Comparison of Channel Coding Schemes for Molecular Communications Systems

Future applications for nano-machines, such as drug-delivery and health monitoring, will require robust communications and nanonetworking capabilities. This is likely to be enabled via the use of molecules, as opposed to electromagnetic waves, acting as the information carrier. To enhance the reliab...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on communications Vol. 63; no. 11; pp. 3991 - 4001
Main Authors Yi Lu, Higgins, Matthew D., Leeson, Mark S.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Future applications for nano-machines, such as drug-delivery and health monitoring, will require robust communications and nanonetworking capabilities. This is likely to be enabled via the use of molecules, as opposed to electromagnetic waves, acting as the information carrier. To enhance the reliability of the transmitted data, Euclidean geometry low density parity check (EG-LDPC) and cyclic Reed-Muller (C-RM) codes are considered for use within a molecular communication system for the first time. These codes are compared against the Hamming code to show that an s = 4 LDPC (integer s ≥ 2) has a superior coding gain of 7.26 dBs. Furthermore, the critical distance and energy cost for a coded system are also taken into account as two other performance metrics. It is shown that when considering the case of nano-to nano-machines communication, a Hamming code with m = 4, (integer m ≥ 2) is better for a system operating between 10 -6 and 10 -3 bit error rate (BER) levels. Below these BERs,s = 2 LDPC codes are superior, exhibiting the lowest energy cost. For communication between nano-to macro-machines, and macro-to nano-machines, s = 3 LDPC and s = 2 LDPC are the best options respectively.
AbstractList Future applications for nano-machines, such as drug-delivery and health monitoring, will require robust communications and nanonetworking capabilities. This is likely to be enabled via the use of molecules, as opposed to electromagnetic waves, acting as the information carrier. To enhance the reliability of the transmitted data, Euclidean geometry low density parity check (EG-LDPC) and cyclic Reed-Muller (C-RM) codes are considered for use within a molecular communication system for the first time. These codes are compared against the Hamming code to show that an $\boldsymbol{s}=4$ LDPC (integer $\boldsymbol{s}\ge 2$) has a superior coding gain of 7.26 dBs. Furthermore, the critical distance and energy cost for a coded system are also taken into account as two other performance metrics. It is shown that when considering the case of nano-to nano-machines communication, a Hamming code with $\boldsymbol{m}=4$, (integer $\boldsymbol{m}\ge 2$) is better for a system operating between $10-6}$ and $10-3}$ bit error rate (BER) levels. Below these BERs, $\boldsymbol{s}=2$ LDPC codes are superior, exhibiting the lowest energy cost. For communication between nano-to macro-machines, and macro-to nano-machines, $\boldsymbol{s}=3$ LDPC and $\boldsymbol{s}=2$ LDPC are the best options respectively.
Future applications for nano-machines, such as drug-delivery and health monitoring, will require robust communications and nanonetworking capabilities. This is likely to be enabled via the use of molecules, as opposed to electromagnetic waves, acting as the information carrier. To enhance the reliability of the transmitted data, Euclidean geometry low density parity check (EG-LDPC) and cyclic Reed-Muller (C-RM) codes are considered for use within a molecular communication system for the first time. These codes are compared against the Hamming code to show that an s = 4 LDPC (integer s ≥ 2) has a superior coding gain of 7.26 dBs. Furthermore, the critical distance and energy cost for a coded system are also taken into account as two other performance metrics. It is shown that when considering the case of nano-to nano-machines communication, a Hamming code with m = 4, (integer m ≥ 2) is better for a system operating between 10 -6 and 10 -3 bit error rate (BER) levels. Below these BERs,s = 2 LDPC codes are superior, exhibiting the lowest energy cost. For communication between nano-to macro-machines, and macro-to nano-machines, s = 3 LDPC and s = 2 LDPC are the best options respectively.
Future applications for nano-machines, such as drug-delivery and health monitoring, will require robust communications and nanonetworking capabilities. This is likely to be enabled via the use of molecules, as opposed to electromagnetic waves, acting as the information carrier. To enhance the reliability of the transmitted data, Euclidean geometry low density parity check (EG-LDPC) and cyclic Reed-Muller (C-RM) codes are considered for use within a molecular communication system for the first time. These codes are compared against the Hamming code to show that an [Formula Omitted] LDPC (integer [Formula Omitted]) has a superior coding gain of 7.26 dBs. Furthermore, the critical distance and energy cost for a coded system are also taken into account as two other performance metrics. It is shown that when considering the case of nano-to nano-machines communication, a Hamming code with [Formula Omitted], (integer [Formula Omitted]) is better for a system operating between [Formula Omitted] and [Formula Omitted] bit error rate (BER) levels. Below these BERs, [Formula Omitted] LDPC codes are superior, exhibiting the lowest energy cost. For communication between nano-to macro-machines, and macro-to nano-machines, [Formula Omitted] LDPC and [Formula Omitted] LDPC are the best options respectively.
Author Higgins, Matthew D.
Leeson, Mark S.
Yi Lu
Author_xml – sequence: 1
  surname: Yi Lu
  fullname: Yi Lu
  email: yi.lu@warwick.ac.uk
  organization: Sch. of Eng., Univ. of Warwick, Coventry, UK
– sequence: 2
  givenname: Matthew D.
  surname: Higgins
  fullname: Higgins, Matthew D.
  email: m.higgins@warwick.ac.uk
  organization: Sch. of Eng., Univ. of Warwick, Coventry, UK
– sequence: 3
  givenname: Mark S.
  surname: Leeson
  fullname: Leeson, Mark S.
  email: mark.leeson@warwick.ac.uk
  organization: Sch. of Eng., Univ. of Warwick, Coventry, UK
BookMark eNpdkD1PwzAQQC1UJNrCH4AlEgtLih3bcTKiiI9KrTq0zJbrnGmqxC52MvTf49KKgemGe-90ehM0ss4CQvcEzwjB5fOmWi2XswwTPstYgQXPrtCYcF6kuOBihMYYlzjNhShu0CSEPcaYYUrHaF657qB8E5xNnEmqnbIW2qRydWO_krXeQQchMc4nS9eCHlrl47LrBtto1TfOhmR9DD104RZdG9UGuLvMKfp8e91UH-li9T6vXhappiLrU0GoNpnShsQHtKEZLYEyoeptKRRVhhdMFAQDr5nimAghDKeGbhnUueKqplP0dL578O57gNDLrgka2lZZcEOQUSkwKVnJIvr4D927wdv4XaRYUeZ5zBKp7Exp70LwYOTBN53yR0mwPNWVv3Xlqa681I3Sw1lqAOBPEJmgsTf9AaqQd1E
CODEN IECMBT
CitedBy_id crossref_primary_10_3390_s22051969
crossref_primary_10_4018_IJBDCN_339889
crossref_primary_10_1002_ett_3055
crossref_primary_10_1016_j_nancom_2018_11_004
crossref_primary_10_1109_TNB_2022_3156621
crossref_primary_10_1049_mnl_2016_0368
crossref_primary_10_1109_TCOMM_2019_2910265
crossref_primary_10_1109_JPROC_2019_2916081
crossref_primary_10_1109_MCOM_001_2000487
crossref_primary_10_1109_TCOMM_2019_2897568
crossref_primary_10_1109_TCOMM_2018_2859308
crossref_primary_10_1109_COMST_2016_2527741
crossref_primary_10_1109_TMBMC_2016_2640284
crossref_primary_10_1109_TMBMC_2020_3004304
crossref_primary_10_1016_j_nancom_2018_11_005
crossref_primary_10_1016_j_dcan_2020_09_010
crossref_primary_10_1002_ett_4233
crossref_primary_10_1109_ACCESS_2023_3243797
crossref_primary_10_1016_j_dcan_2020_07_003
crossref_primary_10_1109_ACCESS_2020_2970108
crossref_primary_10_1109_TNB_2018_2884999
crossref_primary_10_1109_TMBMC_2021_3054933
crossref_primary_10_1007_s11277_023_10399_z
crossref_primary_10_1109_JPROC_2019_2927926
crossref_primary_10_1109_TNB_2019_2915682
crossref_primary_10_1109_JIOT_2020_2997372
crossref_primary_10_1109_LCOMM_2023_3342420
crossref_primary_10_1109_TNB_2019_2900466
crossref_primary_10_1016_j_nancom_2019_100280
crossref_primary_10_1109_TMBMC_2020_3035371
crossref_primary_10_3390_s22010041
crossref_primary_10_1109_COMST_2017_2705740
crossref_primary_10_1109_JSEN_2023_3274293
crossref_primary_10_1109_TMBMC_2020_3017146
crossref_primary_10_1109_TNB_2016_2620339
crossref_primary_10_1109_LCOMM_2017_2671858
crossref_primary_10_1016_j_nancom_2016_09_003
Cites_doi 10.1109/icc.2011.5962989
10.1017/CBO9780511803253
10.1016/j.nancom.2010.07.002
10.1109/ICC.2012.6364980
10.1155/WCN/2006/74812
10.1002/0471739219
10.1109/TIT.1968.1054127
10.1016/j.comnet.2008.04.001
10.1109/TIT.1954.1057465
10.1016/j.pbiomolbio.2004.03.002
10.1002/chem.200305054
10.1109/NANO.2005.1500804
10.1016/j.envsoft.2004.07.015
10.1016/S0166-2236(03)00068-7
10.1109/IREPGELC.1954.6499441
10.1016/j.comnet.2009.08.001
10.1017/CBO9780511800467
10.1049/el:19970362
10.1109/TIT.1981.1056404
10.1002/9780470035726
10.1016/S0021-9258(20)71348-7
10.1109/TIT.2011.2104590
10.1109/TNANO.2012.2186313
10.1109/TIT.1962.1057683
10.1109/TVLSI.2011.2179681
10.1017/CBO9780511807046
10.1109/18.959255
10.1088/0957-4484/10/3/302
10.1016/j.nancom.2012.09.001
10.1529/biophysj.106.088856
10.1002/1521-4095(20020318)14:6<401::AID-ADMA401>3.0.CO;2-F
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2015
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2015
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
F28
FR3
DOI 10.1109/TCOMM.2015.2480752
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Engineering Research Database

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0857
EndPage 4001
ExternalDocumentID 3895110311
10_1109_TCOMM_2015_2480752
7273857
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AASAJ
AAYOK
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AI.
AIBXA
AKJIK
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
B-7
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RIG
RNS
TAE
TN5
VH1
XFK
ZCA
ZCG
AAYXX
CITATION
7SP
8FD
L7M
F28
FR3
ID FETCH-LOGICAL-c372t-713cf2acf1403cf3239e347adb97a3af5847810e5d4a501777f53f3b4ed6a5ad3
IEDL.DBID RIE
ISSN 0090-6778
IngestDate Fri Aug 16 01:35:05 EDT 2024
Thu Oct 10 19:15:25 EDT 2024
Fri Aug 23 01:40:13 EDT 2024
Wed Jun 26 19:28:47 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords EG-LDPC codes
C-RM codes
Hamming codes
Molecular communication
diffusion channel
bioengineering
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-713cf2acf1403cf3239e347adb97a3af5847810e5d4a501777f53f3b4ed6a5ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://wrap.warwick.ac.uk/76406/1/WRAP_Higgins_14tcom.pdf
PQID 1748966009
PQPubID 85472
PageCount 11
ParticipantIDs proquest_miscellaneous_1778019494
crossref_primary_10_1109_TCOMM_2015_2480752
proquest_journals_1748966009
ieee_primary_7273857
PublicationCentury 2000
PublicationDate 2015-Nov.
2015-11-00
20151101
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-Nov.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on communications
PublicationTitleAbbrev TCOMM
PublicationYear 2015
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref30
ref11
john (ref8) 1999; 10
ref10
yu (ref41) 0; 2
yu (ref19) 2001; 47
ref2
ref17
ref16
godse (ref33) 2008
nelson (ref31) 2008
enomoto (ref3) 0
peterson (ref26) 1972
weldon (ref42) 1967
freitas (ref1) 1999
cedil (ref28) 2010; 1
ref24
ref23
ref20
ref22
ref21
macwilliams (ref39) 1977
forney (ref18) 2002
ref27
lin (ref38) 1983
ref29
ref7
ref9
ref4
boztas (ref25) 2003
ref6
ref5
ref40
shacter (ref32) 1984; 259
References_xml – start-page: 725
  year: 0
  ident: ref3
  article-title: A molecular communication system using a network of cytoskeletal filaments
  publication-title: Proc NSTI Nanotechnol Conf Trade Show
  contributor:
    fullname: enomoto
– year: 1967
  ident: ref42
  article-title: Euclidean geometry cyclic codes
  publication-title: Combinatorial Mathematics and its Applications
  contributor:
    fullname: weldon
– ident: ref29
  doi: 10.1109/icc.2011.5962989
– ident: ref36
  doi: 10.1017/CBO9780511803253
– year: 1972
  ident: ref26
  publication-title: Error-Correcting Codes
  contributor:
    fullname: peterson
– volume: 1
  start-page: 86
  year: 2010
  ident: ref28
  article-title: Energy model for communication via diffusion in nanonetworks
  publication-title: Nano Commun Netw
  doi: 10.1016/j.nancom.2010.07.002
  contributor:
    fullname: cedil
– ident: ref11
  doi: 10.1109/ICC.2012.6364980
– ident: ref13
  doi: 10.1155/WCN/2006/74812
– ident: ref20
  doi: 10.1002/0471739219
– year: 2008
  ident: ref31
  publication-title: Lehninger Principles of Biochemistry/The Absolute Ultimate Guide to Lehninger Principles of Biochemistry
  contributor:
    fullname: nelson
– ident: ref27
  doi: 10.1109/TIT.1968.1054127
– ident: ref2
  doi: 10.1016/j.comnet.2008.04.001
– ident: ref24
  doi: 10.1109/TIT.1954.1057465
– ident: ref30
  doi: 10.1016/j.pbiomolbio.2004.03.002
– ident: ref10
  doi: 10.1002/chem.200305054
– ident: ref4
  doi: 10.1109/NANO.2005.1500804
– volume: 2
  start-page: 825
  year: 0
  ident: ref41
  article-title: Low density parity check codes: Construction based on finite geometries
  publication-title: Proc IEEE Globecom
  contributor:
    fullname: yu
– ident: ref6
  doi: 10.1016/j.envsoft.2004.07.015
– ident: ref7
  doi: 10.1016/S0166-2236(03)00068-7
– ident: ref23
  doi: 10.1109/IREPGELC.1954.6499441
– ident: ref5
  doi: 10.1016/j.comnet.2009.08.001
– ident: ref35
  doi: 10.1017/CBO9780511800467
– ident: ref17
  doi: 10.1049/el:19970362
– ident: ref16
  doi: 10.1109/TIT.1981.1056404
– ident: ref21
  doi: 10.1002/9780470035726
– year: 1999
  ident: ref1
  publication-title: Nanomedicine
  contributor:
    fullname: freitas
– volume: 259
  start-page: 12260
  year: 1984
  ident: ref32
  article-title: Energy consumption in a cyclic phosphorylation/dephosphorylation cascade
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(20)71348-7
  contributor:
    fullname: shacter
– year: 2002
  ident: ref18
  publication-title: Codes Graphs and Systems A Celebration of the Life and Career of G David Forney Jr on the Occasion of His Sixtieth Birthday
  contributor:
    fullname: forney
– ident: ref37
  doi: 10.1109/TIT.2011.2104590
– year: 2008
  ident: ref33
  publication-title: Digital Logic Applications and design
  contributor:
    fullname: godse
– ident: ref14
  doi: 10.1109/TNANO.2012.2186313
– ident: ref15
  doi: 10.1109/TIT.1962.1057683
– ident: ref22
  doi: 10.1109/TVLSI.2011.2179681
– year: 2003
  ident: ref25
  publication-title: Applied Algebra Algebraic Algorithms and Error-Correcting Codes
  contributor:
    fullname: boztas
– year: 1983
  ident: ref38
  publication-title: Error Control Coding Fundamentals and Applications
  contributor:
    fullname: lin
– ident: ref40
  doi: 10.1017/CBO9780511807046
– volume: 47
  start-page: 2711
  year: 2001
  ident: ref19
  article-title: Low-density parity-check codes based on finite geometries: A rediscovery and new results
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/18.959255
  contributor:
    fullname: yu
– volume: 10
  start-page: 232
  year: 1999
  ident: ref8
  article-title: Molecular shuttles: Directed motion of microtubules along nanoscale kinesin tracks
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/10/3/302
  contributor:
    fullname: john
– ident: ref12
  doi: 10.1016/j.nancom.2012.09.001
– year: 1977
  ident: ref39
  publication-title: The Theory of Error-Correcting Codes
  contributor:
    fullname: macwilliams
– ident: ref34
  doi: 10.1529/biophysj.106.088856
– ident: ref9
  doi: 10.1002/1521-4095(20020318)14:6<401::AID-ADMA401>3.0.CO;2-F
SSID ssj0004033
Score 2.4909203
Snippet Future applications for nano-machines, such as drug-delivery and health monitoring, will require robust communications and nanonetworking capabilities. This is...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 3991
SubjectTerms bioengineering
Bit error rate
C-RM codes
Codes
Coding
Communication
Communication systems
Decoding
Density
diffusion channel
EG-LDPC codes
Encoding
Energy costs
Error correcting codes
Hamming codes
Integers
Logic gates
Molecular communication
Nanostructure
Parity check codes
Receivers
Shift registers
Title Comparison of Channel Coding Schemes for Molecular Communications Systems
URI https://ieeexplore.ieee.org/document/7273857
https://www.proquest.com/docview/1748966009
https://search.proquest.com/docview/1778019494
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4VJhh4FUR5yUhskJLEdlyPKAIVpMBAkdgixzkvQIJou_DrsZ2kPAe2SLESy58vd87d9x3AScKVVFwaiwDXASt1Yk0KWZCgoFxxhaHvWpLdJuMHdvPIH3twtuDCIKIvPsOhu_S5_LLWc_er7Fx47RWxBEtCyoar9cmBDGmrOOnK2cWoI8iE8nyS3mWZq-Liw9gxqHn8zQn5riq_PsXev1ytQ9bNrCkreRrOZ8VQv_8Qbfzv1DdgrQ00yUWzMzahh9UWrH6RH-zDdbpoQkhqQxzRoMJnktbOn5F7C-cLTomNaknWNdEl3wglU9IKnm_Dw9XlJB0HbWuFQFMRzwJ7NNUmVto4uT5taEwlUiZUWUihqDIueTqKQuQlU9warRCGU0MLhmViESzpDixXdYW7QLgoS5MYESvBmKJa8WiUoFZRpEwspBnAabfW-WujoJH7k0coc49M7pDJW2QG0HeLtxjZrtsADjp48tbIpnnklHMSG7HJARwvblvzcDkPVWE9d2OE9cGSSbb395P3YcW9v6EXHsDy7G2OhzbOmBVHfoN9ABHiz2Y
link.rule.ids 315,783,787,799,27937,27938,55087
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED7xGICBN6I8jcQGaZPYjusRVaDyCAwUiS1ynfMCJIi2C78e20nKc2CLFMs6-fPlzvF93wEcJ1xJxaWxCHAdsFwn1qWQBQkKyhVXGPquJelt0n9gV4_8cQZOp1wYRPTFZ9h2j_4uPy_1xP0q6wivvSJmYd7m1V1RsbU-WZAhrTUnXUG76DYUmVB2Br27NHV1XLwdOw41j7-FId9X5dfH2EeYixVIG9uqwpKn9mQ8bOv3H7KN_zV-FZbrVJOcVXtjDWawWIelLwKEG3DZm7YhJKUhjmpQ4DPplS6ikXsL6AuOiM1rSdq00SXfKCUjUkueb8LDxfmg1w_q5gqBpiIeB_Zwqk2stHGCfdrQmEqkTKh8KIWiyrjr024UIs-Z4tZthTCcGjpkmCcWw5xuwVxRFrgNhIs8N4kRsRKMKaoVj7oJahVFysRCmhacNGudvVYaGpk_e4Qy88hkDpmsRqYFG27xpiPrdWvBXgNPVrvZKIucdk5iczbZgqPpa-sg7tZDFVhO3Bhho7Bkku38PfMhLPQH6U12c3l7vQuLzpaKbLgHc-O3Ce7brGM8PPCb7QMV29Ky
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Channel+Coding+Schemes+for+Molecular+Communications+Systems&rft.jtitle=IEEE+transactions+on+communications&rft.au=Lu%2C+Yi&rft.au=Higgins%2C+Matthew+D&rft.au=Leeson%2C+Mark+S&rft.date=2015-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0090-6778&rft.eissn=1558-0857&rft.volume=63&rft.issue=11&rft.spage=3991&rft_id=info:doi/10.1109%2FTCOMM.2015.2480752&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3895110311
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6778&client=summon