A meshfree analysis of the thermal behaviors of hot surface glass pane subjects to down-flowing water film via smoothed particle hydrodynamics
Glass cooling using water film depends on several parameters such as heat flux, down-flowing velocity, and thickness of water film. The efficiency of glass protection with water film can be significantly enhanced through a proper combination of the fire and water film parameters. This study aims to...
Saved in:
Published in | Engineering analysis with boundary elements Vol. 120; pp. 195 - 210 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Glass cooling using water film depends on several parameters such as heat flux, down-flowing velocity, and thickness of water film. The efficiency of glass protection with water film can be significantly enhanced through a proper combination of the fire and water film parameters. This study aims to present an in-depth investigation into the influence of the heat flux, down-flowing velocity and thickness of water film parameters on the thermal behavior of glass panes during a fire and to propose new guidelines to enhance the efficiency of the water film glass protection system. Smoothed particle hydrodynamics (SPH) method is used here to simulate glass cooling with a down-flowing water film. Based on several SPH simulation scenarios of glass cooling at a different fire and water film working conditions, new empirical equations are derived to describe the effects of heat flux, down-flowing velocity, and thickness of water film on the temperature drop in glass and water film. Furthermore, these empirical equations were employed to study the evaporation of water film and to compare the efficiency of the cooling mechanism with different down-flowing velocity and thickness of water film. The simulation results confirm that increasing down-flowing velocity is more efficient in glass cooling than increasing water film thickness. |
---|---|
AbstractList | Glass cooling using water film depends on several parameters such as heat flux, down-flowing velocity, and thickness of water film. The efficiency of glass protection with water film can be significantly enhanced through a proper combination of the fire and water film parameters. This study aims to present an in-depth investigation into the influence of the heat flux, down-flowing velocity and thickness of water film parameters on the thermal behavior of glass panes during a fire and to propose new guidelines to enhance the efficiency of the water film glass protection system. Smoothed particle hydrodynamics (SPH) method is used here to simulate glass cooling with a down-flowing water film. Based on several SPH simulation scenarios of glass cooling at a different fire and water film working conditions, new empirical equations are derived to describe the effects of heat flux, down-flowing velocity, and thickness of water film on the temperature drop in glass and water film. Furthermore, these empirical equations were employed to study the evaporation of water film and to compare the efficiency of the cooling mechanism with different down-flowing velocity and thickness of water film. The simulation results confirm that increasing down-flowing velocity is more efficient in glass cooling than increasing water film thickness. |
Author | Liew, K.M. Ademiloye, A.S. Abdoh, D.A. |
Author_xml | – sequence: 1 givenname: D.A. surname: Abdoh fullname: Abdoh, D.A. organization: Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong, China – sequence: 2 givenname: A.S. surname: Ademiloye fullname: Ademiloye, A.S. organization: Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Bay Campus, Swansea SA1 8EN, United Kingdom – sequence: 3 givenname: K.M. surname: Liew fullname: Liew, K.M. email: kmliew@cityu.edu.hk organization: Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong, China |
BookMark | eNqNkM9qGzEQh0VJoU7ad1AfYLfS_vGuTiGYtikYckmhNzE7GnlldiUjKTZ-iTxz1k0OpacchoH58ftgvmt25YMnxr5KUUoh19_2JfkdeBjCkzdlJSpRir4UsvnAVrLv6kKq7s8VWwnVtkWnVPeJXae0F0LWQqxX7PmOz5RGG4n4gpnOySUeLM8jXSbOMPGBRji6EP8GY8g8PUULSHw3QUr8AJ6W07AnzInnwE04-cJO4eT8jp8gU-TWTTM_OuBpDmHhmqUVs8OJ-Hg2MZizh9lh-sw-WpgSfXnbN-z3j--Pm_ti-_Dz1-ZuW2DdVblY49BbW7WgABFtp0zVVD1SI7GnupY9DmYQFlvRdrLuVacaaYwRYFTT1EbVN-z2lYsxpBTJanQZsgs-R3CTlkJf9Oq9_kevvujVoteL3oWg_iMcopshnt_V3bx2aXnx6CjqhI48knFxkahNcO-gvADKJ6P5 |
CitedBy_id | crossref_primary_10_1016_j_compstruct_2023_116961 crossref_primary_10_1115_1_4064076 crossref_primary_10_1016_j_enganabound_2021_11_010 crossref_primary_10_1016_j_cma_2021_114068 crossref_primary_10_1080_10407790_2024_2310708 crossref_primary_10_3390_su12208713 |
Cites_doi | 10.1016/j.ijheatmasstransfer.2017.10.082 10.1177/0734904115599668 10.1016/j.cma.2009.02.027 10.1007/s11831-018-9283-2 10.1016/j.applthermaleng.2016.11.085 10.1016/j.buildenv.2010.03.005 10.1016/j.apm.2020.02.033 10.1007/s11433-018-9357-0 10.1093/mnras/181.3.375 10.1016/j.enganabound.2018.01.012 10.1080/02533839.2008.9671428 10.1016/j.enganabound.2015.06.006 10.1016/j.ijheatmasstransfer.2016.07.109 10.1016/j.applthermaleng.2007.12.014 10.1016/j.enganabound.2018.07.001 10.1016/j.enganabound.2019.02.007 10.1016/j.jqsrt.2014.04.020 10.1016/j.enganabound.2019.10.017 10.1016/j.cma.2020.112839 10.1016/j.buildenv.2006.08.017 10.1016/j.conbuildmat.2014.01.094 10.1080/10407790600762763 10.1016/S0360-1285(99)00012-X 10.1016/j.ijheatmasstransfer.2017.03.087 10.1016/S0010-4655(03)00155-3 |
ContentType | Journal Article |
Copyright | 2020 |
Copyright_xml | – notice: 2020 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.enganabound.2020.08.014 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-197X |
EndPage | 210 |
ExternalDocumentID | 10_1016_j_enganabound_2020_08_014 S0955799720302162 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN AAYOK ABAOU ABBOA ABEFU ABFNM ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSW SSZ T5K TN5 UHS VH1 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION |
ID | FETCH-LOGICAL-c372t-6cb8ff25a9acccf79d2428ce41c8e3318cbdb0fc505713897941ddd0ad9443d93 |
IEDL.DBID | .~1 |
ISSN | 0955-7997 |
IngestDate | Thu Apr 24 22:56:16 EDT 2025 Tue Jul 01 02:31:51 EDT 2025 Fri Feb 23 02:47:54 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Water film Temperature distribution Thermal analysis Glass cooling Smoothed particle hydrodynamics (SPH) Fire |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-6cb8ff25a9acccf79d2428ce41c8e3318cbdb0fc505713897941ddd0ad9443d93 |
OpenAccessLink | https://cronfa.swan.ac.uk/Record/cronfa55039 |
PageCount | 16 |
ParticipantIDs | crossref_citationtrail_10_1016_j_enganabound_2020_08_014 crossref_primary_10_1016_j_enganabound_2020_08_014 elsevier_sciencedirect_doi_10_1016_j_enganabound_2020_08_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2020 2020-11-00 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
PublicationDecade | 2020 |
PublicationTitle | Engineering analysis with boundary elements |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wan, Ren, Yang, Xing (bib0014) 2017; 110 Ng, Ng, Sheu, Alexiadis (bib0028) 2020; 111 Abdoh, Ademiloye, Liew (bib0029) 2020; 362 Hu, Nurcholik, Lee, Lin (bib0002) 2016; 39 Liu, Liu (bib0020) 2003 Brissinger, Parent, Boulet (bib0004) 2014; 145 Ngo-Cong, Tran, Mai-Duy, Tran-Cong (bib0023) 2015; 59 Sharshir, Peng, Wu, Yang, Essa, Elsheikh (bib0010) 2017; 113 Abdoh, Kodur, Liew (bib0017) 2020; 84 Chen, Lee (bib0012) 2010; 45 Rook, Yildiz, Dost (bib0026) 2007; 51 Kuznetsov, Osipov, Piskunov, Volkov (bib0003) 2018; 117 Yang, Kong (bib0025) 2019; 102 Hu, Nurcholik, Lee, Lin (bib0005) 2016; 39 Jeong, Jhon, Halow, Van Osdol (bib0027) 2003; 153 Grant, Brenton, Drysdale (bib0001) 2000; 26 Wang, Xu, Yang, Wang (bib0021) 2019; 100 Vignjevic, Campbell, Jaric, Powell (bib0022) 2009; 198 Gingold, Monaghan (bib0019) 1977; 181 Wang, Shao, Wang, Zhao, Sun, He (bib0007) 2015; 33 Ren, Wan (bib0013) 2016; 103 Grysa, Maciag, Cebo-Rudnicka, Walaszczyk (bib0015) 2018; 95 Liu, Zhang (bib0024) 2019; 62 Zhang, Ademiloye, Liew (bib0016) 2019; 26 Wu, Lin, Lei, Chung, Huang, Chiang (bib0009) 2008; 31 Wu, Lin (bib0006) 2007; 42 Chen, Lee (bib0018) 2010; 45 Shao, Wang, Zhao, Wang, Chen, Su (bib0008) 2014; 57 Monnoyer, Lochegnies (bib0011) 2008; 28 Zhang (10.1016/j.enganabound.2020.08.014_bib0016) 2019; 26 Rook (10.1016/j.enganabound.2020.08.014_bib0026) 2007; 51 Vignjevic (10.1016/j.enganabound.2020.08.014_bib0022) 2009; 198 Gingold (10.1016/j.enganabound.2020.08.014_bib0019) 1977; 181 Hu (10.1016/j.enganabound.2020.08.014_bib0002) 2016; 39 Jeong (10.1016/j.enganabound.2020.08.014_bib0027) 2003; 153 Wang (10.1016/j.enganabound.2020.08.014_bib0007) 2015; 33 Grant (10.1016/j.enganabound.2020.08.014_bib0001) 2000; 26 Abdoh (10.1016/j.enganabound.2020.08.014_bib0017) 2020; 84 Wu (10.1016/j.enganabound.2020.08.014_bib0009) 2008; 31 Chen (10.1016/j.enganabound.2020.08.014_bib0012) 2010; 45 Sharshir (10.1016/j.enganabound.2020.08.014_bib0010) 2017; 113 Yang (10.1016/j.enganabound.2020.08.014_bib0025) 2019; 102 Brissinger (10.1016/j.enganabound.2020.08.014_bib0004) 2014; 145 Shao (10.1016/j.enganabound.2020.08.014_bib0008) 2014; 57 Kuznetsov (10.1016/j.enganabound.2020.08.014_bib0003) 2018; 117 Monnoyer (10.1016/j.enganabound.2020.08.014_bib0011) 2008; 28 Ngo-Cong (10.1016/j.enganabound.2020.08.014_bib0023) 2015; 59 Ren (10.1016/j.enganabound.2020.08.014_bib0013) 2016; 103 Abdoh (10.1016/j.enganabound.2020.08.014_bib0029) 2020; 362 Liu (10.1016/j.enganabound.2020.08.014_bib0024) 2019; 62 Ng (10.1016/j.enganabound.2020.08.014_bib0028) 2020; 111 Wu (10.1016/j.enganabound.2020.08.014_bib0006) 2007; 42 Grysa (10.1016/j.enganabound.2020.08.014_bib0015) 2018; 95 Wan (10.1016/j.enganabound.2020.08.014_bib0014) 2017; 110 Wang (10.1016/j.enganabound.2020.08.014_bib0021) 2019; 100 Liu (10.1016/j.enganabound.2020.08.014_bib0020) 2003 Hu (10.1016/j.enganabound.2020.08.014_bib0005) 2016; 39 Chen (10.1016/j.enganabound.2020.08.014_bib0018) 2010; 45 |
References_xml | – volume: 39 start-page: 615 year: 2016 end-page: 622 ident: bib0005 article-title: Evaluations on heat resistance of curtains with water film in a fire publication-title: J Chin Inst Eng Trans Chin Inst Eng A – volume: 31 start-page: 737 year: 2008 end-page: 744 ident: bib0009 article-title: Fire resistance tests of a glass pane with down-flowing water film publication-title: J Chin Inst Eng – volume: 28 start-page: 2167 year: 2008 end-page: 2177 ident: bib0011 article-title: Heat transfer and flow characteristics of the cooling system of an industrial glass tempering unit publication-title: Appl Therm Eng – volume: 102 start-page: 11 year: 2019 end-page: 20 ident: bib0025 article-title: Numerical study of natural convection in a horizontal concentric annulus using smoothed particle hydrodynamics publication-title: Eng Anal Bound Elem – volume: 95 start-page: 33 year: 2018 end-page: 39 ident: bib0015 article-title: Identification of the heat transfer coefficient during cooling process by means of Trefftz method publication-title: Eng Anal Bound Elem – volume: 198 start-page: 2403 year: 2009 end-page: 2411 ident: bib0022 article-title: Derivation of SPH equations in a moving referential coordinate system publication-title: Comput Methods Appl Mech Eng – volume: 39 start-page: 615 year: 2016 end-page: 622 ident: bib0002 article-title: Evaluations on heat resistance of curtains with water film in a fire publication-title: J Chin Inst Eng Trans Chin Inst Eng A – volume: 59 start-page: 172 year: 2015 end-page: 186 ident: bib0023 article-title: Incompressible smoothed particle hydrodynamics-moving IRBFN method for viscous flow problems publication-title: Eng Anal Bound Elem – volume: 113 start-page: 684 year: 2017 end-page: 693 ident: bib0010 article-title: Enhancing the solar still performance using nanofluids and glass cover cooling: Experimental study publication-title: Appl Therm Eng – volume: 84 start-page: 357 year: 2020 end-page: 376 ident: bib0017 article-title: Smoothed particle hydrodynamics modeling of the thermal behavior of double skin facades in fires considering the effects of venetian blinds publication-title: Appl Math Model – volume: 110 start-page: 783 year: 2017 end-page: 788 ident: bib0014 article-title: Study on average Nusselt and Sherwood numbers in vertical plate channels with falling water film evaporation publication-title: Int J Heat Mass Transf – volume: 26 start-page: 1547 year: 2019 end-page: 1576 ident: bib0016 article-title: Meshfree and particle methods in biomechanics: prospects and challenges publication-title: Arch. Comput. Methods Eng – volume: 117 start-page: 1075 year: 2018 end-page: 1082 ident: bib0003 article-title: Experimental research of radiative heat transfer in a water film publication-title: Int J Heat Mass Transf – volume: 45 start-page: 2089 year: 2010 end-page: 2099 ident: bib0018 article-title: Estimation of heat-transfer characteristics on the hot surface of glass pane with down-flowing water film publication-title: Build Environ – volume: 181 start-page: 375 year: 1977 end-page: 389 ident: bib0019 article-title: Smoothed particle hydrodynamics: theory and application to non-spherical stars publication-title: Mon Not R Astron Soc – volume: 62 year: 2019 ident: bib0024 article-title: Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions. publication-title: Sci China Phys Mech – volume: 45 start-page: 2089 year: 2010 end-page: 2099 ident: bib0012 article-title: Estimation of heat-transfer characteristics on the hot surface of glass pane with down-flowing water film publication-title: Build Environ – volume: 51 start-page: 1 year: 2007 end-page: 23 ident: bib0026 article-title: Modeling transient heat transfer using SPH and implicit time integration publication-title: Numer Heat Transf Part B Fundam – volume: 26 start-page: 79 year: 2000 end-page: 130 ident: bib0001 article-title: Fire suppression by water sprays publication-title: Prog Energy Combust Sci – volume: 33 start-page: 390 year: 2015 end-page: 404 ident: bib0007 article-title: Thermal breakage and fallout behaviors of non-tempered glass under the effect of water film publication-title: J Fire Sci – volume: 103 start-page: 1017 year: 2016 end-page: 1028 ident: bib0013 article-title: A new approach to the analysis of heat and mass transfer characteristics for laminar air flow inside vertical plate channels with falling water film evaporation publication-title: Int J Heat Mass Transf – volume: 57 start-page: 15 year: 2014 end-page: 23 ident: bib0008 article-title: Maximum temperature to withstand water film for tempered glass exposed to fire publication-title: Constr Build Mater – volume: 111 start-page: 195 year: 2020 end-page: 205 ident: bib0028 article-title: Assessment of smoothed particle hydrodynamics (SPH) models for predicting wall heat transfer rate at complex boundary publication-title: Eng Anal Bound Elem – volume: 153 start-page: 71 year: 2003 end-page: 84 ident: bib0027 article-title: Smoothed particle hydrodynamics: applications to heat conduction publication-title: Comput Phys Commun – volume: 145 start-page: 160 year: 2014 end-page: 168 ident: bib0004 article-title: Experimental study on radiation attenuation by a water film publication-title: J Quant Spectrosc Radiat Transf – volume: 100 start-page: 140 year: 2019 end-page: 149 ident: bib0021 article-title: A dynamic particle refinement strategy in smoothed particle hydrodynamics for fluid–structure interaction problems publication-title: Eng Anal Bound Elem – volume: 362 year: 2020 ident: bib0029 article-title: Modeling glass cooling mechanism with down-flowing water film via the smoothed particle hydrodynamics publication-title: Comput Methods Appl Mech Eng – volume: 42 start-page: 3277 year: 2007 end-page: 3284 ident: bib0006 article-title: Full-scale evaluations on heat resistance of glass panes incorporated with water film or sprinkler in a room fire publication-title: Build Environ – year: 2003 ident: bib0020 publication-title: Smoothed particle hydrodynamics - a meshfree particle method – volume: 117 start-page: 1075 year: 2018 ident: 10.1016/j.enganabound.2020.08.014_bib0003 article-title: Experimental research of radiative heat transfer in a water film publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2017.10.082 – volume: 33 start-page: 390 year: 2015 ident: 10.1016/j.enganabound.2020.08.014_bib0007 article-title: Thermal breakage and fallout behaviors of non-tempered glass under the effect of water film publication-title: J Fire Sci doi: 10.1177/0734904115599668 – volume: 198 start-page: 2403 year: 2009 ident: 10.1016/j.enganabound.2020.08.014_bib0022 article-title: Derivation of SPH equations in a moving referential coordinate system publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2009.02.027 – volume: 26 start-page: 1547 year: 2019 ident: 10.1016/j.enganabound.2020.08.014_bib0016 article-title: Meshfree and particle methods in biomechanics: prospects and challenges publication-title: Arch. Comput. Methods Eng doi: 10.1007/s11831-018-9283-2 – volume: 113 start-page: 684 year: 2017 ident: 10.1016/j.enganabound.2020.08.014_bib0010 article-title: Enhancing the solar still performance using nanofluids and glass cover cooling: Experimental study publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.11.085 – volume: 45 start-page: 2089 year: 2010 ident: 10.1016/j.enganabound.2020.08.014_bib0012 article-title: Estimation of heat-transfer characteristics on the hot surface of glass pane with down-flowing water film publication-title: Build Environ doi: 10.1016/j.buildenv.2010.03.005 – volume: 84 start-page: 357 year: 2020 ident: 10.1016/j.enganabound.2020.08.014_bib0017 article-title: Smoothed particle hydrodynamics modeling of the thermal behavior of double skin facades in fires considering the effects of venetian blinds publication-title: Appl Math Model doi: 10.1016/j.apm.2020.02.033 – volume: 62 issue: 8 year: 2019 ident: 10.1016/j.enganabound.2020.08.014_bib0024 article-title: Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions. publication-title: Sci China Phys Mech doi: 10.1007/s11433-018-9357-0 – volume: 45 start-page: 2089 year: 2010 ident: 10.1016/j.enganabound.2020.08.014_bib0018 article-title: Estimation of heat-transfer characteristics on the hot surface of glass pane with down-flowing water film publication-title: Build Environ doi: 10.1016/j.buildenv.2010.03.005 – volume: 181 start-page: 375 year: 1977 ident: 10.1016/j.enganabound.2020.08.014_bib0019 article-title: Smoothed particle hydrodynamics: theory and application to non-spherical stars publication-title: Mon Not R Astron Soc doi: 10.1093/mnras/181.3.375 – volume: 100 start-page: 140 year: 2019 ident: 10.1016/j.enganabound.2020.08.014_bib0021 article-title: A dynamic particle refinement strategy in smoothed particle hydrodynamics for fluid–structure interaction problems publication-title: Eng Anal Bound Elem doi: 10.1016/j.enganabound.2018.01.012 – volume: 31 start-page: 737 year: 2008 ident: 10.1016/j.enganabound.2020.08.014_bib0009 article-title: Fire resistance tests of a glass pane with down-flowing water film publication-title: J Chin Inst Eng doi: 10.1080/02533839.2008.9671428 – volume: 59 start-page: 172 year: 2015 ident: 10.1016/j.enganabound.2020.08.014_bib0023 article-title: Incompressible smoothed particle hydrodynamics-moving IRBFN method for viscous flow problems publication-title: Eng Anal Bound Elem doi: 10.1016/j.enganabound.2015.06.006 – volume: 103 start-page: 1017 year: 2016 ident: 10.1016/j.enganabound.2020.08.014_bib0013 article-title: A new approach to the analysis of heat and mass transfer characteristics for laminar air flow inside vertical plate channels with falling water film evaporation publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2016.07.109 – volume: 39 start-page: 615 year: 2016 ident: 10.1016/j.enganabound.2020.08.014_bib0005 article-title: Evaluations on heat resistance of curtains with water film in a fire publication-title: J Chin Inst Eng Trans Chin Inst Eng A – year: 2003 ident: 10.1016/j.enganabound.2020.08.014_bib0020 – volume: 28 start-page: 2167 year: 2008 ident: 10.1016/j.enganabound.2020.08.014_bib0011 article-title: Heat transfer and flow characteristics of the cooling system of an industrial glass tempering unit publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2007.12.014 – volume: 95 start-page: 33 year: 2018 ident: 10.1016/j.enganabound.2020.08.014_bib0015 article-title: Identification of the heat transfer coefficient during cooling process by means of Trefftz method publication-title: Eng Anal Bound Elem doi: 10.1016/j.enganabound.2018.07.001 – volume: 102 start-page: 11 year: 2019 ident: 10.1016/j.enganabound.2020.08.014_bib0025 article-title: Numerical study of natural convection in a horizontal concentric annulus using smoothed particle hydrodynamics publication-title: Eng Anal Bound Elem doi: 10.1016/j.enganabound.2019.02.007 – volume: 145 start-page: 160 year: 2014 ident: 10.1016/j.enganabound.2020.08.014_bib0004 article-title: Experimental study on radiation attenuation by a water film publication-title: J Quant Spectrosc Radiat Transf doi: 10.1016/j.jqsrt.2014.04.020 – volume: 39 start-page: 615 year: 2016 ident: 10.1016/j.enganabound.2020.08.014_bib0002 article-title: Evaluations on heat resistance of curtains with water film in a fire publication-title: J Chin Inst Eng Trans Chin Inst Eng A – volume: 111 start-page: 195 year: 2020 ident: 10.1016/j.enganabound.2020.08.014_bib0028 article-title: Assessment of smoothed particle hydrodynamics (SPH) models for predicting wall heat transfer rate at complex boundary publication-title: Eng Anal Bound Elem doi: 10.1016/j.enganabound.2019.10.017 – volume: 362 year: 2020 ident: 10.1016/j.enganabound.2020.08.014_bib0029 article-title: Modeling glass cooling mechanism with down-flowing water film via the smoothed particle hydrodynamics publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2020.112839 – volume: 42 start-page: 3277 year: 2007 ident: 10.1016/j.enganabound.2020.08.014_bib0006 article-title: Full-scale evaluations on heat resistance of glass panes incorporated with water film or sprinkler in a room fire publication-title: Build Environ doi: 10.1016/j.buildenv.2006.08.017 – volume: 57 start-page: 15 year: 2014 ident: 10.1016/j.enganabound.2020.08.014_bib0008 article-title: Maximum temperature to withstand water film for tempered glass exposed to fire publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2014.01.094 – volume: 51 start-page: 1 year: 2007 ident: 10.1016/j.enganabound.2020.08.014_bib0026 article-title: Modeling transient heat transfer using SPH and implicit time integration publication-title: Numer Heat Transf Part B Fundam doi: 10.1080/10407790600762763 – volume: 26 start-page: 79 year: 2000 ident: 10.1016/j.enganabound.2020.08.014_bib0001 article-title: Fire suppression by water sprays publication-title: Prog Energy Combust Sci doi: 10.1016/S0360-1285(99)00012-X – volume: 110 start-page: 783 year: 2017 ident: 10.1016/j.enganabound.2020.08.014_bib0014 article-title: Study on average Nusselt and Sherwood numbers in vertical plate channels with falling water film evaporation publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2017.03.087 – volume: 153 start-page: 71 year: 2003 ident: 10.1016/j.enganabound.2020.08.014_bib0027 article-title: Smoothed particle hydrodynamics: applications to heat conduction publication-title: Comput Phys Commun doi: 10.1016/S0010-4655(03)00155-3 |
SSID | ssj0013006 |
Score | 2.2969637 |
Snippet | Glass cooling using water film depends on several parameters such as heat flux, down-flowing velocity, and thickness of water film. The efficiency of glass... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 195 |
SubjectTerms | Fire Glass cooling Smoothed particle hydrodynamics (SPH) Temperature distribution Thermal analysis Water film |
Title | A meshfree analysis of the thermal behaviors of hot surface glass pane subjects to down-flowing water film via smoothed particle hydrodynamics |
URI | https://dx.doi.org/10.1016/j.enganabound.2020.08.014 |
Volume | 120 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEG5EQdyDqLuyuiol7LV38uiZpGEvgyijgx7cFb2FTj-ckZlEJnFlL_4Ef7NVeegIgoKHENLpIk1X9VfV6Xow9tNLLSplJbiLe5YLIRRPI6m4kFakEnWsrPJ0n571Bhfi5Kp7tcAO2lgYcqtssL_G9Aqtm5ZOM5ud2_G484eSp0UU94lyGvgVDgsRkZT_evBfThK8qr4mdebUe5ntv_h42exaZeQBnFHS0MCrsnn64m0dNad3jtbYamMwQr8e0zpbsNkG-zKXRvAre-zD1BYjN7MWVJNkBHIHaNvRhdA7gTYcv3oxykso7mZOaQuV-QyICRabUvorU0CZg8HdOXeT_B6_APdokM7AjSdT-DdWUExzitsySFWPCkb_DQJxXdy--MYujg7_Hgx4U2eB6zAKSt7Taexc0FVSaa1dJA3q7Vhb4evYhrjodWpSz2nay9C5Ji5h3xjjKSOFCI0MN9lilmf2O4NQu55P8dhSCYFgGMfEb6_rnBcF3djbYnE7s4lukpBTLYxJ0nqb3SRzTEmIKQnVyfTFFgueSW_rTBwfIfrdsi95JVYJaoz3ybc_R_6DrdBTHbq4wxbL2Z3dRRumTPcqId1jS_3j4eCM7sPzy-ETm7v26Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADB5VrVTgUFEeog-okeA4bDI7m4dUDhW02tLHhVbqLUzmwQbtJtUm7Wov_Qn8Gf4gdh50kSoVCfWQy0RWRrbz2cnYnxl756UWg7KS3EWB5VJKxdMwVlzGVqYxxti45uk-OQ2G5_LLxeBiif3qemGorLLF_gbTa7RuV3qtNnuXWdb7SuRpIfV9op8KPxBtZeWRnc_wu638ePgZjfxeiIP9s09D3o4W4LofiooHOo2cEwMVK621C2ODoSrSVvo6sn30c52a1HOa0nc6ykOv9Y0xnjKxlH1DDEyI-ysS4YLGJny48W-PLrx6oCftjtP2Vtnb26Iym39XOZUc58RSKryaPtSXdwfFhUB38JSttRkq7DVKWGdLNn_GnizwFj5nP_dgYsuRm1oLqmU1gcIBJpN0IdaPoev_r2-MigrKq6lT2kKdrwOCkMWllH4DlVAVYIpZzt24mOETYIYZ8BRcNp7AdaagnBTUKGZQqtkVjOYGkX-eq0mmyxfs_EG0_5It50VuXzHoaxf41AAeKykRfaOIHMwbOOeFYhB5GyzqNJvolvWchm-Mk6687UeyYJSEjJLQYE5fbjDxR_Syof74F6HdznzJX36cYIi6X3zz_8R32KPh2clxcnx4erTFHtOdpm9ymy1X0yv7GhOoKn1TOyywbw_9hvwGcssx8w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+meshfree+analysis+of+the+thermal+behaviors+of+hot+surface+glass+pane+subjects+to+down-flowing+water+film+via+smoothed+particle+hydrodynamics&rft.jtitle=Engineering+analysis+with+boundary+elements&rft.au=Abdoh%2C+D.A.&rft.au=Ademiloye%2C+A.S.&rft.au=Liew%2C+K.M.&rft.date=2020-11-01&rft.issn=0955-7997&rft.volume=120&rft.spage=195&rft.epage=210&rft_id=info:doi/10.1016%2Fj.enganabound.2020.08.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enganabound_2020_08_014 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0955-7997&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0955-7997&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0955-7997&client=summon |