A meshfree analysis of the thermal behaviors of hot surface glass pane subjects to down-flowing water film via smoothed particle hydrodynamics

Glass cooling using water film depends on several parameters such as heat flux, down-flowing velocity, and thickness of water film. The efficiency of glass protection with water film can be significantly enhanced through a proper combination of the fire and water film parameters. This study aims to...

Full description

Saved in:
Bibliographic Details
Published inEngineering analysis with boundary elements Vol. 120; pp. 195 - 210
Main Authors Abdoh, D.A., Ademiloye, A.S., Liew, K.M.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Glass cooling using water film depends on several parameters such as heat flux, down-flowing velocity, and thickness of water film. The efficiency of glass protection with water film can be significantly enhanced through a proper combination of the fire and water film parameters. This study aims to present an in-depth investigation into the influence of the heat flux, down-flowing velocity and thickness of water film parameters on the thermal behavior of glass panes during a fire and to propose new guidelines to enhance the efficiency of the water film glass protection system. Smoothed particle hydrodynamics (SPH) method is used here to simulate glass cooling with a down-flowing water film. Based on several SPH simulation scenarios of glass cooling at a different fire and water film working conditions, new empirical equations are derived to describe the effects of heat flux, down-flowing velocity, and thickness of water film on the temperature drop in glass and water film. Furthermore, these empirical equations were employed to study the evaporation of water film and to compare the efficiency of the cooling mechanism with different down-flowing velocity and thickness of water film. The simulation results confirm that increasing down-flowing velocity is more efficient in glass cooling than increasing water film thickness.
AbstractList Glass cooling using water film depends on several parameters such as heat flux, down-flowing velocity, and thickness of water film. The efficiency of glass protection with water film can be significantly enhanced through a proper combination of the fire and water film parameters. This study aims to present an in-depth investigation into the influence of the heat flux, down-flowing velocity and thickness of water film parameters on the thermal behavior of glass panes during a fire and to propose new guidelines to enhance the efficiency of the water film glass protection system. Smoothed particle hydrodynamics (SPH) method is used here to simulate glass cooling with a down-flowing water film. Based on several SPH simulation scenarios of glass cooling at a different fire and water film working conditions, new empirical equations are derived to describe the effects of heat flux, down-flowing velocity, and thickness of water film on the temperature drop in glass and water film. Furthermore, these empirical equations were employed to study the evaporation of water film and to compare the efficiency of the cooling mechanism with different down-flowing velocity and thickness of water film. The simulation results confirm that increasing down-flowing velocity is more efficient in glass cooling than increasing water film thickness.
Author Liew, K.M.
Ademiloye, A.S.
Abdoh, D.A.
Author_xml – sequence: 1
  givenname: D.A.
  surname: Abdoh
  fullname: Abdoh, D.A.
  organization: Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
– sequence: 2
  givenname: A.S.
  surname: Ademiloye
  fullname: Ademiloye, A.S.
  organization: Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Bay Campus, Swansea SA1 8EN, United Kingdom
– sequence: 3
  givenname: K.M.
  surname: Liew
  fullname: Liew, K.M.
  email: kmliew@cityu.edu.hk
  organization: Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
BookMark eNqNkM9qGzEQh0VJoU7ad1AfYLfS_vGuTiGYtikYckmhNzE7GnlldiUjKTZ-iTxz1k0OpacchoH58ftgvmt25YMnxr5KUUoh19_2JfkdeBjCkzdlJSpRir4UsvnAVrLv6kKq7s8VWwnVtkWnVPeJXae0F0LWQqxX7PmOz5RGG4n4gpnOySUeLM8jXSbOMPGBRji6EP8GY8g8PUULSHw3QUr8AJ6W07AnzInnwE04-cJO4eT8jp8gU-TWTTM_OuBpDmHhmqUVs8OJ-Hg2MZizh9lh-sw-WpgSfXnbN-z3j--Pm_ti-_Dz1-ZuW2DdVblY49BbW7WgABFtp0zVVD1SI7GnupY9DmYQFlvRdrLuVacaaYwRYFTT1EbVN-z2lYsxpBTJanQZsgs-R3CTlkJf9Oq9_kevvujVoteL3oWg_iMcopshnt_V3bx2aXnx6CjqhI48knFxkahNcO-gvADKJ6P5
CitedBy_id crossref_primary_10_1016_j_compstruct_2023_116961
crossref_primary_10_1115_1_4064076
crossref_primary_10_1016_j_enganabound_2021_11_010
crossref_primary_10_1016_j_cma_2021_114068
crossref_primary_10_1080_10407790_2024_2310708
crossref_primary_10_3390_su12208713
Cites_doi 10.1016/j.ijheatmasstransfer.2017.10.082
10.1177/0734904115599668
10.1016/j.cma.2009.02.027
10.1007/s11831-018-9283-2
10.1016/j.applthermaleng.2016.11.085
10.1016/j.buildenv.2010.03.005
10.1016/j.apm.2020.02.033
10.1007/s11433-018-9357-0
10.1093/mnras/181.3.375
10.1016/j.enganabound.2018.01.012
10.1080/02533839.2008.9671428
10.1016/j.enganabound.2015.06.006
10.1016/j.ijheatmasstransfer.2016.07.109
10.1016/j.applthermaleng.2007.12.014
10.1016/j.enganabound.2018.07.001
10.1016/j.enganabound.2019.02.007
10.1016/j.jqsrt.2014.04.020
10.1016/j.enganabound.2019.10.017
10.1016/j.cma.2020.112839
10.1016/j.buildenv.2006.08.017
10.1016/j.conbuildmat.2014.01.094
10.1080/10407790600762763
10.1016/S0360-1285(99)00012-X
10.1016/j.ijheatmasstransfer.2017.03.087
10.1016/S0010-4655(03)00155-3
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID AAYXX
CITATION
DOI 10.1016/j.enganabound.2020.08.014
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-197X
EndPage 210
ExternalDocumentID 10_1016_j_enganabound_2020_08_014
S0955799720302162
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABEFU
ABFNM
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
UHS
VH1
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
ID FETCH-LOGICAL-c372t-6cb8ff25a9acccf79d2428ce41c8e3318cbdb0fc505713897941ddd0ad9443d93
IEDL.DBID .~1
ISSN 0955-7997
IngestDate Thu Apr 24 22:56:16 EDT 2025
Tue Jul 01 02:31:51 EDT 2025
Fri Feb 23 02:47:54 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Water film
Temperature distribution
Thermal analysis
Glass cooling
Smoothed particle hydrodynamics (SPH)
Fire
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-6cb8ff25a9acccf79d2428ce41c8e3318cbdb0fc505713897941ddd0ad9443d93
OpenAccessLink https://cronfa.swan.ac.uk/Record/cronfa55039
PageCount 16
ParticipantIDs crossref_citationtrail_10_1016_j_enganabound_2020_08_014
crossref_primary_10_1016_j_enganabound_2020_08_014
elsevier_sciencedirect_doi_10_1016_j_enganabound_2020_08_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationTitle Engineering analysis with boundary elements
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wan, Ren, Yang, Xing (bib0014) 2017; 110
Ng, Ng, Sheu, Alexiadis (bib0028) 2020; 111
Abdoh, Ademiloye, Liew (bib0029) 2020; 362
Hu, Nurcholik, Lee, Lin (bib0002) 2016; 39
Liu, Liu (bib0020) 2003
Brissinger, Parent, Boulet (bib0004) 2014; 145
Ngo-Cong, Tran, Mai-Duy, Tran-Cong (bib0023) 2015; 59
Sharshir, Peng, Wu, Yang, Essa, Elsheikh (bib0010) 2017; 113
Abdoh, Kodur, Liew (bib0017) 2020; 84
Chen, Lee (bib0012) 2010; 45
Rook, Yildiz, Dost (bib0026) 2007; 51
Kuznetsov, Osipov, Piskunov, Volkov (bib0003) 2018; 117
Yang, Kong (bib0025) 2019; 102
Hu, Nurcholik, Lee, Lin (bib0005) 2016; 39
Jeong, Jhon, Halow, Van Osdol (bib0027) 2003; 153
Grant, Brenton, Drysdale (bib0001) 2000; 26
Wang, Xu, Yang, Wang (bib0021) 2019; 100
Vignjevic, Campbell, Jaric, Powell (bib0022) 2009; 198
Gingold, Monaghan (bib0019) 1977; 181
Wang, Shao, Wang, Zhao, Sun, He (bib0007) 2015; 33
Ren, Wan (bib0013) 2016; 103
Grysa, Maciag, Cebo-Rudnicka, Walaszczyk (bib0015) 2018; 95
Liu, Zhang (bib0024) 2019; 62
Zhang, Ademiloye, Liew (bib0016) 2019; 26
Wu, Lin, Lei, Chung, Huang, Chiang (bib0009) 2008; 31
Wu, Lin (bib0006) 2007; 42
Chen, Lee (bib0018) 2010; 45
Shao, Wang, Zhao, Wang, Chen, Su (bib0008) 2014; 57
Monnoyer, Lochegnies (bib0011) 2008; 28
Zhang (10.1016/j.enganabound.2020.08.014_bib0016) 2019; 26
Rook (10.1016/j.enganabound.2020.08.014_bib0026) 2007; 51
Vignjevic (10.1016/j.enganabound.2020.08.014_bib0022) 2009; 198
Gingold (10.1016/j.enganabound.2020.08.014_bib0019) 1977; 181
Hu (10.1016/j.enganabound.2020.08.014_bib0002) 2016; 39
Jeong (10.1016/j.enganabound.2020.08.014_bib0027) 2003; 153
Wang (10.1016/j.enganabound.2020.08.014_bib0007) 2015; 33
Grant (10.1016/j.enganabound.2020.08.014_bib0001) 2000; 26
Abdoh (10.1016/j.enganabound.2020.08.014_bib0017) 2020; 84
Wu (10.1016/j.enganabound.2020.08.014_bib0009) 2008; 31
Chen (10.1016/j.enganabound.2020.08.014_bib0012) 2010; 45
Sharshir (10.1016/j.enganabound.2020.08.014_bib0010) 2017; 113
Yang (10.1016/j.enganabound.2020.08.014_bib0025) 2019; 102
Brissinger (10.1016/j.enganabound.2020.08.014_bib0004) 2014; 145
Shao (10.1016/j.enganabound.2020.08.014_bib0008) 2014; 57
Kuznetsov (10.1016/j.enganabound.2020.08.014_bib0003) 2018; 117
Monnoyer (10.1016/j.enganabound.2020.08.014_bib0011) 2008; 28
Ngo-Cong (10.1016/j.enganabound.2020.08.014_bib0023) 2015; 59
Ren (10.1016/j.enganabound.2020.08.014_bib0013) 2016; 103
Abdoh (10.1016/j.enganabound.2020.08.014_bib0029) 2020; 362
Liu (10.1016/j.enganabound.2020.08.014_bib0024) 2019; 62
Ng (10.1016/j.enganabound.2020.08.014_bib0028) 2020; 111
Wu (10.1016/j.enganabound.2020.08.014_bib0006) 2007; 42
Grysa (10.1016/j.enganabound.2020.08.014_bib0015) 2018; 95
Wan (10.1016/j.enganabound.2020.08.014_bib0014) 2017; 110
Wang (10.1016/j.enganabound.2020.08.014_bib0021) 2019; 100
Liu (10.1016/j.enganabound.2020.08.014_bib0020) 2003
Hu (10.1016/j.enganabound.2020.08.014_bib0005) 2016; 39
Chen (10.1016/j.enganabound.2020.08.014_bib0018) 2010; 45
References_xml – volume: 39
  start-page: 615
  year: 2016
  end-page: 622
  ident: bib0005
  article-title: Evaluations on heat resistance of curtains with water film in a fire
  publication-title: J Chin Inst Eng Trans Chin Inst Eng A
– volume: 31
  start-page: 737
  year: 2008
  end-page: 744
  ident: bib0009
  article-title: Fire resistance tests of a glass pane with down-flowing water film
  publication-title: J Chin Inst Eng
– volume: 28
  start-page: 2167
  year: 2008
  end-page: 2177
  ident: bib0011
  article-title: Heat transfer and flow characteristics of the cooling system of an industrial glass tempering unit
  publication-title: Appl Therm Eng
– volume: 102
  start-page: 11
  year: 2019
  end-page: 20
  ident: bib0025
  article-title: Numerical study of natural convection in a horizontal concentric annulus using smoothed particle hydrodynamics
  publication-title: Eng Anal Bound Elem
– volume: 95
  start-page: 33
  year: 2018
  end-page: 39
  ident: bib0015
  article-title: Identification of the heat transfer coefficient during cooling process by means of Trefftz method
  publication-title: Eng Anal Bound Elem
– volume: 198
  start-page: 2403
  year: 2009
  end-page: 2411
  ident: bib0022
  article-title: Derivation of SPH equations in a moving referential coordinate system
  publication-title: Comput Methods Appl Mech Eng
– volume: 39
  start-page: 615
  year: 2016
  end-page: 622
  ident: bib0002
  article-title: Evaluations on heat resistance of curtains with water film in a fire
  publication-title: J Chin Inst Eng Trans Chin Inst Eng A
– volume: 59
  start-page: 172
  year: 2015
  end-page: 186
  ident: bib0023
  article-title: Incompressible smoothed particle hydrodynamics-moving IRBFN method for viscous flow problems
  publication-title: Eng Anal Bound Elem
– volume: 113
  start-page: 684
  year: 2017
  end-page: 693
  ident: bib0010
  article-title: Enhancing the solar still performance using nanofluids and glass cover cooling: Experimental study
  publication-title: Appl Therm Eng
– volume: 84
  start-page: 357
  year: 2020
  end-page: 376
  ident: bib0017
  article-title: Smoothed particle hydrodynamics modeling of the thermal behavior of double skin facades in fires considering the effects of venetian blinds
  publication-title: Appl Math Model
– volume: 110
  start-page: 783
  year: 2017
  end-page: 788
  ident: bib0014
  article-title: Study on average Nusselt and Sherwood numbers in vertical plate channels with falling water film evaporation
  publication-title: Int J Heat Mass Transf
– volume: 26
  start-page: 1547
  year: 2019
  end-page: 1576
  ident: bib0016
  article-title: Meshfree and particle methods in biomechanics: prospects and challenges
  publication-title: Arch. Comput. Methods Eng
– volume: 117
  start-page: 1075
  year: 2018
  end-page: 1082
  ident: bib0003
  article-title: Experimental research of radiative heat transfer in a water film
  publication-title: Int J Heat Mass Transf
– volume: 45
  start-page: 2089
  year: 2010
  end-page: 2099
  ident: bib0018
  article-title: Estimation of heat-transfer characteristics on the hot surface of glass pane with down-flowing water film
  publication-title: Build Environ
– volume: 181
  start-page: 375
  year: 1977
  end-page: 389
  ident: bib0019
  article-title: Smoothed particle hydrodynamics: theory and application to non-spherical stars
  publication-title: Mon Not R Astron Soc
– volume: 62
  year: 2019
  ident: bib0024
  article-title: Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions.
  publication-title: Sci China Phys Mech
– volume: 45
  start-page: 2089
  year: 2010
  end-page: 2099
  ident: bib0012
  article-title: Estimation of heat-transfer characteristics on the hot surface of glass pane with down-flowing water film
  publication-title: Build Environ
– volume: 51
  start-page: 1
  year: 2007
  end-page: 23
  ident: bib0026
  article-title: Modeling transient heat transfer using SPH and implicit time integration
  publication-title: Numer Heat Transf Part B Fundam
– volume: 26
  start-page: 79
  year: 2000
  end-page: 130
  ident: bib0001
  article-title: Fire suppression by water sprays
  publication-title: Prog Energy Combust Sci
– volume: 33
  start-page: 390
  year: 2015
  end-page: 404
  ident: bib0007
  article-title: Thermal breakage and fallout behaviors of non-tempered glass under the effect of water film
  publication-title: J Fire Sci
– volume: 103
  start-page: 1017
  year: 2016
  end-page: 1028
  ident: bib0013
  article-title: A new approach to the analysis of heat and mass transfer characteristics for laminar air flow inside vertical plate channels with falling water film evaporation
  publication-title: Int J Heat Mass Transf
– volume: 57
  start-page: 15
  year: 2014
  end-page: 23
  ident: bib0008
  article-title: Maximum temperature to withstand water film for tempered glass exposed to fire
  publication-title: Constr Build Mater
– volume: 111
  start-page: 195
  year: 2020
  end-page: 205
  ident: bib0028
  article-title: Assessment of smoothed particle hydrodynamics (SPH) models for predicting wall heat transfer rate at complex boundary
  publication-title: Eng Anal Bound Elem
– volume: 153
  start-page: 71
  year: 2003
  end-page: 84
  ident: bib0027
  article-title: Smoothed particle hydrodynamics: applications to heat conduction
  publication-title: Comput Phys Commun
– volume: 145
  start-page: 160
  year: 2014
  end-page: 168
  ident: bib0004
  article-title: Experimental study on radiation attenuation by a water film
  publication-title: J Quant Spectrosc Radiat Transf
– volume: 100
  start-page: 140
  year: 2019
  end-page: 149
  ident: bib0021
  article-title: A dynamic particle refinement strategy in smoothed particle hydrodynamics for fluid–structure interaction problems
  publication-title: Eng Anal Bound Elem
– volume: 362
  year: 2020
  ident: bib0029
  article-title: Modeling glass cooling mechanism with down-flowing water film via the smoothed particle hydrodynamics
  publication-title: Comput Methods Appl Mech Eng
– volume: 42
  start-page: 3277
  year: 2007
  end-page: 3284
  ident: bib0006
  article-title: Full-scale evaluations on heat resistance of glass panes incorporated with water film or sprinkler in a room fire
  publication-title: Build Environ
– year: 2003
  ident: bib0020
  publication-title: Smoothed particle hydrodynamics - a meshfree particle method
– volume: 117
  start-page: 1075
  year: 2018
  ident: 10.1016/j.enganabound.2020.08.014_bib0003
  article-title: Experimental research of radiative heat transfer in a water film
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2017.10.082
– volume: 33
  start-page: 390
  year: 2015
  ident: 10.1016/j.enganabound.2020.08.014_bib0007
  article-title: Thermal breakage and fallout behaviors of non-tempered glass under the effect of water film
  publication-title: J Fire Sci
  doi: 10.1177/0734904115599668
– volume: 198
  start-page: 2403
  year: 2009
  ident: 10.1016/j.enganabound.2020.08.014_bib0022
  article-title: Derivation of SPH equations in a moving referential coordinate system
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2009.02.027
– volume: 26
  start-page: 1547
  year: 2019
  ident: 10.1016/j.enganabound.2020.08.014_bib0016
  article-title: Meshfree and particle methods in biomechanics: prospects and challenges
  publication-title: Arch. Comput. Methods Eng
  doi: 10.1007/s11831-018-9283-2
– volume: 113
  start-page: 684
  year: 2017
  ident: 10.1016/j.enganabound.2020.08.014_bib0010
  article-title: Enhancing the solar still performance using nanofluids and glass cover cooling: Experimental study
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.11.085
– volume: 45
  start-page: 2089
  year: 2010
  ident: 10.1016/j.enganabound.2020.08.014_bib0012
  article-title: Estimation of heat-transfer characteristics on the hot surface of glass pane with down-flowing water film
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2010.03.005
– volume: 84
  start-page: 357
  year: 2020
  ident: 10.1016/j.enganabound.2020.08.014_bib0017
  article-title: Smoothed particle hydrodynamics modeling of the thermal behavior of double skin facades in fires considering the effects of venetian blinds
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2020.02.033
– volume: 62
  issue: 8
  year: 2019
  ident: 10.1016/j.enganabound.2020.08.014_bib0024
  article-title: Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions.
  publication-title: Sci China Phys Mech
  doi: 10.1007/s11433-018-9357-0
– volume: 45
  start-page: 2089
  year: 2010
  ident: 10.1016/j.enganabound.2020.08.014_bib0018
  article-title: Estimation of heat-transfer characteristics on the hot surface of glass pane with down-flowing water film
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2010.03.005
– volume: 181
  start-page: 375
  year: 1977
  ident: 10.1016/j.enganabound.2020.08.014_bib0019
  article-title: Smoothed particle hydrodynamics: theory and application to non-spherical stars
  publication-title: Mon Not R Astron Soc
  doi: 10.1093/mnras/181.3.375
– volume: 100
  start-page: 140
  year: 2019
  ident: 10.1016/j.enganabound.2020.08.014_bib0021
  article-title: A dynamic particle refinement strategy in smoothed particle hydrodynamics for fluid–structure interaction problems
  publication-title: Eng Anal Bound Elem
  doi: 10.1016/j.enganabound.2018.01.012
– volume: 31
  start-page: 737
  year: 2008
  ident: 10.1016/j.enganabound.2020.08.014_bib0009
  article-title: Fire resistance tests of a glass pane with down-flowing water film
  publication-title: J Chin Inst Eng
  doi: 10.1080/02533839.2008.9671428
– volume: 59
  start-page: 172
  year: 2015
  ident: 10.1016/j.enganabound.2020.08.014_bib0023
  article-title: Incompressible smoothed particle hydrodynamics-moving IRBFN method for viscous flow problems
  publication-title: Eng Anal Bound Elem
  doi: 10.1016/j.enganabound.2015.06.006
– volume: 103
  start-page: 1017
  year: 2016
  ident: 10.1016/j.enganabound.2020.08.014_bib0013
  article-title: A new approach to the analysis of heat and mass transfer characteristics for laminar air flow inside vertical plate channels with falling water film evaporation
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2016.07.109
– volume: 39
  start-page: 615
  year: 2016
  ident: 10.1016/j.enganabound.2020.08.014_bib0005
  article-title: Evaluations on heat resistance of curtains with water film in a fire
  publication-title: J Chin Inst Eng Trans Chin Inst Eng A
– year: 2003
  ident: 10.1016/j.enganabound.2020.08.014_bib0020
– volume: 28
  start-page: 2167
  year: 2008
  ident: 10.1016/j.enganabound.2020.08.014_bib0011
  article-title: Heat transfer and flow characteristics of the cooling system of an industrial glass tempering unit
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2007.12.014
– volume: 95
  start-page: 33
  year: 2018
  ident: 10.1016/j.enganabound.2020.08.014_bib0015
  article-title: Identification of the heat transfer coefficient during cooling process by means of Trefftz method
  publication-title: Eng Anal Bound Elem
  doi: 10.1016/j.enganabound.2018.07.001
– volume: 102
  start-page: 11
  year: 2019
  ident: 10.1016/j.enganabound.2020.08.014_bib0025
  article-title: Numerical study of natural convection in a horizontal concentric annulus using smoothed particle hydrodynamics
  publication-title: Eng Anal Bound Elem
  doi: 10.1016/j.enganabound.2019.02.007
– volume: 145
  start-page: 160
  year: 2014
  ident: 10.1016/j.enganabound.2020.08.014_bib0004
  article-title: Experimental study on radiation attenuation by a water film
  publication-title: J Quant Spectrosc Radiat Transf
  doi: 10.1016/j.jqsrt.2014.04.020
– volume: 39
  start-page: 615
  year: 2016
  ident: 10.1016/j.enganabound.2020.08.014_bib0002
  article-title: Evaluations on heat resistance of curtains with water film in a fire
  publication-title: J Chin Inst Eng Trans Chin Inst Eng A
– volume: 111
  start-page: 195
  year: 2020
  ident: 10.1016/j.enganabound.2020.08.014_bib0028
  article-title: Assessment of smoothed particle hydrodynamics (SPH) models for predicting wall heat transfer rate at complex boundary
  publication-title: Eng Anal Bound Elem
  doi: 10.1016/j.enganabound.2019.10.017
– volume: 362
  year: 2020
  ident: 10.1016/j.enganabound.2020.08.014_bib0029
  article-title: Modeling glass cooling mechanism with down-flowing water film via the smoothed particle hydrodynamics
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.112839
– volume: 42
  start-page: 3277
  year: 2007
  ident: 10.1016/j.enganabound.2020.08.014_bib0006
  article-title: Full-scale evaluations on heat resistance of glass panes incorporated with water film or sprinkler in a room fire
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2006.08.017
– volume: 57
  start-page: 15
  year: 2014
  ident: 10.1016/j.enganabound.2020.08.014_bib0008
  article-title: Maximum temperature to withstand water film for tempered glass exposed to fire
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2014.01.094
– volume: 51
  start-page: 1
  year: 2007
  ident: 10.1016/j.enganabound.2020.08.014_bib0026
  article-title: Modeling transient heat transfer using SPH and implicit time integration
  publication-title: Numer Heat Transf Part B Fundam
  doi: 10.1080/10407790600762763
– volume: 26
  start-page: 79
  year: 2000
  ident: 10.1016/j.enganabound.2020.08.014_bib0001
  article-title: Fire suppression by water sprays
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/S0360-1285(99)00012-X
– volume: 110
  start-page: 783
  year: 2017
  ident: 10.1016/j.enganabound.2020.08.014_bib0014
  article-title: Study on average Nusselt and Sherwood numbers in vertical plate channels with falling water film evaporation
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2017.03.087
– volume: 153
  start-page: 71
  year: 2003
  ident: 10.1016/j.enganabound.2020.08.014_bib0027
  article-title: Smoothed particle hydrodynamics: applications to heat conduction
  publication-title: Comput Phys Commun
  doi: 10.1016/S0010-4655(03)00155-3
SSID ssj0013006
Score 2.2969637
Snippet Glass cooling using water film depends on several parameters such as heat flux, down-flowing velocity, and thickness of water film. The efficiency of glass...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 195
SubjectTerms Fire
Glass cooling
Smoothed particle hydrodynamics (SPH)
Temperature distribution
Thermal analysis
Water film
Title A meshfree analysis of the thermal behaviors of hot surface glass pane subjects to down-flowing water film via smoothed particle hydrodynamics
URI https://dx.doi.org/10.1016/j.enganabound.2020.08.014
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEG5EQdyDqLuyuiol7LV38uiZpGEvgyijgx7cFb2FTj-ckZlEJnFlL_4Ef7NVeegIgoKHENLpIk1X9VfV6Xow9tNLLSplJbiLe5YLIRRPI6m4kFakEnWsrPJ0n571Bhfi5Kp7tcAO2lgYcqtssL_G9Aqtm5ZOM5ud2_G484eSp0UU94lyGvgVDgsRkZT_evBfThK8qr4mdebUe5ntv_h42exaZeQBnFHS0MCrsnn64m0dNad3jtbYamMwQr8e0zpbsNkG-zKXRvAre-zD1BYjN7MWVJNkBHIHaNvRhdA7gTYcv3oxykso7mZOaQuV-QyICRabUvorU0CZg8HdOXeT_B6_APdokM7AjSdT-DdWUExzitsySFWPCkb_DQJxXdy--MYujg7_Hgx4U2eB6zAKSt7Taexc0FVSaa1dJA3q7Vhb4evYhrjodWpSz2nay9C5Ji5h3xjjKSOFCI0MN9lilmf2O4NQu55P8dhSCYFgGMfEb6_rnBcF3djbYnE7s4lukpBTLYxJ0nqb3SRzTEmIKQnVyfTFFgueSW_rTBwfIfrdsi95JVYJaoz3ybc_R_6DrdBTHbq4wxbL2Z3dRRumTPcqId1jS_3j4eCM7sPzy-ETm7v26Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADB5VrVTgUFEeog-okeA4bDI7m4dUDhW02tLHhVbqLUzmwQbtJtUm7Wov_Qn8Gf4gdh50kSoVCfWQy0RWRrbz2cnYnxl756UWg7KS3EWB5VJKxdMwVlzGVqYxxti45uk-OQ2G5_LLxeBiif3qemGorLLF_gbTa7RuV3qtNnuXWdb7SuRpIfV9op8KPxBtZeWRnc_wu638ePgZjfxeiIP9s09D3o4W4LofiooHOo2cEwMVK621C2ODoSrSVvo6sn30c52a1HOa0nc6ykOv9Y0xnjKxlH1DDEyI-ysS4YLGJny48W-PLrx6oCftjtP2Vtnb26Iym39XOZUc58RSKryaPtSXdwfFhUB38JSttRkq7DVKWGdLNn_GnizwFj5nP_dgYsuRm1oLqmU1gcIBJpN0IdaPoev_r2-MigrKq6lT2kKdrwOCkMWllH4DlVAVYIpZzt24mOETYIYZ8BRcNp7AdaagnBTUKGZQqtkVjOYGkX-eq0mmyxfs_EG0_5It50VuXzHoaxf41AAeKykRfaOIHMwbOOeFYhB5GyzqNJvolvWchm-Mk6687UeyYJSEjJLQYE5fbjDxR_Syof74F6HdznzJX36cYIi6X3zz_8R32KPh2clxcnx4erTFHtOdpm9ymy1X0yv7GhOoKn1TOyywbw_9hvwGcssx8w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+meshfree+analysis+of+the+thermal+behaviors+of+hot+surface+glass+pane+subjects+to+down-flowing+water+film+via+smoothed+particle+hydrodynamics&rft.jtitle=Engineering+analysis+with+boundary+elements&rft.au=Abdoh%2C+D.A.&rft.au=Ademiloye%2C+A.S.&rft.au=Liew%2C+K.M.&rft.date=2020-11-01&rft.issn=0955-7997&rft.volume=120&rft.spage=195&rft.epage=210&rft_id=info:doi/10.1016%2Fj.enganabound.2020.08.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enganabound_2020_08_014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0955-7997&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0955-7997&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0955-7997&client=summon