 doi: 10.1523/JNEUROSCI.2156-11.2011 – ident: ref6 doi: 10.1016/0166-4328(86)90228-7 – start-page: 244 year: 2000 ident: ref37 article-title: A geometric interpretation of v-SVM classifiers publication-title: Proc Adv Neural Inf Process Syst – ident: ref14 doi: 10.1016/S0378-5955(97)00043-9 – ident: ref15 doi: 10.1007/s001060050704 – ident: ref17 doi: 10.1007/s00106-004-1066-4 – ident: ref5 doi: 10.1044/jshr.3401.197 – ident: ref13 doi: 10.1080/14992020802581974 – ident: ref7 doi: 10.1109/TNSRE.2007.911086 – ident: ref38 doi: 10.1109/TNSRE.2019.2905894 – ident: ref28 doi: 10.1109/TNSRE.2017.2721116 – ident: ref26 doi: 10.1007/s10484-015-9318-5 – ident: ref25 doi: 10.1177/1087054711427530 – year: 2016 ident: ref23 article-title: Unsupervised cross-domain image generation publication-title: arXiv 1611 02200 – ident: ref3 doi: 10.1177/014556130408300713 – ident: ref33 doi: 10.1162/089976602760128081 – volume: 8 start-page: 87 year: 2002 ident: ref16 article-title: Neurofeedback and quantitative electroencephalography publication-title: Int Tinnitus J – ident: ref10 doi: 10.3766/jaaa.23.2.7 – ident: ref21 doi: 10.1109/IJCNN.2015.7280593 – ident: ref40 doi: 10.1002/hbm.23730 – ident: ref34 doi: 10.1609/aaai.v34i04.6069 – ident: ref32 doi: 10.1109/TNSRE.2005.857690 – year: 2018 ident: ref30 article-title: EEG-GAN: Generative adversarial networks for electroencephalograhic (EEG) brain signals publication-title: arXiv 1806 01875 – ident: ref11 doi: 10.3766/jaaa.25.1.5 – volume: 11 start-page: 162 year: 2000 ident: ref9 article-title: Tinnitus retraining therapy (TRT) as a method for treatment of tinnitus and hyperacusis patients publication-title: J Amer Acad Audiol doi: 10.1055/s-0042-1748042 |
SSID | ssj0017657 |
Score | 2.377319 |
Snippet | Electroencephalogram (EEG)-based neurofeedback has been widely studied for tinnitus therapy in recent years. Most existing research relies on experts'... Electroencephalogram (EEG)-based neurofeedback has been widely studied for tinnitus therapy in recent years. Most existing research relies on experts’... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1452 |
SubjectTerms | Ablation Algorithms Auditory system Brain modeling Coders Cognitive ability Deep learning domain alignment EEG Electroencephalography Encoders-Decoders Feature extraction Feedback Fineness Learning algorithms Machine learning Medical diagnosis Medical treatment Neurofeedback Predictive control siamese autoencoder subject-independent Tinnitus Training trend descriptor |
Title | Generalizable Sample-Efficient Siamese Autoencoder for Tinnitus Diagnosis in Listeners With Subjective Tinnitus |
URI | https://ieeexplore.ieee.org/document/9475971 https://www.proquest.com/docview/2555727422 https://www.proquest.com/docview/2549691029 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLfGnniBfYA4GFOQgBforZcmzeVxGjdNiO1hdxN7q5LWFYWpRbv2ZX89dtqrGEyIt6p10jZ2HDt2fgZ4q1O6X9g0srFCclCUjrxULiLWz8lejzEPcAznF-nZlfp8ra-34ON4FgYRQ_IZTvkyxPKLJu94q-zIMjgdHxh_RI5bf1ZrjBiYNKB60gRWkUpkvDkgE9uj1cXyckGuoJxNE7IopOUifYx8x5V2761HocDKX1o5LDWnT-F885F9hsmPadf6aX73B37j__7FDjwZbE5x3AvJLmxhvQfvfscXFqseXEC8F5f3oLv3oRmAqTn76wbF0jGccLQIyBP0HrGsOM8WxXHXNgyKWeCtIENYrKqatEW3Fp_6ZL5qLapafGGpov7W4mvVfhOktr73GnekfwZXp4vVyVk0VGmI8sTINjLe-dIlxkp03ljtrUdlU5egUdqitTmapJDSke7wZelTY73WbqaplcvRJc9hu25qfAGiKEvpcptiWpakwB25gsrPHZkQ88SRSE1gtuFVlg_jwJU0brLgysQ2C6zOmNXZwOoJfBjb_OwBPP5Jvc8MGykHXk3gYCMS2TDH1xk5Y9pwpFtO4M34mGYnh1xcjU3HNDQUZJFJ-_Lhnl_BY35_v6lzANvtbYevycxp_WHYHjgMUv4LehT71g |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwELam7QFeYDAQ3QYYCXiBdKljx_XjBJ0KtH1YM7G3yE4uImxK0Jq87Ndz56QRA4R4i5Jz4vjO5zvf-TvGXqsY7-cmDkwoAR0UqQInpA2Q9VO010PIPBzDchXPL-TnS3W5w94PZ2EAwCefwZgufSw_r7OWtspODIHT0YHxPVz31aQ7rTXEDHTscT1xCstARiLcHpEJzUmyWp_P0BkUk3GENoUwVKaPsO-o1u6dFcmXWPlDL_vF5uwhW2672eWYXI3bxo2z298QHP_3P_bZg97q5KedmDxiO1A9Zm9-RRjmSQcvwN_y8zvg3Qes7qGpKf_rGvjaEqBwMPPYE_gdvi4p0xb4advUBIuZww1HU5gnZYX6ot3wj106X7nhZcUXJFf4vg3_WjbfOCqu753OHeifsIuzWfJhHvR1GoIs0qIJtLOusJE2AqzTRjnjQJrYRqClMmBMBjrKhbCoPVxRuFgbp5SdKGxlM7DRU7Zb1RU8YzwvCmEzE0NcFKjCLTqD0k0tGhHTyKJQjdhky6s068eBamlcp96ZCU3qWZ0Sq9Oe1SP2bmjzo4Pw-Cf1ATFsoOx5NWLHW5FI-1m-SdEdU5pi3WLEXg2PcX5S0MVWULdEg0OBNpkwh39_80t2b54sF-ni0-rLEbtPfem2eI7ZbnPTwnM0ehr3wsv6T8uE_io |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalizable+Sample-Efficient+Siamese+Autoencoder+for+Tinnitus+Diagnosis+in+Listeners+With+Subjective+Tinnitus&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Liu%2C+Zhe&rft.au=Yao%2C+Lina&rft.au=Wang%2C+Xianzhi&rft.au=Monaghan%2C+Jessica+J.+M.&rft.date=2021&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=29&rft.spage=1452&rft.epage=1461&rft_id=info:doi/10.1109%2FTNSRE.2021.3095298&rft_id=info%3Apmid%2F34232883&rft.externalDocID=9475971 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |