Comparison of Channel Coding Schemes for Molecular Communications Systems
Future applications for nano-machines, such as drug-delivery and health monitoring, will require robust communications and nanonetworking capabilities. This is likely to be enabled via the use of molecules, as opposed to electromagnetic waves, acting as the information carrier. To enhance the reliab...
Saved in:
Published in | IEEE transactions on communications Vol. 63; no. 11; pp. 3991 - 4001 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Future applications for nano-machines, such as drug-delivery and health monitoring, will require robust communications and nanonetworking capabilities. This is likely to be enabled via the use of molecules, as opposed to electromagnetic waves, acting as the information carrier. To enhance the reliability of the transmitted data, Euclidean geometry low density parity check (EG-LDPC) and cyclic Reed-Muller (C-RM) codes are considered for use within a molecular communication system for the first time. These codes are compared against the Hamming code to show that an s = 4 LDPC (integer s ≥ 2) has a superior coding gain of 7.26 dBs. Furthermore, the critical distance and energy cost for a coded system are also taken into account as two other performance metrics. It is shown that when considering the case of nano-to nano-machines communication, a Hamming code with m = 4, (integer m ≥ 2) is better for a system operating between 10 -6 and 10 -3 bit error rate (BER) levels. Below these BERs,s = 2 LDPC codes are superior, exhibiting the lowest energy cost. For communication between nano-to macro-machines, and macro-to nano-machines, s = 3 LDPC and s = 2 LDPC are the best options respectively. |
---|---|
AbstractList | Future applications for nano-machines, such as drug-delivery and health monitoring, will require robust communications and nanonetworking capabilities. This is likely to be enabled via the use of molecules, as opposed to electromagnetic waves, acting as the information carrier. To enhance the reliability of the transmitted data, Euclidean geometry low density parity check (EG-LDPC) and cyclic Reed-Muller (C-RM) codes are considered for use within a molecular communication system for the first time. These codes are compared against the Hamming code to show that an $\boldsymbol{s}=4$ LDPC (integer $\boldsymbol{s}\ge 2$) has a superior coding gain of 7.26 dBs. Furthermore, the critical distance and energy cost for a coded system are also taken into account as two other performance metrics. It is shown that when considering the case of nano-to nano-machines communication, a Hamming code with $\boldsymbol{m}=4$, (integer $\boldsymbol{m}\ge 2$) is better for a system operating between $10-6}$ and $10-3}$ bit error rate (BER) levels. Below these BERs, $\boldsymbol{s}=2$ LDPC codes are superior, exhibiting the lowest energy cost. For communication between nano-to macro-machines, and macro-to nano-machines, $\boldsymbol{s}=3$ LDPC and $\boldsymbol{s}=2$ LDPC are the best options respectively. Future applications for nano-machines, such as drug-delivery and health monitoring, will require robust communications and nanonetworking capabilities. This is likely to be enabled via the use of molecules, as opposed to electromagnetic waves, acting as the information carrier. To enhance the reliability of the transmitted data, Euclidean geometry low density parity check (EG-LDPC) and cyclic Reed-Muller (C-RM) codes are considered for use within a molecular communication system for the first time. These codes are compared against the Hamming code to show that an s = 4 LDPC (integer s ≥ 2) has a superior coding gain of 7.26 dBs. Furthermore, the critical distance and energy cost for a coded system are also taken into account as two other performance metrics. It is shown that when considering the case of nano-to nano-machines communication, a Hamming code with m = 4, (integer m ≥ 2) is better for a system operating between 10 -6 and 10 -3 bit error rate (BER) levels. Below these BERs,s = 2 LDPC codes are superior, exhibiting the lowest energy cost. For communication between nano-to macro-machines, and macro-to nano-machines, s = 3 LDPC and s = 2 LDPC are the best options respectively. Future applications for nano-machines, such as drug-delivery and health monitoring, will require robust communications and nanonetworking capabilities. This is likely to be enabled via the use of molecules, as opposed to electromagnetic waves, acting as the information carrier. To enhance the reliability of the transmitted data, Euclidean geometry low density parity check (EG-LDPC) and cyclic Reed-Muller (C-RM) codes are considered for use within a molecular communication system for the first time. These codes are compared against the Hamming code to show that an [Formula Omitted] LDPC (integer [Formula Omitted]) has a superior coding gain of 7.26 dBs. Furthermore, the critical distance and energy cost for a coded system are also taken into account as two other performance metrics. It is shown that when considering the case of nano-to nano-machines communication, a Hamming code with [Formula Omitted], (integer [Formula Omitted]) is better for a system operating between [Formula Omitted] and [Formula Omitted] bit error rate (BER) levels. Below these BERs, [Formula Omitted] LDPC codes are superior, exhibiting the lowest energy cost. For communication between nano-to macro-machines, and macro-to nano-machines, [Formula Omitted] LDPC and [Formula Omitted] LDPC are the best options respectively. |
Author | Higgins, Matthew D. Leeson, Mark S. Yi Lu |
Author_xml | – sequence: 1 surname: Yi Lu fullname: Yi Lu email: yi.lu@warwick.ac.uk organization: Sch. of Eng., Univ. of Warwick, Coventry, UK – sequence: 2 givenname: Matthew D. surname: Higgins fullname: Higgins, Matthew D. email: m.higgins@warwick.ac.uk organization: Sch. of Eng., Univ. of Warwick, Coventry, UK – sequence: 3 givenname: Mark S. surname: Leeson fullname: Leeson, Mark S. email: mark.leeson@warwick.ac.uk organization: Sch. of Eng., Univ. of Warwick, Coventry, UK |
BookMark | eNpdkD1PwzAQQC1UJNrCH4AlEgtLih3bcTKiiI9KrTq0zJbrnGmqxC52MvTf49KKgemGe-90ehM0ss4CQvcEzwjB5fOmWi2XswwTPstYgQXPrtCYcF6kuOBihMYYlzjNhShu0CSEPcaYYUrHaF657qB8E5xNnEmqnbIW2qRydWO_krXeQQchMc4nS9eCHlrl47LrBtto1TfOhmR9DD104RZdG9UGuLvMKfp8e91UH-li9T6vXhappiLrU0GoNpnShsQHtKEZLYEyoeptKRRVhhdMFAQDr5nimAghDKeGbhnUueKqplP0dL578O57gNDLrgka2lZZcEOQUSkwKVnJIvr4D927wdv4XaRYUeZ5zBKp7Exp70LwYOTBN53yR0mwPNWVv3Xlqa681I3Sw1lqAOBPEJmgsTf9AaqQd1E |
CODEN | IECMBT |
CitedBy_id | crossref_primary_10_3390_s22051969 crossref_primary_10_4018_IJBDCN_339889 crossref_primary_10_1002_ett_3055 crossref_primary_10_1016_j_nancom_2018_11_004 crossref_primary_10_1109_TNB_2022_3156621 crossref_primary_10_1049_mnl_2016_0368 crossref_primary_10_1109_TCOMM_2019_2910265 crossref_primary_10_1109_JPROC_2019_2916081 crossref_primary_10_1109_MCOM_001_2000487 crossref_primary_10_1109_TCOMM_2019_2897568 crossref_primary_10_1109_TCOMM_2018_2859308 crossref_primary_10_1109_COMST_2016_2527741 crossref_primary_10_1109_TMBMC_2016_2640284 crossref_primary_10_1109_TMBMC_2020_3004304 crossref_primary_10_1016_j_nancom_2018_11_005 crossref_primary_10_1016_j_dcan_2020_09_010 crossref_primary_10_1002_ett_4233 crossref_primary_10_1109_ACCESS_2023_3243797 crossref_primary_10_1016_j_dcan_2020_07_003 crossref_primary_10_1109_ACCESS_2020_2970108 crossref_primary_10_1109_TNB_2018_2884999 crossref_primary_10_1109_TMBMC_2021_3054933 crossref_primary_10_1007_s11277_023_10399_z crossref_primary_10_1109_JPROC_2019_2927926 crossref_primary_10_1109_TNB_2019_2915682 crossref_primary_10_1109_JIOT_2020_2997372 crossref_primary_10_1109_LCOMM_2023_3342420 crossref_primary_10_1109_TNB_2019_2900466 crossref_primary_10_1016_j_nancom_2019_100280 crossref_primary_10_1109_TMBMC_2020_3035371 crossref_primary_10_3390_s22010041 crossref_primary_10_1109_COMST_2017_2705740 crossref_primary_10_1109_JSEN_2023_3274293 crossref_primary_10_1109_TMBMC_2020_3017146 crossref_primary_10_1109_TNB_2016_2620339 crossref_primary_10_1109_LCOMM_2017_2671858 crossref_primary_10_1016_j_nancom_2016_09_003 |
Cites_doi | 10.1109/icc.2011.5962989 10.1017/CBO9780511803253 10.1016/j.nancom.2010.07.002 10.1109/ICC.2012.6364980 10.1155/WCN/2006/74812 10.1002/0471739219 10.1109/TIT.1968.1054127 10.1016/j.comnet.2008.04.001 10.1109/TIT.1954.1057465 10.1016/j.pbiomolbio.2004.03.002 10.1002/chem.200305054 10.1109/NANO.2005.1500804 10.1016/j.envsoft.2004.07.015 10.1016/S0166-2236(03)00068-7 10.1109/IREPGELC.1954.6499441 10.1016/j.comnet.2009.08.001 10.1017/CBO9780511800467 10.1049/el:19970362 10.1109/TIT.1981.1056404 10.1002/9780470035726 10.1016/S0021-9258(20)71348-7 10.1109/TIT.2011.2104590 10.1109/TNANO.2012.2186313 10.1109/TIT.1962.1057683 10.1109/TVLSI.2011.2179681 10.1017/CBO9780511807046 10.1109/18.959255 10.1088/0957-4484/10/3/302 10.1016/j.nancom.2012.09.001 10.1529/biophysj.106.088856 10.1002/1521-4095(20020318)14:6<401::AID-ADMA401>3.0.CO;2-F |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2015 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2015 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M F28 FR3 |
DOI | 10.1109/TCOMM.2015.2480752 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Engineering Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0857 |
EndPage | 4001 |
ExternalDocumentID | 3895110311 10_1109_TCOMM_2015_2480752 7273857 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AASAJ AAYOK ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AI. AIBXA AKJIK ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV B-7 BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IES IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RIG RNS TAE TN5 VH1 XFK ZCA ZCG AAYXX CITATION 7SP 8FD L7M F28 FR3 |
ID | FETCH-LOGICAL-c372t-713cf2acf1403cf3239e347adb97a3af5847810e5d4a501777f53f3b4ed6a5ad3 |
IEDL.DBID | RIE |
ISSN | 0090-6778 |
IngestDate | Fri Aug 16 01:35:05 EDT 2024 Thu Oct 10 19:15:25 EDT 2024 Fri Aug 23 01:40:13 EDT 2024 Wed Jun 26 19:28:47 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | EG-LDPC codes C-RM codes Hamming codes Molecular communication diffusion channel bioengineering |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-713cf2acf1403cf3239e347adb97a3af5847810e5d4a501777f53f3b4ed6a5ad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://wrap.warwick.ac.uk/76406/1/WRAP_Higgins_14tcom.pdf |
PQID | 1748966009 |
PQPubID | 85472 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1778019494 crossref_primary_10_1109_TCOMM_2015_2480752 proquest_journals_1748966009 ieee_primary_7273857 |
PublicationCentury | 2000 |
PublicationDate | 2015-Nov. 2015-11-00 20151101 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-Nov. |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on communications |
PublicationTitleAbbrev | TCOMM |
PublicationYear | 2015 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref30 ref11 john (ref8) 1999; 10 ref10 yu (ref41) 0; 2 yu (ref19) 2001; 47 ref2 ref17 ref16 godse (ref33) 2008 nelson (ref31) 2008 enomoto (ref3) 0 peterson (ref26) 1972 weldon (ref42) 1967 freitas (ref1) 1999 cedil (ref28) 2010; 1 ref24 ref23 ref20 ref22 ref21 macwilliams (ref39) 1977 forney (ref18) 2002 ref27 lin (ref38) 1983 ref29 ref7 ref9 ref4 boztas (ref25) 2003 ref6 ref5 ref40 shacter (ref32) 1984; 259 |
References_xml | – start-page: 725 year: 0 ident: ref3 article-title: A molecular communication system using a network of cytoskeletal filaments publication-title: Proc NSTI Nanotechnol Conf Trade Show contributor: fullname: enomoto – year: 1967 ident: ref42 article-title: Euclidean geometry cyclic codes publication-title: Combinatorial Mathematics and its Applications contributor: fullname: weldon – ident: ref29 doi: 10.1109/icc.2011.5962989 – ident: ref36 doi: 10.1017/CBO9780511803253 – year: 1972 ident: ref26 publication-title: Error-Correcting Codes contributor: fullname: peterson – volume: 1 start-page: 86 year: 2010 ident: ref28 article-title: Energy model for communication via diffusion in nanonetworks publication-title: Nano Commun Netw doi: 10.1016/j.nancom.2010.07.002 contributor: fullname: cedil – ident: ref11 doi: 10.1109/ICC.2012.6364980 – ident: ref13 doi: 10.1155/WCN/2006/74812 – ident: ref20 doi: 10.1002/0471739219 – year: 2008 ident: ref31 publication-title: Lehninger Principles of Biochemistry/The Absolute Ultimate Guide to Lehninger Principles of Biochemistry contributor: fullname: nelson – ident: ref27 doi: 10.1109/TIT.1968.1054127 – ident: ref2 doi: 10.1016/j.comnet.2008.04.001 – ident: ref24 doi: 10.1109/TIT.1954.1057465 – ident: ref30 doi: 10.1016/j.pbiomolbio.2004.03.002 – ident: ref10 doi: 10.1002/chem.200305054 – ident: ref4 doi: 10.1109/NANO.2005.1500804 – volume: 2 start-page: 825 year: 0 ident: ref41 article-title: Low density parity check codes: Construction based on finite geometries publication-title: Proc IEEE Globecom contributor: fullname: yu – ident: ref6 doi: 10.1016/j.envsoft.2004.07.015 – ident: ref7 doi: 10.1016/S0166-2236(03)00068-7 – ident: ref23 doi: 10.1109/IREPGELC.1954.6499441 – ident: ref5 doi: 10.1016/j.comnet.2009.08.001 – ident: ref35 doi: 10.1017/CBO9780511800467 – ident: ref17 doi: 10.1049/el:19970362 – ident: ref16 doi: 10.1109/TIT.1981.1056404 – ident: ref21 doi: 10.1002/9780470035726 – year: 1999 ident: ref1 publication-title: Nanomedicine contributor: fullname: freitas – volume: 259 start-page: 12260 year: 1984 ident: ref32 article-title: Energy consumption in a cyclic phosphorylation/dephosphorylation cascade publication-title: J Biol Chem doi: 10.1016/S0021-9258(20)71348-7 contributor: fullname: shacter – year: 2002 ident: ref18 publication-title: Codes Graphs and Systems A Celebration of the Life and Career of G David Forney Jr on the Occasion of His Sixtieth Birthday contributor: fullname: forney – ident: ref37 doi: 10.1109/TIT.2011.2104590 – year: 2008 ident: ref33 publication-title: Digital Logic Applications and design contributor: fullname: godse – ident: ref14 doi: 10.1109/TNANO.2012.2186313 – ident: ref15 doi: 10.1109/TIT.1962.1057683 – ident: ref22 doi: 10.1109/TVLSI.2011.2179681 – year: 2003 ident: ref25 publication-title: Applied Algebra Algebraic Algorithms and Error-Correcting Codes contributor: fullname: boztas – year: 1983 ident: ref38 publication-title: Error Control Coding Fundamentals and Applications contributor: fullname: lin – ident: ref40 doi: 10.1017/CBO9780511807046 – volume: 47 start-page: 2711 year: 2001 ident: ref19 article-title: Low-density parity-check codes based on finite geometries: A rediscovery and new results publication-title: IEEE Trans Inf Theory doi: 10.1109/18.959255 contributor: fullname: yu – volume: 10 start-page: 232 year: 1999 ident: ref8 article-title: Molecular shuttles: Directed motion of microtubules along nanoscale kinesin tracks publication-title: Nanotechnology doi: 10.1088/0957-4484/10/3/302 contributor: fullname: john – ident: ref12 doi: 10.1016/j.nancom.2012.09.001 – year: 1977 ident: ref39 publication-title: The Theory of Error-Correcting Codes contributor: fullname: macwilliams – ident: ref34 doi: 10.1529/biophysj.106.088856 – ident: ref9 doi: 10.1002/1521-4095(20020318)14:6<401::AID-ADMA401>3.0.CO;2-F |
SSID | ssj0004033 |
Score | 2.4909203 |
Snippet | Future applications for nano-machines, such as drug-delivery and health monitoring, will require robust communications and nanonetworking capabilities. This is... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 3991 |
SubjectTerms | bioengineering Bit error rate C-RM codes Codes Coding Communication Communication systems Decoding Density diffusion channel EG-LDPC codes Encoding Energy costs Error correcting codes Hamming codes Integers Logic gates Molecular communication Nanostructure Parity check codes Receivers Shift registers |
Title | Comparison of Channel Coding Schemes for Molecular Communications Systems |
URI | https://ieeexplore.ieee.org/document/7273857 https://www.proquest.com/docview/1748966009 https://search.proquest.com/docview/1778019494 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4VJhh4FUR5yUhskJLEdlyPKAIVpMBAkdgixzkvQIJou_DrsZ2kPAe2SLESy58vd87d9x3AScKVVFwaiwDXASt1Yk0KWZCgoFxxhaHvWpLdJuMHdvPIH3twtuDCIKIvPsOhu_S5_LLWc_er7Fx47RWxBEtCyoar9cmBDGmrOOnK2cWoI8iE8nyS3mWZq-Liw9gxqHn8zQn5riq_PsXev1ytQ9bNrCkreRrOZ8VQv_8Qbfzv1DdgrQ00yUWzMzahh9UWrH6RH-zDdbpoQkhqQxzRoMJnktbOn5F7C-cLTomNaknWNdEl3wglU9IKnm_Dw9XlJB0HbWuFQFMRzwJ7NNUmVto4uT5taEwlUiZUWUihqDIueTqKQuQlU9warRCGU0MLhmViESzpDixXdYW7QLgoS5MYESvBmKJa8WiUoFZRpEwspBnAabfW-WujoJH7k0coc49M7pDJW2QG0HeLtxjZrtsADjp48tbIpnnklHMSG7HJARwvblvzcDkPVWE9d2OE9cGSSbb395P3YcW9v6EXHsDy7G2OhzbOmBVHfoN9ABHiz2Y |
link.rule.ids | 315,783,787,799,27937,27938,55087 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGICBN6I8jcQGaZPYjusRVaDyCAwUiS1ynfMCJIi2C78e20nKc2CLFMs6-fPlzvF93wEcJ1xJxaWxCHAdsFwn1qWQBQkKyhVXGPquJelt0n9gV4_8cQZOp1wYRPTFZ9h2j_4uPy_1xP0q6wivvSJmYd7m1V1RsbU-WZAhrTUnXUG76DYUmVB2Br27NHV1XLwdOw41j7-FId9X5dfH2EeYixVIG9uqwpKn9mQ8bOv3H7KN_zV-FZbrVJOcVXtjDWawWIelLwKEG3DZm7YhJKUhjmpQ4DPplS6ikXsL6AuOiM1rSdq00SXfKCUjUkueb8LDxfmg1w_q5gqBpiIeB_Zwqk2stHGCfdrQmEqkTKh8KIWiyrjr024UIs-Z4tZthTCcGjpkmCcWw5xuwVxRFrgNhIs8N4kRsRKMKaoVj7oJahVFysRCmhacNGudvVYaGpk_e4Qy88hkDpmsRqYFG27xpiPrdWvBXgNPVrvZKIucdk5iczbZgqPpa-sg7tZDFVhO3Bhho7Bkku38PfMhLPQH6U12c3l7vQuLzpaKbLgHc-O3Ce7brGM8PPCb7QMV29Ky |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Channel+Coding+Schemes+for+Molecular+Communications+Systems&rft.jtitle=IEEE+transactions+on+communications&rft.au=Lu%2C+Yi&rft.au=Higgins%2C+Matthew+D&rft.au=Leeson%2C+Mark+S&rft.date=2015-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0090-6778&rft.eissn=1558-0857&rft.volume=63&rft.issue=11&rft.spage=3991&rft_id=info:doi/10.1109%2FTCOMM.2015.2480752&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3895110311 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon |