Diagnosis of Acute Coronary Syndrome with a Support Vector Machine

Acute coronary syndrome (ACS) is a serious condition arising from an imbalance of supply and demand to meet myocardium’s metabolic needs. Patients typically present with retrosternal chest pain radiating to neck and left arm. Electrocardiography (ECG) and laboratory tests are used indiagnosis. Howev...

Full description

Saved in:
Bibliographic Details
Published inJournal of medical systems Vol. 40; no. 4; p. 84
Main Authors Berikol, Göksu Bozdereli, Yildiz, Oktay, Özcan, İ. Türkay
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Acute coronary syndrome (ACS) is a serious condition arising from an imbalance of supply and demand to meet myocardium’s metabolic needs. Patients typically present with retrosternal chest pain radiating to neck and left arm. Electrocardiography (ECG) and laboratory tests are used indiagnosis. However in emergency departments, there are some difficulties for physicians to decide whether hospitalizing, following up or discharging the patient. The aim of the study is to diagnose ACS and helping the physician with his decisionto discharge or to hospitalizevia machine learning techniques such as support vector machine (SVM) by using patient data including age, sex, risk factors, and cardiac enzymes (CK-MB, Troponin I) of patients presenting to emergency department with chest pain. Clinical, laboratory, and imaging data of 228 patients presenting to emergency department with chest pain were reviewedand the performance of support vector machine. Four different methods (Support vector machine (SVM), Artificial neural network (ANN), Naïve Bayes and Logistic Regression) were tested and the results of SVM which has the highest accuracy is reported. Among 228 patients aged 19 to 91 years who were included in the study, 99 (43.4 %) were qualified as ACS, while 129 (56.5 %) had no ACS. The classification model using SVM attained a 99.13 % classification success. The present study showed a 99.13 % classification success for ACS diagnosis attained by Support Vector Machine. This study showed that machine learning techniques may help emergency department staff make decisions by rapidly producing relevant data.
AbstractList Acute coronary syndrome (ACS) is a serious condition arising from an imbalance of supply and demand to meet myocardium's metabolic needs. Patients typically present with retrosternal chest pain radiating to neck and left arm. Electrocardiography (ECG) and laboratory tests are used indiagnosis. However in emergency departments, there are some difficulties for physicians to decide whether hospitalizing, following up or discharging the patient. The aim of the study is to diagnose ACS and helping the physician with his decisionto discharge or to hospitalizevia machine learning techniques such as support vector machine (SVM) by using patient data including age, sex, risk factors, and cardiac enzymes (CK-MB, Troponin I) of patients presenting to emergency department with chest pain. Clinical, laboratory, and imaging data of 228 patients presenting to emergency department with chest pain were reviewedand the performance of support vector machine. Four different methods (Support vector machine (SVM), Artificial neural network (ANN), Naïve Bayes and Logistic Regression) were tested and the results of SVM which has the highest accuracy is reported. Among 228 patients aged 19 to 91 years who were included in the study, 99 (43.4 %) were qualified as ACS, while 129 (56.5 %) had no ACS. The classification model using SVM attained a 99.13 % classification success. The present study showed a 99.13 % classification success for ACS diagnosis attained by Support Vector Machine. This study showed that machine learning techniques may help emergency department staff make decisions by rapidly producing relevant data.
Acute coronary syndrome (ACS) is a serious condition arising from an imbalance of supply and demand to meet myocardium's metabolic needs. Patients typically present with retrosternal chest pain radiating to neck and left arm. Electrocardiography (ECG) and laboratory tests are used in diagnosis. However in emergency departments, there are some difficulties for physicians to decide whether hospitalizing, following up or discharging the patient. The aim of the study is to diagnose ACS and helping the physician with his decision to discharge or to hospitalize via machine learning techniques such as support vector machine (SVM) by using patient data including age, sex, risk factors, and cardiac enzymes (CK-MB, Troponin I) of patients presenting to emergency department with chest pain. Clinical, laboratory, and imaging data of 228 patients presenting to emergency department with chest pain were reviewed and the performance of support vector machine. Four different methods (Support vector machine (SVM), Artificial neural network (ANN), Naïve Bayes and Logistic Regression) were tested and the results of SVM which has the highest accuracy is reported. Among 228 patients aged 19 to 91 years who were included in the study, 99 (43.4 %) were qualified as ACS, while 129 (56.5 %) had no ACS. The classification model using SVM attained a 99.13 % classification success. The present study showed a 99.13 % classification success for ACS diagnosis attained by Support Vector Machine. This study showed that machine learning techniques may help emergency department staff make decisions by rapidly producing relevant data.
Acute coronary syndrome (ACS) is a serious condition arising from an imbalance of supply and demand to meet myocardium’s metabolic needs. Patients typically present with retrosternal chest pain radiating to neck and left arm. Electrocardiography (ECG) and laboratory tests are used indiagnosis. However in emergency departments, there are some difficulties for physicians to decide whether hospitalizing, following up or discharging the patient. The aim of the study is to diagnose ACS and helping the physician with his decisionto discharge or to hospitalizevia machine learning techniques such as support vector machine (SVM) by using patient data including age, sex, risk factors, and cardiac enzymes (CK-MB, Troponin I) of patients presenting to emergency department with chest pain. Clinical, laboratory, and imaging data of 228 patients presenting to emergency department with chest pain were reviewedand the performance of support vector machine. Four different methods (Support vector machine (SVM), Artificial neural network (ANN), Naïve Bayes and Logistic Regression) were tested and the results of SVM which has the highest accuracy is reported. Among 228 patients aged 19 to 91 years who were included in the study, 99 (43.4 %) were qualified as ACS, while 129 (56.5 %) had no ACS. The classification model using SVM attained a 99.13 % classification success. The present study showed a 99.13 % classification success for ACS diagnosis attained by Support Vector Machine. This study showed that machine learning techniques may help emergency department staff make decisions by rapidly producing relevant data.
ArticleNumber 84
Author Yildiz, Oktay
Berikol, Göksu Bozdereli
Özcan, İ. Türkay
Author_xml – sequence: 1
  givenname: Göksu Bozdereli
  surname: Berikol
  fullname: Berikol, Göksu Bozdereli
  email: gokxsu@hotmail.com
  organization: Karaman Public Hospital, Department of Emergency Medicine KARAMAN, Karaman Public Hospital, Computer Engineering Dept, Gazi University Faculty of Engineering, Faculty of Medicine, Dept. of Cardiology MERSİN, Mersin University Research and Training Hospital
– sequence: 2
  givenname: Oktay
  surname: Yildiz
  fullname: Yildiz, Oktay
  organization: Karaman Public Hospital, Department of Emergency Medicine KARAMAN, Karaman Public Hospital, Computer Engineering Dept, Gazi University Faculty of Engineering, Faculty of Medicine, Dept. of Cardiology MERSİN, Mersin University Research and Training Hospital
– sequence: 3
  givenname: İ. Türkay
  surname: Özcan
  fullname: Özcan, İ. Türkay
  organization: Karaman Public Hospital, Department of Emergency Medicine KARAMAN, Karaman Public Hospital, Computer Engineering Dept, Gazi University Faculty of Engineering, Faculty of Medicine, Dept. of Cardiology MERSİN, Mersin University Research and Training Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26815338$$D View this record in MEDLINE/PubMed
BookMark eNp1kE1LAzEQhoMotlZ_gBcJePGyOkk2H3vU-gmKh6p4W7LZbLvSJjXZRfz3prSKCB6GOcwz77zz7qFt551F6JDAKQGQZ5FAQUQGq8oZzcQWGhIuWSZU8bqNhkBylXFeqAHai_ENAAoh5C4aUKEIZ0wN0cVlq6fOxzZi3-Bz03cWj33wTodPPPl0dfALiz_aboY1nvTLpQ8dfrGm8wE_aDNrnd1HO42eR3uw6SP0fH31NL7N7h9v7sbn95lhknaZBGrrhoClACJnopJQsRo019ISqnRdi7xWyhBasKpOztOwqrihkje0MoaN0Mladxn8e29jVy7aaOx8rp31fSyJFCTnBecqocd_0DffB5fcJUpKqqDI80SRNWWCjzHYplyGdpEeLwmUq4DLdcAlrCoFXIq0c7RR7quFrX82vhNNAF0DMY3c1IZfp_9V_QLJ9oYC
CitedBy_id crossref_primary_10_15829_1560_4071_2021_4505
crossref_primary_10_1016_j_compeleceng_2017_08_005
crossref_primary_10_7717_peerj_14348
crossref_primary_10_1007_s10916_019_1359_5
crossref_primary_10_1007_s10916_017_0789_1
crossref_primary_10_1097_j_pain_0000000000001118
crossref_primary_10_3389_fcvm_2022_1001982
crossref_primary_10_1016_j_compbiomed_2022_106317
crossref_primary_10_3390_jcdd10050202
crossref_primary_10_2147_CLEP_S313343
crossref_primary_10_1007_s12325_021_01908_2
crossref_primary_10_1016_j_compbiomed_2022_105384
crossref_primary_10_1109_ACCESS_2021_3059858
crossref_primary_10_1016_j_acra_2016_09_013
crossref_primary_10_1016_j_jclinepi_2019_02_004
crossref_primary_10_3389_fcvm_2020_00001
crossref_primary_10_1007_s10916_016_0523_4
crossref_primary_10_1161_CIRCIMAGING_117_005614
crossref_primary_10_15829_1560_4071_2020_3999
crossref_primary_10_1007_s00779_022_01681_1
crossref_primary_10_1155_2022_4824323
crossref_primary_10_1007_s12553_021_00555_5
crossref_primary_10_3892_mmr_2020_10959
crossref_primary_10_1016_j_cca_2020_06_001
crossref_primary_10_1590_1806_9282_65_12_1438
crossref_primary_10_1186_s12916_021_01940_7
crossref_primary_10_3390_s17092049
crossref_primary_10_17341_gazimmfd_435217
crossref_primary_10_1007_s00521_022_07527_4
crossref_primary_10_1038_s41591_023_02396_3
crossref_primary_10_1002_med_21731
crossref_primary_10_1097_HCO_0000000000000812
crossref_primary_10_1016_j_ijcard_2021_11_039
crossref_primary_10_1007_s10916_016_0477_6
crossref_primary_10_1038_s41467_020_17804_2
crossref_primary_10_1097_CRD_0000000000000294
crossref_primary_10_1038_s41598_022_27211_w
crossref_primary_10_1093_ehjdh_ztad074
crossref_primary_10_1590_0101_7438_2016_036_02_0321
crossref_primary_10_3389_fcvm_2023_1090220
crossref_primary_10_1080_01431161_2020_1766148
crossref_primary_10_1371_journal_pone_0252612
crossref_primary_10_1155_2022_9288452
crossref_primary_10_3389_fncom_2016_00106
crossref_primary_10_1016_j_cpcardiol_2023_102097
crossref_primary_10_3389_fcvm_2022_797207
crossref_primary_10_35940_ijrte_D6632_0511122
crossref_primary_10_1515_bmt_2022_0406
crossref_primary_10_1371_journal_pone_0223682
crossref_primary_10_7759_cureus_55869
crossref_primary_10_1002_emp2_12156
crossref_primary_10_1161_CIRCULATIONAHA_118_037094
Cites_doi 10.1002/hfm.20134
10.1016/j.eswa.2010.10.050
10.1161/CIR.0b013e3182009701
10.1016/j.jacc.2014.09.017
10.9756/BIJSESC.4336
10.1080/10556780512331318164
10.1007/s10916-010-9535-7
10.2147/CEOR.S43672
10.1056/NEJM198803313181301
10.1016/j.jacc.2009.09.071
10.1093/eurheartj/eht356
10.1161/CIR.0000000000000152
10.1007/s10916-011-9762-6
10.1016/0933-3657(95)00018-6
10.1016/j.artmed.2006.07.006
10.1007/978-3-642-27443-5_25
ContentType Journal Article
Copyright Springer Science+Business Media New York 2016
Copyright_xml – notice: Springer Science+Business Media New York 2016
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7QF
7QO
7QQ
7RV
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
88C
88E
88I
8AL
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KB0
KR7
L7M
LK8
L~C
L~D
M0N
M0S
M0T
M1P
M2P
M7P
NAPCQ
P5Z
P62
P64
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1007/s10916-016-0432-6
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
ProQuest Nursing and Allied Health Journals
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Complete (ProQuest Database)
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
ProQuest Healthcare Administration Database
PML(ProQuest Medical Library)
ProQuest Science Journals
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
ProQuest Medical Library (Alumni)
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Aluminium Industry Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1573-689X
EndPage 84
ExternalDocumentID 4005049741
10_1007_s10916_016_0432_6
26815338
Genre Journal Article
GroupedDBID ---
-53
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
04C
06C
06D
0R~
0VY
199
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
77K
78A
7RV
7X7
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AAKSU
AANXM
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBYP
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIHN
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACREN
ACTTH
ACUDM
ACVWB
ACWMK
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFAFS
AFEXP
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGKHE
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
AQUVI
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M0N
M0T
M1P
M2P
M4Y
M7P
MA-
MK0
N2Q
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z87
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
~A9
~EX
AACDK
AAEOY
AAJBT
AASML
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
AJOOF
ALIPV
CGR
CUY
CVF
ECM
EIF
H13
NPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c372t-702edf10e2006436b70b3d0a5a7e128add64d88c1293bd1483d0bb5c275f2bcc3
IEDL.DBID AGYKE
ISSN 0148-5598
IngestDate Fri Oct 25 03:15:21 EDT 2024
Thu Oct 10 22:10:48 EDT 2024
Thu Sep 12 16:28:42 EDT 2024
Tue Oct 15 23:52:29 EDT 2024
Sat Dec 16 12:05:30 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Support vector machine
Acute coronary syndrome
Artificial intelligence
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-702edf10e2006436b70b3d0a5a7e128add64d88c1293bd1483d0bb5c275f2bcc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26815338
PQID 1777280944
PQPubID 54050
PageCount 1
ParticipantIDs proquest_miscellaneous_1761459558
proquest_journals_1777280944
crossref_primary_10_1007_s10916_016_0432_6
pubmed_primary_26815338
springer_journals_10_1007_s10916_016_0432_6
PublicationCentury 2000
PublicationDate 2016-04-01
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Journal of medical systems
PublicationTitleAbbrev J Med Syst
PublicationTitleAlternate J Med Syst
PublicationYear 2016
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Chitra, Seenivasagam (CR23) 2013; 3
Aj, Schölkopf (CR15) 2004; 14
Conforti, Guido (CR18) 2005; 20
Mozaffarian, Benjamin, Go, Arnett, Blaha, Cushman, Huffman (CR4) 2015; 131
CR5
CR19
Nichols, Townsend, Scarborough, Rayner (CR1) 2013; 34
Akay, Toksarı (CR16) 2009; 19
Green, Björk, Forberg, Ekelund (CR17) 2006; 38
Vadicherla, Sonawane (CR22) 2013; 2
Xie, Wangc (CR13) 2011; 38
CR21
Ha, Joo (CR20) 2010; 4
Scırıca (CR10) 2010; 55
Chen, Crivera, Stokes, Boulanger, Schein (CR2) 2013; 5
Kurz, Mattu, Brady (CR3) 2014
Ohmann, Moustakis, Yang, Lang (CR14) 1996; 8
Goldman, Cook, Brand, Lee, Rouan, Weisberg, Gottlieb (CR8) 1988; 318
Martis, Krishnan, Chakraborty, Pal, Sarkar (CR12) 2012; 36
Hsieh, Hsieh, Cheng, Chen, Hsu, Lee (CR11) 2012; 36
Roger (CR6) 2011; 123
Cruz, Wishart (CR9) 2006; 2
Amsterdam, Wenger, Brindis, Casey, Ganiats, Holmes, Levine (CR7) 2014; 64
8963379 - Artif Intell Med. 1996 Feb;8(1):23-36
16962295 - Artif Intell Med. 2006 Nov;38(3):305-18
21160056 - Circulation. 2011 Feb 1;123(4):e18-e209
23662068 - Clinicoecon Outcomes Res. 2013 May 01;5:181-8
24014390 - Eur Heart J. 2013 Oct;34(39):3028-34
20359589 - J Am Coll Cardiol. 2010 Apr 6;55(14):1403-15
3280998 - N Engl J Med. 1988 Mar 31;318(13):797-803
20703662 - J Med Syst. 2012 Apr;36(2):677-88
25520374 - Circulation. 2015 Jan 27;131(4):e29-322
25260718 - J Am Coll Cardiol. 2014 Dec 23;64(24):e139-228
26320110 - Eur Heart J. 2016 Jan 14;37(3):267-315
19458758 - Cancer Inform. 2007 Feb 11;2:59-77
21811801 - J Med Syst. 2012 Oct;36(5):2841-7
RJ Martis (432_CR12) 2012; 36
D Conforti (432_CR18) 2005; 20
SL Hsieh (432_CR11) 2012; 36
432_CR19
D Akay (432_CR16) 2009; 19
D Mozaffarian (432_CR4) 2015; 131
SH Ha (432_CR20) 2010; 4
432_CR5
M Nichols (432_CR1) 2013; 34
V Roger (432_CR6) 2011; 123
JA Cruz (432_CR9) 2006; 2
S Aj (432_CR15) 2004; 14
SY Chen (432_CR2) 2013; 5
L Goldman (432_CR8) 1988; 318
EA Amsterdam (432_CR7) 2014; 64
M Green (432_CR17) 2006; 38
D Vadicherla (432_CR22) 2013; 2
J Xie (432_CR13) 2011; 38
MC Kurz (432_CR3) 2014
R Chitra (432_CR23) 2013; 3
BM Scırıca (432_CR10) 2010; 55
C Ohmann (432_CR14) 1996; 8
432_CR21
References_xml – volume: 19
  start-page: 1
  issue: 1
  year: 2009
  end-page: 14
  ident: CR16
  article-title: Ant Colony Optimization Approach For Classification Of Occupational Low Back Disorder Risks
  publication-title: Human Factors And Ergonomics İn Manufacturing
  doi: 10.1002/hfm.20134
  contributor:
    fullname: Toksarı
– ident: CR21
– volume: 38
  start-page: 5809
  year: 2011
  end-page: 5815
  ident: CR13
  article-title: Using Support Vector Machines With A Novel Hybrid Feature Selection Method For Diagnosis Of Erythemato-Squamous Diseases
  publication-title: Expert Systems With Applications
  doi: 10.1016/j.eswa.2010.10.050
  contributor:
    fullname: Wangc
– ident: CR19
– volume: 2
  start-page: 693
  issue: 9
  year: 2013
  end-page: 701
  ident: CR22
  article-title: Classification Of Heart Disease Using Svm And Ann
  publication-title: Ijrcct
  contributor:
    fullname: Sonawane
– volume: 123
  start-page: 18
  year: 2011
  end-page: 209
  ident: CR6
  article-title: Aha Statistical Update. Heart Disease And Stroke Statistics—2011 Update. A Report From The American Heart Association
  publication-title: Circulation
  doi: 10.1161/CIR.0b013e3182009701
  contributor:
    fullname: Roger
– volume: 64
  start-page: E139
  issue: 24
  year: 2014
  end-page: E228
  ident: CR7
  article-title: 2014 Aha/Acc Guideline For The Management Of Patients With Non–St-Elevation Acute Coronary Syndromes: A Report Of The American College Of Cardiology/American Heart Association Task Force On Practice Guidelines
  publication-title: Journal Of The American College Of Cardiology
  doi: 10.1016/j.jacc.2014.09.017
  contributor:
    fullname: Levine
– volume: 3
  start-page: 01
  issue: 1
  year: 2013
  end-page: 07
  ident: CR23
  article-title: Heart Disease Prediction System Using Supervised Learning Classifier
  publication-title: Bonfring International Journal Of Software Engineering And Soft Computing
  doi: 10.9756/BIJSESC.4336
  contributor:
    fullname: Seenivasagam
– volume: 20
  start-page: 401
  issue: 2-3
  year: 2005
  end-page: 413
  ident: CR18
  article-title: Kernel-Based Support Vector Machine Classifiers For Early Detection Of Myocardial İnfarction
  publication-title: Optimization Methods And Software
  doi: 10.1080/10556780512331318164
  contributor:
    fullname: Guido
– volume: 2
  start-page: 59
  year: 2006
  ident: CR9
  article-title: Applications Of Machine Learning İn Cancer Prediction And Prognosis
  publication-title: Cancer Informat.
  contributor:
    fullname: Wishart
– volume: 36
  start-page: 677
  year: 2012
  end-page: 688
  ident: CR12
  article-title: Automated Screening Of Arrhythmia Using Wavelet Based Machine Learning Techniques
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-010-9535-7
  contributor:
    fullname: Sarkar
– volume: 5
  start-page: 181
  year: 2013
  ident: CR2
  article-title: Clinical And Economic Outcomes Among Hospitalized Patients With Acute Coronary Syndrome: An Analysis Of A National Representative Medicare Population
  publication-title: Clinicoeconomics And Outcomes Research: Ceor
  doi: 10.2147/CEOR.S43672
  contributor:
    fullname: Schein
– year: 2014
  ident: CR3
  publication-title: Acute Coronary Syndrome
  contributor:
    fullname: Brady
– volume: 318
  start-page: 797
  issue: 13
  year: 1988
  end-page: 803
  ident: CR8
  article-title: A Computer Protocol To Predict Myocardial İnfarction İn Emergency Department Patients With Chest Pain
  publication-title: New England Journal Of Medicine
  doi: 10.1056/NEJM198803313181301
  contributor:
    fullname: Gottlieb
– volume: 55
  start-page: 1403
  issue: 14
  year: 2010
  end-page: 1415
  ident: CR10
  article-title: Acute Coronary Syndromeemerging Tools For Diagnosis And Risk Assessment
  publication-title: Journal Of The American College Of Cardiology
  doi: 10.1016/j.jacc.2009.09.071
  contributor:
    fullname: Scırıca
– volume: 14
  start-page: 199
  issue: 3
  year: 2004
  end-page: 222
  ident: CR15
  article-title: A Tutorial On Support Vector Regression
  publication-title: Neurocolt Technical Report
  contributor:
    fullname: Schölkopf
– volume: 34
  start-page: 3028
  issue: 39
  year: 2013
  end-page: 3034
  ident: CR1
  article-title: Cardiovascular Disease İn Europe: Epidemiological Update
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/eht356
  contributor:
    fullname: Rayner
– ident: CR5
– volume: 4
  start-page: 33
  issue: 1
  year: 2010
  end-page: 38
  ident: CR20
  article-title: A Hybrid Data Mining Method For The Medical Classification Of Chest Pain
  publication-title: International Journal Of Computer And Information Engineering
  contributor:
    fullname: Joo
– volume: 131
  start-page: E29
  issue: 4
  year: 2015
  ident: CR4
  article-title: Heart Disease And Stroke Statistics-2015 Update: A Report From The American Heart Association
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000152
  contributor:
    fullname: Huffman
– volume: 36
  start-page: 2841
  year: 2012
  end-page: 2847
  ident: CR11
  article-title: Design Ensemble Machine Learning Model For Breast Cancer Diagnosis
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-011-9762-6
  contributor:
    fullname: Lee
– volume: 8
  start-page: 23
  year: 1996
  end-page: 36
  ident: CR14
  article-title: Evaluation Of Automatic Knowledge Acquisition Techniques İn The Diagnosis Of Acute Abdominal Pain
  publication-title: Artificial Intelligence İn Medicine
  doi: 10.1016/0933-3657(95)00018-6
  contributor:
    fullname: Lang
– volume: 38
  start-page: 305
  issue: 3
  year: 2006
  end-page: 318
  ident: CR17
  article-title: Comparison Between Neural Networks And Multiple Logistic Regression To Predict Acute Coronary Syndrome İn The Emergency Room
  publication-title: Artificial İntelligence İn Medicine
  doi: 10.1016/j.artmed.2006.07.006
  contributor:
    fullname: Ekelund
– volume: 14
  start-page: 199
  issue: 3
  year: 2004
  ident: 432_CR15
  publication-title: Neurocolt Technical Report
  contributor:
    fullname: S Aj
– ident: 432_CR19
– volume: 2
  start-page: 693
  issue: 9
  year: 2013
  ident: 432_CR22
  publication-title: Ijrcct
  contributor:
    fullname: D Vadicherla
– volume-title: Acute Coronary Syndrome
  year: 2014
  ident: 432_CR3
  contributor:
    fullname: MC Kurz
– volume: 38
  start-page: 305
  issue: 3
  year: 2006
  ident: 432_CR17
  publication-title: Artificial İntelligence İn Medicine
  doi: 10.1016/j.artmed.2006.07.006
  contributor:
    fullname: M Green
– volume: 34
  start-page: 3028
  issue: 39
  year: 2013
  ident: 432_CR1
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/eht356
  contributor:
    fullname: M Nichols
– volume: 36
  start-page: 2841
  year: 2012
  ident: 432_CR11
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-011-9762-6
  contributor:
    fullname: SL Hsieh
– volume: 8
  start-page: 23
  year: 1996
  ident: 432_CR14
  publication-title: Artificial Intelligence İn Medicine
  doi: 10.1016/0933-3657(95)00018-6
  contributor:
    fullname: C Ohmann
– volume: 3
  start-page: 01
  issue: 1
  year: 2013
  ident: 432_CR23
  publication-title: Bonfring International Journal Of Software Engineering And Soft Computing
  doi: 10.9756/BIJSESC.4336
  contributor:
    fullname: R Chitra
– volume: 20
  start-page: 401
  issue: 2-3
  year: 2005
  ident: 432_CR18
  publication-title: Optimization Methods And Software
  doi: 10.1080/10556780512331318164
  contributor:
    fullname: D Conforti
– ident: 432_CR21
  doi: 10.1007/978-3-642-27443-5_25
– volume: 123
  start-page: 18
  year: 2011
  ident: 432_CR6
  publication-title: Circulation
  doi: 10.1161/CIR.0b013e3182009701
  contributor:
    fullname: V Roger
– volume: 36
  start-page: 677
  year: 2012
  ident: 432_CR12
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-010-9535-7
  contributor:
    fullname: RJ Martis
– ident: 432_CR5
– volume: 2
  start-page: 59
  year: 2006
  ident: 432_CR9
  publication-title: Cancer Informat.
  contributor:
    fullname: JA Cruz
– volume: 4
  start-page: 33
  issue: 1
  year: 2010
  ident: 432_CR20
  publication-title: International Journal Of Computer And Information Engineering
  contributor:
    fullname: SH Ha
– volume: 55
  start-page: 1403
  issue: 14
  year: 2010
  ident: 432_CR10
  publication-title: Journal Of The American College Of Cardiology
  doi: 10.1016/j.jacc.2009.09.071
  contributor:
    fullname: BM Scırıca
– volume: 19
  start-page: 1
  issue: 1
  year: 2009
  ident: 432_CR16
  publication-title: Human Factors And Ergonomics İn Manufacturing
  doi: 10.1002/hfm.20134
  contributor:
    fullname: D Akay
– volume: 64
  start-page: E139
  issue: 24
  year: 2014
  ident: 432_CR7
  publication-title: Journal Of The American College Of Cardiology
  doi: 10.1016/j.jacc.2014.09.017
  contributor:
    fullname: EA Amsterdam
– volume: 131
  start-page: E29
  issue: 4
  year: 2015
  ident: 432_CR4
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000152
  contributor:
    fullname: D Mozaffarian
– volume: 38
  start-page: 5809
  year: 2011
  ident: 432_CR13
  publication-title: Expert Systems With Applications
  doi: 10.1016/j.eswa.2010.10.050
  contributor:
    fullname: J Xie
– volume: 5
  start-page: 181
  year: 2013
  ident: 432_CR2
  publication-title: Clinicoeconomics And Outcomes Research: Ceor
  doi: 10.2147/CEOR.S43672
  contributor:
    fullname: SY Chen
– volume: 318
  start-page: 797
  issue: 13
  year: 1988
  ident: 432_CR8
  publication-title: New England Journal Of Medicine
  doi: 10.1056/NEJM198803313181301
  contributor:
    fullname: L Goldman
SSID ssj0009667
Score 2.3707116
Snippet Acute coronary syndrome (ACS) is a serious condition arising from an imbalance of supply and demand to meet myocardium’s metabolic needs. Patients typically...
Acute coronary syndrome (ACS) is a serious condition arising from an imbalance of supply and demand to meet myocardium's metabolic needs. Patients typically...
SourceID proquest
crossref
pubmed
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 84
SubjectTerms Acute Coronary Syndrome - diagnosis
Acute coronary syndromes
Adult
Age Factors
Aged
Aged, 80 and over
Artificial intelligence
Bayes Theorem
Chest Pain
Creatine Kinase, MB Form - blood
Decision Support Systems, Clinical
Electrocardiography
Emergency medical care
Female
Health Informatics
Health Sciences
Humans
Logistic Models
Male
Medical diagnosis
Medicine
Medicine & Public Health
Middle Aged
Neural Networks (Computer)
Reproducibility of Results
Risk Factors
Sex Factors
Statistics for Life Sciences
Support Vector Machine
Transactional Processing Systems
Troponin I - blood
SummonAdditionalLinks – databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSxxBEC50F4IgEo2ajQ864CmhcbafsydZH4sEVkKMwdvQrwEvu8bdPfjv0zXds2sQPcyph5mmqqbrm3p8BXDivFCqNJb2rYw_KINgqA11Setae8Gdl0Jj7_D4Rl3fiR_38j4H3Ga5rLI9E5uD2k8dxshP-1rjJKWBEGePfylOjcLsah6hsQ5dhsxNHeieX938_LWi3VUqNUyLkiIVeZvXTM1zERrFX-l4Cc6o-t8zvYKbr1KljQcafYStDB3JMOl6G9bCZAc-jHNyfAc2UwiOpM6iT3B-mcroHmZkWpOhW8wDuUDCAvP0TG4zUwHBQCwxBKd7RiRO_jRRfDJuaizDLtyNrn5fXNM8MoE6rtmc6oIFX_eLwBqsoawuLPeFkUaH6IniYaaEL0uHXt76KJW4aK10TMuaWef4HnQm00n4DERbwVihGUcCfGkK442TjiPAZJzL0INvrbiqx8SMUa04kFG2FVaPoWwr1YPDVqBV_khm1UqlPfi6XI7mjTkLMwnTBd4T8YMcSFn2YD8pYvk2pkpEq3Hle6uZFw9_aytf3t_KAWywZBPRNA6hM39ahKOIO-b2OBvXPxSj0Yo
  priority: 102
  providerName: ProQuest
Title Diagnosis of Acute Coronary Syndrome with a Support Vector Machine
URI https://link.springer.com/article/10.1007/s10916-016-0432-6
https://www.ncbi.nlm.nih.gov/pubmed/26815338
https://www.proquest.com/docview/1777280944
https://search.proquest.com/docview/1761459558
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED9BkaZJCBhsrHzJk3hiSpX6M30s0IKYiiZGp_IU2Y4jTUjpRNOH7a_nHCcFVHjgIYkUW3bis30_--5-Bji2GZcy0SbqGoELlJ7TkXF5EuW5yjizmeDKxw6PruXlmF9NxGQF6GLrorjvNBbJaqJ-FuuGSAZXvnhxRiO5CmuoephowVr_4u7H4IlqV8oQJM2TyNOPN7bM1wp5qY2WIOaSebTSOsPNEAk4q8gKvbPJfWdemo79v0zl-I4f2oKNGoSSfug1n2DFFdvwYVSb2bdhPWzmkRCjtAOn58Eh78-MTHPSt_PSkTNPfaAf_pFfNecB8Vu6RBN_TihievK7sgeQUeWt6T7DeDi4PbuM6sMXIssULSMVU5fl3djRCrVIo2LDslgLrRzqNJwWJc-SxHq8YDJsa0w0RliqRE6NtewLtIpp4b4CUYZTGivKPJW-0LHOtBWWeahKGROuDSeNENK_gWMjfWJT9q2Uej8030qpbMNBI6a0Hm6ztKuUP2arx3kbvi2ScaB464cu3HTu8yASET0hkjbsBvEuaqMy8bgXU743snpW-Fufsveu3PvwkQZho8wPoFU-zN0hAprSHMGqmii8J8OLo7o34_N0cP3zBt-Oaf8R-ijsvg
link.rule.ids 315,786,790,12077,12786,21409,27946,27947,31743,31744,33397,33398,33768,33769,41105,41547,42174,42616,43334,43624,43829,52135,52258,74091,74381,74648
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB7RItFKFYLySgllkTiBVjj7dE5VKVQpxL3QoNysfVni4qSJc-Dfd8drJ6AKDj6tZa9mxjuf5_ENwHvnhVK5sXRkZfxBGQdDbahyWlXaC-68FBp7h4trNZmJb3M57wJu666ssj8T24PaLxzGyD-NtMZJSmMhzpa3FKdGYXa1G6GxBw8F5xy58_Vc70h3lUrt0iKnSETeZzVT61wERvFHOl6CM6r-9kv3wOa9RGnrfy6fwOMOOJLzpOmn8CDUx_Co6FLjx3CUAnAk9RU9g89fUhHdrzVZVOTcbZpALpCuwKx-kx8dTwHBMCwxBGd7RhxOfrYxfFK0FZbhOcwuv95cTGg3MIE6rllDdcaCr0ZZYC3SUFZnlvvMSKND9EPxKFPC57lDH299lEpctFY6pmXFrHP8BezXizq8AqKtYCzTjCP9vTSZ8cZJxxFeMs5lGMCHXlzlMvFilDsGZJRtibVjKNtSDWDYC7TsPpF1uVPoAN5tl6NxY8bC1GGxwXsiepBjKfMBvEyK2L6NqRyxalz52Gvmj4f_aysn_9_KWziY3BTTcnp1_f01HLJkH9FMhrDfrDbhTUQgjT1tzewOZlHTDw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSxxBEC6MggRE4iNxjdEWPBkaZ_s5ewpGXZ8rglG8Df0ayGVX3d2D_z5d0z2uQZLDnHqYaapqur6px1cAe84LpUpjadfK-IPSC4baUJe0rrUX3HkpNPYOD67V2Z24eJAPuf5pnMsq2zOxOaj9yGGM_KCrNU5S6glxUOeyiJvj_o_HJ4oTpDDTmsdpfIAFjbxV2DXeP50R8CqVWqdFSZGUvM1wpja6CJLiT3W8BGdU_e2j3gHPd0nTxhf1P8FyBpHkMGl9BebCcBUWBzlNvgpLKRhHUo_RGvw8TgV1v8dkVJNDN50EcoTUBeb5hdxmzgKCIVliCM75jJic3DfxfDJoqi3DOtz1T34dndE8PIE6rtmE6oIFX3eLwBrUoawuLPeFkUaH6JPisaaEL0uH_t76KJW4aK10TMuaWef4Z5gfjoZhA4i2grFCM45U-NIUxhsnHUeoyTiXoQP7rbiqx8SRUc3YkFG2FdaRoWwr1YGtVqBV_lzG1Uy5Hdh9XY6GjtkLMwyjKd4TkYTsSVl24EtSxOvbmCoRt8aV761m3jz8X1vZ_P9WdmAxWlh1dX59-RU-smQe0Uq2YH7yPA3fIhiZ2O3Gyv4AjUzXRA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnosis+of+Acute+Coronary+Syndrome+with+a+Support+Vector+Machine&rft.jtitle=Journal+of+medical+systems&rft.au=Berikol%2C+G%C3%B6ksu+Bozdereli&rft.au=Yildiz%2C+Oktay&rft.au=%C3%96zcan%2C+%C4%B0.+T%C3%BCrkay&rft.date=2016-04-01&rft.pub=Springer+US&rft.issn=0148-5598&rft.eissn=1573-689X&rft.volume=40&rft.issue=4&rft_id=info:doi/10.1007%2Fs10916-016-0432-6&rft.externalDocID=10_1007_s10916_016_0432_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-5598&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-5598&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-5598&client=summon