Design of borehole heat exchangers for ground-source heat pumps: A literature review, methodology comparison and analysis on the penalty temperature
[Display omitted] ► The efficient design of borehole heat exchangers (BHE) is still a crucial point. ► Complex design methods are available; simpler procedures for designers are required. ► Sizing of the BHE length is affected by the penalty temperature parameter. ► An easy-to-use approach for the e...
Saved in:
Published in | Energy and buildings Vol. 55; pp. 369 - 379 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier B.V
01.12.2012
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
► The efficient design of borehole heat exchangers (BHE) is still a crucial point. ► Complex design methods are available; simpler procedures for designers are required. ► Sizing of the BHE length is affected by the penalty temperature parameter. ► An easy-to-use approach for the evaluation if this index is presented. ► An analysis of the proposed method is performed on a real case-study building.
Better energy efficiency of ground coupled heat pump systems in comparison with traditional applications leads to continued growth in the number of installations for space conditioning. The solution with vertical heat exchangers is the most widespread. The design of the borehole heat exchangers (BHEs) is a nodal point, both from an energy efficiency and an economic point of view.
In literature, several methods to design these systems are available. However, to promote their application, easy-to-use procedures are required; furthermore designers very often are discouraged from the use of not-open or complicated computational tools. Among the literature models, the ASHRAE method is surely the simplest procedure and, as a consequence, it is suitable for this goal. In this approach, sizing of the BHE length is strongly affected by the parameter named penalty temperature, which is an index to evaluate the long-term behaviour of the borehole field.
In this paper, a review of this index is reported and in addition a new approach for its evaluation is presented. Furthermore, a detailed analysis of the proposed method is performed on a real case-study building with only heating conditioning. |
---|---|
AbstractList | [Display omitted]
► The efficient design of borehole heat exchangers (BHE) is still a crucial point. ► Complex design methods are available; simpler procedures for designers are required. ► Sizing of the BHE length is affected by the penalty temperature parameter. ► An easy-to-use approach for the evaluation if this index is presented. ► An analysis of the proposed method is performed on a real case-study building.
Better energy efficiency of ground coupled heat pump systems in comparison with traditional applications leads to continued growth in the number of installations for space conditioning. The solution with vertical heat exchangers is the most widespread. The design of the borehole heat exchangers (BHEs) is a nodal point, both from an energy efficiency and an economic point of view.
In literature, several methods to design these systems are available. However, to promote their application, easy-to-use procedures are required; furthermore designers very often are discouraged from the use of not-open or complicated computational tools. Among the literature models, the ASHRAE method is surely the simplest procedure and, as a consequence, it is suitable for this goal. In this approach, sizing of the BHE length is strongly affected by the parameter named penalty temperature, which is an index to evaluate the long-term behaviour of the borehole field.
In this paper, a review of this index is reported and in addition a new approach for its evaluation is presented. Furthermore, a detailed analysis of the proposed method is performed on a real case-study building with only heating conditioning. Better energy efficiency of ground coupled heat pump systems in comparison with traditional applications leads to continued growth in the number of installations for space conditioning. The solution with vertical heat exchangers is the most widespread. The design of the borehole heat exchangers (BHEs) is a nodal point, both from an energy efficiency and an economic point of view. In literature, several methods to design these systems are available. However, to promote their application, easy-to-use procedures are required; furthermore designers very often are discouraged from the use of not-open or complicated computational tools. Among the literature models, the ASHRAE method is surely the simplest procedure and, as a consequence, it is suitable for this goal. In this approach, sizing of the BHE length is strongly affected by the parameter named penalty temperature, which is an index to evaluate the long-term behaviour of the borehole field. In this paper, a review of this index is reported and in addition a new approach for its evaluation is presented. Furthermore, a detailed analysis of the proposed method is performed on a real case-study building with only heating conditioning. |
Author | Zarrella, Angelo De Carli, Michele Capozza, Antonio |
Author_xml | – sequence: 1 givenname: Antonio surname: Capozza fullname: Capozza, Antonio email: antonio.capozza@rse-web.it organization: RSE S.p.A., Department of Power System Development, via Rubattino 54, 20134 Milano, Italy – sequence: 2 givenname: Michele surname: De Carli fullname: De Carli, Michele organization: Department of Applied Physics, DFT, University of Padova, via Venezia 1, 35131 Padova, Italy – sequence: 3 givenname: Angelo surname: Zarrella fullname: Zarrella, Angelo organization: Department of Applied Physics, DFT, University of Padova, via Venezia 1, 35131 Padova, Italy |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26731204$$DView record in Pascal Francis |
BookMark | eNqFkMuO1DAQRbMYJGYGPgHJGyQWJPiRxG42aDQ8pZHYwNpynErHLccOLgfo_-CD8agjtiysskunbsnnproKMUBVvWC0YZT1b04NhGFzfmw4ZbyhqqEtu6quqZCqllKpp9UN4olS2neSXVd_3gO6YyBxIkNMMEcPZAaTCfy2swlHSEimmMgxxS2MNcYt2Z1Yt2XFt-SOeJchmbwlIAl-Ovj1miyQ5zhGH49nYuOymuQwBmLCWI7xZ3RIyjvPQFYojXwmGZZ1j3lWPZmMR3i-19vq-8cP3-4_1w9fP325v3uorZA81_1gqTgIxpQCRk0Ho4CBGTZR2XdArVCGicOhXEC2rR162lnVspb30DKgIG6rV5fcNcUfG2DWi0ML3psAcUPNuOSy5SW_oN0FtSkiJpj0mtxi0lkzqh_N65PezetH85oqXcyXuZf7CoPW-CmZYB3-G-a9FIzTtnDvLhyU_xaHSaN1ECyMLoHNeozuP5v-Ar5uovE |
CODEN | ENEBDR |
CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2016_07_120 crossref_primary_10_1016_j_ijrefrig_2015_10_029 crossref_primary_10_1016_j_applthermaleng_2018_09_010 crossref_primary_10_1016_j_apenergy_2015_04_070 crossref_primary_10_1016_j_rser_2020_109928 crossref_primary_10_1016_j_rser_2019_04_045 crossref_primary_10_1016_j_enbuild_2017_07_015 crossref_primary_10_1016_j_applthermaleng_2024_123507 crossref_primary_10_1111_gwat_13154 crossref_primary_10_1080_23744731_2018_1423816 crossref_primary_10_1080_23744731_2017_1296320 crossref_primary_10_1016_j_egypro_2017_12_656 crossref_primary_10_1016_j_enconman_2014_06_094 crossref_primary_10_3390_en14092618 crossref_primary_10_1016_j_enbuild_2015_06_003 crossref_primary_10_1016_j_applthermaleng_2021_117673 crossref_primary_10_1016_j_energy_2016_10_045 crossref_primary_10_1016_j_enbuild_2014_06_040 crossref_primary_10_1016_j_egypro_2015_12_099 crossref_primary_10_1080_10789669_2014_974478 crossref_primary_10_1016_j_energy_2019_03_030 crossref_primary_10_3390_en12183538 crossref_primary_10_1016_j_enconman_2015_01_080 crossref_primary_10_3390_en12193698 crossref_primary_10_3390_en15072685 crossref_primary_10_1016_j_apenergy_2019_01_027 crossref_primary_10_1016_j_renene_2018_04_083 crossref_primary_10_1016_j_applthermaleng_2013_07_021 crossref_primary_10_1016_j_enbuild_2013_06_013 crossref_primary_10_1016_j_energy_2013_08_054 crossref_primary_10_1016_j_renene_2014_07_026 crossref_primary_10_3390_su8010035 crossref_primary_10_1016_j_rser_2018_05_063 crossref_primary_10_1016_j_geothermics_2018_12_007 crossref_primary_10_1016_j_rser_2016_02_014 crossref_primary_10_1016_j_enbuild_2021_110946 crossref_primary_10_1016_j_rser_2016_01_096 crossref_primary_10_1016_j_geothermics_2015_06_007 crossref_primary_10_1016_j_esd_2014_08_004 crossref_primary_10_1080_15435075_2021_1880913 crossref_primary_10_1016_j_enbuild_2014_11_024 crossref_primary_10_1016_j_enbenv_2022_10_002 crossref_primary_10_3390_en14102892 crossref_primary_10_1016_j_enbuild_2014_02_026 crossref_primary_10_1016_j_enbuild_2015_02_005 crossref_primary_10_1016_j_enbuild_2016_12_055 crossref_primary_10_1016_j_enbuild_2015_02_008 crossref_primary_10_1016_j_enbuild_2016_02_028 crossref_primary_10_1016_j_applthermaleng_2016_08_134 crossref_primary_10_1016_j_petrol_2022_111137 crossref_primary_10_1016_j_enbuild_2013_01_023 crossref_primary_10_1080_23744731_2016_1208537 crossref_primary_10_1016_j_enbuild_2020_110518 crossref_primary_10_1016_j_renene_2017_11_037 crossref_primary_10_1016_j_renene_2017_11_035 crossref_primary_10_1016_j_scs_2017_07_018 crossref_primary_10_1016_j_rser_2013_07_057 crossref_primary_10_1016_j_energy_2019_04_094 crossref_primary_10_3390_en15218101 crossref_primary_10_1016_j_apenergy_2013_02_043 |
Cites_doi | 10.1016/j.geothermics.2009.07.002 10.1016/j.enbuild.2011.02.020 10.1080/10789669.2004.10391114 10.1016/j.enbuild.2006.06.003 10.1016/j.geothermics.2009.01.003 10.1016/j.renene.2009.09.015 10.1016/j.renene.2009.11.034 10.1016/j.apenergy.2009.04.038 |
ContentType | Journal Article |
Copyright | 2012 Elsevier B.V. 2014 INIST-CNRS |
Copyright_xml | – notice: 2012 Elsevier B.V. – notice: 2014 INIST-CNRS |
DBID | IQODW AAYXX CITATION 7ST 7U6 C1K SOI |
DOI | 10.1016/j.enbuild.2012.08.041 |
DatabaseName | Pascal-Francis CrossRef Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management Environment Abstracts |
DatabaseTitle | CrossRef Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Environment Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EndPage | 379 |
ExternalDocumentID | 10_1016_j_enbuild_2012_08_041 26731204 S0378778812004458 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SES SET SEW SPC SPCBC SSJ SSR SST SSZ T5K WUQ ZMT ZY4 ~02 ~G- AALMO AAPBV ABPIF ABPTK ADALY IPNFZ IQODW AAXKI AAYXX AFJKZ AKRWK CITATION 7ST 7U6 C1K SOI |
ID | FETCH-LOGICAL-c372t-6bc03931188e10a5ed3eb1a1f0765e0c38a13990c3e744cb605c841426e41e0e3 |
IEDL.DBID | AIKHN |
ISSN | 0378-7788 |
IngestDate | Fri Oct 25 03:23:25 EDT 2024 Thu Sep 26 17:35:01 EDT 2024 Thu Nov 24 18:35:42 EST 2022 Fri Feb 23 02:30:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Infinite line source Borefield design Ground-source heat pumps Borehole heat exchanger Finite line source Temperature Methodology Heat pump Geothermal energy System design Modeling Case study Penalty function Energetic efficiency Heat exchanger Formulation Comparative study |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-6bc03931188e10a5ed3eb1a1f0765e0c38a13990c3e744cb605c841426e41e0e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1272742188 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1272742188 crossref_primary_10_1016_j_enbuild_2012_08_041 pascalfrancis_primary_26731204 elsevier_sciencedirect_doi_10_1016_j_enbuild_2012_08_041 |
PublicationCentury | 2000 |
PublicationDate | 2012-12-01 |
PublicationDateYYYYMMDD | 2012-12-01 |
PublicationDate_xml | – month: 12 year: 2012 text: 2012-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Energy and buildings |
PublicationYear | 2012 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Spitler (bib0045) 2000 Philippe, Bernier, Marchio (bib0075) 2009; 38 Carslaw, Jaeger (bib0050) 1959 Claesson, Eskilson (bib0085) 1987 June Lamarche, Beauchamp (bib0030) 2007; 39 Hart, Couvillion (bib0100) 1986 G. Hellström, Ground Heat Storage. Thermal Analysis of Duct Storage Systems: Theory. Doctoral Thesis, Department of Mathematical Physics, University of Lund, Sweden, 1991. ASHRAE Handbook—HVAC Applications. Geothermal Energy, 2011 (Chapter 34). Fossa (bib0020) 2011; 43 Diao, Zeng, Fang (bib0070) 2004; 10 Yavuzturk, Spitler (bib0080) 1999; 105 Bernier, Chahla, Pinel (bib0015) 2008; 114 Bandos, Montero, Fernández, Santander, Isidro, Pérez, Fernández de Córdoba, Urchueguíab (bib0025) 2009; 38 Marcotte, Pasquier, Sheriff, Bernier (bib0065) 2010; 35 Yang, Cui, Fang (bib0060) 2010; 87 Kavanaugh, Rafferty (bib0005) 1997 F. Bazzocchi, L. Croci, Raccolta dati sperimentali sulle prestazioni in campo di impianti di climatizzazione (Collection of experimental data on the performance of HVAC plants), ERSE report 09004637, 2010. Eskilson (bib0035) 1987 De Carli, Tonon, Zarrella, Zecchin (bib0090) 2010; 35 Hellström, Sanner (bib0040) 1994 Ingersoll, Zobel, Ingersoll (bib0055) 1954 10.1016/j.enbuild.2012.08.041_bib0095 Claesson (10.1016/j.enbuild.2012.08.041_bib0085) 1987 Philippe (10.1016/j.enbuild.2012.08.041_bib0075) 2009; 38 Hellström (10.1016/j.enbuild.2012.08.041_bib0040) 1994 De Carli (10.1016/j.enbuild.2012.08.041_bib0090) 2010; 35 Carslaw (10.1016/j.enbuild.2012.08.041_bib0050) 1959 Diao (10.1016/j.enbuild.2012.08.041_bib0070) 2004; 10 Lamarche (10.1016/j.enbuild.2012.08.041_bib0030) 2007; 39 Spitler (10.1016/j.enbuild.2012.08.041_bib0045) 2000 Bandos (10.1016/j.enbuild.2012.08.041_bib0025) 2009; 38 10.1016/j.enbuild.2012.08.041_bib0105 Fossa (10.1016/j.enbuild.2012.08.041_bib0020) 2011; 43 10.1016/j.enbuild.2012.08.041_bib0010 Yang (10.1016/j.enbuild.2012.08.041_bib0060) 2010; 87 Marcotte (10.1016/j.enbuild.2012.08.041_bib0065) 2010; 35 Hart (10.1016/j.enbuild.2012.08.041_bib0100) 1986 Kavanaugh (10.1016/j.enbuild.2012.08.041_bib0005) 1997 Eskilson (10.1016/j.enbuild.2012.08.041_bib0035) 1987 Bernier (10.1016/j.enbuild.2012.08.041_bib0015) 2008; 114 Yavuzturk (10.1016/j.enbuild.2012.08.041_bib0080) 1999; 105 Ingersoll (10.1016/j.enbuild.2012.08.041_bib0055) 1954 |
References_xml | – volume: 105 start-page: 475 year: 1999 end-page: 485 ident: bib0080 article-title: A short time step response factor model for vertical ground loop heat exchangers publication-title: ASHRAE Transactions contributor: fullname: Spitler – volume: 39 start-page: 188 year: 2007 end-page: 198 ident: bib0030 article-title: A new contribution to the finite line-source model for geothermal boreholes publication-title: Energy and Buildings contributor: fullname: Beauchamp – year: 1954 ident: bib0055 article-title: Heat Conduction: With Engineering and Geological Applications contributor: fullname: Ingersoll – year: 1994 ident: bib0040 article-title: Earth Energy Designer: Software for Dimensioning of Deep Boreholes for Heat Extraction contributor: fullname: Sanner – volume: 114 start-page: 342 year: 2008 end-page: 350 ident: bib0015 article-title: Long-term ground temperature changes in geo-exchange systems publication-title: ASHRAE Transactions contributor: fullname: Pinel – volume: 43 start-page: 1473 year: 2011 end-page: 1479 ident: bib0020 article-title: The temperature penalty approach to the design of borehole heat exchanger for heat pump application publication-title: Energy and Buildings contributor: fullname: Fossa – volume: 38 start-page: 407 year: 2009 end-page: 413 ident: bib0075 article-title: Validity ranges of three analytical solutions to heat transfer in the vicinity of single boreholes publication-title: Geothermics contributor: fullname: Marchio – volume: 35 start-page: 763 year: 2010 end-page: 770 ident: bib0065 article-title: The importance of axial effects for borehole design of geothermal heat-pump systems publication-title: Renewable Energy contributor: fullname: Bernier – volume: 87 start-page: 16 year: 2010 end-page: 27 ident: bib0060 article-title: Vertical-borehole ground-coupled heat pumps: a review of models and systems publication-title: Applied Energy contributor: fullname: Fang – year: 1986 ident: bib0100 article-title: Earth Coupled Heat Transfer contributor: fullname: Couvillion – year: 2000 ident: bib0045 article-title: GLHEPRO—a design tool for commercial building ground loop heat exchangers publication-title: Proceedings of 4th International Heat Pumps in Cold Climates Conference contributor: fullname: Spitler – year: 1997 ident: bib0005 article-title: Ground-source Heat Pumps—Design of Geothermal System for Commercial and Institutional Buildings contributor: fullname: Rafferty – year: 1959 ident: bib0050 article-title: Conduction of Heat in Solids contributor: fullname: Jaeger – year: 1987 June ident: bib0085 article-title: Conductive Heat Extraction by Thermally Interacting Deep Boreholes contributor: fullname: Eskilson – volume: 10 start-page: 459 year: 2004 end-page: 470 ident: bib0070 article-title: Improvement in modelling of heat transfer in vertical ground heat exchangers publication-title: HVAC&R contributor: fullname: Fang – year: 1987 ident: bib0035 article-title: Thermal Analysis of Heat Extraction Boreholes. Doctoral Thesis contributor: fullname: Eskilson – volume: 35 start-page: 1537 year: 2010 end-page: 1550 ident: bib0090 article-title: A computational capacity resistance model (CARM) for vertical ground-coupled heat exchangers publication-title: Renewable Energy contributor: fullname: Zecchin – volume: 38 start-page: 263 year: 2009 end-page: 270 ident: bib0025 article-title: Finite line-source model for borehole heat exchangers: effect of vertical temperature variations publication-title: Geothermics contributor: fullname: Urchueguíab – year: 1994 ident: 10.1016/j.enbuild.2012.08.041_bib0040 contributor: fullname: Hellström – volume: 38 start-page: 407 issue: 4 year: 2009 ident: 10.1016/j.enbuild.2012.08.041_bib0075 article-title: Validity ranges of three analytical solutions to heat transfer in the vicinity of single boreholes publication-title: Geothermics doi: 10.1016/j.geothermics.2009.07.002 contributor: fullname: Philippe – year: 1959 ident: 10.1016/j.enbuild.2012.08.041_bib0050 contributor: fullname: Carslaw – ident: 10.1016/j.enbuild.2012.08.041_bib0105 – volume: 43 start-page: 1473 issue: 6 year: 2011 ident: 10.1016/j.enbuild.2012.08.041_bib0020 article-title: The temperature penalty approach to the design of borehole heat exchanger for heat pump application publication-title: Energy and Buildings doi: 10.1016/j.enbuild.2011.02.020 contributor: fullname: Fossa – year: 1986 ident: 10.1016/j.enbuild.2012.08.041_bib0100 contributor: fullname: Hart – year: 2000 ident: 10.1016/j.enbuild.2012.08.041_bib0045 article-title: GLHEPRO—a design tool for commercial building ground loop heat exchangers contributor: fullname: Spitler – year: 1987 ident: 10.1016/j.enbuild.2012.08.041_bib0085 contributor: fullname: Claesson – volume: 10 start-page: 459 issue: 4 year: 2004 ident: 10.1016/j.enbuild.2012.08.041_bib0070 article-title: Improvement in modelling of heat transfer in vertical ground heat exchangers publication-title: HVAC&R doi: 10.1080/10789669.2004.10391114 contributor: fullname: Diao – volume: 114 start-page: 342 year: 2008 ident: 10.1016/j.enbuild.2012.08.041_bib0015 article-title: Long-term ground temperature changes in geo-exchange systems publication-title: ASHRAE Transactions contributor: fullname: Bernier – volume: 39 start-page: 188 issue: 2 year: 2007 ident: 10.1016/j.enbuild.2012.08.041_bib0030 article-title: A new contribution to the finite line-source model for geothermal boreholes publication-title: Energy and Buildings doi: 10.1016/j.enbuild.2006.06.003 contributor: fullname: Lamarche – year: 1987 ident: 10.1016/j.enbuild.2012.08.041_bib0035 contributor: fullname: Eskilson – volume: 105 start-page: 475 year: 1999 ident: 10.1016/j.enbuild.2012.08.041_bib0080 article-title: A short time step response factor model for vertical ground loop heat exchangers publication-title: ASHRAE Transactions contributor: fullname: Yavuzturk – volume: 38 start-page: 263 issue: 2 year: 2009 ident: 10.1016/j.enbuild.2012.08.041_bib0025 article-title: Finite line-source model for borehole heat exchangers: effect of vertical temperature variations publication-title: Geothermics doi: 10.1016/j.geothermics.2009.01.003 contributor: fullname: Bandos – year: 1997 ident: 10.1016/j.enbuild.2012.08.041_bib0005 contributor: fullname: Kavanaugh – volume: 35 start-page: 763 issue: 4 year: 2010 ident: 10.1016/j.enbuild.2012.08.041_bib0065 article-title: The importance of axial effects for borehole design of geothermal heat-pump systems publication-title: Renewable Energy doi: 10.1016/j.renene.2009.09.015 contributor: fullname: Marcotte – volume: 35 start-page: 1537 issue: 7 year: 2010 ident: 10.1016/j.enbuild.2012.08.041_bib0090 article-title: A computational capacity resistance model (CARM) for vertical ground-coupled heat exchangers publication-title: Renewable Energy doi: 10.1016/j.renene.2009.11.034 contributor: fullname: De Carli – ident: 10.1016/j.enbuild.2012.08.041_bib0010 – ident: 10.1016/j.enbuild.2012.08.041_bib0095 – year: 1954 ident: 10.1016/j.enbuild.2012.08.041_bib0055 contributor: fullname: Ingersoll – volume: 87 start-page: 16 issue: 1 year: 2010 ident: 10.1016/j.enbuild.2012.08.041_bib0060 article-title: Vertical-borehole ground-coupled heat pumps: a review of models and systems publication-title: Applied Energy doi: 10.1016/j.apenergy.2009.04.038 contributor: fullname: Yang |
SSID | ssj0006571 |
Score | 2.3683772 |
Snippet | [Display omitted]
► The efficient design of borehole heat exchangers (BHE) is still a crucial point. ► Complex design methods are available; simpler procedures... Better energy efficiency of ground coupled heat pump systems in comparison with traditional applications leads to continued growth in the number of... |
SourceID | proquest crossref pascalfrancis elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 369 |
SubjectTerms | Applied sciences Borefield design Borehole heat exchanger Building technical equipments Buildings Buildings. Public works Computation methods. Tables. Charts Energy Energy management and energy conservation in building Environmental engineering Exact sciences and technology Finite line source Geothermal energy Ground-source heat pumps Infinite line source Natural energy Structural analysis. Stresses |
Title | Design of borehole heat exchangers for ground-source heat pumps: A literature review, methodology comparison and analysis on the penalty temperature |
URI | https://dx.doi.org/10.1016/j.enbuild.2012.08.041 https://search.proquest.com/docview/1272742188 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB_a64siYv3Aq3pE6KO524_sbs6342w5qxZRC30Lye4sXCl7S-8K-uJf4R_szCZ7tRQRfFjYhGSzZCYzk2TmNwCHpAV0ZTVKsiZqqVBNpXNpIRNdMfaJQx1xcPKn03xxpk7Os_MdmPexMOxWGWS_l-mdtA41kzCbk3a5nHyNUmI2RkNnQqtM78IeqaNED2Bv9v7D4nQrkPOs23dxe8kdbgJ5JhdjRhhYXjJmKJ8K6nGk4r-pqAetXdPE1T7jxR3h3Wmk40fwMJiSYub_dh92sHkM9_8AGHwCv951DhpiVQuiNXIuXMHSV-D3EPG7FmS1Co7taCrpT_J9i5bovH4rZuJyC7wsfJzLG-HTTncH8qLcJjIUtqno8SAngspkW4oWqWLzQzAEVvjMUzg7Pvo2X8iQh0GWaZFsZO5KjuClrYjGOLIZVilJeBvXUZFnGJWptmRHTukFC6VKRzukUquYdD-qGCNMn8GgWTX4HERVl1NHSx6LxKlKW5u4nEzMhFgCa6ofwrifetN6uA3T-6FdmEArw7QynD1TxUPQPYHMLb4xpBL-1XV0i6DbAZO8SImp1BBe9xQ2tOj4JsU2uLpemzgp-IqbJuTg_8d_Afe45H1jXsJgc3WNr8jC2bgR7I5_xiPi4_mXj59HgZ9_A-Lw_-w |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-69mEbZXQfZWm3VoM9Tok_ZFvZW-ha0rXNy1rom5DsM6QUxywpbP_H_uDeWXK2MsagDwZbliyjO92dpLvfAXwkLaArq1GSNVFLhWosnUsLmeiKsU8c6oiDky9m-fRKfb3OrjfgqI-FYbfKIPu9TO-kdSgZhdEctfP56FuUErMxGjoTWmX6CWyRNTCm2bk1OT2bztYCOc-6dRfXl9zgdyDP6GbICAPzW8YM5V1BPYxU_C8Vtd3aJQ1c7TNe_CW8O410sgMvgikpJv5vX8IGNq_g-R8Ag6_h15fOQUMsakG0Rs6FK1j6CvwRIn6XgqxWwbEdTSX9Tr6v0RKdl5_FRNyugZeFj3P5JHza6W5DXpTrRIbCNhVdHuRE0DPZlqJFKlj9FAyBFT7zBq5Oji-PpjLkYZBlWiQrmbuSI3hpKaIxjmyGVUoS3sZ1VOQZRmWqLdmRY7rBQqnS0Qqp1Com3Y8qxgjTXdhsFg2-BVHV5djRlMcicarS1iYuJxMzIZbAmsoHMOyH3rQebsP0fmg3JtDKMK0MZ89U8QB0TyDzgG8MqYT_NT14QNB1h0lepMRUagAfegobmnR8kmIbXNwtTZwUfMRNA7L3-P4P4en08uLcnJ_OzvbhGb_xfjLvYHP1_Q7fk7WzcgeBm-8BELkAWg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+borehole+heat+exchangers+for+ground-source+heat+pumps%3A+A+literature+review%2C+methodology+comparison+and+analysis+on+the+penalty+temperature&rft.jtitle=Energy+and+buildings&rft.au=Capozza%2C+Antonio&rft.au=De+Carli%2C+Michele&rft.au=Zarrella%2C+Angelo&rft.date=2012-12-01&rft.issn=0378-7788&rft.volume=55&rft.spage=369&rft.epage=379&rft_id=info:doi/10.1016%2Fj.enbuild.2012.08.041&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enbuild_2012_08_041 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon |