Gene doubling increases glyoxalase 1 expression in RAGE knockout mice
The receptor for advanced glycation end-products (RAGE) is a multifunctional protein. Its function as pattern recognition receptor able to interact with various extracellular ligands is well described. Genetically modified mouse models, especially the RAGE knockout (RAGE-KO) mouse, identified the am...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1864; no. 1; p. 129438 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-4165 1872-8006 1872-8006 |
DOI | 10.1016/j.bbagen.2019.129438 |
Cover
Abstract | The receptor for advanced glycation end-products (RAGE) is a multifunctional protein. Its function as pattern recognition receptor able to interact with various extracellular ligands is well described. Genetically modified mouse models, especially the RAGE knockout (RAGE-KO) mouse, identified the amplification of the immune response as an important function of RAGE. Pro-inflammatory ligands of RAGE are also methylglyoxal-derived advanced glycation end-products, which depend in their quantity, at least in part, on the activity of the methylglyoxal-detoxifying enzyme glyoxalase-1 (Glo1). Therefore, we studied the potential interaction of RAGE and Glo1 by use of RAGE-KO mice.
Various tissues (lung, liver, kidney, heart, spleen, and brain) and blood cells from RAGE-KO and wildtype mice were analyzed for Glo1 expression and activity by biochemical assays and the Glo1 gene status by PCR techniques.
We identified an about two-fold up-regulation of Glo1 expression and activity in all tissues of RAGE-KO mice. This was result of a copy number variation of the Glo1 gene on mouse chromosome 17. In liver tissue and blood cells, the Glo1 expression and activity was additionally influenced by sex with higher values for male than female animals. As the genomic region containing Glo1 also contains the full-length sequence of another gene, namely Dnahc8, both genes were duplicated in RAGE-KO mice.
A genetic variance in RAGE-KO mice falsely suggests an interaction of RAGE and Glo1 function.
RAGE-independent up-regulation of Glo1 in RAGE-KO mice might be as another explanation for, at least some, effects attributed to RAGE before.
•RAGE interacts with methylglyoxal-derived AGEs, which are reduced by Glo1 activity.•Glo1 expression and activity are up-regulated in tissues of RAGE knockout mice.•Glo1 up-regulation is not caused by RAGE deficiency but Glo1 copy number variation.•Glo1 expression and activity in some tissues are additionally increased in males.•Effects attributed to RAGE could be caused by Glo1 up-regulation in these mice. |
---|---|
AbstractList | The receptor for advanced glycation end-products (RAGE) is a multifunctional protein. Its function as pattern recognition receptor able to interact with various extracellular ligands is well described. Genetically modified mouse models, especially the RAGE knockout (RAGE-KO) mouse, identified the amplification of the immune response as an important function of RAGE. Pro-inflammatory ligands of RAGE are also methylglyoxal-derived advanced glycation end-products, which depend in their quantity, at least in part, on the activity of the methylglyoxal-detoxifying enzyme glyoxalase-1 (Glo1). Therefore, we studied the potential interaction of RAGE and Glo1 by use of RAGE-KO mice.Various tissues (lung, liver, kidney, heart, spleen, and brain) and blood cells from RAGE-KO and wildtype mice were analyzed for Glo1 expression and activity by biochemical assays and the Glo1 gene status by PCR techniques.We identified an about two-fold up-regulation of Glo1 expression and activity in all tissues of RAGE-KO mice. This was result of a copy number variation of the Glo1 gene on mouse chromosome 17. In liver tissue and blood cells, the Glo1 expression and activity was additionally influenced by sex with higher values for male than female animals. As the genomic region containing Glo1 also contains the full-length sequence of another gene, namely Dnahc8, both genes were duplicated in RAGE-KO mice.A genetic variance in RAGE-KO mice falsely suggests an interaction of RAGE and Glo1 function.RAGE-independent up-regulation of Glo1 in RAGE-KO mice might be as another explanation for, at least some, effects attributed to RAGE before. The receptor for advanced glycation end-products (RAGE) is a multifunctional protein. Its function as pattern recognition receptor able to interact with various extracellular ligands is well described. Genetically modified mouse models, especially the RAGE knockout (RAGE-KO) mouse, identified the amplification of the immune response as an important function of RAGE. Pro-inflammatory ligands of RAGE are also methylglyoxal-derived advanced glycation end-products, which depend in their quantity, at least in part, on the activity of the methylglyoxal-detoxifying enzyme glyoxalase-1 (Glo1). Therefore, we studied the potential interaction of RAGE and Glo1 by use of RAGE-KO mice. Various tissues (lung, liver, kidney, heart, spleen, and brain) and blood cells from RAGE-KO and wildtype mice were analyzed for Glo1 expression and activity by biochemical assays and the Glo1 gene status by PCR techniques. We identified an about two-fold up-regulation of Glo1 expression and activity in all tissues of RAGE-KO mice. This was result of a copy number variation of the Glo1 gene on mouse chromosome 17. In liver tissue and blood cells, the Glo1 expression and activity was additionally influenced by sex with higher values for male than female animals. As the genomic region containing Glo1 also contains the full-length sequence of another gene, namely Dnahc8, both genes were duplicated in RAGE-KO mice. A genetic variance in RAGE-KO mice falsely suggests an interaction of RAGE and Glo1 function. RAGE-independent up-regulation of Glo1 in RAGE-KO mice might be as another explanation for, at least some, effects attributed to RAGE before. •RAGE interacts with methylglyoxal-derived AGEs, which are reduced by Glo1 activity.•Glo1 expression and activity are up-regulated in tissues of RAGE knockout mice.•Glo1 up-regulation is not caused by RAGE deficiency but Glo1 copy number variation.•Glo1 expression and activity in some tissues are additionally increased in males.•Effects attributed to RAGE could be caused by Glo1 up-regulation in these mice. The receptor for advanced glycation end-products (RAGE) is a multifunctional protein. Its function as pattern recognition receptor able to interact with various extracellular ligands is well described. Genetically modified mouse models, especially the RAGE knockout (RAGE-KO) mouse, identified the amplification of the immune response as an important function of RAGE. Pro-inflammatory ligands of RAGE are also methylglyoxal-derived advanced glycation end-products, which depend in their quantity, at least in part, on the activity of the methylglyoxal-detoxifying enzyme glyoxalase-1 (Glo1). Therefore, we studied the potential interaction of RAGE and Glo1 by use of RAGE-KO mice.BACKGROUNDThe receptor for advanced glycation end-products (RAGE) is a multifunctional protein. Its function as pattern recognition receptor able to interact with various extracellular ligands is well described. Genetically modified mouse models, especially the RAGE knockout (RAGE-KO) mouse, identified the amplification of the immune response as an important function of RAGE. Pro-inflammatory ligands of RAGE are also methylglyoxal-derived advanced glycation end-products, which depend in their quantity, at least in part, on the activity of the methylglyoxal-detoxifying enzyme glyoxalase-1 (Glo1). Therefore, we studied the potential interaction of RAGE and Glo1 by use of RAGE-KO mice.Various tissues (lung, liver, kidney, heart, spleen, and brain) and blood cells from RAGE-KO and wildtype mice were analyzed for Glo1 expression and activity by biochemical assays and the Glo1 gene status by PCR techniques.METHODSVarious tissues (lung, liver, kidney, heart, spleen, and brain) and blood cells from RAGE-KO and wildtype mice were analyzed for Glo1 expression and activity by biochemical assays and the Glo1 gene status by PCR techniques.We identified an about two-fold up-regulation of Glo1 expression and activity in all tissues of RAGE-KO mice. This was result of a copy number variation of the Glo1 gene on mouse chromosome 17. In liver tissue and blood cells, the Glo1 expression and activity was additionally influenced by sex with higher values for male than female animals. As the genomic region containing Glo1 also contains the full-length sequence of another gene, namely Dnahc8, both genes were duplicated in RAGE-KO mice.RESULTSWe identified an about two-fold up-regulation of Glo1 expression and activity in all tissues of RAGE-KO mice. This was result of a copy number variation of the Glo1 gene on mouse chromosome 17. In liver tissue and blood cells, the Glo1 expression and activity was additionally influenced by sex with higher values for male than female animals. As the genomic region containing Glo1 also contains the full-length sequence of another gene, namely Dnahc8, both genes were duplicated in RAGE-KO mice.A genetic variance in RAGE-KO mice falsely suggests an interaction of RAGE and Glo1 function.CONCLUSIONA genetic variance in RAGE-KO mice falsely suggests an interaction of RAGE and Glo1 function.RAGE-independent up-regulation of Glo1 in RAGE-KO mice might be as another explanation for, at least some, effects attributed to RAGE before.GENERAL SIGNIFICANCERAGE-independent up-regulation of Glo1 in RAGE-KO mice might be as another explanation for, at least some, effects attributed to RAGE before. |
ArticleNumber | 129438 |
Author | Zunkel, Katja Dehghani, Faramarz Bartling, Babett Al-Robaiy, Samiya Simm, Andreas |
Author_xml | – sequence: 1 givenname: Babett surname: Bartling fullname: Bartling, Babett email: babett.bartling@uk-halle.de organization: Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany – sequence: 2 givenname: Katja surname: Zunkel fullname: Zunkel, Katja organization: Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany – sequence: 3 givenname: Samiya surname: Al-Robaiy fullname: Al-Robaiy, Samiya organization: Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany – sequence: 4 givenname: Faramarz surname: Dehghani fullname: Dehghani, Faramarz organization: Institute of Anatomy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany – sequence: 5 givenname: Andreas surname: Simm fullname: Simm, Andreas organization: Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany |
BookMark | eNqFkE1LAzEQhoMoWD_-gYc9etmar90kHoRSahUEQfQcstnZkrpNarIV--9NWU8edC4zh-cdZp4zdOyDB4SuCJ4STOqb9bRpzAr8lGKipoQqzuQRmhApaCkxro_RBDPMS07q6hSdpbTGuSpVTdBiCR6KNuya3vlV4byNYBKkYtXvw5fp81yQAr62EVJywWeieJktF8W7D_Y97IZi4yxcoJPO9Akuf_o5ertfvM4fyqfn5eN89lRaJuhQioYpIrhhBJhp8uW8bngrW9q1lmEpqrojXEjBJLbGqI4wbIAr3igBXUNqdo6ux73bGD52kAa9cclC3xsPYZc0ZVIKWRGM_0epoioLojKjtyNqY0gpQqetG8yQvx2icb0mWB8067UeNeuDZj1qzmH-K7yNbmPi_r_Y3RiDrOvTQdTJOvAWWhfBDroN7u8F3y3fmS0 |
CitedBy_id | crossref_primary_10_3390_antiox10091486 crossref_primary_10_1016_j_fct_2020_111333 crossref_primary_10_1002_JLB_3A0520_745RR crossref_primary_10_1016_j_ebiom_2025_105644 crossref_primary_10_1016_j_foodres_2024_114967 crossref_primary_10_2174_1389450123666220610171005 crossref_primary_10_1096_fj_202002136R crossref_primary_10_1186_s12974_021_02191_2 crossref_primary_10_1080_00325481_2022_2124087 |
Cites_doi | 10.1152/ajplung.00090.2013 10.1210/me.2005-0071 10.1042/BCJ20160691 10.1152/ajpendo.00024.2008 10.1534/g3.113.006445 10.1007/s00441-005-0069-0 10.1016/j.freeradbiomed.2013.10.815 10.4049/jimmunol.1002253 10.1161/ATVBAHA.113.302281 10.1055/s-0037-1613678 10.2741/4735 10.1172/JCI11771 10.1096/fj.04-1900com 10.1016/S0002-9440(10)63909-0 10.1165/rcmb.2018-0125OC 10.1172/JCI32703 10.3233/JAD-2011-110776 10.3389/fncel.2016.00117 10.1104/pp.109.152553 10.1042/BJ20121743 10.1006/dbio.2002.0769 10.1074/jbc.274.44.31740 10.1196/annals.1333.064 10.1016/S0021-9258(18)42138-2 10.1002/gene.1030 10.1186/1471-2172-12-56 10.1016/S0021-9258(18)42137-0 10.1111/acel.12850 10.1016/j.biocel.2016.06.016 10.1093/infdis/jir826 10.1093/nar/gkx705 10.1371/journal.pone.0004649 10.1038/382685a0 10.1021/bi500046t 10.1371/journal.pone.0008309 10.1161/ATVBAHA.117.309714 10.1042/bj20021371 10.1042/BST20140010 10.1016/j.molimm.2013.07.008 10.1172/JCI200418704 10.1165/rcmb.2012-0111OC 10.1097/SHK.0000000000001032 10.1038/cddis.2014.248 10.1074/jbc.M806948200 10.5966/sctm.2015-0380 10.1080/14789450.2017.1271719 10.1038/ni1457 10.1165/rcmb.2011-0170OC 10.1172/JCI58642 10.1084/jem.20030800 10.1007/s00424-018-2175-3 10.1073/pnas.91.19.8807 10.1172/JCI200317115 10.1371/journal.pone.0180092 10.1371/journal.pone.0087364 10.1172/JCI119885 10.1165/rcmb.2005-0194OC 10.1186/cc6184 10.1096/fj.11-192997 10.1038/jid.2013.185 10.1517/14728222.2016.1111873 10.1038/sj.emboj.7600415 10.1074/jbc.M110.144097 10.1007/s003359901099 10.1093/nar/29.9.e45 10.1093/cvr/cvt259 10.1042/BJ20051573 10.1016/j.cellimm.2012.02.001 10.2337/db11-1546 10.1074/jbc.270.43.25752 10.1039/c2fo30030c |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2019.129438 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
ExternalDocumentID | 10_1016_j_bbagen_2019_129438 S0304416519302247 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c372t-7b39174a31e3ab01646b4d8d2fdc308756f14787380caa9f130ae494b97efb163 |
IEDL.DBID | AIKHN |
ISSN | 0304-4165 1872-8006 |
IngestDate | Fri Sep 05 08:10:22 EDT 2025 Thu Sep 04 19:25:35 EDT 2025 Tue Jul 01 00:22:12 EDT 2025 Thu Apr 24 23:12:57 EDT 2025 Fri Feb 23 02:48:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Advanced glycation end-products Copy number variation Dnahc8 Receptor for advanced glycation end-products Glo1 Sex |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-7b39174a31e3ab01646b4d8d2fdc308756f14787380caa9f130ae494b97efb163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2292987228 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2388785100 proquest_miscellaneous_2292987228 crossref_citationtrail_10_1016_j_bbagen_2019_129438 crossref_primary_10_1016_j_bbagen_2019_129438 elsevier_sciencedirect_doi_10_1016_j_bbagen_2019_129438 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2020 2020-01-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
PublicationDecade | 2020 |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhang, Bukulin, Kojro, Roth, Metz, Fahrenholz, Nawroth, Bierhaus, Postina (bb0195) 2008; 283 Pieroh, Koch, Wagner, Boltze, Ehrlich, Ghadban, Hobusch, Birkenmeier, Dehghani (bb0335) 2014; 9 Harashima, Yamamoto, Cheng, Tsuneyama, Myint, Takeuchi, Yoshimura, Li, Watanabe, Takasawa, Okamoto, Yonekura, Yamamoto (bb0190) 2006; 396 Tikellis, Thomas, Harcourt, Coughlan, Pete, Bialkowski, Tan, Bierhaus, Cooper, Forbes (bb0260) 2008; 295 Brett, Schmidt, Yan, Zou, Weidman, Pinsky, Nowygrod, Neeper, Przysieski, Shaw (bb0065) 1993; 143 Teissier, Quersin, Gnemmi, Daroux, Howsam, Delguste, Lemoine, Fradin, Schmidt, Cauffiez, Brousseau, Glowacki, Tessier, Boulanger, Frimat (bb0280) 2019; 18 Leuner, Ruhs, Bromme, Bierhaus, Sel, Silber, Somoza, Simm, Nass (bb0265) 2012; 3 Lopez-Diez, Shen, Daffu, Khursheed, Hu, Song, Rosario, Xu, Li, Xi, Zou, Li, Schmidt, Yan (bb0305) 2017; 37 Tian, Avalos, Mao, Chen, Senthil, Wu, Parroche, Drabic, Golenbock, Sirois, Hua, An, Audoly, La Rosa, Bierhaus, Naworth, Marshak-Rothstein, Crow, Fitzgerald, Latz, Kiener, Coyle (bb0055) 2007; 8 Brouwers, Niessen, Ferreira, Miyata, Scheffer, Teerlink, Schrauwen, Brownlee, Stehouwer, Schalkwijk (bb0370) 2011; 286 Kislinger, Fu, Huber, Qu, Taguchi, Du Yan, Hofmann, Yan, Pischetsrieder, Stern, Schmidt (bb0235) 1999; 274 Bierhaus, Konrade, Haag, Humpert, Morcos, Hammes, Tew, Nawroth (bb0295) 2005; vol. 48 Yonekura, Yamamoto, Sakurai, Petrova, Abedin, Li, Yasui, Takeuchi, Makita, Takasawa, Okamoto, Watanabe, Yamamoto (bb0185) 2003; 370 Schmidt, Hasu, Popov, Zhang, Chen, Yan, Brett, Cao, Kuwabara, Costache (bb0255) 1994; 91 Chavakis, Bierhaus, Al-Fakhri, Schneider, Witte, Linn, Nagashima, Morser, Arnold, Preissner, Nawroth (bb0100) 2003; 198 Tan, Sourris, Harcourt, Thallas-Bonke, Penfold, Andrikopoulos, Thomas, O'Brien, Bierhaus, Cooper, Forbes, Coughlan (bb0270) 2010; 298 Juranek, Daffu, Geddis, Li, Rosario, Kaplan, Kelly, Schmidt (bb0285) 2016; 10 Samant, Ogunkua, Hui, Fossella, Pilder (bb0390) 2002; 250 Kumar, Fleming, Terjung, Gorzelanny, Gebhardt, Agrawal, Mall, Ranzinger, Zeier, Madhusudhan, Ranjan, Isermann, Liesz, Deshpande, Haring, Biswas, Reynolds, Hammes, Peperkok, Angel, Herzig, Nawroth (bb0015) 2017; 45 I. Pubmed, Bethesda (MD) (bb0230) 2018 Williams, Lim, Harr, Wing, Walters, Distler, Teschke, Wu, Wiltshire, Su, Sokoloff, Tarantino, Borevitz, Palmer (bb0340) 2009; 4 Wang, Wang, Yuan, Cao, Zhou, He, Shen, Zeng, Dai, Wen, Chen (bb0125) 2018; 50 Rong, Yan, Wendt, Hans, Pachydaki, Bucciarelli, Adebayo, Qu, Lu, Kostov, Lalla, Yan, Gooch, Szabolcs, Trojaborg, Hays, Schmidt (bb0160) 2004; 18 Fehrenbach, Kasper, Tsherinig, Shearman, Schuh, Mueller (bb0070) 1998; 44 Arai, Nihonmatsu-Kikuchi, Itokawa, Rabbani, Thornalley (bb0345) 2014; 42 Harja, Bu, Hudson, Chang, Shen, Hallam, Kalea, Lu, Rosario, Oruganti, Nikolla, Belov, Lalla, Ramasamy, Yan, Schmidt (bb0155) 2008; 118 Xue, Ray, Singer, Bohme, Burz, Rai, Hoffmann, Shekhtman (bb0240) 2014; 53 Zeng, Zhang, Huang, Vedantham, Rosario, Ananthakrishnan, Yan, Ramasamy, DeMatteo, Emond, Friedman, Schmidt (bb0300) 2012; 26 Sugihara, Munesue, Yamamoto, Sakurai, Akhter, Kitamura, Shiba, Watanabe, Yonekura, Hayashi, Hamada, Yamamoto (bb0180) 2012; 28 Kollmannsberger, Gassen, Bultmann, Hartmann, Weber, Schmidt, Rein (bb0360) 2013; 3 Peng, Yang, Qin, Ye, Wang, Shi, Jiang, Liu, Lu (bb0385) 2017; 6 Vulesevic, McNeill, Geoffrion, Kuraitis, McBane, Lochhead, Vanderhyden, Korbutt, Milne, Suuronen (bb0375) 2014; 101 Shekhtman, Ramasamy, Schmidt (bb0315) 2017; 14 Leibold, Riehl, Hettinger, Durben, Hess, Angel (bb0115) 2013; 133 Reynaert, Gopal, Rutten, Wouters, Schalkwijk (bb0310) 2016; 81 Bartling, Demling, Silber, Simm (bb0085) 2006; 34 Yamamoto, Doi, Kato, Shinohara, Sakurai, Yonekura, Watanabe, Myint, Harashima, Takeuchi, Takasawa, Okamoto, Hashimoto, Asano, Yamamoto (bb0110) 2005; 1043 Cheung-Flynn, Prapapanich, Cox, Riggs, Suarez-Quian, Smith (bb0355) 2005; 19 Hori, Brett, Slattery, Cao, Zhang, Chen, Nagashima, Lundh, Vijay, Nitecki, Schmidt (bb0040) 1995; 270 Sakaguchi, Yan, Yan, Belov, Rong, Sousa, Andrassy, Marso, Duda, Arnold, Liliensiek, Nawroth, Stern, Schmidt, Naka (bb0170) 2003; 111 Watson, Gray, Jiaze, Soro-Paavonen, Wong, Cooper, Bierhaus, Pickering, Tikellis, Tsorotes, Thomas, Jandeleit-Dahm (bb0275) 2012; 61 Al-Robaiy, Kindermann, Wodischeck, Simm, Treede, Bartling (bb0095) 2018; 470 Lohse, Nunes-Nesi, Kruger, Nagel, Hannemann, Giorgi, Childs, Osorio, Walther, Selbig, Sreenivasulu, Stitt, Fernie, Usadel (bb0325) 2010; 153 Fineschi, De Cunto, Facchinetti, Civelli, Imbimbo, Carnini, Villetti, Lunghi, Stochino, Gibbons, Hayday, Lungarella, Cavarra (bb0210) 2013; 48 Ramasamy, Shekhtman, Schmidt (bb0005) 2016; 20 Shinohara, Thornalley, Giardino, Beisswenger, Thorpe, Onorato, Brownlee (bb0245) 1998; 101 Frommhold, Kamphues, Dannenberg, Buschmann, Zablotskaya, Tschada, Lange-Sperandio, Nawroth, Poeschl, Bierhaus, Sperandio (bb0105) 2011; 12 Yamamoto, Harashima, Saito, Tsuneyama, Munesue, Motoyoshi, Han, Watanabe, Asano, Takasawa, Okamoto, Shimura, Karasawa, Yonekura, Yamamoto (bb0060) 2011; 186 Constien, Forde, Liliensiek, Grone, Nawroth, Hammerling, Arnold (bb0150) 2001; 30 Neeper, Schmidt, Brett, Yan, Wang, Pan, Elliston, Stern, Shaw (bb0030) 1992; 267 Zhang, Wang, Yan, Du, Wu, Yan, Yan (bb0120) 2014; 5 Yamamoto, Kato, Doi, Yonekura, Ohashi, Takeuchi, Watanabe, Yamagishi, Sakurai, Takasawa, Okamoto, Yamamoto (bb0200) 2001; 108 Shafie, Xue, Barker, Zehnder, Thornalley, Rabbani (bb0365) 2016; 473 Peng, Park, Tang, Horwitz, Lin (bb0175) 2019; 24 Demling, Ehrhardt, Kasper, Laue, Knels, Rieber (bb0075) 2006; 323 Wolf, Herr, Niederstrasser, Beisswenger, Bals (bb0090) 2017; 12 Gaens, Goossens, Niessen, van Greevenbroek, van der Kallen, Niessen, Rensen, Buurman, Greve, Blaak, van Zandvoort, Bierhaus, Stehouwer, Schalkwijk (bb0290) 2014; 34 Ibrahim, Armour, Phipps, Sukkar (bb0020) 2013; 56 Leclerc, Heizmann (bb0035) 2011; 3 Liliensiek, Weigand, Bierhaus, Nicklas, Kasper, Hofer, Plachky, Grone, Kurschus, Schmidt, Yan, Martin, Schleicher, Stern, Hammerling, Nawroth, Arnold (bb0205) 2004; 113 Deane, Singh, Sagare, Bell, Ross, LaRue, Love, Perry, Paquette, Deane, Thiyagarajan, Zarcone, Fritz, Friedman, Miller, Zlokovic (bb0225) 2012; 122 Al-Robaiy, Weber, Simm, Diez, Rolewska, Silber, Bartling (bb0080) 2013; 305 Prasad, Mishra (bb0320) 2018; 27 Miller, Sims, Brewah, Rebelatto, Kearley, Benjamin, Keller, Brohawn, Herbst, Coyle, Humbles, Kolbeck (bb0145) 2012; 205 Oczypok, Perkins, Oury (bb0010) 2017; 23 Wendt, Tanji, Guo, Kislinger, Qu, Lu, Bucciarelli, Rong, Moser, Markowitz, Stein, Bierhaus, Liliensiek, Arnold, Nawroth, Stern, D'Agati, Schmidt (bb0220) 2003; 162 Sakatani, Yamada, Homma, Munesue, Yamamoto, Yamamoto, Hirase (bb0140) 2009; 4 Schmidt, Vianna, Gerlach, Brett, Ryan, Kao, Esposito, Hegarty, Hurley, Clauss, Wang, Pan, Tsang, Stern (bb0025) 1992; 267 Yan, Chen, Fu, Chen, Zhu, Roher, Slattery, Zhao, Nagashima, Morser, Migheli, Nawroth, Stern, Schmidt (bb0045) 1996; 382 Lutterloh, Opal, Pittman, Keith, Tan, Clancy, Palmer, Milarski, Sun, Palardy, Parejo, Kessimian (bb0130) 2007; 11 Arancio, Zhang, Chen, Lin, Trinchese, Puzzo, Liu, Hegde, Yan, Stern, Luddy, Lue, Walker, Roher, Buttini, Mucke, Li, Schmidt, Kindy, Hyslop, Stern, Du Yan (bb0165) 2004; 23 Sousa Silva, Gomes, Ferreira, Ponces Freire, Cordeiro (bb0250) 2013; 453 Festing, Simpson, Davisson, Mobraaten (bb0350) 1999; 10 Pfaffl (bb0330) 2001; 29 Ma, Rai, Hudson, Song, Schmidt, Barile (bb0050) 2012; 274 Shin, Kim, Lee, Ahn, Jo, Kim, Kwon, Kang, Cho, Park, Eum, Choi (bb0380) 2014; 67 Reynolds, Stogsdill, Stogsdill, Heimann (bb0215) 2011; 45 Chung, Hogan (bb0135) 2018; 59 Miller (10.1016/j.bbagen.2019.129438_bb0145) 2012; 205 Chavakis (10.1016/j.bbagen.2019.129438_bb0100) 2003; 198 Bartling (10.1016/j.bbagen.2019.129438_bb0085) 2006; 34 Shin (10.1016/j.bbagen.2019.129438_bb0380) 2014; 67 Samant (10.1016/j.bbagen.2019.129438_bb0390) 2002; 250 Ma (10.1016/j.bbagen.2019.129438_bb0050) 2012; 274 Tian (10.1016/j.bbagen.2019.129438_bb0055) 2007; 8 Peng (10.1016/j.bbagen.2019.129438_bb0385) 2017; 6 Vulesevic (10.1016/j.bbagen.2019.129438_bb0375) 2014; 101 Teissier (10.1016/j.bbagen.2019.129438_bb0280) 2019; 18 Prasad (10.1016/j.bbagen.2019.129438_bb0320) 2018; 27 Shafie (10.1016/j.bbagen.2019.129438_bb0365) 2016; 473 Chung (10.1016/j.bbagen.2019.129438_bb0135) 2018; 59 Zhang (10.1016/j.bbagen.2019.129438_bb0195) 2008; 283 Brouwers (10.1016/j.bbagen.2019.129438_bb0370) 2011; 286 Kumar (10.1016/j.bbagen.2019.129438_bb0015) 2017; 45 Sousa Silva (10.1016/j.bbagen.2019.129438_bb0250) 2013; 453 Arai (10.1016/j.bbagen.2019.129438_bb0345) 2014; 42 Wendt (10.1016/j.bbagen.2019.129438_bb0220) 2003; 162 Tikellis (10.1016/j.bbagen.2019.129438_bb0260) 2008; 295 Pfaffl (10.1016/j.bbagen.2019.129438_bb0330) 2001; 29 Deane (10.1016/j.bbagen.2019.129438_bb0225) 2012; 122 Liliensiek (10.1016/j.bbagen.2019.129438_bb0205) 2004; 113 Cheung-Flynn (10.1016/j.bbagen.2019.129438_bb0355) 2005; 19 Sakaguchi (10.1016/j.bbagen.2019.129438_bb0170) 2003; 111 Schmidt (10.1016/j.bbagen.2019.129438_bb0025) 1992; 267 Yamamoto (10.1016/j.bbagen.2019.129438_bb0060) 2011; 186 Shinohara (10.1016/j.bbagen.2019.129438_bb0245) 1998; 101 Yan (10.1016/j.bbagen.2019.129438_bb0045) 1996; 382 Leuner (10.1016/j.bbagen.2019.129438_bb0265) 2012; 3 Kollmannsberger (10.1016/j.bbagen.2019.129438_bb0360) 2013; 3 Ramasamy (10.1016/j.bbagen.2019.129438_bb0005) 2016; 20 Rong (10.1016/j.bbagen.2019.129438_bb0160) 2004; 18 Oczypok (10.1016/j.bbagen.2019.129438_bb0010) 2017; 23 Zeng (10.1016/j.bbagen.2019.129438_bb0300) 2012; 26 Fehrenbach (10.1016/j.bbagen.2019.129438_bb0070) 1998; 44 Leibold (10.1016/j.bbagen.2019.129438_bb0115) 2013; 133 Kislinger (10.1016/j.bbagen.2019.129438_bb0235) 1999; 274 Ibrahim (10.1016/j.bbagen.2019.129438_bb0020) 2013; 56 Wang (10.1016/j.bbagen.2019.129438_bb0125) 2018; 50 Harja (10.1016/j.bbagen.2019.129438_bb0155) 2008; 118 Wolf (10.1016/j.bbagen.2019.129438_bb0090) 2017; 12 Xue (10.1016/j.bbagen.2019.129438_bb0240) 2014; 53 Pieroh (10.1016/j.bbagen.2019.129438_bb0335) 2014; 9 Sugihara (10.1016/j.bbagen.2019.129438_bb0180) 2012; 28 Zhang (10.1016/j.bbagen.2019.129438_bb0120) 2014; 5 Al-Robaiy (10.1016/j.bbagen.2019.129438_bb0095) 2018; 470 Peng (10.1016/j.bbagen.2019.129438_bb0175) 2019; 24 Reynaert (10.1016/j.bbagen.2019.129438_bb0310) 2016; 81 Al-Robaiy (10.1016/j.bbagen.2019.129438_bb0080) 2013; 305 Lopez-Diez (10.1016/j.bbagen.2019.129438_bb0305) 2017; 37 Demling (10.1016/j.bbagen.2019.129438_bb0075) 2006; 323 Arancio (10.1016/j.bbagen.2019.129438_bb0165) 2004; 23 Lutterloh (10.1016/j.bbagen.2019.129438_bb0130) 2007; 11 Tan (10.1016/j.bbagen.2019.129438_bb0270) 2010; 298 Schmidt (10.1016/j.bbagen.2019.129438_bb0255) 1994; 91 Harashima (10.1016/j.bbagen.2019.129438_bb0190) 2006; 396 Watson (10.1016/j.bbagen.2019.129438_bb0275) 2012; 61 Festing (10.1016/j.bbagen.2019.129438_bb0350) 1999; 10 Yonekura (10.1016/j.bbagen.2019.129438_bb0185) 2003; 370 Sakatani (10.1016/j.bbagen.2019.129438_bb0140) 2009; 4 Brett (10.1016/j.bbagen.2019.129438_bb0065) 1993; 143 Lohse (10.1016/j.bbagen.2019.129438_bb0325) 2010; 153 Frommhold (10.1016/j.bbagen.2019.129438_bb0105) 2011; 12 I. Pubmed, Bethesda (MD) (10.1016/j.bbagen.2019.129438_bb0230) 2018 Hori (10.1016/j.bbagen.2019.129438_bb0040) 1995; 270 Constien (10.1016/j.bbagen.2019.129438_bb0150) 2001; 30 Juranek (10.1016/j.bbagen.2019.129438_bb0285) 2016; 10 Fineschi (10.1016/j.bbagen.2019.129438_bb0210) 2013; 48 Williams (10.1016/j.bbagen.2019.129438_bb0340) 2009; 4 Leclerc (10.1016/j.bbagen.2019.129438_bb0035) 2011; 3 Yamamoto (10.1016/j.bbagen.2019.129438_bb0110) 2005; 1043 Bierhaus (10.1016/j.bbagen.2019.129438_bb0295) 2005; vol. 48 Yamamoto (10.1016/j.bbagen.2019.129438_bb0200) 2001; 108 Shekhtman (10.1016/j.bbagen.2019.129438_bb0315) 2017; 14 Reynolds (10.1016/j.bbagen.2019.129438_bb0215) 2011; 45 Neeper (10.1016/j.bbagen.2019.129438_bb0030) 1992; 267 Gaens (10.1016/j.bbagen.2019.129438_bb0290) 2014; 34 |
References_xml | – volume: 101 start-page: 1142 year: 1998 end-page: 1147 ident: bb0245 article-title: Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis publication-title: J. Clin. Invest. – volume: 153 start-page: 642 year: 2010 end-page: 651 ident: bb0325 article-title: Robin: an intuitive wizard application for R-based expression microarray quality assessment and analysis publication-title: Plant Physiol. – volume: 24 start-page: 555 year: 2019 end-page: 563 ident: bb0175 article-title: Generation of sRAGE(high) transgenic mice to study inflammaging publication-title: Front. Biosci. (Landmark Ed) – volume: 286 start-page: 1374 year: 2011 end-page: 1380 ident: bb0370 article-title: Overexpression of glyoxalase-I reduces hyperglycemia-induced levels of advanced glycation end products and oxidative stress in diabetic rats publication-title: J. Biol. Chem. – volume: 101 start-page: 306 year: 2014 end-page: 316 ident: bb0375 article-title: Glyoxalase-1 overexpression in bone marrow cells reverses defective neovascularization in STZ-induced diabetic mice publication-title: Cardiovasc. Res. – volume: 50 start-page: 472 year: 2018 end-page: 482 ident: bb0125 article-title: Role of receptor for advanced glycation end-products in regulating lung fluid balance in lipopolysaccharide-induced acute lung injury and infection-related acute respiratory distress syndrome publication-title: Shock – volume: 205 start-page: 1311 year: 2012 end-page: 1320 ident: bb0145 article-title: Opposing roles of membrane and soluble forms of the receptor for advanced glycation end products in primary respiratory syncytial virus infection publication-title: J. Infect. Dis. – volume: 18 start-page: e12850 year: 2019 ident: bb0280 article-title: Knockout of receptor for advanced glycation end-products attenuates age-related renal lesions publication-title: Aging Cell – volume: 323 start-page: 475 year: 2006 end-page: 488 ident: bb0075 article-title: Promotion of cell adherence and spreading: a novel function of RAGE, the highly selective differentiation marker of human alveolar epithelial type I cells publication-title: Cell Tissue Res. – volume: 113 start-page: 1641 year: 2004 end-page: 1650 ident: bb0205 article-title: Receptor for advanced glycation end products (RAGE) regulates sepsis but not the adaptive immune response publication-title: J. Clin. Invest. – volume: 48 start-page: 164 year: 2013 end-page: 171 ident: bb0210 article-title: RAGE contributes to postnatal pulmonary development and adult lung maintenance program in mice publication-title: Am. J. Respir. Cell Mol. Biol. – volume: 67 start-page: 195 year: 2014 end-page: 210 ident: bb0380 article-title: Tat-glyoxalase protein inhibits against ischemic neuronal cell damage and ameliorates ischemic injury publication-title: Free Radic. Biol. Med. – volume: 34 start-page: 1199 year: 2014 end-page: 1208 ident: bb0290 article-title: Nepsilon-(carboxymethyl)lysine-receptor for advanced glycation end product axis is a key modulator of obesity-induced dysregulation of adipokine expression and insulin resistance publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 453 start-page: 1 year: 2013 end-page: 15 ident: bb0250 article-title: The glyoxalase pathway: the first hundred years... And beyond publication-title: Biochem. J. – volume: 9 year: 2014 ident: bb0335 article-title: Temporal dynamics of glyoxalase 1 in secondary neuronal injury publication-title: PLoS One – volume: 396 start-page: 109 year: 2006 end-page: 115 ident: bb0190 article-title: Identification of mouse orthologue of endogenous secretory receptor for advanced glycation end-products: structure, function and expression publication-title: Biochem. J. – volume: 11 start-page: R122 year: 2007 ident: bb0130 article-title: Inhibition of the RAGE products increases survival in experimental models of severe sepsis and systemic infection publication-title: Crit. Care – volume: 108 start-page: 261 year: 2001 end-page: 268 ident: bb0200 article-title: Development and prevention of advanced diabetic nephropathy in RAGE-overexpressing mice publication-title: J. Clin. Invest. – volume: 267 start-page: 14998 year: 1992 end-page: 15004 ident: bb0030 article-title: Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins publication-title: J. Biol. Chem. – volume: 370 start-page: 1097 year: 2003 end-page: 1109 ident: bb0185 article-title: Novel splice variants of the receptor for advanced glycation end-products expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes-induced vascular injury publication-title: Biochem. J. – volume: 10 start-page: 836 year: 1999 ident: bb0350 article-title: Revised nomenclature for strain 129 mice publication-title: Mamm. Genome – volume: 19 start-page: 1654 year: 2005 end-page: 1666 ident: bb0355 article-title: Physiological role for the cochaperone FKBP52 in androgen receptor signaling publication-title: Mol. Endocrinol. – volume: 3 start-page: 1232 year: 2011 end-page: 1262 ident: bb0035 article-title: The importance of Ca2+/Zn2+ signaling S100 proteins and RAGE in translational medicine publication-title: Front Biosci. (Schol Ed) – volume: 12 year: 2017 ident: bb0090 article-title: Receptor for advanced glycation endproducts (RAGE) maintains pulmonary structure and regulates the response to cigarette smoke publication-title: PLoS One – volume: 4 year: 2009 ident: bb0340 article-title: A common and unstable copy number variant is associated with differences in Glo1 expression and anxiety-like behavior publication-title: PLoS One – volume: 283 start-page: 35507 year: 2008 end-page: 35516 ident: bb0195 article-title: Receptor for advanced glycation end products is subjected to protein ectodomain shedding by metalloproteinases publication-title: J. Biol. Chem. – volume: 298 start-page: F763 year: 2010 end-page: F770 ident: bb0270 article-title: Disparate effects on renal and oxidative parameters following RAGE deletion publication-title: AGE accumulation inhibition, or dietary AGE control in experimental diabetic nephropathy, Am J Physiol Renal Physiol – volume: 45 start-page: 10595 year: 2017 end-page: 10613 ident: bb0015 article-title: Homeostatic nuclear RAGE-ATM interaction is essential for efficient DNA repair publication-title: Nucleic Acids Res. – volume: 267 start-page: 14987 year: 1992 end-page: 14997 ident: bb0025 article-title: Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface publication-title: J. Biol. Chem. – volume: 14 start-page: 147 year: 2017 end-page: 156 ident: bb0315 article-title: Glycation & the RAGE axis: targeting signal transduction through DIAPH1 publication-title: Expert Rev Proteomics – volume: 44 start-page: 1147 year: 1998 end-page: 1157 ident: bb0070 article-title: Receptor for advanced glycation endproducts (RAGE) exhibits highly differential cellular and subcellular localisation in rat and human lung publication-title: Cell. Mol. Biol. – volume: 27 start-page: 1 year: 2018 end-page: 12 ident: bb0320 article-title: AGE-RAGE stress, stressors, and Antistressors in health and disease publication-title: Int. J. Angiol. – volume: 53 start-page: 3327 year: 2014 end-page: 3335 ident: bb0240 article-title: The receptor for advanced glycation end products (RAGE) specifically recognizes methylglyoxal-derived AGEs publication-title: Biochemistry – volume: 10 start-page: 117 year: 2016 ident: bb0285 article-title: Soluble RAGE treatment delays progression of amyotrophic lateral sclerosis in SOD1 mice publication-title: Front. Cell. Neurosci. – volume: 29 start-page: e45 year: 2001 ident: bb0330 article-title: A new mathematical model for relative quantification in real-time RT-PCR publication-title: Nucleic Acids Res. – volume: 12 start-page: 56 year: 2011 ident: bb0105 article-title: RAGE and ICAM-1 differentially control leukocyte recruitment during acute inflammation in a stimulus-dependent manner publication-title: BMC Immunol. – volume: 18 start-page: 1818 year: 2004 end-page: 1825 ident: bb0160 article-title: RAGE modulates peripheral nerve regeneration via recruitment of both inflammatory and axonal outgrowth pathways publication-title: FASEB J. – volume: 111 start-page: 959 year: 2003 end-page: 972 ident: bb0170 article-title: Central role of RAGE-dependent neointimal expansion in arterial restenosis publication-title: J. Clin. Invest. – volume: 3 start-page: 1311 year: 2013 end-page: 1313 ident: bb0360 article-title: Increased glyoxalase-1 levels in Fkbp5 knockout mice caused by glyoxalase-1 gene duplication publication-title: G3 (Bethesda) – volume: 34 start-page: 83 year: 2006 end-page: 91 ident: bb0085 article-title: Proliferative stimulus of lung fibroblasts on lung cancer cells is impaired by RAGE publication-title: Am. J. Respir. Cell Mol. Biol. – volume: 5 start-page: e1288 year: 2014 ident: bb0120 article-title: Genetic deficiency of neuronal RAGE protects against AGE-induced synaptic injury publication-title: Cell Death Dis. – volume: 473 start-page: 4255 year: 2016 end-page: 4270 ident: bb0365 article-title: Reappraisal of putative glyoxalase 1-deficient mouse and dicarbonyl stress on embryonic stem cells in vitro publication-title: Biochem. J. – volume: 470 start-page: 1543 year: 2018 end-page: 1553 ident: bb0095 article-title: Long-term endurance running activity causes pulmonary changes depending on the receptor for advanced glycation end-products publication-title: Pflugers Arch. – Eur. J. Physiol. – volume: 3 start-page: 1091 year: 2012 end-page: 1098 ident: bb0265 article-title: RAGE-dependent activation of gene expression of superoxide dismutase and vanins by AGE-rich extracts in mice cardiac tissue and murine cardiac fibroblasts publication-title: Food Funct. – volume: 37 start-page: 1536 year: 2017 end-page: 1547 ident: bb0305 article-title: Ager deletion enhances ischemic muscle inflammation, angiogenesis, and blood flow recovery in diabetic mice publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 250 start-page: 24 year: 2002 end-page: 43 ident: bb0390 article-title: The T complex distorter 2 candidate gene, Dnahc8, encodes at least two testis-specific axonemal dynein heavy chains that differ extensively at their amino and carboxyl termini publication-title: Dev. Biol. – volume: 30 start-page: 36 year: 2001 end-page: 44 ident: bb0150 article-title: Characterization of a novel EGFP reporter mouse to monitor Cre recombination as demonstrated by a Tie2 Cre mouse line publication-title: Genesis – volume: 91 start-page: 8807 year: 1994 end-page: 8811 ident: bb0255 article-title: Receptor for advanced glycation end products (AGEs) has a central role in vessel wall interactions and gene activation in response to circulating AGE proteins publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 382 start-page: 685 year: 1996 end-page: 691 ident: bb0045 article-title: RAGE and amyloid-beta peptide neurotoxicity in Alzheimer's disease publication-title: Nature – volume: 8 start-page: 487 year: 2007 end-page: 496 ident: bb0055 article-title: Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE publication-title: Nat. Immunol. – volume: 162 start-page: 1123 year: 2003 end-page: 1137 ident: bb0220 article-title: RAGE drives the development of glomerulosclerosis and implicates podocyte activation in the pathogenesis of diabetic nephropathy publication-title: Am. J. Pathol. – volume: 143 start-page: 1699 year: 1993 end-page: 1712 ident: bb0065 article-title: Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues publication-title: Am. J. Phathol. – volume: 26 start-page: 882 year: 2012 end-page: 893 ident: bb0300 article-title: Opposing roles of RAGE and Myd88 signaling in extensive liver resection publication-title: FASEB J. – volume: 133 start-page: 2400 year: 2013 end-page: 2406 ident: bb0115 article-title: Keratinocyte-specific deletion of the receptor RAGE modulates the kinetics of skin inflammation in vivo publication-title: J. Invest. Dermatol. – volume: 56 start-page: 739 year: 2013 end-page: 744 ident: bb0020 article-title: RAGE and TLRs: relatives, friends or neighbours? publication-title: Mol. Immunol. – volume: 295 start-page: E323 year: 2008 end-page: E330 ident: bb0260 article-title: Cardiac inflammation associated with a Western diet is mediated via activation of RAGE by AGEs publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 20 start-page: 431 year: 2016 end-page: 446 ident: bb0005 article-title: The multiple faces of RAGE - opportunities for therapeutic intervention in aging and chronic disease publication-title: Expert Opin. Ther. Targets – volume: 23 start-page: 40 year: 2017 end-page: 49 ident: bb0010 article-title: All the "RAGE" in lung disease: the receptor for advanced glycation endproducts (RAGE) is a major mediator of pulmonary inflammatory responses publication-title: Paediatr. Respir. Rev. – volume: 1043 start-page: 562 year: 2005 end-page: 566 ident: bb0110 article-title: Receptor for advanced glycation end products is a promising target of diabetic nephropathy publication-title: Ann. N. Y. Acad. Sci. – volume: 270 start-page: 25752 year: 1995 end-page: 25761 ident: bb0040 article-title: The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system publication-title: J. Biol. Chem. – year: 2018 ident: bb0230 article-title: National Library of Medicine (US), National Center for Biotechnology Information; [1988] in, National Institute of Health – volume: 198 start-page: 1507 year: 2003 end-page: 1515 ident: bb0100 article-title: The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins: a novel pathway for inflammatory cell recruitment publication-title: J. Exp. Med. – volume: 42 start-page: 491 year: 2014 end-page: 494 ident: bb0345 article-title: Measurement of glyoxalase activities publication-title: Biochem. Soc. Trans. – volume: 4 year: 2009 ident: bb0140 article-title: Deletion of RAGE causes hyperactivity and increased sensitivity to auditory stimuli in mice publication-title: PLoS One – volume: 59 start-page: 706 year: 2018 end-page: 712 ident: bb0135 article-title: Ager-CreER(T2): a new genetic tool for studying lung alveolar development, homeostasis, and repair publication-title: Am. J. Respir. Cell Mol. Biol. – volume: 23 start-page: 4096 year: 2004 end-page: 4105 ident: bb0165 article-title: RAGE potentiates Abeta-induced perturbation of neuronal function in transgenic mice publication-title: EMBO J. – volume: 6 start-page: 261 year: 2017 end-page: 271 ident: bb0385 article-title: Glyoxalase-1 overexpression reverses defective proangiogenic function of diabetic adipose-derived stem cells in streptozotocin-induced diabetic mice model of critical limb ischemia publication-title: Stem Cells Transl. Med. – volume: 274 start-page: 72 year: 2012 end-page: 82 ident: bb0050 article-title: RAGE binds C1q and enhances C1q-mediated phagocytosis publication-title: Cell. Immunol. – volume: 28 start-page: 709 year: 2012 end-page: 720 ident: bb0180 article-title: Endogenous secretory receptor for advanced glycation end-products inhibits amyloid-beta1-42 uptake into mouse brain publication-title: J. Alzheimers Dis. – volume: 45 start-page: 1195 year: 2011 end-page: 1202 ident: bb0215 article-title: Up-regulation of receptors for advanced glycation end-products by alveolar epithelium influences cytodifferentiation and causes severe lung hypoplasia publication-title: Am. J. Respir. Cell Mol. Biol. – volume: 118 start-page: 183 year: 2008 end-page: 194 ident: bb0155 article-title: Vascular and inflammatory stresses mediate atherosclerosis via RAGE and its ligands in apoE−/− mice publication-title: J. Clin. Invest. – volume: 122 start-page: 1377 year: 2012 end-page: 1392 ident: bb0225 article-title: A multimodal RAGE-specific inhibitor reduces amyloid beta-mediated brain disorder in a mouse model of Alzheimer disease publication-title: J. Clin. Invest. – volume: 274 start-page: 31740 year: 1999 end-page: 31749 ident: bb0235 article-title: N(epsilon)-(carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression publication-title: J. Biol. Chem. – volume: 81 start-page: 403 year: 2016 end-page: 418 ident: bb0310 article-title: Advanced glycation end products and their receptor in age-related, non-communicable chronic inflammatory diseases; overview of clinical evidence and potential contributions to disease publication-title: Int. J. Biochem. Cell Biol. – volume: vol. 48 start-page: A90 year: 2005 ident: bb0295 article-title: The receptor RAGE regulates glyoxalase-1 transcription, expression and activity publication-title: 41 – volume: 305 start-page: L491 year: 2013 end-page: L500 ident: bb0080 article-title: The receptor for advanced glycation end-products supports lung tissue biomechanics publication-title: Am. J. Physiol. Lung Cell Mol. Physiol. – volume: 186 start-page: 3248 year: 2011 end-page: 3257 ident: bb0060 article-title: Septic shock is associated with receptor for advanced glycation end products ligation of LPS publication-title: J. Immunol. – volume: 61 start-page: 2105 year: 2012 end-page: 2113 ident: bb0275 article-title: Alagebrium reduces glomerular fibrogenesis and inflammation beyond preventing RAGE activation in diabetic apolipoprotein E knockout mice publication-title: Diabetes – volume: 143 start-page: 1699 year: 1993 ident: 10.1016/j.bbagen.2019.129438_bb0065 article-title: Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues publication-title: Am. J. Phathol. – volume: 305 start-page: L491 year: 2013 ident: 10.1016/j.bbagen.2019.129438_bb0080 article-title: The receptor for advanced glycation end-products supports lung tissue biomechanics publication-title: Am. J. Physiol. Lung Cell Mol. Physiol. doi: 10.1152/ajplung.00090.2013 – volume: 19 start-page: 1654 year: 2005 ident: 10.1016/j.bbagen.2019.129438_bb0355 article-title: Physiological role for the cochaperone FKBP52 in androgen receptor signaling publication-title: Mol. Endocrinol. doi: 10.1210/me.2005-0071 – volume: 473 start-page: 4255 year: 2016 ident: 10.1016/j.bbagen.2019.129438_bb0365 article-title: Reappraisal of putative glyoxalase 1-deficient mouse and dicarbonyl stress on embryonic stem cells in vitro publication-title: Biochem. J. doi: 10.1042/BCJ20160691 – volume: 295 start-page: E323 year: 2008 ident: 10.1016/j.bbagen.2019.129438_bb0260 article-title: Cardiac inflammation associated with a Western diet is mediated via activation of RAGE by AGEs publication-title: Am. J. Physiol. Endocrinol. Metab. doi: 10.1152/ajpendo.00024.2008 – volume: 3 start-page: 1311 year: 2013 ident: 10.1016/j.bbagen.2019.129438_bb0360 article-title: Increased glyoxalase-1 levels in Fkbp5 knockout mice caused by glyoxalase-1 gene duplication publication-title: G3 (Bethesda) doi: 10.1534/g3.113.006445 – volume: 323 start-page: 475 year: 2006 ident: 10.1016/j.bbagen.2019.129438_bb0075 article-title: Promotion of cell adherence and spreading: a novel function of RAGE, the highly selective differentiation marker of human alveolar epithelial type I cells publication-title: Cell Tissue Res. doi: 10.1007/s00441-005-0069-0 – volume: 67 start-page: 195 year: 2014 ident: 10.1016/j.bbagen.2019.129438_bb0380 article-title: Tat-glyoxalase protein inhibits against ischemic neuronal cell damage and ameliorates ischemic injury publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2013.10.815 – volume: 186 start-page: 3248 year: 2011 ident: 10.1016/j.bbagen.2019.129438_bb0060 article-title: Septic shock is associated with receptor for advanced glycation end products ligation of LPS publication-title: J. Immunol. doi: 10.4049/jimmunol.1002253 – volume: 34 start-page: 1199 year: 2014 ident: 10.1016/j.bbagen.2019.129438_bb0290 article-title: Nepsilon-(carboxymethyl)lysine-receptor for advanced glycation end product axis is a key modulator of obesity-induced dysregulation of adipokine expression and insulin resistance publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.113.302281 – volume: 27 start-page: 1 year: 2018 ident: 10.1016/j.bbagen.2019.129438_bb0320 article-title: AGE-RAGE stress, stressors, and Antistressors in health and disease publication-title: Int. J. Angiol. doi: 10.1055/s-0037-1613678 – volume: 24 start-page: 555 year: 2019 ident: 10.1016/j.bbagen.2019.129438_bb0175 article-title: Generation of sRAGE(high) transgenic mice to study inflammaging publication-title: Front. Biosci. (Landmark Ed) doi: 10.2741/4735 – volume: 108 start-page: 261 year: 2001 ident: 10.1016/j.bbagen.2019.129438_bb0200 article-title: Development and prevention of advanced diabetic nephropathy in RAGE-overexpressing mice publication-title: J. Clin. Invest. doi: 10.1172/JCI11771 – volume: 18 start-page: 1818 year: 2004 ident: 10.1016/j.bbagen.2019.129438_bb0160 article-title: RAGE modulates peripheral nerve regeneration via recruitment of both inflammatory and axonal outgrowth pathways publication-title: FASEB J. doi: 10.1096/fj.04-1900com – volume: 162 start-page: 1123 year: 2003 ident: 10.1016/j.bbagen.2019.129438_bb0220 article-title: RAGE drives the development of glomerulosclerosis and implicates podocyte activation in the pathogenesis of diabetic nephropathy publication-title: Am. J. Pathol. doi: 10.1016/S0002-9440(10)63909-0 – volume: 59 start-page: 706 year: 2018 ident: 10.1016/j.bbagen.2019.129438_bb0135 article-title: Ager-CreER(T2): a new genetic tool for studying lung alveolar development, homeostasis, and repair publication-title: Am. J. Respir. Cell Mol. Biol. doi: 10.1165/rcmb.2018-0125OC – volume: 118 start-page: 183 year: 2008 ident: 10.1016/j.bbagen.2019.129438_bb0155 article-title: Vascular and inflammatory stresses mediate atherosclerosis via RAGE and its ligands in apoE−/− mice publication-title: J. Clin. Invest. doi: 10.1172/JCI32703 – volume: 28 start-page: 709 year: 2012 ident: 10.1016/j.bbagen.2019.129438_bb0180 article-title: Endogenous secretory receptor for advanced glycation end-products inhibits amyloid-beta1-42 uptake into mouse brain publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-2011-110776 – volume: 23 start-page: 40 year: 2017 ident: 10.1016/j.bbagen.2019.129438_bb0010 article-title: All the "RAGE" in lung disease: the receptor for advanced glycation endproducts (RAGE) is a major mediator of pulmonary inflammatory responses publication-title: Paediatr. Respir. Rev. – volume: 10 start-page: 117 year: 2016 ident: 10.1016/j.bbagen.2019.129438_bb0285 article-title: Soluble RAGE treatment delays progression of amyotrophic lateral sclerosis in SOD1 mice publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2016.00117 – volume: 153 start-page: 642 year: 2010 ident: 10.1016/j.bbagen.2019.129438_bb0325 article-title: Robin: an intuitive wizard application for R-based expression microarray quality assessment and analysis publication-title: Plant Physiol. doi: 10.1104/pp.109.152553 – volume: 453 start-page: 1 year: 2013 ident: 10.1016/j.bbagen.2019.129438_bb0250 article-title: The glyoxalase pathway: the first hundred years... And beyond publication-title: Biochem. J. doi: 10.1042/BJ20121743 – volume: 250 start-page: 24 year: 2002 ident: 10.1016/j.bbagen.2019.129438_bb0390 article-title: The T complex distorter 2 candidate gene, Dnahc8, encodes at least two testis-specific axonemal dynein heavy chains that differ extensively at their amino and carboxyl termini publication-title: Dev. Biol. doi: 10.1006/dbio.2002.0769 – volume: 274 start-page: 31740 year: 1999 ident: 10.1016/j.bbagen.2019.129438_bb0235 article-title: N(epsilon)-(carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.44.31740 – volume: 1043 start-page: 562 year: 2005 ident: 10.1016/j.bbagen.2019.129438_bb0110 article-title: Receptor for advanced glycation end products is a promising target of diabetic nephropathy publication-title: Ann. N. Y. Acad. Sci. doi: 10.1196/annals.1333.064 – volume: 267 start-page: 14998 year: 1992 ident: 10.1016/j.bbagen.2019.129438_bb0030 article-title: Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)42138-2 – volume: 44 start-page: 1147 year: 1998 ident: 10.1016/j.bbagen.2019.129438_bb0070 article-title: Receptor for advanced glycation endproducts (RAGE) exhibits highly differential cellular and subcellular localisation in rat and human lung publication-title: Cell. Mol. Biol. – volume: 30 start-page: 36 year: 2001 ident: 10.1016/j.bbagen.2019.129438_bb0150 article-title: Characterization of a novel EGFP reporter mouse to monitor Cre recombination as demonstrated by a Tie2 Cre mouse line publication-title: Genesis doi: 10.1002/gene.1030 – volume: 12 start-page: 56 year: 2011 ident: 10.1016/j.bbagen.2019.129438_bb0105 article-title: RAGE and ICAM-1 differentially control leukocyte recruitment during acute inflammation in a stimulus-dependent manner publication-title: BMC Immunol. doi: 10.1186/1471-2172-12-56 – volume: 267 start-page: 14987 year: 1992 ident: 10.1016/j.bbagen.2019.129438_bb0025 article-title: Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)42137-0 – volume: vol. 48 start-page: A90 year: 2005 ident: 10.1016/j.bbagen.2019.129438_bb0295 article-title: The receptor RAGE regulates glyoxalase-1 transcription, expression and activity – volume: 18 start-page: e12850 year: 2019 ident: 10.1016/j.bbagen.2019.129438_bb0280 article-title: Knockout of receptor for advanced glycation end-products attenuates age-related renal lesions publication-title: Aging Cell doi: 10.1111/acel.12850 – volume: 81 start-page: 403 year: 2016 ident: 10.1016/j.bbagen.2019.129438_bb0310 article-title: Advanced glycation end products and their receptor in age-related, non-communicable chronic inflammatory diseases; overview of clinical evidence and potential contributions to disease publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2016.06.016 – volume: 205 start-page: 1311 year: 2012 ident: 10.1016/j.bbagen.2019.129438_bb0145 article-title: Opposing roles of membrane and soluble forms of the receptor for advanced glycation end products in primary respiratory syncytial virus infection publication-title: J. Infect. Dis. doi: 10.1093/infdis/jir826 – volume: 45 start-page: 10595 year: 2017 ident: 10.1016/j.bbagen.2019.129438_bb0015 article-title: Homeostatic nuclear RAGE-ATM interaction is essential for efficient DNA repair publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx705 – volume: 4 year: 2009 ident: 10.1016/j.bbagen.2019.129438_bb0340 article-title: A common and unstable copy number variant is associated with differences in Glo1 expression and anxiety-like behavior publication-title: PLoS One doi: 10.1371/journal.pone.0004649 – volume: 382 start-page: 685 year: 1996 ident: 10.1016/j.bbagen.2019.129438_bb0045 article-title: RAGE and amyloid-beta peptide neurotoxicity in Alzheimer's disease publication-title: Nature doi: 10.1038/382685a0 – volume: 53 start-page: 3327 year: 2014 ident: 10.1016/j.bbagen.2019.129438_bb0240 article-title: The receptor for advanced glycation end products (RAGE) specifically recognizes methylglyoxal-derived AGEs publication-title: Biochemistry doi: 10.1021/bi500046t – volume: 4 year: 2009 ident: 10.1016/j.bbagen.2019.129438_bb0140 article-title: Deletion of RAGE causes hyperactivity and increased sensitivity to auditory stimuli in mice publication-title: PLoS One doi: 10.1371/journal.pone.0008309 – volume: 37 start-page: 1536 year: 2017 ident: 10.1016/j.bbagen.2019.129438_bb0305 article-title: Ager deletion enhances ischemic muscle inflammation, angiogenesis, and blood flow recovery in diabetic mice publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.117.309714 – volume: 370 start-page: 1097 year: 2003 ident: 10.1016/j.bbagen.2019.129438_bb0185 article-title: Novel splice variants of the receptor for advanced glycation end-products expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes-induced vascular injury publication-title: Biochem. J. doi: 10.1042/bj20021371 – volume: 42 start-page: 491 year: 2014 ident: 10.1016/j.bbagen.2019.129438_bb0345 article-title: Measurement of glyoxalase activities publication-title: Biochem. Soc. Trans. doi: 10.1042/BST20140010 – volume: 56 start-page: 739 year: 2013 ident: 10.1016/j.bbagen.2019.129438_bb0020 article-title: RAGE and TLRs: relatives, friends or neighbours? publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2013.07.008 – volume: 113 start-page: 1641 year: 2004 ident: 10.1016/j.bbagen.2019.129438_bb0205 article-title: Receptor for advanced glycation end products (RAGE) regulates sepsis but not the adaptive immune response publication-title: J. Clin. Invest. doi: 10.1172/JCI200418704 – volume: 48 start-page: 164 year: 2013 ident: 10.1016/j.bbagen.2019.129438_bb0210 article-title: RAGE contributes to postnatal pulmonary development and adult lung maintenance program in mice publication-title: Am. J. Respir. Cell Mol. Biol. doi: 10.1165/rcmb.2012-0111OC – volume: 50 start-page: 472 year: 2018 ident: 10.1016/j.bbagen.2019.129438_bb0125 article-title: Role of receptor for advanced glycation end-products in regulating lung fluid balance in lipopolysaccharide-induced acute lung injury and infection-related acute respiratory distress syndrome publication-title: Shock doi: 10.1097/SHK.0000000000001032 – volume: 5 start-page: e1288 year: 2014 ident: 10.1016/j.bbagen.2019.129438_bb0120 article-title: Genetic deficiency of neuronal RAGE protects against AGE-induced synaptic injury publication-title: Cell Death Dis. doi: 10.1038/cddis.2014.248 – volume: 283 start-page: 35507 year: 2008 ident: 10.1016/j.bbagen.2019.129438_bb0195 article-title: Receptor for advanced glycation end products is subjected to protein ectodomain shedding by metalloproteinases publication-title: J. Biol. Chem. doi: 10.1074/jbc.M806948200 – volume: 6 start-page: 261 year: 2017 ident: 10.1016/j.bbagen.2019.129438_bb0385 article-title: Glyoxalase-1 overexpression reverses defective proangiogenic function of diabetic adipose-derived stem cells in streptozotocin-induced diabetic mice model of critical limb ischemia publication-title: Stem Cells Transl. Med. doi: 10.5966/sctm.2015-0380 – volume: 14 start-page: 147 year: 2017 ident: 10.1016/j.bbagen.2019.129438_bb0315 article-title: Glycation & the RAGE axis: targeting signal transduction through DIAPH1 publication-title: Expert Rev Proteomics doi: 10.1080/14789450.2017.1271719 – volume: 3 start-page: 1232 year: 2011 ident: 10.1016/j.bbagen.2019.129438_bb0035 article-title: The importance of Ca2+/Zn2+ signaling S100 proteins and RAGE in translational medicine publication-title: Front Biosci. (Schol Ed) – volume: 8 start-page: 487 year: 2007 ident: 10.1016/j.bbagen.2019.129438_bb0055 article-title: Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE publication-title: Nat. Immunol. doi: 10.1038/ni1457 – volume: 298 start-page: F763 year: 2010 ident: 10.1016/j.bbagen.2019.129438_bb0270 article-title: Disparate effects on renal and oxidative parameters following RAGE deletion publication-title: AGE accumulation inhibition, or dietary AGE control in experimental diabetic nephropathy, Am J Physiol Renal Physiol – volume: 45 start-page: 1195 year: 2011 ident: 10.1016/j.bbagen.2019.129438_bb0215 article-title: Up-regulation of receptors for advanced glycation end-products by alveolar epithelium influences cytodifferentiation and causes severe lung hypoplasia publication-title: Am. J. Respir. Cell Mol. Biol. doi: 10.1165/rcmb.2011-0170OC – volume: 122 start-page: 1377 year: 2012 ident: 10.1016/j.bbagen.2019.129438_bb0225 article-title: A multimodal RAGE-specific inhibitor reduces amyloid beta-mediated brain disorder in a mouse model of Alzheimer disease publication-title: J. Clin. Invest. doi: 10.1172/JCI58642 – volume: 198 start-page: 1507 year: 2003 ident: 10.1016/j.bbagen.2019.129438_bb0100 article-title: The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins: a novel pathway for inflammatory cell recruitment publication-title: J. Exp. Med. doi: 10.1084/jem.20030800 – volume: 470 start-page: 1543 year: 2018 ident: 10.1016/j.bbagen.2019.129438_bb0095 article-title: Long-term endurance running activity causes pulmonary changes depending on the receptor for advanced glycation end-products publication-title: Pflugers Arch. – Eur. J. Physiol. doi: 10.1007/s00424-018-2175-3 – volume: 91 start-page: 8807 year: 1994 ident: 10.1016/j.bbagen.2019.129438_bb0255 article-title: Receptor for advanced glycation end products (AGEs) has a central role in vessel wall interactions and gene activation in response to circulating AGE proteins publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.91.19.8807 – volume: 111 start-page: 959 year: 2003 ident: 10.1016/j.bbagen.2019.129438_bb0170 article-title: Central role of RAGE-dependent neointimal expansion in arterial restenosis publication-title: J. Clin. Invest. doi: 10.1172/JCI200317115 – volume: 12 year: 2017 ident: 10.1016/j.bbagen.2019.129438_bb0090 article-title: Receptor for advanced glycation endproducts (RAGE) maintains pulmonary structure and regulates the response to cigarette smoke publication-title: PLoS One doi: 10.1371/journal.pone.0180092 – volume: 9 year: 2014 ident: 10.1016/j.bbagen.2019.129438_bb0335 article-title: Temporal dynamics of glyoxalase 1 in secondary neuronal injury publication-title: PLoS One doi: 10.1371/journal.pone.0087364 – volume: 101 start-page: 1142 year: 1998 ident: 10.1016/j.bbagen.2019.129438_bb0245 article-title: Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis publication-title: J. Clin. Invest. doi: 10.1172/JCI119885 – year: 2018 ident: 10.1016/j.bbagen.2019.129438_bb0230 – volume: 34 start-page: 83 year: 2006 ident: 10.1016/j.bbagen.2019.129438_bb0085 article-title: Proliferative stimulus of lung fibroblasts on lung cancer cells is impaired by RAGE publication-title: Am. J. Respir. Cell Mol. Biol. doi: 10.1165/rcmb.2005-0194OC – volume: 11 start-page: R122 year: 2007 ident: 10.1016/j.bbagen.2019.129438_bb0130 article-title: Inhibition of the RAGE products increases survival in experimental models of severe sepsis and systemic infection publication-title: Crit. Care doi: 10.1186/cc6184 – volume: 26 start-page: 882 year: 2012 ident: 10.1016/j.bbagen.2019.129438_bb0300 article-title: Opposing roles of RAGE and Myd88 signaling in extensive liver resection publication-title: FASEB J. doi: 10.1096/fj.11-192997 – volume: 133 start-page: 2400 year: 2013 ident: 10.1016/j.bbagen.2019.129438_bb0115 article-title: Keratinocyte-specific deletion of the receptor RAGE modulates the kinetics of skin inflammation in vivo publication-title: J. Invest. Dermatol. doi: 10.1038/jid.2013.185 – volume: 20 start-page: 431 year: 2016 ident: 10.1016/j.bbagen.2019.129438_bb0005 article-title: The multiple faces of RAGE - opportunities for therapeutic intervention in aging and chronic disease publication-title: Expert Opin. Ther. Targets doi: 10.1517/14728222.2016.1111873 – volume: 23 start-page: 4096 year: 2004 ident: 10.1016/j.bbagen.2019.129438_bb0165 article-title: RAGE potentiates Abeta-induced perturbation of neuronal function in transgenic mice publication-title: EMBO J. doi: 10.1038/sj.emboj.7600415 – volume: 286 start-page: 1374 year: 2011 ident: 10.1016/j.bbagen.2019.129438_bb0370 article-title: Overexpression of glyoxalase-I reduces hyperglycemia-induced levels of advanced glycation end products and oxidative stress in diabetic rats publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.144097 – volume: 10 start-page: 836 year: 1999 ident: 10.1016/j.bbagen.2019.129438_bb0350 article-title: Revised nomenclature for strain 129 mice publication-title: Mamm. Genome doi: 10.1007/s003359901099 – volume: 29 start-page: e45 year: 2001 ident: 10.1016/j.bbagen.2019.129438_bb0330 article-title: A new mathematical model for relative quantification in real-time RT-PCR publication-title: Nucleic Acids Res. doi: 10.1093/nar/29.9.e45 – volume: 101 start-page: 306 year: 2014 ident: 10.1016/j.bbagen.2019.129438_bb0375 article-title: Glyoxalase-1 overexpression in bone marrow cells reverses defective neovascularization in STZ-induced diabetic mice publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvt259 – volume: 396 start-page: 109 year: 2006 ident: 10.1016/j.bbagen.2019.129438_bb0190 article-title: Identification of mouse orthologue of endogenous secretory receptor for advanced glycation end-products: structure, function and expression publication-title: Biochem. J. doi: 10.1042/BJ20051573 – volume: 274 start-page: 72 year: 2012 ident: 10.1016/j.bbagen.2019.129438_bb0050 article-title: RAGE binds C1q and enhances C1q-mediated phagocytosis publication-title: Cell. Immunol. doi: 10.1016/j.cellimm.2012.02.001 – volume: 61 start-page: 2105 year: 2012 ident: 10.1016/j.bbagen.2019.129438_bb0275 article-title: Alagebrium reduces glomerular fibrogenesis and inflammation beyond preventing RAGE activation in diabetic apolipoprotein E knockout mice publication-title: Diabetes doi: 10.2337/db11-1546 – volume: 270 start-page: 25752 year: 1995 ident: 10.1016/j.bbagen.2019.129438_bb0040 article-title: The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system publication-title: J. Biol. Chem. doi: 10.1074/jbc.270.43.25752 – volume: 3 start-page: 1091 year: 2012 ident: 10.1016/j.bbagen.2019.129438_bb0265 article-title: RAGE-dependent activation of gene expression of superoxide dismutase and vanins by AGE-rich extracts in mice cardiac tissue and murine cardiac fibroblasts publication-title: Food Funct. doi: 10.1039/c2fo30030c |
SSID | ssj0000595 |
Score | 2.3522253 |
Snippet | The receptor for advanced glycation end-products (RAGE) is a multifunctional protein. Its function as pattern recognition receptor able to interact with... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 129438 |
SubjectTerms | Advanced glycation end-products animal models blood cells brain chromosomes Copy number variation Dnahc8 enzymes females gene expression regulation genes genetic variance genomics Glo1 heart immune response kidneys knockout mutants ligands liver lungs males mice polymerase chain reaction Receptor for advanced glycation end-products Sex spleen tissues transgenic animals |
Title | Gene doubling increases glyoxalase 1 expression in RAGE knockout mice |
URI | https://dx.doi.org/10.1016/j.bbagen.2019.129438 https://www.proquest.com/docview/2292987228 https://www.proquest.com/docview/2388785100 |
Volume | 1864 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NaxsxEB38QWkuoUla6qQJCuS6sVcrr3aPxjhxE5JDG4NvQtJKxm3YNbUNySW_PTP7kdISGuh1GYGYld48STNvAM5iK3VobRhY4W0gtNS4pTIbIFo6ZNtIoAXVDt_cxtOZuJoP5y0YN7UwlFZZY3-F6SVa11_6tTf7q-Wy_50e9ZBOEAWhQCTb0OVRGg870B19vZ7e_gbkYdl8hewDGtBU0JVpXsbgviUh1DA9x9gnqFDl9Qj1F1aXAejiA-zWzJGNqsntQcvl-_Cu6iX5uA_vx03rtgOYkJg0ywq6YsoXbJkTNVy7NVvcPxYPVDnpWMjcQ50Em6MF-za6nLCfOcJjsd0walL_EWYXk7vxNKj7JQQ2knwTSBPh4UvoKHSRNqVymBFZknGfWRL-G8Y-JC2eKBlYrVOP4Us7kQqTSucNErNP0MmL3H0G5n0sbIaHmTj2IjHaYNjKhPQJEiaER96DqPGRsrWYOPW0uFdN1tgPVXlWkWdV5dkeBC-jVpWYxhv2snG_-mNRKMT7N0aeNn9Loe_pEUTnrtiuFedICBPJ-b9sIoRepKKDweF_z-AIdjgdzcvbmi_Q2fzaumPkLxtzAu3zp_CkXqXPmJXs0Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEB5qRfRFPPE2gq9ru7vpZvtYSrVeffAA30KSTUpVdsW2YP-9M3soiij4usxAmE2--SaZA-A4MkL5xvie4c54XAmFRyoxHqKlRbaNBJpT7fD1IOrf84uH1kMNulUtDKVVlthfYHqO1uWXRmnNxsto1LilRz2kE0RByBGJOZjnLYz26jDfOb_sDz4BuZUPXyF5jxSqCro8zUtrPLfUCNVvn6Dv41So8rOH-obVuQM6XYHlkjmyTrG4VajZdA0WilmSszVY7Faj29ahR82kWZLRFVM6ZKOUqOHYjtnweZa9UeWkZT6zb2USbIoS7KZz1mNPKcJjNp0wGlK_Afenvbtu3yvnJXgmFMHEEzrE4Iur0Leh0nnnMM2TOAlcYqjxXytyPvXiCeOmUart0H0py9tct4V1GonZJtTTLLVbwJyLuEkwmIkix2OtNLqthAsXI2FCeAy2IaxsJE3ZTJxmWjzLKmvsURaWlWRZWVh2G7wPrZeimcYf8qIyv_yyKSTi_R-aR9Xfkmh7egRRqc2mYxkESAhjEQS_yYQIvUhFm82df6_gEBb7d9dX8up8cLkLSwGF6fnNzR7UJ69Tu49cZqIPyr36DkdD7sA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gene+doubling+increases+glyoxalase+1+expression+in+RAGE+knockout+mice&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Bartling%2C+Babett&rft.au=Zunkel%2C+Katja&rft.au=Al-Robaiy%2C+Samiya&rft.au=Dehghani%2C+Faramarz&rft.date=2020-01-01&rft.issn=0304-4165&rft.volume=1864&rft.issue=1&rft.spage=129438&rft_id=info:doi/10.1016%2Fj.bbagen.2019.129438&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbagen_2019_129438 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |