The effect of laser welding modes on mechanical properties and microstructure of 304L stainless steel parts fabricated by laser-foil-printing additive manufacturing

The success of laser-foil-printing (LFP) additive manufacturing depends critically on the laser welding of sheet metals onto the substrate or the previous layer during the part fabrication process. The welding can be generally categorized into two modes: conduction mode and keyhole mode. In this stu...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advanced manufacturing technology Vol. 112; no. 3-4; pp. 867 - 877
Main Authors Hung, Chia-Hung, Chen, Wei-Ting, Sehhat, M. Hossein, Leu, Ming C.
Format Journal Article
LanguageEnglish
Published London Springer London 2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The success of laser-foil-printing (LFP) additive manufacturing depends critically on the laser welding of sheet metals onto the substrate or the previous layer during the part fabrication process. The welding can be generally categorized into two modes: conduction mode and keyhole mode. In this study, 304L stainless steel parts fabricated by the LFP process using the two laser welding modes are compared. The porosity, microstructure, and tensile properties of the fabricated parts in these two modes are measured and compared in the laser scanning direction ( X ) and part building direction ( Z ). The parts fabricated in the conduction mode have a higher density than those fabricated in the keyhole mode. On the tensile properties, both yield strength (YS) and ultimate tensile strength (UTS) have insignificant differences statistically based on the ANOVA analysis between the tensile specimens fabricated with the two welding modes by the LFP process. However, the conduction-mode parts have higher elongation than the keyhole-mode parts in both the X and Z directions, and the difference is especially significant in the Z direction. By using the electron backscattered diffraction (EBSD), it was found that the much higher ductility for the conduction-mode parts in the Z -axis direction is mainly due to the distinct grain boundary interface density in the Z -axis direction between the two welding modes.
AbstractList The success of laser-foil-printing (LFP) additive manufacturing depends critically on the laser welding of sheet metals onto the substrate or the previous layer during the part fabrication process. The welding can be generally categorized into two modes: conduction mode and keyhole mode. In this study, 304L stainless steel parts fabricated by the LFP process using the two laser welding modes are compared. The porosity, microstructure, and tensile properties of the fabricated parts in these two modes are measured and compared in the laser scanning direction ( X ) and part building direction ( Z ). The parts fabricated in the conduction mode have a higher density than those fabricated in the keyhole mode. On the tensile properties, both yield strength (YS) and ultimate tensile strength (UTS) have insignificant differences statistically based on the ANOVA analysis between the tensile specimens fabricated with the two welding modes by the LFP process. However, the conduction-mode parts have higher elongation than the keyhole-mode parts in both the X and Z directions, and the difference is especially significant in the Z direction. By using the electron backscattered diffraction (EBSD), it was found that the much higher ductility for the conduction-mode parts in the Z -axis direction is mainly due to the distinct grain boundary interface density in the Z -axis direction between the two welding modes.
The success of laser-foil-printing (LFP) additive manufacturing depends critically on the laser welding of sheet metals onto the substrate or the previous layer during the part fabrication process. The welding can be generally categorized into two modes: conduction mode and keyhole mode. In this study, 304L stainless steel parts fabricated by the LFP process using the two laser welding modes are compared. The porosity, microstructure, and tensile properties of the fabricated parts in these two modes are measured and compared in the laser scanning direction (X) and part building direction (Z). The parts fabricated in the conduction mode have a higher density than those fabricated in the keyhole mode. On the tensile properties, both yield strength (YS) and ultimate tensile strength (UTS) have insignificant differences statistically based on the ANOVA analysis between the tensile specimens fabricated with the two welding modes by the LFP process. However, the conduction-mode parts have higher elongation than the keyhole-mode parts in both the X and Z directions, and the difference is especially significant in the Z direction. By using the electron backscattered diffraction (EBSD), it was found that the much higher ductility for the conduction-mode parts in the Z-axis direction is mainly due to the distinct grain boundary interface density in the Z-axis direction between the two welding modes.
Author Chen, Wei-Ting
Leu, Ming C.
Hung, Chia-Hung
Sehhat, M. Hossein
Author_xml – sequence: 1
  givenname: Chia-Hung
  orcidid: 0000-0001-7867-7378
  surname: Hung
  fullname: Hung, Chia-Hung
  email: hungch@mst.edu
  organization: Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology
– sequence: 2
  givenname: Wei-Ting
  surname: Chen
  fullname: Chen, Wei-Ting
  organization: Materials Research Center, Missouri University of Science and Technology
– sequence: 3
  givenname: M. Hossein
  surname: Sehhat
  fullname: Sehhat, M. Hossein
  organization: Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology
– sequence: 4
  givenname: Ming C.
  surname: Leu
  fullname: Leu, Ming C.
  organization: Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology
BookMark eNp9UctO7SAUJUYTj48fcETimCuUFtqhMXo1OYmTMye77UYxLT0C1fg_fqjUmjhzQCCb9WCxTsihnzwSciH4P8G5voqcC80ZL_JSJS-YPiAbUUrJJBfVIdnwQtVMalUfk5MYXzJcCVVvyOfuGSlai12ik6UDRAz0HYfe-Sc6Tj1GOnk6YvcM3nUw0H2Y9hiSyxfgezq6LkwxhblLc8BFQvJyS2MC5weMMZ8QMwtCitRCG7JIwp62H6sXs5Mb2D44nxZH6HuX3BvSEfxsYRHN4zNyZGGIeP6zn5Ld3e3u5p5tH_8_3FxvWSd1kZiulAXeSZXTNJUWAkC1quVVCbZBqJu-rLXoWwWt0haltKpWTVlXokZbgDwll6tszvg6Y0zmZZqDz46mKLXOv6ebIqOKFbUEjwGtya8fIXwYwc1ShlnLMLkM812G0ZkkV1Jcoj5h-JX-g_UF0bmSVA
CitedBy_id crossref_primary_10_1007_s13632_021_00795_x
crossref_primary_10_1007_s00170_022_09043_0
crossref_primary_10_1016_j_jmrt_2021_12_039
crossref_primary_10_1007_s00170_024_13300_9
crossref_primary_10_1007_s00170_024_13742_1
crossref_primary_10_1007_s12008_024_01846_7
crossref_primary_10_1007_s00170_023_11120_x
crossref_primary_10_1007_s13632_021_00771_5
crossref_primary_10_1016_j_optlastec_2024_111157
crossref_primary_10_1007_s42947_022_00161_2
crossref_primary_10_1007_s11665_022_07185_6
crossref_primary_10_4028_p_01ag12
crossref_primary_10_1111_ffe_13515
crossref_primary_10_1007_s10035_021_01162_x
crossref_primary_10_3390_ma15196661
crossref_primary_10_1007_s00170_022_10321_0
crossref_primary_10_1016_j_jmrt_2023_03_070
crossref_primary_10_1177_14644207211044804
crossref_primary_10_1007_s00170_021_08324_4
crossref_primary_10_1108_RPJ_10_2023_0370
crossref_primary_10_1080_10426914_2022_2049298
crossref_primary_10_1007_s00170_023_11076_y
crossref_primary_10_1111_ffe_13589
crossref_primary_10_1007_s40516_022_00190_6
crossref_primary_10_1016_j_ijfatigue_2022_106777
crossref_primary_10_1016_j_jallcom_2023_173338
crossref_primary_10_1080_10408436_2023_2255616
crossref_primary_10_1103_PhysRevMaterials_7_023403
crossref_primary_10_1177_03611981231172750
crossref_primary_10_1007_s13632_022_00904_4
crossref_primary_10_1108_RPJ_10_2021_0269
crossref_primary_10_1016_j_jmapro_2023_03_036
Cites_doi 10.1038/s41467-019-12047-2
10.1016/j.ijheatmasstransfer.2019.118473
10.1115/1.4034139
10.1016/j.optlaseng.2014.10.006
10.1016/j.optlaseng.2015.11.001
10.1016/j.optlastec.2016.10.018
10.1007/978-3-642-17613-5_10
10.1007/s00170-019-03502-x
10.1002/adem.201900617
10.1016/j.jmatprotec.2007.03.075
10.1080/21663831.2018.1525773
10.2351/1.4817788
10.1063/1.5132776
10.1016/j.msea.2018.11.056
10.1016/j.addma.2018.08.006
10.1115/1.2194043
10.1088/0022-3727/35/13/320
10.1016/j.matdes.2016.08.036
10.1016/0025-5416(87)90343-0
10.1016/j.addma.2019.101011
10.1533/9780857098771.4.555
10.1007/978-1-84996-062-5_5
10.1520/E2627-13
10.1016/j.jmatprotec.2014.06.005
10.1016/j.actamat.2009.08.027
10.1007/s11661-012-1560-3
10.1179/174328408X295962
10.1007/BF00500761
10.1007/978-1-84996-062-5_3
10.1520/E0092-17
10.1088/0022-3727/40/18/037
10.1533/9780857095169.1.75
10.3390/ma13020414
10.1016/j.phpro.2010.08.056
10.1038/s41467-019-10009-2
10.1016/j.jmapro.2019.07.030
10.1557/JMR.1999.0445
10.1016/j.jmatprotec.2008.08.026
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2020
Springer-Verlag London Ltd., part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2020
– notice: Springer-Verlag London Ltd., part of Springer Nature 2020.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s00170-020-06402-7
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
Engineering Collection
DatabaseTitleList
Engineering Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1433-3015
EndPage 877
ExternalDocumentID 10_1007_s00170_020_06402_7
GroupedDBID -5B
-5G
-BR
-EM
-XW
-XX
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
28-
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDEX
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKAG
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADMVV
ADOXG
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEKVL
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M4Y
M7S
MA-
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8V
Z8W
Z8Z
Z92
ZMTXR
ZY4
_50
~8M
~A9
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ABYXP
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
DWQXO
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c372t-756fa0c36fec95711aa6b6b054af9ea89d4871db6ab67fe33f686948518ef2a3
IEDL.DBID AGYKE
ISSN 0268-3768
IngestDate Thu Oct 10 18:07:41 EDT 2024
Fri Nov 22 00:18:38 EST 2024
Sat Dec 16 12:02:53 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 3-4
Keywords Mechanical properties
304L stainless steel
Laser welding modes
Laser foil printing
Metal additive manufacturing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-756fa0c36fec95711aa6b6b054af9ea89d4871db6ab67fe33f686948518ef2a3
ORCID 0000-0001-7867-7378
PQID 2477376792
PQPubID 2044010
PageCount 11
ParticipantIDs proquest_journals_2477376792
crossref_primary_10_1007_s00170_020_06402_7
springer_journals_10_1007_s00170_020_06402_7
PublicationCentury 2000
PublicationDate 1-2021
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 1-2021
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle International journal of advanced manufacturing technology
PublicationTitleAbbrev Int J Adv Manuf Technol
PublicationYear 2021
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References ASTME2627-13, Standard practice for determining average grain size using electron backscatter diffraction (EBSD) in fully recrystallized polycrystalline materials2013West ConshohockenASTM International10.1520/E2627-13
HungCHLiYSuttonAChenWTGongXPanHTsaiHLLeuMCAluminum parts fabricated by laser-foil-printing additive manufacturing: processing, microstructure, and mechanical propertiesMaterials20201341410.3390/ma13020414
CallisterWRethwisch DMater Sci Eng Introduction20079418819010.1016/0025-5416(87)90343-0
LeeJYKoSHFarsonDFYooCDMechanism of keyhole formation and stability in stationary laser weldingJ Phys D Appl Phys2002351570157610.1088/0022-3727/35/13/320
MetelkovaJKindsYKempenKde FormanoirCWitvrouwAVan HoorewederBOn the influence of laser defocusing in selective laser melting of 316LAddit Manuf20182316116910.1016/j.addma.2018.08.006
VerhaegheFCraeghsTHeulensJPandelaersLA pragmatic model for selective laser melting with evaporationActa Mater2009576006601210.1016/j.actamat.2009.08.027
HuangLHuaXWuDYeYRole of welding speed on keyhole-induced porosity formation based on experimental and numerical study in fiber laser welding of Al alloyInt J Adv Manuf Technol201910391392510.1007/s00170-019-03502-x
HungCHChangFYCurve micromachining on the edges of nitinol biliary stent by ultrashort pulses laserOpt Laser Technol2017901610.1016/j.optlastec.2016.10.018
RaghavanAWeiHLPalmerTADebRoyTHeat transfer and fluid flow in additive manufacturingJ Laser Appl20132505200610.2351/1.4817788
SteenWMazumderJBasic laser opticsLaser material processing2010LondonSpringer10.1007/978-1-84996-062-5_3
BäuerleDSurface meltingLaser processing and chemistry2011BerlinSpringer10.1007/978-3-642-17613-5_10
GravesRSKollieTGMcElroyDLGilchristKEThe thermal conductivity of AISI 304L stainless steelInt J Thermophys19911240941510.1007/BF00500761
SibillanoTAnconaABerardiVSchingaroEBasileGLugaràPMOptical detection of conduction/keyhole mode transition in laser weldingJ Mater Process Technol200719136436710.1016/j.jmatprotec.2007.03.075
DindaGPDasguptaAKBhattacharyaSNatuHDuttaBMazumderJMicrostructural characterization of laser-deposited Al 4047 AlloyMetall Mater Trans A201344A2233224210.1007/s11661-012-1560-3
LiYShenYLeuMCTsaiHLMechanical properties of Zr-based bulk metallic glass parts fabricated by laser-foil-printing additive manufacturingMater Sci Eng A201974340441110.1016/j.msea.2018.11.056
FuJWYangYSGuoJJTongWHEffect of cooling rate on solidification microstructures in AISI 304 stainless steelMater Sci Technol20082494194410.1179/174328408X295962
SteenWMazumderJLaser weldingLaser material processing2010LondonSpringer10.1007/978-1-84996-062-5_5
Blackburn J (2012) Laser welding of metals for aerospace and other applications. Woodhead Publishing Limited. https://doi.org/10.1533/9780857095169.1.75
TobarMJLamasMIYáñezASánchez-AmayaJMBoukhaZBotanaFJExperimental and simulation studies on laser conduction welding of AA5083 aluminum alloysPhys Procedia2010529930810.1016/j.phpro.2010.08.056
MartinAACaltaNPKhairallahSAWangJDepondPJFongAYThampyVGussGMKissAMStoneKHTassoneCJWekerJNToneyMFBuurenTVMatthewsMJDynamics of pore formation during laser powder bed fusion additive manufacturingNat Commun20191011010.1038/s41467-019-10009-2
AkmanEDemirACanelTSinmazçelikTLaser welding of Ti6Al4V titanium alloysJ Mater Process Technol20092093705371310.1016/j.jmatprotec.2008.08.026
GhayoorMLeeKHeYChangCHPaulBKPasebaniSSelective laser melting of 304L stainless steel: role of volumetric energy density on the microstructure, texture and mechanical propertiesAddit Manuf20203210101110.1016/j.addma.2019.101011
ZafariAXiaKHigh Ductility in a fully martensitic microstructure: a paradox in a Ti alloy produced by selective laser meltingMater Res Lett2018662763310.1080/21663831.2018.1525773
ZhouJTsaiHLWangPCTransport phenomena and keyhole dynamics during pulsed laser weldingJ Heat Transf200612868069010.1115/1.2194043
LinTCCaoCSokolukMJiangLWangXSchoenungJMLaverniaEJLiXAluminum with dispersed nanoparticles by laser additive manufacturingNat Commun2019101910.1038/s41467-019-12047-2
Graudenz M, Baur M (2013) Application of laser welding in the automotive industry. Handb Laser Weld Technol:555–574. https://doi.org/10.1533/9780857098771.4.555
TorkamanyMJMalek GhainiFPoursalehiRKaplanAFHCombination of laser keyhole and conduction welding: dissimilar laser welding of niobium and Ti-6Al-4VOpt Lasers Eng20167991510.1016/j.optlaseng.2015.11.001
RaiRElmerJWPalmerTADebroyTHeat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti-6Al-4V, 304L stainless steel and vanadiumJ Phys D Appl Phys2007405753576610.1088/0022-3727/40/18/037
Bergström D (2008) The absorption of laser light by rough metal surfaces. Thesis 226
ASTME92-17, Standard test methods for Vickers hardness and Knoop hardness of metallic materials2017West ConshohockenASTM International10.1520/E0092-17
WangHZouYMicroscale interaction between laser and metal powder in powder-bed additive manufacturing: conduction mode versus keyhole modeInt J Heat Mass Transf201914211847310.1016/j.ijheatmasstransfer.2019.118473
Guo SH, Zou JL, Xiao RS (2020) Characterizations of welding mode transformation process during 1-μm and 10-μm laser welding. AIP Adv 10. https://doi.org/10.1063/1.5132776
KingWEBarthHDCastilloVMGallegosGFGibbsJWHahnDEKamathCRubenchikAMObservation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturingJ Mater Process Technol20142142915292510.1016/j.jmatprotec.2014.06.005
ConnerRDChoi-YimHJohnsonWLMechanical properties of Zr 57Nb5al10cu15.4Ni12.6 metallic glass matrix particulate compositesJ Mater Res1999143292329710.1557/JMR.1999.0445
Kou S, Limmaneevichitr C, Wei PS (2011) Oscillatory Marangoni flow: a fundamental study by conduction-mode laser spot welding. Weld J 90(12):229s–240s
ChenCShenYTsaiHLA foil-based additive manufacturing technology for metal partsJ Manuf Sci Eng Trans ASME20171391610.1115/1.4034139
MecoSPardalGGangulySWilliamsSMcPhersonNApplication of laser in seam welding of dissimilar steel to aluminum joints for thick structural componentsOpt Lasers Eng201567223010.1016/j.optlaseng.2014.10.006
YangJHanJYuHYinJGaoMWangZZengXRole of molten pool mode on formability, microstructure and mechanical properties of selective laser melted Ti-6Al-4V alloyMater Des201611055857010.1016/j.matdes.2016.08.036
AntonyKArivazhaganNStudies on energy penetration and Marangoni effect during laser melting processJ Eng Sci Technol201510509525
TepyloNHuangXPatnaikPCLaser-based additive manufacturing technologies for aerospace applicationsAdv Eng Mater20192113510.1002/adem.201900617
HungCHSuttonALiYShenYTsaiHLLeuMCEnhanced mechanical properties for 304L stainless steel parts fabricated by laser-foil-printing additive manufacturingJ Manuf Process20194543844610.1016/j.jmapro.2019.07.030
N Tepylo (6402_CR31) 2019; 21
RD Conner (6402_CR39) 1999; 14
AA Martin (6402_CR16) 2019; 10
T Sibillano (6402_CR21) 2007; 191
ASTM (6402_CR35) 2013
R Rai (6402_CR30) 2007; 40
D Bäuerle (6402_CR22) 2011
W Steen (6402_CR9) 2010
M Ghayoor (6402_CR38) 2020; 32
MJ Torkamany (6402_CR8) 2016; 79
A Raghavan (6402_CR4) 2013; 25
Y Li (6402_CR26) 2019; 743
CH Hung (6402_CR27) 2019; 45
E Akman (6402_CR6) 2009; 209
JY Lee (6402_CR12) 2002; 35
CH Hung (6402_CR29) 2020; 13
JW Fu (6402_CR37) 2008; 24
K Antony (6402_CR20) 2015; 10
H Wang (6402_CR41) 2019; 142
L Huang (6402_CR5) 2019; 103
WE King (6402_CR17) 2014; 214
C Chen (6402_CR28) 2017; 139
S Meco (6402_CR7) 2015; 67
GP Dinda (6402_CR34) 2013; 44A
TC Lin (6402_CR3) 2019; 10
MJ Tobar (6402_CR14) 2010; 5
6402_CR32
6402_CR11
W Steen (6402_CR10) 2010
RS Graves (6402_CR33) 1991; 12
ASTM (6402_CR36) 2017
6402_CR19
CH Hung (6402_CR18) 2017; 90
W Callister (6402_CR40) 2007; 94
F Verhaeghe (6402_CR13) 2009; 57
6402_CR1
6402_CR2
J Metelkova (6402_CR23) 2018; 23
A Zafari (6402_CR25) 2018; 6
J Zhou (6402_CR15) 2006; 128
J Yang (6402_CR24) 2016; 110
References_xml – volume: 10
  start-page: 1
  year: 2019
  ident: 6402_CR3
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-12047-2
  contributor:
    fullname: TC Lin
– volume: 142
  start-page: 118473
  year: 2019
  ident: 6402_CR41
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2019.118473
  contributor:
    fullname: H Wang
– volume: 139
  start-page: 1
  year: 2017
  ident: 6402_CR28
  publication-title: J Manuf Sci Eng Trans ASME
  doi: 10.1115/1.4034139
  contributor:
    fullname: C Chen
– volume: 67
  start-page: 22
  year: 2015
  ident: 6402_CR7
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2014.10.006
  contributor:
    fullname: S Meco
– volume: 79
  start-page: 9
  year: 2016
  ident: 6402_CR8
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2015.11.001
  contributor:
    fullname: MJ Torkamany
– volume: 90
  start-page: 1
  year: 2017
  ident: 6402_CR18
  publication-title: Opt Laser Technol
  doi: 10.1016/j.optlastec.2016.10.018
  contributor:
    fullname: CH Hung
– volume-title: Laser processing and chemistry
  year: 2011
  ident: 6402_CR22
  doi: 10.1007/978-3-642-17613-5_10
  contributor:
    fullname: D Bäuerle
– volume: 103
  start-page: 913
  year: 2019
  ident: 6402_CR5
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-019-03502-x
  contributor:
    fullname: L Huang
– volume: 21
  start-page: 1
  year: 2019
  ident: 6402_CR31
  publication-title: Adv Eng Mater
  doi: 10.1002/adem.201900617
  contributor:
    fullname: N Tepylo
– volume: 191
  start-page: 364
  year: 2007
  ident: 6402_CR21
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2007.03.075
  contributor:
    fullname: T Sibillano
– ident: 6402_CR32
– volume: 6
  start-page: 627
  year: 2018
  ident: 6402_CR25
  publication-title: Mater Res Lett
  doi: 10.1080/21663831.2018.1525773
  contributor:
    fullname: A Zafari
– volume: 25
  start-page: 052006
  year: 2013
  ident: 6402_CR4
  publication-title: J Laser Appl
  doi: 10.2351/1.4817788
  contributor:
    fullname: A Raghavan
– ident: 6402_CR11
  doi: 10.1063/1.5132776
– volume: 743
  start-page: 404
  year: 2019
  ident: 6402_CR26
  publication-title: Mater Sci Eng A
  doi: 10.1016/j.msea.2018.11.056
  contributor:
    fullname: Y Li
– volume: 23
  start-page: 161
  year: 2018
  ident: 6402_CR23
  publication-title: Addit Manuf
  doi: 10.1016/j.addma.2018.08.006
  contributor:
    fullname: J Metelkova
– volume: 10
  start-page: 509
  year: 2015
  ident: 6402_CR20
  publication-title: J Eng Sci Technol
  contributor:
    fullname: K Antony
– volume: 128
  start-page: 680
  year: 2006
  ident: 6402_CR15
  publication-title: J Heat Transf
  doi: 10.1115/1.2194043
  contributor:
    fullname: J Zhou
– volume: 35
  start-page: 1570
  year: 2002
  ident: 6402_CR12
  publication-title: J Phys D Appl Phys
  doi: 10.1088/0022-3727/35/13/320
  contributor:
    fullname: JY Lee
– volume: 110
  start-page: 558
  year: 2016
  ident: 6402_CR24
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2016.08.036
  contributor:
    fullname: J Yang
– volume: 94
  start-page: 188
  year: 2007
  ident: 6402_CR40
  publication-title: Mater Sci Eng Introduction
  doi: 10.1016/0025-5416(87)90343-0
  contributor:
    fullname: W Callister
– volume: 32
  start-page: 101011
  year: 2020
  ident: 6402_CR38
  publication-title: Addit Manuf
  doi: 10.1016/j.addma.2019.101011
  contributor:
    fullname: M Ghayoor
– ident: 6402_CR2
  doi: 10.1533/9780857098771.4.555
– volume-title: Laser material processing
  year: 2010
  ident: 6402_CR10
  doi: 10.1007/978-1-84996-062-5_5
  contributor:
    fullname: W Steen
– ident: 6402_CR19
– volume-title: E2627-13, Standard practice for determining average grain size using electron backscatter diffraction (EBSD) in fully recrystallized polycrystalline materials
  year: 2013
  ident: 6402_CR35
  doi: 10.1520/E2627-13
  contributor:
    fullname: ASTM
– volume: 214
  start-page: 2915
  year: 2014
  ident: 6402_CR17
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2014.06.005
  contributor:
    fullname: WE King
– volume: 57
  start-page: 6006
  year: 2009
  ident: 6402_CR13
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2009.08.027
  contributor:
    fullname: F Verhaeghe
– volume: 44A
  start-page: 2233
  year: 2013
  ident: 6402_CR34
  publication-title: Metall Mater Trans A
  doi: 10.1007/s11661-012-1560-3
  contributor:
    fullname: GP Dinda
– volume: 24
  start-page: 941
  year: 2008
  ident: 6402_CR37
  publication-title: Mater Sci Technol
  doi: 10.1179/174328408X295962
  contributor:
    fullname: JW Fu
– volume: 12
  start-page: 409
  year: 1991
  ident: 6402_CR33
  publication-title: Int J Thermophys
  doi: 10.1007/BF00500761
  contributor:
    fullname: RS Graves
– volume-title: Laser material processing
  year: 2010
  ident: 6402_CR9
  doi: 10.1007/978-1-84996-062-5_3
  contributor:
    fullname: W Steen
– volume-title: E92-17, Standard test methods for Vickers hardness and Knoop hardness of metallic materials
  year: 2017
  ident: 6402_CR36
  doi: 10.1520/E0092-17
  contributor:
    fullname: ASTM
– volume: 40
  start-page: 5753
  year: 2007
  ident: 6402_CR30
  publication-title: J Phys D Appl Phys
  doi: 10.1088/0022-3727/40/18/037
  contributor:
    fullname: R Rai
– ident: 6402_CR1
  doi: 10.1533/9780857095169.1.75
– volume: 13
  start-page: 414
  year: 2020
  ident: 6402_CR29
  publication-title: Materials
  doi: 10.3390/ma13020414
  contributor:
    fullname: CH Hung
– volume: 5
  start-page: 299
  year: 2010
  ident: 6402_CR14
  publication-title: Phys Procedia
  doi: 10.1016/j.phpro.2010.08.056
  contributor:
    fullname: MJ Tobar
– volume: 10
  start-page: 1
  year: 2019
  ident: 6402_CR16
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-10009-2
  contributor:
    fullname: AA Martin
– volume: 45
  start-page: 438
  year: 2019
  ident: 6402_CR27
  publication-title: J Manuf Process
  doi: 10.1016/j.jmapro.2019.07.030
  contributor:
    fullname: CH Hung
– volume: 14
  start-page: 3292
  year: 1999
  ident: 6402_CR39
  publication-title: J Mater Res
  doi: 10.1557/JMR.1999.0445
  contributor:
    fullname: RD Conner
– volume: 209
  start-page: 3705
  year: 2009
  ident: 6402_CR6
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2008.08.026
  contributor:
    fullname: E Akman
SSID ssj0016168
ssib034539549
ssib019759004
ssib029851711
Score 2.5258539
Snippet The success of laser-foil-printing (LFP) additive manufacturing depends critically on the laser welding of sheet metals onto the substrate or the previous...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 867
SubjectTerms Additive manufacturing
Austenitic stainless steels
CAE) and Design
Computer-Aided Engineering (CAD
Density
Electron backscatter diffraction
Elongation
Engineering
Foils
Grain boundaries
Industrial and Production Engineering
Laser applications
Laser beam welding
Lasers
Mechanical Engineering
Mechanical properties
Media Management
Microstructure
Original Article
Porosity
Stainless steel
Substrates
Tensile properties
Ultimate tensile strength
Yield strength
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOBQUR5iS6nmwA0sNrbjxwkhxFIh4FSk3qJxMpaQusmy2wrxf_iheJykC0hwixTFsTyfx-OZ-WaEeB4w1VX0VppYkzTMAY4uoKywVVh1zsXA3OFPn-3ZF_Phor6YHG67Ka1y1olFUXdDyz7yV8o4x5VHgnq9-Sa5axRHV6cWGrfFnUo5yyl9fvV-xlMVHPfEvMGbCtyIfo9nbWo9RrmmqIOtCnUuX0s8bzw_kWwK1a4UmpF82eLYV7ZK_zzI9tbpXwHVck6t7ovDycCENyMijsQt6h-Ie7-VHXwofmZswJjIAUOCbD_TFr5TCUMBt8bZwdDDmpgUzDKEDXvst1x6FbDvYM1JfGPh2est8RB6aT5CYWJdZs2Zn4jyVxmVO0gYSyci6iD-GP8l0_D1UvL8OecaOKWJlS6ssb9mokVhTj4S56t352_P5NStQbbaqSvpaptw2WqbZx_qvMyINtqYTUJMgdCHLt-Nqi5ajNYl0jpZb7k2TeUpKdSPxUE_9PREAIVOGyQfkJzB1kbjl4FadL7VUcV2IV7MK99sxpoczU315SKnJsupKXJq3EKczMJppv25a_ZoWoiXs8D2r_892vH_R3sq7ipOeik-mhNxkEVBz7LVchVPCzR_AZHT56I
  priority: 102
  providerName: ProQuest
Title The effect of laser welding modes on mechanical properties and microstructure of 304L stainless steel parts fabricated by laser-foil-printing additive manufacturing
URI https://link.springer.com/article/10.1007/s00170-020-06402-7
https://www.proquest.com/docview/2477376792
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoe4FDy1NdWiofuIGrTez4cVzQbiseFUJbqZyicWJLiG622ocQ_B5-KDNOssvz0FOivBx7xvbYM983jD13EIvMWy2UL4JQhAH2xoHIoMohq43xjrDD7y_0-aV6c1VcbXHcKdi990imgXqDdUtML4JWO-R8QrNwh-3h3EO9cW909untuFejzBlKhblRs9xR_vmtGktVyNa51TkbdJYQc7gasdTfbIet-Xepv89fW6P0Dz9qmp4mB2zag3zaqJQvp-uVP62-_835eJua32f7nbnKR61-PWB3QvOQ3fuFxPAR-4GaxtuwED6PHK3xsOBfQ3JqcUq0s-Tzhs8CQYxJI_gN7f8viMiVQ1PzGYUEtjS260WgT8ihescTrusax2E8CwHfQh1f8gg-5TUKNfff2rJEnH--FlQliuDmFCBFQzifQbMm2EbCYT5m08l4-vpcdLkfRCVNvhKm0BGGldT4965A6QForz0amBBdAOtqXGlltdfgtYlByqitJqabzIaYg3zCdpt5Ew4ZD66WCoJ1EIyCSntlhy5UYGwlfe6rAXvRC7S8aRk-yg2Xc2r6Epu-TE1fmgE77mVedr19WebKGGLFcfmAvexluL39_689vd3jR-xuTiE1aQfomO2iaMIztIlW_oTt2MnZSdcT8PhqfPHhI169zEc_AV08A8Y
link.rule.ids 314,780,784,12765,21388,27924,27925,33373,33744,41081,41523,42150,42592,43600,43805,52111,52234
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZaemg5VH2KpRR86K1Y3cSOHyeEUJelXTgtErdonIylSmyy7IIQ_6c_tB4nYdtK7S1SFMfyfB6PZ-abYeyTg1Bk3mqhfIFCEQfYGwcigyqHrDbGO-IOn1_o6aX6dlVc9Q63dZ9WOejEpKjrtiIf-ZdcGUOVR1x-tLwR1DWKoqt9C42n7JmS8egmpvjkdMBT5gz1xHzEW-6oEf0Gz1IVsoty9VEHnSXqXLyWWNp4tifZJKpdKjQj6LJFsa9olf55kG2s078CqumcmrxiL3sDkx93iHjNnmDzhm3_VnbwLfsZscG7RA7eBh7tZ1zxe0xhKE6tcda8bfgCiRRMMuRL8tivqPQqh6bmC0ri6wrP3q2QhpBjNeOJiXUdNWd8QoxfRVSueQCfOhFhzf1D9y8R2h_XguZPOdecUppI6fIFNHdEtEjMyXdsPvk6P5mKvluDqKTJb4UpdIBxJXWcvSviMgNor300CSE4BOvqeDfKaq_BaxNQyqCtpto0mcWQg3zPtpq2wR3G0dVSAVoHaBRU2is7dliBsZX0ua9G7POw8uWyq8lRPlZfTnIqo5zKJKfSjNjeIJyy35_rcoOmETscBLZ5_e_Rdv8_2gF7Pp2fz8rZ2cX3D-xFTgkwyV-zx7aiWPBjtGBu_X6C6S96-eqE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKkRAcUHmJLX34wA2sbmzHj2MFrPqi4tBKvUXjZCwhdbOr3a0Q_6c_FI-T7BYEB26RkjiR57M99sz3DWPvPcSyCM4IHUoUmjjAwXoQBdQSisba4Ik7_PXSnFzrs5vy5gGLP2e7DyHJjtNAKk3t6mjexKM18S3Lvgja-lAkKvmIj9hjWooI6dfyeEBU4S1VxVwjTnoqRb9BtNKl6uJcfdzBFJk8lzYmjoae62k2f__m70vZxj_9I6SaV6rJDnveu5j8uMPEC7aF7Uv27IHw4Ct2n9DBu1QOPos8edC44D8wB6I4FcdZ8lnLp0i0YLIin9OZ_YLEVzm0DZ9SGl8nPXu3QGpCjfUFz1ys2zR3pivE9FbC5ZJHCLkWETY8_Oy-JeLs-62g_6esa05JTTTt8im0d0S1yNzJ1-xq8uXq04no6zWIWlm5ErY0Eca1MunvfZm6GcAEE5JTCNEjON-k3VHRBAPB2IhKReMMqdMUDqME9YZtt7MW3zKOvlEa0HlAq6E2Qbuxxxqsq1WQoR6xD0PPV_NOlaNa6y9nO1XJTlW2U2VHbG8wTtWP0GUltbWkZOPliH0cDLa5_e_Wdv_v8UP25NvnSXVxenn-jj2VlBGTD3D22HayEu4nl2YVDjJqfwEM4-uC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+laser+welding+modes+on+mechanical+properties+and+microstructure+of+304L+stainless+steel+parts+fabricated+by+laser-foil-printing+additive+manufacturing&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Hung%2C+Chia-Hung&rft.au=Chen%2C+Wei-Ting&rft.au=Sehhat%2C+M.+Hossein&rft.au=Leu%2C+Ming+C.&rft.date=2021-01-01&rft.pub=Springer+London&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=112&rft.issue=3-4&rft.spage=867&rft.epage=877&rft_id=info:doi/10.1007%2Fs00170-020-06402-7&rft.externalDocID=10_1007_s00170_020_06402_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon