Design of borehole heat exchangers for ground-source heat pumps: A literature review, methodology comparison and analysis on the penalty temperature

[Display omitted] ► The efficient design of borehole heat exchangers (BHE) is still a crucial point. ► Complex design methods are available; simpler procedures for designers are required. ► Sizing of the BHE length is affected by the penalty temperature parameter. ► An easy-to-use approach for the e...

Full description

Saved in:
Bibliographic Details
Published inEnergy and buildings Vol. 55; pp. 369 - 379
Main Authors Capozza, Antonio, De Carli, Michele, Zarrella, Angelo
Format Journal Article
LanguageEnglish
Published Oxford Elsevier B.V 01.12.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] ► The efficient design of borehole heat exchangers (BHE) is still a crucial point. ► Complex design methods are available; simpler procedures for designers are required. ► Sizing of the BHE length is affected by the penalty temperature parameter. ► An easy-to-use approach for the evaluation if this index is presented. ► An analysis of the proposed method is performed on a real case-study building. Better energy efficiency of ground coupled heat pump systems in comparison with traditional applications leads to continued growth in the number of installations for space conditioning. The solution with vertical heat exchangers is the most widespread. The design of the borehole heat exchangers (BHEs) is a nodal point, both from an energy efficiency and an economic point of view. In literature, several methods to design these systems are available. However, to promote their application, easy-to-use procedures are required; furthermore designers very often are discouraged from the use of not-open or complicated computational tools. Among the literature models, the ASHRAE method is surely the simplest procedure and, as a consequence, it is suitable for this goal. In this approach, sizing of the BHE length is strongly affected by the parameter named penalty temperature, which is an index to evaluate the long-term behaviour of the borehole field. In this paper, a review of this index is reported and in addition a new approach for its evaluation is presented. Furthermore, a detailed analysis of the proposed method is performed on a real case-study building with only heating conditioning.
AbstractList [Display omitted] ► The efficient design of borehole heat exchangers (BHE) is still a crucial point. ► Complex design methods are available; simpler procedures for designers are required. ► Sizing of the BHE length is affected by the penalty temperature parameter. ► An easy-to-use approach for the evaluation if this index is presented. ► An analysis of the proposed method is performed on a real case-study building. Better energy efficiency of ground coupled heat pump systems in comparison with traditional applications leads to continued growth in the number of installations for space conditioning. The solution with vertical heat exchangers is the most widespread. The design of the borehole heat exchangers (BHEs) is a nodal point, both from an energy efficiency and an economic point of view. In literature, several methods to design these systems are available. However, to promote their application, easy-to-use procedures are required; furthermore designers very often are discouraged from the use of not-open or complicated computational tools. Among the literature models, the ASHRAE method is surely the simplest procedure and, as a consequence, it is suitable for this goal. In this approach, sizing of the BHE length is strongly affected by the parameter named penalty temperature, which is an index to evaluate the long-term behaviour of the borehole field. In this paper, a review of this index is reported and in addition a new approach for its evaluation is presented. Furthermore, a detailed analysis of the proposed method is performed on a real case-study building with only heating conditioning.
Better energy efficiency of ground coupled heat pump systems in comparison with traditional applications leads to continued growth in the number of installations for space conditioning. The solution with vertical heat exchangers is the most widespread. The design of the borehole heat exchangers (BHEs) is a nodal point, both from an energy efficiency and an economic point of view. In literature, several methods to design these systems are available. However, to promote their application, easy-to-use procedures are required; furthermore designers very often are discouraged from the use of not-open or complicated computational tools. Among the literature models, the ASHRAE method is surely the simplest procedure and, as a consequence, it is suitable for this goal. In this approach, sizing of the BHE length is strongly affected by the parameter named penalty temperature, which is an index to evaluate the long-term behaviour of the borehole field. In this paper, a review of this index is reported and in addition a new approach for its evaluation is presented. Furthermore, a detailed analysis of the proposed method is performed on a real case-study building with only heating conditioning.
Author Zarrella, Angelo
De Carli, Michele
Capozza, Antonio
Author_xml – sequence: 1
  givenname: Antonio
  surname: Capozza
  fullname: Capozza, Antonio
  email: antonio.capozza@rse-web.it
  organization: RSE S.p.A., Department of Power System Development, via Rubattino 54, 20134 Milano, Italy
– sequence: 2
  givenname: Michele
  surname: De Carli
  fullname: De Carli, Michele
  organization: Department of Applied Physics, DFT, University of Padova, via Venezia 1, 35131 Padova, Italy
– sequence: 3
  givenname: Angelo
  surname: Zarrella
  fullname: Zarrella, Angelo
  organization: Department of Applied Physics, DFT, University of Padova, via Venezia 1, 35131 Padova, Italy
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26731204$$DView record in Pascal Francis
BookMark eNqFkMuO1DAQRbMYJGYGPgHJGyQWJPiRxG42aDQ8pZHYwNpynErHLccOLgfo_-CD8agjtiysskunbsnnproKMUBVvWC0YZT1b04NhGFzfmw4ZbyhqqEtu6quqZCqllKpp9UN4olS2neSXVd_3gO6YyBxIkNMMEcPZAaTCfy2swlHSEimmMgxxS2MNcYt2Z1Yt2XFt-SOeJchmbwlIAl-Ovj1miyQ5zhGH49nYuOymuQwBmLCWI7xZ3RIyjvPQFYojXwmGZZ1j3lWPZmMR3i-19vq-8cP3-4_1w9fP325v3uorZA81_1gqTgIxpQCRk0Ho4CBGTZR2XdArVCGicOhXEC2rR162lnVspb30DKgIG6rV5fcNcUfG2DWi0ML3psAcUPNuOSy5SW_oN0FtSkiJpj0mtxi0lkzqh_N65PezetH85oqXcyXuZf7CoPW-CmZYB3-G-a9FIzTtnDvLhyU_xaHSaN1ECyMLoHNeozuP5v-Ar5uovE
CODEN ENEBDR
CitedBy_id crossref_primary_10_1016_j_applthermaleng_2016_07_120
crossref_primary_10_1016_j_ijrefrig_2015_10_029
crossref_primary_10_1016_j_applthermaleng_2018_09_010
crossref_primary_10_1016_j_apenergy_2015_04_070
crossref_primary_10_1016_j_rser_2020_109928
crossref_primary_10_1016_j_rser_2019_04_045
crossref_primary_10_1016_j_enbuild_2017_07_015
crossref_primary_10_1016_j_applthermaleng_2024_123507
crossref_primary_10_1111_gwat_13154
crossref_primary_10_1080_23744731_2018_1423816
crossref_primary_10_1080_23744731_2017_1296320
crossref_primary_10_1016_j_egypro_2017_12_656
crossref_primary_10_1016_j_enconman_2014_06_094
crossref_primary_10_3390_en14092618
crossref_primary_10_1016_j_enbuild_2015_06_003
crossref_primary_10_1016_j_applthermaleng_2021_117673
crossref_primary_10_1016_j_energy_2016_10_045
crossref_primary_10_1016_j_enbuild_2014_06_040
crossref_primary_10_1016_j_egypro_2015_12_099
crossref_primary_10_1080_10789669_2014_974478
crossref_primary_10_1016_j_energy_2019_03_030
crossref_primary_10_3390_en12183538
crossref_primary_10_1016_j_enconman_2015_01_080
crossref_primary_10_3390_en12193698
crossref_primary_10_3390_en15072685
crossref_primary_10_1016_j_apenergy_2019_01_027
crossref_primary_10_1016_j_renene_2018_04_083
crossref_primary_10_1016_j_applthermaleng_2013_07_021
crossref_primary_10_1016_j_enbuild_2013_06_013
crossref_primary_10_1016_j_energy_2013_08_054
crossref_primary_10_1016_j_renene_2014_07_026
crossref_primary_10_3390_su8010035
crossref_primary_10_1016_j_rser_2018_05_063
crossref_primary_10_1016_j_geothermics_2018_12_007
crossref_primary_10_1016_j_rser_2016_02_014
crossref_primary_10_1016_j_enbuild_2021_110946
crossref_primary_10_1016_j_rser_2016_01_096
crossref_primary_10_1016_j_geothermics_2015_06_007
crossref_primary_10_1016_j_esd_2014_08_004
crossref_primary_10_1080_15435075_2021_1880913
crossref_primary_10_1016_j_enbuild_2014_11_024
crossref_primary_10_1016_j_enbenv_2022_10_002
crossref_primary_10_3390_en14102892
crossref_primary_10_1016_j_enbuild_2014_02_026
crossref_primary_10_1016_j_enbuild_2015_02_005
crossref_primary_10_1016_j_enbuild_2016_12_055
crossref_primary_10_1016_j_enbuild_2015_02_008
crossref_primary_10_1016_j_enbuild_2016_02_028
crossref_primary_10_1016_j_applthermaleng_2016_08_134
crossref_primary_10_1016_j_petrol_2022_111137
crossref_primary_10_1016_j_enbuild_2013_01_023
crossref_primary_10_1080_23744731_2016_1208537
crossref_primary_10_1016_j_enbuild_2020_110518
crossref_primary_10_1016_j_renene_2017_11_037
crossref_primary_10_1016_j_renene_2017_11_035
crossref_primary_10_1016_j_scs_2017_07_018
crossref_primary_10_1016_j_rser_2013_07_057
crossref_primary_10_1016_j_energy_2019_04_094
crossref_primary_10_3390_en15218101
crossref_primary_10_1016_j_apenergy_2013_02_043
Cites_doi 10.1016/j.geothermics.2009.07.002
10.1016/j.enbuild.2011.02.020
10.1080/10789669.2004.10391114
10.1016/j.enbuild.2006.06.003
10.1016/j.geothermics.2009.01.003
10.1016/j.renene.2009.09.015
10.1016/j.renene.2009.11.034
10.1016/j.apenergy.2009.04.038
ContentType Journal Article
Copyright 2012 Elsevier B.V.
2014 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier B.V.
– notice: 2014 INIST-CNRS
DBID IQODW
AAYXX
CITATION
7ST
7U6
C1K
SOI
DOI 10.1016/j.enbuild.2012.08.041
DatabaseName Pascal-Francis
CrossRef
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
DatabaseTitle CrossRef
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Environment Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EndPage 379
ExternalDocumentID 10_1016_j_enbuild_2012_08_041
26731204
S0378778812004458
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
WUQ
ZMT
ZY4
~02
~G-
AALMO
AAPBV
ABPIF
ABPTK
ADALY
IPNFZ
IQODW
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7ST
7U6
C1K
SOI
ID FETCH-LOGICAL-c372t-6bc03931188e10a5ed3eb1a1f0765e0c38a13990c3e744cb605c841426e41e0e3
IEDL.DBID AIKHN
ISSN 0378-7788
IngestDate Fri Oct 25 03:23:25 EDT 2024
Thu Sep 26 17:35:01 EDT 2024
Thu Nov 24 18:35:42 EST 2022
Fri Feb 23 02:30:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Infinite line source
Borefield design
Ground-source heat pumps
Borehole heat exchanger
Finite line source
Temperature
Methodology
Heat pump
Geothermal energy
System design
Modeling
Case study
Penalty function
Energetic efficiency
Heat exchanger
Formulation
Comparative study
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-6bc03931188e10a5ed3eb1a1f0765e0c38a13990c3e744cb605c841426e41e0e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1272742188
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_1272742188
crossref_primary_10_1016_j_enbuild_2012_08_041
pascalfrancis_primary_26731204
elsevier_sciencedirect_doi_10_1016_j_enbuild_2012_08_041
PublicationCentury 2000
PublicationDate 2012-12-01
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy and buildings
PublicationYear 2012
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Spitler (bib0045) 2000
Philippe, Bernier, Marchio (bib0075) 2009; 38
Carslaw, Jaeger (bib0050) 1959
Claesson, Eskilson (bib0085) 1987 June
Lamarche, Beauchamp (bib0030) 2007; 39
Hart, Couvillion (bib0100) 1986
G. Hellström, Ground Heat Storage. Thermal Analysis of Duct Storage Systems: Theory. Doctoral Thesis, Department of Mathematical Physics, University of Lund, Sweden, 1991.
ASHRAE Handbook—HVAC Applications. Geothermal Energy, 2011 (Chapter 34).
Fossa (bib0020) 2011; 43
Diao, Zeng, Fang (bib0070) 2004; 10
Yavuzturk, Spitler (bib0080) 1999; 105
Bernier, Chahla, Pinel (bib0015) 2008; 114
Bandos, Montero, Fernández, Santander, Isidro, Pérez, Fernández de Córdoba, Urchueguíab (bib0025) 2009; 38
Marcotte, Pasquier, Sheriff, Bernier (bib0065) 2010; 35
Yang, Cui, Fang (bib0060) 2010; 87
Kavanaugh, Rafferty (bib0005) 1997
F. Bazzocchi, L. Croci, Raccolta dati sperimentali sulle prestazioni in campo di impianti di climatizzazione (Collection of experimental data on the performance of HVAC plants), ERSE report 09004637, 2010.
Eskilson (bib0035) 1987
De Carli, Tonon, Zarrella, Zecchin (bib0090) 2010; 35
Hellström, Sanner (bib0040) 1994
Ingersoll, Zobel, Ingersoll (bib0055) 1954
10.1016/j.enbuild.2012.08.041_bib0095
Claesson (10.1016/j.enbuild.2012.08.041_bib0085) 1987
Philippe (10.1016/j.enbuild.2012.08.041_bib0075) 2009; 38
Hellström (10.1016/j.enbuild.2012.08.041_bib0040) 1994
De Carli (10.1016/j.enbuild.2012.08.041_bib0090) 2010; 35
Carslaw (10.1016/j.enbuild.2012.08.041_bib0050) 1959
Diao (10.1016/j.enbuild.2012.08.041_bib0070) 2004; 10
Lamarche (10.1016/j.enbuild.2012.08.041_bib0030) 2007; 39
Spitler (10.1016/j.enbuild.2012.08.041_bib0045) 2000
Bandos (10.1016/j.enbuild.2012.08.041_bib0025) 2009; 38
10.1016/j.enbuild.2012.08.041_bib0105
Fossa (10.1016/j.enbuild.2012.08.041_bib0020) 2011; 43
10.1016/j.enbuild.2012.08.041_bib0010
Yang (10.1016/j.enbuild.2012.08.041_bib0060) 2010; 87
Marcotte (10.1016/j.enbuild.2012.08.041_bib0065) 2010; 35
Hart (10.1016/j.enbuild.2012.08.041_bib0100) 1986
Kavanaugh (10.1016/j.enbuild.2012.08.041_bib0005) 1997
Eskilson (10.1016/j.enbuild.2012.08.041_bib0035) 1987
Bernier (10.1016/j.enbuild.2012.08.041_bib0015) 2008; 114
Yavuzturk (10.1016/j.enbuild.2012.08.041_bib0080) 1999; 105
Ingersoll (10.1016/j.enbuild.2012.08.041_bib0055) 1954
References_xml – volume: 105
  start-page: 475
  year: 1999
  end-page: 485
  ident: bib0080
  article-title: A short time step response factor model for vertical ground loop heat exchangers
  publication-title: ASHRAE Transactions
  contributor:
    fullname: Spitler
– volume: 39
  start-page: 188
  year: 2007
  end-page: 198
  ident: bib0030
  article-title: A new contribution to the finite line-source model for geothermal boreholes
  publication-title: Energy and Buildings
  contributor:
    fullname: Beauchamp
– year: 1954
  ident: bib0055
  article-title: Heat Conduction: With Engineering and Geological Applications
  contributor:
    fullname: Ingersoll
– year: 1994
  ident: bib0040
  article-title: Earth Energy Designer: Software for Dimensioning of Deep Boreholes for Heat Extraction
  contributor:
    fullname: Sanner
– volume: 114
  start-page: 342
  year: 2008
  end-page: 350
  ident: bib0015
  article-title: Long-term ground temperature changes in geo-exchange systems
  publication-title: ASHRAE Transactions
  contributor:
    fullname: Pinel
– volume: 43
  start-page: 1473
  year: 2011
  end-page: 1479
  ident: bib0020
  article-title: The temperature penalty approach to the design of borehole heat exchanger for heat pump application
  publication-title: Energy and Buildings
  contributor:
    fullname: Fossa
– volume: 38
  start-page: 407
  year: 2009
  end-page: 413
  ident: bib0075
  article-title: Validity ranges of three analytical solutions to heat transfer in the vicinity of single boreholes
  publication-title: Geothermics
  contributor:
    fullname: Marchio
– volume: 35
  start-page: 763
  year: 2010
  end-page: 770
  ident: bib0065
  article-title: The importance of axial effects for borehole design of geothermal heat-pump systems
  publication-title: Renewable Energy
  contributor:
    fullname: Bernier
– volume: 87
  start-page: 16
  year: 2010
  end-page: 27
  ident: bib0060
  article-title: Vertical-borehole ground-coupled heat pumps: a review of models and systems
  publication-title: Applied Energy
  contributor:
    fullname: Fang
– year: 1986
  ident: bib0100
  article-title: Earth Coupled Heat Transfer
  contributor:
    fullname: Couvillion
– year: 2000
  ident: bib0045
  article-title: GLHEPRO—a design tool for commercial building ground loop heat exchangers
  publication-title: Proceedings of 4th International Heat Pumps in Cold Climates Conference
  contributor:
    fullname: Spitler
– year: 1997
  ident: bib0005
  article-title: Ground-source Heat Pumps—Design of Geothermal System for Commercial and Institutional Buildings
  contributor:
    fullname: Rafferty
– year: 1959
  ident: bib0050
  article-title: Conduction of Heat in Solids
  contributor:
    fullname: Jaeger
– year: 1987 June
  ident: bib0085
  article-title: Conductive Heat Extraction by Thermally Interacting Deep Boreholes
  contributor:
    fullname: Eskilson
– volume: 10
  start-page: 459
  year: 2004
  end-page: 470
  ident: bib0070
  article-title: Improvement in modelling of heat transfer in vertical ground heat exchangers
  publication-title: HVAC&R
  contributor:
    fullname: Fang
– year: 1987
  ident: bib0035
  article-title: Thermal Analysis of Heat Extraction Boreholes. Doctoral Thesis
  contributor:
    fullname: Eskilson
– volume: 35
  start-page: 1537
  year: 2010
  end-page: 1550
  ident: bib0090
  article-title: A computational capacity resistance model (CARM) for vertical ground-coupled heat exchangers
  publication-title: Renewable Energy
  contributor:
    fullname: Zecchin
– volume: 38
  start-page: 263
  year: 2009
  end-page: 270
  ident: bib0025
  article-title: Finite line-source model for borehole heat exchangers: effect of vertical temperature variations
  publication-title: Geothermics
  contributor:
    fullname: Urchueguíab
– year: 1994
  ident: 10.1016/j.enbuild.2012.08.041_bib0040
  contributor:
    fullname: Hellström
– volume: 38
  start-page: 407
  issue: 4
  year: 2009
  ident: 10.1016/j.enbuild.2012.08.041_bib0075
  article-title: Validity ranges of three analytical solutions to heat transfer in the vicinity of single boreholes
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2009.07.002
  contributor:
    fullname: Philippe
– year: 1959
  ident: 10.1016/j.enbuild.2012.08.041_bib0050
  contributor:
    fullname: Carslaw
– ident: 10.1016/j.enbuild.2012.08.041_bib0105
– volume: 43
  start-page: 1473
  issue: 6
  year: 2011
  ident: 10.1016/j.enbuild.2012.08.041_bib0020
  article-title: The temperature penalty approach to the design of borehole heat exchanger for heat pump application
  publication-title: Energy and Buildings
  doi: 10.1016/j.enbuild.2011.02.020
  contributor:
    fullname: Fossa
– year: 1986
  ident: 10.1016/j.enbuild.2012.08.041_bib0100
  contributor:
    fullname: Hart
– year: 2000
  ident: 10.1016/j.enbuild.2012.08.041_bib0045
  article-title: GLHEPRO—a design tool for commercial building ground loop heat exchangers
  contributor:
    fullname: Spitler
– year: 1987
  ident: 10.1016/j.enbuild.2012.08.041_bib0085
  contributor:
    fullname: Claesson
– volume: 10
  start-page: 459
  issue: 4
  year: 2004
  ident: 10.1016/j.enbuild.2012.08.041_bib0070
  article-title: Improvement in modelling of heat transfer in vertical ground heat exchangers
  publication-title: HVAC&R
  doi: 10.1080/10789669.2004.10391114
  contributor:
    fullname: Diao
– volume: 114
  start-page: 342
  year: 2008
  ident: 10.1016/j.enbuild.2012.08.041_bib0015
  article-title: Long-term ground temperature changes in geo-exchange systems
  publication-title: ASHRAE Transactions
  contributor:
    fullname: Bernier
– volume: 39
  start-page: 188
  issue: 2
  year: 2007
  ident: 10.1016/j.enbuild.2012.08.041_bib0030
  article-title: A new contribution to the finite line-source model for geothermal boreholes
  publication-title: Energy and Buildings
  doi: 10.1016/j.enbuild.2006.06.003
  contributor:
    fullname: Lamarche
– year: 1987
  ident: 10.1016/j.enbuild.2012.08.041_bib0035
  contributor:
    fullname: Eskilson
– volume: 105
  start-page: 475
  year: 1999
  ident: 10.1016/j.enbuild.2012.08.041_bib0080
  article-title: A short time step response factor model for vertical ground loop heat exchangers
  publication-title: ASHRAE Transactions
  contributor:
    fullname: Yavuzturk
– volume: 38
  start-page: 263
  issue: 2
  year: 2009
  ident: 10.1016/j.enbuild.2012.08.041_bib0025
  article-title: Finite line-source model for borehole heat exchangers: effect of vertical temperature variations
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2009.01.003
  contributor:
    fullname: Bandos
– year: 1997
  ident: 10.1016/j.enbuild.2012.08.041_bib0005
  contributor:
    fullname: Kavanaugh
– volume: 35
  start-page: 763
  issue: 4
  year: 2010
  ident: 10.1016/j.enbuild.2012.08.041_bib0065
  article-title: The importance of axial effects for borehole design of geothermal heat-pump systems
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2009.09.015
  contributor:
    fullname: Marcotte
– volume: 35
  start-page: 1537
  issue: 7
  year: 2010
  ident: 10.1016/j.enbuild.2012.08.041_bib0090
  article-title: A computational capacity resistance model (CARM) for vertical ground-coupled heat exchangers
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2009.11.034
  contributor:
    fullname: De Carli
– ident: 10.1016/j.enbuild.2012.08.041_bib0010
– ident: 10.1016/j.enbuild.2012.08.041_bib0095
– year: 1954
  ident: 10.1016/j.enbuild.2012.08.041_bib0055
  contributor:
    fullname: Ingersoll
– volume: 87
  start-page: 16
  issue: 1
  year: 2010
  ident: 10.1016/j.enbuild.2012.08.041_bib0060
  article-title: Vertical-borehole ground-coupled heat pumps: a review of models and systems
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2009.04.038
  contributor:
    fullname: Yang
SSID ssj0006571
Score 2.3683772
Snippet [Display omitted] ► The efficient design of borehole heat exchangers (BHE) is still a crucial point. ► Complex design methods are available; simpler procedures...
Better energy efficiency of ground coupled heat pump systems in comparison with traditional applications leads to continued growth in the number of...
SourceID proquest
crossref
pascalfrancis
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 369
SubjectTerms Applied sciences
Borefield design
Borehole heat exchanger
Building technical equipments
Buildings
Buildings. Public works
Computation methods. Tables. Charts
Energy
Energy management and energy conservation in building
Environmental engineering
Exact sciences and technology
Finite line source
Geothermal energy
Ground-source heat pumps
Infinite line source
Natural energy
Structural analysis. Stresses
Title Design of borehole heat exchangers for ground-source heat pumps: A literature review, methodology comparison and analysis on the penalty temperature
URI https://dx.doi.org/10.1016/j.enbuild.2012.08.041
https://search.proquest.com/docview/1272742188
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB_a64siYv3Aq3pE6KO524_sbs6342w5qxZRC30Lye4sXCl7S-8K-uJf4R_szCZ7tRQRfFjYhGSzZCYzk2TmNwCHpAV0ZTVKsiZqqVBNpXNpIRNdMfaJQx1xcPKn03xxpk7Os_MdmPexMOxWGWS_l-mdtA41kzCbk3a5nHyNUmI2RkNnQqtM78IeqaNED2Bv9v7D4nQrkPOs23dxe8kdbgJ5JhdjRhhYXjJmKJ8K6nGk4r-pqAetXdPE1T7jxR3h3Wmk40fwMJiSYub_dh92sHkM9_8AGHwCv951DhpiVQuiNXIuXMHSV-D3EPG7FmS1Co7taCrpT_J9i5bovH4rZuJyC7wsfJzLG-HTTncH8qLcJjIUtqno8SAngspkW4oWqWLzQzAEVvjMUzg7Pvo2X8iQh0GWaZFsZO5KjuClrYjGOLIZVilJeBvXUZFnGJWptmRHTukFC6VKRzukUquYdD-qGCNMn8GgWTX4HERVl1NHSx6LxKlKW5u4nEzMhFgCa6ofwrifetN6uA3T-6FdmEArw7QynD1TxUPQPYHMLb4xpBL-1XV0i6DbAZO8SImp1BBe9xQ2tOj4JsU2uLpemzgp-IqbJuTg_8d_Afe45H1jXsJgc3WNr8jC2bgR7I5_xiPi4_mXj59HgZ9_A-Lw_-w
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-69mEbZXQfZWm3VoM9Tok_ZFvZW-ha0rXNy1rom5DsM6QUxywpbP_H_uDeWXK2MsagDwZbliyjO92dpLvfAXwkLaArq1GSNVFLhWosnUsLmeiKsU8c6oiDky9m-fRKfb3OrjfgqI-FYbfKIPu9TO-kdSgZhdEctfP56FuUErMxGjoTWmX6CWyRNTCm2bk1OT2bztYCOc-6dRfXl9zgdyDP6GbICAPzW8YM5V1BPYxU_C8Vtd3aJQ1c7TNe_CW8O410sgMvgikpJv5vX8IGNq_g-R8Ag6_h15fOQUMsakG0Rs6FK1j6CvwRIn6XgqxWwbEdTSX9Tr6v0RKdl5_FRNyugZeFj3P5JHza6W5DXpTrRIbCNhVdHuRE0DPZlqJFKlj9FAyBFT7zBq5Oji-PpjLkYZBlWiQrmbuSI3hpKaIxjmyGVUoS3sZ1VOQZRmWqLdmRY7rBQqnS0Qqp1Com3Y8qxgjTXdhsFg2-BVHV5djRlMcicarS1iYuJxMzIZbAmsoHMOyH3rQebsP0fmg3JtDKMK0MZ89U8QB0TyDzgG8MqYT_NT14QNB1h0lepMRUagAfegobmnR8kmIbXNwtTZwUfMRNA7L3-P4P4en08uLcnJ_OzvbhGb_xfjLvYHP1_Q7fk7WzcgeBm-8BELkAWg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+borehole+heat+exchangers+for+ground-source+heat+pumps%3A+A+literature+review%2C+methodology+comparison+and+analysis+on+the+penalty+temperature&rft.jtitle=Energy+and+buildings&rft.au=Capozza%2C+Antonio&rft.au=De+Carli%2C+Michele&rft.au=Zarrella%2C+Angelo&rft.date=2012-12-01&rft.issn=0378-7788&rft.volume=55&rft.spage=369&rft.epage=379&rft_id=info:doi/10.1016%2Fj.enbuild.2012.08.041&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enbuild_2012_08_041
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon