The effect of laser welding modes on mechanical properties and microstructure of 304L stainless steel parts fabricated by laser-foil-printing additive manufacturing
The success of laser-foil-printing (LFP) additive manufacturing depends critically on the laser welding of sheet metals onto the substrate or the previous layer during the part fabrication process. The welding can be generally categorized into two modes: conduction mode and keyhole mode. In this stu...
Saved in:
Published in | International journal of advanced manufacturing technology Vol. 112; no. 3-4; pp. 867 - 877 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The success of laser-foil-printing (LFP) additive manufacturing depends critically on the laser welding of sheet metals onto the substrate or the previous layer during the part fabrication process. The welding can be generally categorized into two modes: conduction mode and keyhole mode. In this study, 304L stainless steel parts fabricated by the LFP process using the two laser welding modes are compared. The porosity, microstructure, and tensile properties of the fabricated parts in these two modes are measured and compared in the laser scanning direction (
X
) and part building direction (
Z
). The parts fabricated in the conduction mode have a higher density than those fabricated in the keyhole mode. On the tensile properties, both yield strength (YS) and ultimate tensile strength (UTS) have insignificant differences statistically based on the ANOVA analysis between the tensile specimens fabricated with the two welding modes by the LFP process. However, the conduction-mode parts have higher elongation than the keyhole-mode parts in both the
X
and
Z
directions, and the difference is especially significant in the
Z
direction. By using the electron backscattered diffraction (EBSD), it was found that the much higher ductility for the conduction-mode parts in the
Z
-axis direction is mainly due to the distinct grain boundary interface density in the
Z
-axis direction between the two welding modes. |
---|---|
AbstractList | The success of laser-foil-printing (LFP) additive manufacturing depends critically on the laser welding of sheet metals onto the substrate or the previous layer during the part fabrication process. The welding can be generally categorized into two modes: conduction mode and keyhole mode. In this study, 304L stainless steel parts fabricated by the LFP process using the two laser welding modes are compared. The porosity, microstructure, and tensile properties of the fabricated parts in these two modes are measured and compared in the laser scanning direction (
X
) and part building direction (
Z
). The parts fabricated in the conduction mode have a higher density than those fabricated in the keyhole mode. On the tensile properties, both yield strength (YS) and ultimate tensile strength (UTS) have insignificant differences statistically based on the ANOVA analysis between the tensile specimens fabricated with the two welding modes by the LFP process. However, the conduction-mode parts have higher elongation than the keyhole-mode parts in both the
X
and
Z
directions, and the difference is especially significant in the
Z
direction. By using the electron backscattered diffraction (EBSD), it was found that the much higher ductility for the conduction-mode parts in the
Z
-axis direction is mainly due to the distinct grain boundary interface density in the
Z
-axis direction between the two welding modes. The success of laser-foil-printing (LFP) additive manufacturing depends critically on the laser welding of sheet metals onto the substrate or the previous layer during the part fabrication process. The welding can be generally categorized into two modes: conduction mode and keyhole mode. In this study, 304L stainless steel parts fabricated by the LFP process using the two laser welding modes are compared. The porosity, microstructure, and tensile properties of the fabricated parts in these two modes are measured and compared in the laser scanning direction (X) and part building direction (Z). The parts fabricated in the conduction mode have a higher density than those fabricated in the keyhole mode. On the tensile properties, both yield strength (YS) and ultimate tensile strength (UTS) have insignificant differences statistically based on the ANOVA analysis between the tensile specimens fabricated with the two welding modes by the LFP process. However, the conduction-mode parts have higher elongation than the keyhole-mode parts in both the X and Z directions, and the difference is especially significant in the Z direction. By using the electron backscattered diffraction (EBSD), it was found that the much higher ductility for the conduction-mode parts in the Z-axis direction is mainly due to the distinct grain boundary interface density in the Z-axis direction between the two welding modes. |
Author | Chen, Wei-Ting Leu, Ming C. Hung, Chia-Hung Sehhat, M. Hossein |
Author_xml | – sequence: 1 givenname: Chia-Hung orcidid: 0000-0001-7867-7378 surname: Hung fullname: Hung, Chia-Hung email: hungch@mst.edu organization: Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology – sequence: 2 givenname: Wei-Ting surname: Chen fullname: Chen, Wei-Ting organization: Materials Research Center, Missouri University of Science and Technology – sequence: 3 givenname: M. Hossein surname: Sehhat fullname: Sehhat, M. Hossein organization: Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology – sequence: 4 givenname: Ming C. surname: Leu fullname: Leu, Ming C. organization: Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology |
BookMark | eNp9UctO7SAUJUYTj48fcETimCuUFtqhMXo1OYmTMye77UYxLT0C1fg_fqjUmjhzQCCb9WCxTsihnzwSciH4P8G5voqcC80ZL_JSJS-YPiAbUUrJJBfVIdnwQtVMalUfk5MYXzJcCVVvyOfuGSlai12ik6UDRAz0HYfe-Sc6Tj1GOnk6YvcM3nUw0H2Y9hiSyxfgezq6LkwxhblLc8BFQvJyS2MC5weMMZ8QMwtCitRCG7JIwp62H6sXs5Mb2D44nxZH6HuX3BvSEfxsYRHN4zNyZGGIeP6zn5Ld3e3u5p5tH_8_3FxvWSd1kZiulAXeSZXTNJUWAkC1quVVCbZBqJu-rLXoWwWt0haltKpWTVlXokZbgDwll6tszvg6Y0zmZZqDz46mKLXOv6ebIqOKFbUEjwGtya8fIXwYwc1ShlnLMLkM812G0ZkkV1Jcoj5h-JX-g_UF0bmSVA |
CitedBy_id | crossref_primary_10_1007_s13632_021_00795_x crossref_primary_10_1007_s00170_022_09043_0 crossref_primary_10_1016_j_jmrt_2021_12_039 crossref_primary_10_1007_s00170_024_13300_9 crossref_primary_10_1007_s00170_024_13742_1 crossref_primary_10_1007_s12008_024_01846_7 crossref_primary_10_1007_s00170_023_11120_x crossref_primary_10_1007_s13632_021_00771_5 crossref_primary_10_1016_j_optlastec_2024_111157 crossref_primary_10_1007_s42947_022_00161_2 crossref_primary_10_1007_s11665_022_07185_6 crossref_primary_10_4028_p_01ag12 crossref_primary_10_1111_ffe_13515 crossref_primary_10_1007_s10035_021_01162_x crossref_primary_10_3390_ma15196661 crossref_primary_10_1007_s00170_022_10321_0 crossref_primary_10_1016_j_jmrt_2023_03_070 crossref_primary_10_1177_14644207211044804 crossref_primary_10_1007_s00170_021_08324_4 crossref_primary_10_1108_RPJ_10_2023_0370 crossref_primary_10_1080_10426914_2022_2049298 crossref_primary_10_1007_s00170_023_11076_y crossref_primary_10_1111_ffe_13589 crossref_primary_10_1007_s40516_022_00190_6 crossref_primary_10_1016_j_ijfatigue_2022_106777 crossref_primary_10_1016_j_jallcom_2023_173338 crossref_primary_10_1080_10408436_2023_2255616 crossref_primary_10_1103_PhysRevMaterials_7_023403 crossref_primary_10_1177_03611981231172750 crossref_primary_10_1007_s13632_022_00904_4 crossref_primary_10_1108_RPJ_10_2021_0269 crossref_primary_10_1016_j_jmapro_2023_03_036 |
Cites_doi | 10.1038/s41467-019-12047-2 10.1016/j.ijheatmasstransfer.2019.118473 10.1115/1.4034139 10.1016/j.optlaseng.2014.10.006 10.1016/j.optlaseng.2015.11.001 10.1016/j.optlastec.2016.10.018 10.1007/978-3-642-17613-5_10 10.1007/s00170-019-03502-x 10.1002/adem.201900617 10.1016/j.jmatprotec.2007.03.075 10.1080/21663831.2018.1525773 10.2351/1.4817788 10.1063/1.5132776 10.1016/j.msea.2018.11.056 10.1016/j.addma.2018.08.006 10.1115/1.2194043 10.1088/0022-3727/35/13/320 10.1016/j.matdes.2016.08.036 10.1016/0025-5416(87)90343-0 10.1016/j.addma.2019.101011 10.1533/9780857098771.4.555 10.1007/978-1-84996-062-5_5 10.1520/E2627-13 10.1016/j.jmatprotec.2014.06.005 10.1016/j.actamat.2009.08.027 10.1007/s11661-012-1560-3 10.1179/174328408X295962 10.1007/BF00500761 10.1007/978-1-84996-062-5_3 10.1520/E0092-17 10.1088/0022-3727/40/18/037 10.1533/9780857095169.1.75 10.3390/ma13020414 10.1016/j.phpro.2010.08.056 10.1038/s41467-019-10009-2 10.1016/j.jmapro.2019.07.030 10.1557/JMR.1999.0445 10.1016/j.jmatprotec.2008.08.026 |
ContentType | Journal Article |
Copyright | Springer-Verlag London Ltd., part of Springer Nature 2020 Springer-Verlag London Ltd., part of Springer Nature 2020. |
Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2020 – notice: Springer-Verlag London Ltd., part of Springer Nature 2020. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PQEST PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1007/s00170-020-06402-7 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic Engineering Collection |
DatabaseTitleList | Engineering Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1433-3015 |
EndPage | 877 |
ExternalDocumentID | 10_1007_s00170_020_06402_7 |
GroupedDBID | -5B -5G -BR -EM -XW -XX -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 203 28- 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDEX ABDZT ABECU ABFGW ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKAG ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADMVV ADOXG ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEKVL AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAS LLZTM M4Y M7S MA- ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8V Z8W Z8Z Z92 ZMTXR ZY4 _50 ~8M ~A9 ~EX AACDK AAEOY AAJBT AASML AAYXX AAYZH ABAKF ABYXP ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 DWQXO PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c372t-756fa0c36fec95711aa6b6b054af9ea89d4871db6ab67fe33f686948518ef2a3 |
IEDL.DBID | AGYKE |
ISSN | 0268-3768 |
IngestDate | Thu Oct 10 18:07:41 EDT 2024 Fri Nov 22 00:18:38 EST 2024 Sat Dec 16 12:02:53 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3-4 |
Keywords | Mechanical properties 304L stainless steel Laser welding modes Laser foil printing Metal additive manufacturing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-756fa0c36fec95711aa6b6b054af9ea89d4871db6ab67fe33f686948518ef2a3 |
ORCID | 0000-0001-7867-7378 |
PQID | 2477376792 |
PQPubID | 2044010 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2477376792 crossref_primary_10_1007_s00170_020_06402_7 springer_journals_10_1007_s00170_020_06402_7 |
PublicationCentury | 2000 |
PublicationDate | 1-2021 2021-01-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 1-2021 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | International journal of advanced manufacturing technology |
PublicationTitleAbbrev | Int J Adv Manuf Technol |
PublicationYear | 2021 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | ASTME2627-13, Standard practice for determining average grain size using electron backscatter diffraction (EBSD) in fully recrystallized polycrystalline materials2013West ConshohockenASTM International10.1520/E2627-13 HungCHLiYSuttonAChenWTGongXPanHTsaiHLLeuMCAluminum parts fabricated by laser-foil-printing additive manufacturing: processing, microstructure, and mechanical propertiesMaterials20201341410.3390/ma13020414 CallisterWRethwisch DMater Sci Eng Introduction20079418819010.1016/0025-5416(87)90343-0 LeeJYKoSHFarsonDFYooCDMechanism of keyhole formation and stability in stationary laser weldingJ Phys D Appl Phys2002351570157610.1088/0022-3727/35/13/320 MetelkovaJKindsYKempenKde FormanoirCWitvrouwAVan HoorewederBOn the influence of laser defocusing in selective laser melting of 316LAddit Manuf20182316116910.1016/j.addma.2018.08.006 VerhaegheFCraeghsTHeulensJPandelaersLA pragmatic model for selective laser melting with evaporationActa Mater2009576006601210.1016/j.actamat.2009.08.027 HuangLHuaXWuDYeYRole of welding speed on keyhole-induced porosity formation based on experimental and numerical study in fiber laser welding of Al alloyInt J Adv Manuf Technol201910391392510.1007/s00170-019-03502-x HungCHChangFYCurve micromachining on the edges of nitinol biliary stent by ultrashort pulses laserOpt Laser Technol2017901610.1016/j.optlastec.2016.10.018 RaghavanAWeiHLPalmerTADebRoyTHeat transfer and fluid flow in additive manufacturingJ Laser Appl20132505200610.2351/1.4817788 SteenWMazumderJBasic laser opticsLaser material processing2010LondonSpringer10.1007/978-1-84996-062-5_3 BäuerleDSurface meltingLaser processing and chemistry2011BerlinSpringer10.1007/978-3-642-17613-5_10 GravesRSKollieTGMcElroyDLGilchristKEThe thermal conductivity of AISI 304L stainless steelInt J Thermophys19911240941510.1007/BF00500761 SibillanoTAnconaABerardiVSchingaroEBasileGLugaràPMOptical detection of conduction/keyhole mode transition in laser weldingJ Mater Process Technol200719136436710.1016/j.jmatprotec.2007.03.075 DindaGPDasguptaAKBhattacharyaSNatuHDuttaBMazumderJMicrostructural characterization of laser-deposited Al 4047 AlloyMetall Mater Trans A201344A2233224210.1007/s11661-012-1560-3 LiYShenYLeuMCTsaiHLMechanical properties of Zr-based bulk metallic glass parts fabricated by laser-foil-printing additive manufacturingMater Sci Eng A201974340441110.1016/j.msea.2018.11.056 FuJWYangYSGuoJJTongWHEffect of cooling rate on solidification microstructures in AISI 304 stainless steelMater Sci Technol20082494194410.1179/174328408X295962 SteenWMazumderJLaser weldingLaser material processing2010LondonSpringer10.1007/978-1-84996-062-5_5 Blackburn J (2012) Laser welding of metals for aerospace and other applications. Woodhead Publishing Limited. https://doi.org/10.1533/9780857095169.1.75 TobarMJLamasMIYáñezASánchez-AmayaJMBoukhaZBotanaFJExperimental and simulation studies on laser conduction welding of AA5083 aluminum alloysPhys Procedia2010529930810.1016/j.phpro.2010.08.056 MartinAACaltaNPKhairallahSAWangJDepondPJFongAYThampyVGussGMKissAMStoneKHTassoneCJWekerJNToneyMFBuurenTVMatthewsMJDynamics of pore formation during laser powder bed fusion additive manufacturingNat Commun20191011010.1038/s41467-019-10009-2 AkmanEDemirACanelTSinmazçelikTLaser welding of Ti6Al4V titanium alloysJ Mater Process Technol20092093705371310.1016/j.jmatprotec.2008.08.026 GhayoorMLeeKHeYChangCHPaulBKPasebaniSSelective laser melting of 304L stainless steel: role of volumetric energy density on the microstructure, texture and mechanical propertiesAddit Manuf20203210101110.1016/j.addma.2019.101011 ZafariAXiaKHigh Ductility in a fully martensitic microstructure: a paradox in a Ti alloy produced by selective laser meltingMater Res Lett2018662763310.1080/21663831.2018.1525773 ZhouJTsaiHLWangPCTransport phenomena and keyhole dynamics during pulsed laser weldingJ Heat Transf200612868069010.1115/1.2194043 LinTCCaoCSokolukMJiangLWangXSchoenungJMLaverniaEJLiXAluminum with dispersed nanoparticles by laser additive manufacturingNat Commun2019101910.1038/s41467-019-12047-2 Graudenz M, Baur M (2013) Application of laser welding in the automotive industry. Handb Laser Weld Technol:555–574. https://doi.org/10.1533/9780857098771.4.555 TorkamanyMJMalek GhainiFPoursalehiRKaplanAFHCombination of laser keyhole and conduction welding: dissimilar laser welding of niobium and Ti-6Al-4VOpt Lasers Eng20167991510.1016/j.optlaseng.2015.11.001 RaiRElmerJWPalmerTADebroyTHeat transfer and fluid flow during keyhole mode laser welding of tantalum, Ti-6Al-4V, 304L stainless steel and vanadiumJ Phys D Appl Phys2007405753576610.1088/0022-3727/40/18/037 Bergström D (2008) The absorption of laser light by rough metal surfaces. Thesis 226 ASTME92-17, Standard test methods for Vickers hardness and Knoop hardness of metallic materials2017West ConshohockenASTM International10.1520/E0092-17 WangHZouYMicroscale interaction between laser and metal powder in powder-bed additive manufacturing: conduction mode versus keyhole modeInt J Heat Mass Transf201914211847310.1016/j.ijheatmasstransfer.2019.118473 Guo SH, Zou JL, Xiao RS (2020) Characterizations of welding mode transformation process during 1-μm and 10-μm laser welding. AIP Adv 10. https://doi.org/10.1063/1.5132776 KingWEBarthHDCastilloVMGallegosGFGibbsJWHahnDEKamathCRubenchikAMObservation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturingJ Mater Process Technol20142142915292510.1016/j.jmatprotec.2014.06.005 ConnerRDChoi-YimHJohnsonWLMechanical properties of Zr 57Nb5al10cu15.4Ni12.6 metallic glass matrix particulate compositesJ Mater Res1999143292329710.1557/JMR.1999.0445 Kou S, Limmaneevichitr C, Wei PS (2011) Oscillatory Marangoni flow: a fundamental study by conduction-mode laser spot welding. Weld J 90(12):229s–240s ChenCShenYTsaiHLA foil-based additive manufacturing technology for metal partsJ Manuf Sci Eng Trans ASME20171391610.1115/1.4034139 MecoSPardalGGangulySWilliamsSMcPhersonNApplication of laser in seam welding of dissimilar steel to aluminum joints for thick structural componentsOpt Lasers Eng201567223010.1016/j.optlaseng.2014.10.006 YangJHanJYuHYinJGaoMWangZZengXRole of molten pool mode on formability, microstructure and mechanical properties of selective laser melted Ti-6Al-4V alloyMater Des201611055857010.1016/j.matdes.2016.08.036 AntonyKArivazhaganNStudies on energy penetration and Marangoni effect during laser melting processJ Eng Sci Technol201510509525 TepyloNHuangXPatnaikPCLaser-based additive manufacturing technologies for aerospace applicationsAdv Eng Mater20192113510.1002/adem.201900617 HungCHSuttonALiYShenYTsaiHLLeuMCEnhanced mechanical properties for 304L stainless steel parts fabricated by laser-foil-printing additive manufacturingJ Manuf Process20194543844610.1016/j.jmapro.2019.07.030 N Tepylo (6402_CR31) 2019; 21 RD Conner (6402_CR39) 1999; 14 AA Martin (6402_CR16) 2019; 10 T Sibillano (6402_CR21) 2007; 191 ASTM (6402_CR35) 2013 R Rai (6402_CR30) 2007; 40 D Bäuerle (6402_CR22) 2011 W Steen (6402_CR9) 2010 M Ghayoor (6402_CR38) 2020; 32 MJ Torkamany (6402_CR8) 2016; 79 A Raghavan (6402_CR4) 2013; 25 Y Li (6402_CR26) 2019; 743 CH Hung (6402_CR27) 2019; 45 E Akman (6402_CR6) 2009; 209 JY Lee (6402_CR12) 2002; 35 CH Hung (6402_CR29) 2020; 13 JW Fu (6402_CR37) 2008; 24 K Antony (6402_CR20) 2015; 10 H Wang (6402_CR41) 2019; 142 L Huang (6402_CR5) 2019; 103 WE King (6402_CR17) 2014; 214 C Chen (6402_CR28) 2017; 139 S Meco (6402_CR7) 2015; 67 GP Dinda (6402_CR34) 2013; 44A TC Lin (6402_CR3) 2019; 10 MJ Tobar (6402_CR14) 2010; 5 6402_CR32 6402_CR11 W Steen (6402_CR10) 2010 RS Graves (6402_CR33) 1991; 12 ASTM (6402_CR36) 2017 6402_CR19 CH Hung (6402_CR18) 2017; 90 W Callister (6402_CR40) 2007; 94 F Verhaeghe (6402_CR13) 2009; 57 6402_CR1 6402_CR2 J Metelkova (6402_CR23) 2018; 23 A Zafari (6402_CR25) 2018; 6 J Zhou (6402_CR15) 2006; 128 J Yang (6402_CR24) 2016; 110 |
References_xml | – volume: 10 start-page: 1 year: 2019 ident: 6402_CR3 publication-title: Nat Commun doi: 10.1038/s41467-019-12047-2 contributor: fullname: TC Lin – volume: 142 start-page: 118473 year: 2019 ident: 6402_CR41 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2019.118473 contributor: fullname: H Wang – volume: 139 start-page: 1 year: 2017 ident: 6402_CR28 publication-title: J Manuf Sci Eng Trans ASME doi: 10.1115/1.4034139 contributor: fullname: C Chen – volume: 67 start-page: 22 year: 2015 ident: 6402_CR7 publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2014.10.006 contributor: fullname: S Meco – volume: 79 start-page: 9 year: 2016 ident: 6402_CR8 publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2015.11.001 contributor: fullname: MJ Torkamany – volume: 90 start-page: 1 year: 2017 ident: 6402_CR18 publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2016.10.018 contributor: fullname: CH Hung – volume-title: Laser processing and chemistry year: 2011 ident: 6402_CR22 doi: 10.1007/978-3-642-17613-5_10 contributor: fullname: D Bäuerle – volume: 103 start-page: 913 year: 2019 ident: 6402_CR5 publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-019-03502-x contributor: fullname: L Huang – volume: 21 start-page: 1 year: 2019 ident: 6402_CR31 publication-title: Adv Eng Mater doi: 10.1002/adem.201900617 contributor: fullname: N Tepylo – volume: 191 start-page: 364 year: 2007 ident: 6402_CR21 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2007.03.075 contributor: fullname: T Sibillano – ident: 6402_CR32 – volume: 6 start-page: 627 year: 2018 ident: 6402_CR25 publication-title: Mater Res Lett doi: 10.1080/21663831.2018.1525773 contributor: fullname: A Zafari – volume: 25 start-page: 052006 year: 2013 ident: 6402_CR4 publication-title: J Laser Appl doi: 10.2351/1.4817788 contributor: fullname: A Raghavan – ident: 6402_CR11 doi: 10.1063/1.5132776 – volume: 743 start-page: 404 year: 2019 ident: 6402_CR26 publication-title: Mater Sci Eng A doi: 10.1016/j.msea.2018.11.056 contributor: fullname: Y Li – volume: 23 start-page: 161 year: 2018 ident: 6402_CR23 publication-title: Addit Manuf doi: 10.1016/j.addma.2018.08.006 contributor: fullname: J Metelkova – volume: 10 start-page: 509 year: 2015 ident: 6402_CR20 publication-title: J Eng Sci Technol contributor: fullname: K Antony – volume: 128 start-page: 680 year: 2006 ident: 6402_CR15 publication-title: J Heat Transf doi: 10.1115/1.2194043 contributor: fullname: J Zhou – volume: 35 start-page: 1570 year: 2002 ident: 6402_CR12 publication-title: J Phys D Appl Phys doi: 10.1088/0022-3727/35/13/320 contributor: fullname: JY Lee – volume: 110 start-page: 558 year: 2016 ident: 6402_CR24 publication-title: Mater Des doi: 10.1016/j.matdes.2016.08.036 contributor: fullname: J Yang – volume: 94 start-page: 188 year: 2007 ident: 6402_CR40 publication-title: Mater Sci Eng Introduction doi: 10.1016/0025-5416(87)90343-0 contributor: fullname: W Callister – volume: 32 start-page: 101011 year: 2020 ident: 6402_CR38 publication-title: Addit Manuf doi: 10.1016/j.addma.2019.101011 contributor: fullname: M Ghayoor – ident: 6402_CR2 doi: 10.1533/9780857098771.4.555 – volume-title: Laser material processing year: 2010 ident: 6402_CR10 doi: 10.1007/978-1-84996-062-5_5 contributor: fullname: W Steen – ident: 6402_CR19 – volume-title: E2627-13, Standard practice for determining average grain size using electron backscatter diffraction (EBSD) in fully recrystallized polycrystalline materials year: 2013 ident: 6402_CR35 doi: 10.1520/E2627-13 contributor: fullname: ASTM – volume: 214 start-page: 2915 year: 2014 ident: 6402_CR17 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2014.06.005 contributor: fullname: WE King – volume: 57 start-page: 6006 year: 2009 ident: 6402_CR13 publication-title: Acta Mater doi: 10.1016/j.actamat.2009.08.027 contributor: fullname: F Verhaeghe – volume: 44A start-page: 2233 year: 2013 ident: 6402_CR34 publication-title: Metall Mater Trans A doi: 10.1007/s11661-012-1560-3 contributor: fullname: GP Dinda – volume: 24 start-page: 941 year: 2008 ident: 6402_CR37 publication-title: Mater Sci Technol doi: 10.1179/174328408X295962 contributor: fullname: JW Fu – volume: 12 start-page: 409 year: 1991 ident: 6402_CR33 publication-title: Int J Thermophys doi: 10.1007/BF00500761 contributor: fullname: RS Graves – volume-title: Laser material processing year: 2010 ident: 6402_CR9 doi: 10.1007/978-1-84996-062-5_3 contributor: fullname: W Steen – volume-title: E92-17, Standard test methods for Vickers hardness and Knoop hardness of metallic materials year: 2017 ident: 6402_CR36 doi: 10.1520/E0092-17 contributor: fullname: ASTM – volume: 40 start-page: 5753 year: 2007 ident: 6402_CR30 publication-title: J Phys D Appl Phys doi: 10.1088/0022-3727/40/18/037 contributor: fullname: R Rai – ident: 6402_CR1 doi: 10.1533/9780857095169.1.75 – volume: 13 start-page: 414 year: 2020 ident: 6402_CR29 publication-title: Materials doi: 10.3390/ma13020414 contributor: fullname: CH Hung – volume: 5 start-page: 299 year: 2010 ident: 6402_CR14 publication-title: Phys Procedia doi: 10.1016/j.phpro.2010.08.056 contributor: fullname: MJ Tobar – volume: 10 start-page: 1 year: 2019 ident: 6402_CR16 publication-title: Nat Commun doi: 10.1038/s41467-019-10009-2 contributor: fullname: AA Martin – volume: 45 start-page: 438 year: 2019 ident: 6402_CR27 publication-title: J Manuf Process doi: 10.1016/j.jmapro.2019.07.030 contributor: fullname: CH Hung – volume: 14 start-page: 3292 year: 1999 ident: 6402_CR39 publication-title: J Mater Res doi: 10.1557/JMR.1999.0445 contributor: fullname: RD Conner – volume: 209 start-page: 3705 year: 2009 ident: 6402_CR6 publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2008.08.026 contributor: fullname: E Akman |
SSID | ssj0016168 ssib034539549 ssib019759004 ssib029851711 |
Score | 2.5258539 |
Snippet | The success of laser-foil-printing (LFP) additive manufacturing depends critically on the laser welding of sheet metals onto the substrate or the previous... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 867 |
SubjectTerms | Additive manufacturing Austenitic stainless steels CAE) and Design Computer-Aided Engineering (CAD Density Electron backscatter diffraction Elongation Engineering Foils Grain boundaries Industrial and Production Engineering Laser applications Laser beam welding Lasers Mechanical Engineering Mechanical properties Media Management Microstructure Original Article Porosity Stainless steel Substrates Tensile properties Ultimate tensile strength Yield strength |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOBQUR5iS6nmwA0sNrbjxwkhxFIh4FSk3qJxMpaQusmy2wrxf_iheJykC0hwixTFsTyfx-OZ-WaEeB4w1VX0VppYkzTMAY4uoKywVVh1zsXA3OFPn-3ZF_Phor6YHG67Ka1y1olFUXdDyz7yV8o4x5VHgnq9-Sa5axRHV6cWGrfFnUo5yyl9fvV-xlMVHPfEvMGbCtyIfo9nbWo9RrmmqIOtCnUuX0s8bzw_kWwK1a4UmpF82eLYV7ZK_zzI9tbpXwHVck6t7ovDycCENyMijsQt6h-Ie7-VHXwofmZswJjIAUOCbD_TFr5TCUMBt8bZwdDDmpgUzDKEDXvst1x6FbDvYM1JfGPh2est8RB6aT5CYWJdZs2Zn4jyVxmVO0gYSyci6iD-GP8l0_D1UvL8OecaOKWJlS6ssb9mokVhTj4S56t352_P5NStQbbaqSvpaptw2WqbZx_qvMyINtqYTUJMgdCHLt-Nqi5ajNYl0jpZb7k2TeUpKdSPxUE_9PREAIVOGyQfkJzB1kbjl4FadL7VUcV2IV7MK99sxpoczU315SKnJsupKXJq3EKczMJppv25a_ZoWoiXs8D2r_892vH_R3sq7ipOeik-mhNxkEVBz7LVchVPCzR_AZHT56I priority: 102 providerName: ProQuest |
Title | The effect of laser welding modes on mechanical properties and microstructure of 304L stainless steel parts fabricated by laser-foil-printing additive manufacturing |
URI | https://link.springer.com/article/10.1007/s00170-020-06402-7 https://www.proquest.com/docview/2477376792 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoe4FDy1NdWiofuIGrTez4cVzQbiseFUJbqZyicWJLiG622ocQ_B5-KDNOssvz0FOivBx7xvbYM983jD13EIvMWy2UL4JQhAH2xoHIoMohq43xjrDD7y_0-aV6c1VcbXHcKdi990imgXqDdUtML4JWO-R8QrNwh-3h3EO9cW909untuFejzBlKhblRs9xR_vmtGktVyNa51TkbdJYQc7gasdTfbIet-Xepv89fW6P0Dz9qmp4mB2zag3zaqJQvp-uVP62-_835eJua32f7nbnKR61-PWB3QvOQ3fuFxPAR-4GaxtuwED6PHK3xsOBfQ3JqcUq0s-Tzhs8CQYxJI_gN7f8viMiVQ1PzGYUEtjS260WgT8ihescTrusax2E8CwHfQh1f8gg-5TUKNfff2rJEnH--FlQliuDmFCBFQzifQbMm2EbCYT5m08l4-vpcdLkfRCVNvhKm0BGGldT4965A6QForz0amBBdAOtqXGlltdfgtYlByqitJqabzIaYg3zCdpt5Ew4ZD66WCoJ1EIyCSntlhy5UYGwlfe6rAXvRC7S8aRk-yg2Xc2r6Epu-TE1fmgE77mVedr19WebKGGLFcfmAvexluL39_689vd3jR-xuTiE1aQfomO2iaMIztIlW_oTt2MnZSdcT8PhqfPHhI169zEc_AV08A8Y |
link.rule.ids | 314,780,784,12765,21388,27924,27925,33373,33744,41081,41523,42150,42592,43600,43805,52111,52234 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZaemg5VH2KpRR86K1Y3cSOHyeEUJelXTgtErdonIylSmyy7IIQ_6c_tB4nYdtK7S1SFMfyfB6PZ-abYeyTg1Bk3mqhfIFCEQfYGwcigyqHrDbGO-IOn1_o6aX6dlVc9Q63dZ9WOejEpKjrtiIf-ZdcGUOVR1x-tLwR1DWKoqt9C42n7JmS8egmpvjkdMBT5gz1xHzEW-6oEf0Gz1IVsoty9VEHnSXqXLyWWNp4tifZJKpdKjQj6LJFsa9olf55kG2s078CqumcmrxiL3sDkx93iHjNnmDzhm3_VnbwLfsZscG7RA7eBh7tZ1zxe0xhKE6tcda8bfgCiRRMMuRL8tivqPQqh6bmC0ri6wrP3q2QhpBjNeOJiXUdNWd8QoxfRVSueQCfOhFhzf1D9y8R2h_XguZPOdecUppI6fIFNHdEtEjMyXdsPvk6P5mKvluDqKTJb4UpdIBxJXWcvSviMgNor300CSE4BOvqeDfKaq_BaxNQyqCtpto0mcWQg3zPtpq2wR3G0dVSAVoHaBRU2is7dliBsZX0ua9G7POw8uWyq8lRPlZfTnIqo5zKJKfSjNjeIJyy35_rcoOmETscBLZ5_e_Rdv8_2gF7Pp2fz8rZ2cX3D-xFTgkwyV-zx7aiWPBjtGBu_X6C6S96-eqE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKkRAcUHmJLX34wA2sbmzHj2MFrPqi4tBKvUXjZCwhdbOr3a0Q_6c_FI-T7BYEB26RkjiR57M99sz3DWPvPcSyCM4IHUoUmjjAwXoQBdQSisba4Ik7_PXSnFzrs5vy5gGLP2e7DyHJjtNAKk3t6mjexKM18S3Lvgja-lAkKvmIj9hjWooI6dfyeEBU4S1VxVwjTnoqRb9BtNKl6uJcfdzBFJk8lzYmjoae62k2f__m70vZxj_9I6SaV6rJDnveu5j8uMPEC7aF7Uv27IHw4Ct2n9DBu1QOPos8edC44D8wB6I4FcdZ8lnLp0i0YLIin9OZ_YLEVzm0DZ9SGl8nPXu3QGpCjfUFz1ys2zR3pivE9FbC5ZJHCLkWETY8_Oy-JeLs-62g_6esa05JTTTt8im0d0S1yNzJ1-xq8uXq04no6zWIWlm5ErY0Eca1MunvfZm6GcAEE5JTCNEjON-k3VHRBAPB2IhKReMMqdMUDqME9YZtt7MW3zKOvlEa0HlAq6E2Qbuxxxqsq1WQoR6xD0PPV_NOlaNa6y9nO1XJTlW2U2VHbG8wTtWP0GUltbWkZOPliH0cDLa5_e_Wdv_v8UP25NvnSXVxenn-jj2VlBGTD3D22HayEu4nl2YVDjJqfwEM4-uC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+laser+welding+modes+on+mechanical+properties+and+microstructure+of+304L+stainless+steel+parts+fabricated+by+laser-foil-printing+additive+manufacturing&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Hung%2C+Chia-Hung&rft.au=Chen%2C+Wei-Ting&rft.au=Sehhat%2C+M.+Hossein&rft.au=Leu%2C+Ming+C.&rft.date=2021-01-01&rft.pub=Springer+London&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=112&rft.issue=3-4&rft.spage=867&rft.epage=877&rft_id=info:doi/10.1007%2Fs00170-020-06402-7&rft.externalDocID=10_1007_s00170_020_06402_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon |