Enantioselective metabolism of phenylpyrazole insecticides by rat liver microsomal CYP3A1, CYP2E1 and CYP2D2
The stereoselective difference of chiral pesticide enantiomers is an important factor of risk evaluation and the subject has received wide attention. In the present work, enantioselective metabolism of chiral phenylpyrazole insecticides including fipronil, ethiprole and flufiprole in rat liver micro...
Saved in:
Published in | Pesticide biochemistry and physiology Vol. 176; p. 104861 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The stereoselective difference of chiral pesticide enantiomers is an important factor of risk evaluation and the subject has received wide attention. In the present work, enantioselective metabolism of chiral phenylpyrazole insecticides including fipronil, ethiprole and flufiprole in rat liver microsomes was investigated in vitro. The result showed remarkable enantioselectivity for fipronil and ethiprole with the EF values of 0.11–0.58. The metabolite fipronil-sulfone was formed with the degradation of fipronil. R-Ethiprole to S-ethiprole transformation was observed, but not S-ethiprole to R-ethiprole. No enantioselective metabolism was observed for flufiprole with the EF values of 0.49–0.51. The enzymatic assays showed that the inhibition ratio of R-fipronil and S-ethiprole was 1.5–2.1times that of the corresponding enantiomers on CYP2E1 and CYP2D2 activity, leading to the enantioselective metabolism. The result of the homology modeling and molecular docking further revealed that S-fipronil (−7.56 kcal mol−1) and R-ethiprole (−6.45 kcal mol−1) performed better binding with CYP2E1 and CYP2D2, respectively. The results provided useful data for the risk evaluation of chiral phenylpyrazole insecticides on ecological safety and human health.
[Display omitted]
•Fipronil and ethiprole is remarkable metabolic enantioselectivity.•The metabolite fipronil sulfone with higher toxic was formed in liver microsomes.•R-Ethiprole is transformed to S-ethiprole in rat liver microsomes.•CYP2E1 and CYP2D2 mediate the enantioselectivity of fipronil and ethiprole. |
---|---|
AbstractList | The stereoselective difference of chiral pesticide enantiomers is an important factor of risk evaluation and the subject has received wide attention. In the present work, enantioselective metabolism of chiral phenylpyrazole insecticides including fipronil, ethiprole and flufiprole in rat liver microsomes was investigated in vitro. The result showed remarkable enantioselectivity for fipronil and ethiprole with the EF values of 0.11–0.58. The metabolite fipronil-sulfone was formed with the degradation of fipronil. R-Ethiprole to S-ethiprole transformation was observed, but not S-ethiprole to R-ethiprole. No enantioselective metabolism was observed for flufiprole with the EF values of 0.49–0.51. The enzymatic assays showed that the inhibition ratio of R-fipronil and S-ethiprole was 1.5–2.1times that of the corresponding enantiomers on CYP2E1 and CYP2D2 activity, leading to the enantioselective metabolism. The result of the homology modeling and molecular docking further revealed that S-fipronil (−7.56 kcal mol⁻¹) and R-ethiprole (−6.45 kcal mol⁻¹) performed better binding with CYP2E1 and CYP2D2, respectively. The results provided useful data for the risk evaluation of chiral phenylpyrazole insecticides on ecological safety and human health. The stereoselective difference of chiral pesticide enantiomers is an important factor of risk evaluation and the subject has received wide attention. In the present work, enantioselective metabolism of chiral phenylpyrazole insecticides including fipronil, ethiprole and flufiprole in rat liver microsomes was investigated in vitro. The result showed remarkable enantioselectivity for fipronil and ethiprole with the EF values of 0.11–0.58. The metabolite fipronil-sulfone was formed with the degradation of fipronil. R-Ethiprole to S-ethiprole transformation was observed, but not S-ethiprole to R-ethiprole. No enantioselective metabolism was observed for flufiprole with the EF values of 0.49–0.51. The enzymatic assays showed that the inhibition ratio of R-fipronil and S-ethiprole was 1.5–2.1times that of the corresponding enantiomers on CYP2E1 and CYP2D2 activity, leading to the enantioselective metabolism. The result of the homology modeling and molecular docking further revealed that S-fipronil (−7.56 kcal mol−1) and R-ethiprole (−6.45 kcal mol−1) performed better binding with CYP2E1 and CYP2D2, respectively. The results provided useful data for the risk evaluation of chiral phenylpyrazole insecticides on ecological safety and human health. [Display omitted] •Fipronil and ethiprole is remarkable metabolic enantioselectivity.•The metabolite fipronil sulfone with higher toxic was formed in liver microsomes.•R-Ethiprole is transformed to S-ethiprole in rat liver microsomes.•CYP2E1 and CYP2D2 mediate the enantioselectivity of fipronil and ethiprole. The stereoselective difference of chiral pesticide enantiomers is an important factor of risk evaluation and the subject has received wide attention. In the present work, enantioselective metabolism of chiral phenylpyrazole insecticides including fipronil, ethiprole and flufiprole in rat liver microsomes was investigated in vitro. The result showed remarkable enantioselectivity for fipronil and ethiprole with the EF values of 0.11-0.58. The metabolite fipronil-sulfone was formed with the degradation of fipronil. R-Ethiprole to S-ethiprole transformation was observed, but not S-ethiprole to R-ethiprole. No enantioselective metabolism was observed for flufiprole with the EF values of 0.49-0.51. The enzymatic assays showed that the inhibition ratio of R-fipronil and S-ethiprole was 1.5-2.1times that of the corresponding enantiomers on CYP2E1 and CYP2D2 activity, leading to the enantioselective metabolism. The result of the homology modeling and molecular docking further revealed that S-fipronil (-7.56 kcal mol-1) and R-ethiprole (-6.45 kcal mol-1) performed better binding with CYP2E1 and CYP2D2, respectively. The results provided useful data for the risk evaluation of chiral phenylpyrazole insecticides on ecological safety and human health.The stereoselective difference of chiral pesticide enantiomers is an important factor of risk evaluation and the subject has received wide attention. In the present work, enantioselective metabolism of chiral phenylpyrazole insecticides including fipronil, ethiprole and flufiprole in rat liver microsomes was investigated in vitro. The result showed remarkable enantioselectivity for fipronil and ethiprole with the EF values of 0.11-0.58. The metabolite fipronil-sulfone was formed with the degradation of fipronil. R-Ethiprole to S-ethiprole transformation was observed, but not S-ethiprole to R-ethiprole. No enantioselective metabolism was observed for flufiprole with the EF values of 0.49-0.51. The enzymatic assays showed that the inhibition ratio of R-fipronil and S-ethiprole was 1.5-2.1times that of the corresponding enantiomers on CYP2E1 and CYP2D2 activity, leading to the enantioselective metabolism. The result of the homology modeling and molecular docking further revealed that S-fipronil (-7.56 kcal mol-1) and R-ethiprole (-6.45 kcal mol-1) performed better binding with CYP2E1 and CYP2D2, respectively. The results provided useful data for the risk evaluation of chiral phenylpyrazole insecticides on ecological safety and human health. |
ArticleNumber | 104861 |
Author | Wu, Xiangwei Li, Qing X. Wang, Zhiqiang Hua, Rimao Zhang, Zhaoxian |
Author_xml | – sequence: 1 givenname: Zhaoxian surname: Zhang fullname: Zhang, Zhaoxian organization: College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China – sequence: 2 givenname: Zhiqiang surname: Wang fullname: Wang, Zhiqiang organization: College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China – sequence: 3 givenname: Qing X. surname: Li fullname: Li, Qing X. organization: Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East–West Road, Honolulu, HI 96822, USA – sequence: 4 givenname: Rimao surname: Hua fullname: Hua, Rimao organization: College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China – sequence: 5 givenname: Xiangwei surname: Wu fullname: Wu, Xiangwei email: wxw@ahau.edu.cn organization: College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China |
BookMark | eNqNkU9v1DAQxS1UJLaFb8DBRw5kazuJE3NAqrYLRaoEh144Wf4zFl45drDTSsunxyGcOACnGT29N9K83yW6iCkCQq8p2VNC-fVpP0NZ9LxnhNEqdSOnz9COEtE3QrTiAu1IFZu2H_oX6LKUEyFEdETsUDhGFRefCgQwi38CPMGidAq-TDg5PH-DeA7zOasfKQD2saw24y0UrM84qwWHmsp48iankiYV8OHrl_aGvl0nO1Ksov213rKX6LlTocCr3_MKPXw4PhzumvvPHz8dbu4b0w5sabjWGtQoNGVucK3oeOccGUzL-nEg2jpVJW2pHbi1nHPLBto6p7kenBm79gq92c7OOX1_rM3IyRcDIagI6bFI1vdUCDKO5D-sHRnoOLLV2m3W9c-Swck5-0nls6RErhjkSW4Y5IpBbhhq7N0fMeMXVRuPS1Y-_Cv8fgtDbevJQ5bFeIgGrM-Vg7TJ__3AT3I4p_I |
CitedBy_id | crossref_primary_10_1016_j_foodchem_2025_143017 crossref_primary_10_1002_chir_23412 crossref_primary_10_1016_j_envint_2023_107894 crossref_primary_10_1016_j_ecoenv_2024_117354 crossref_primary_10_1016_j_pestbp_2021_104964 crossref_primary_10_1080_10408398_2022_2131728 crossref_primary_10_1021_acs_jafc_4c05027 crossref_primary_10_3390_pathogens13100850 crossref_primary_10_1021_acs_jafc_2c00468 crossref_primary_10_1021_acs_est_3c01049 crossref_primary_10_1002_ps_7412 crossref_primary_10_1021_acs_jafc_2c00824 |
Cites_doi | 10.1016/j.watres.2019.06.004 10.1002/etc.17 10.1016/j.jhazmat.2018.03.047 10.1016/j.pestbp.2019.02.014 10.1016/j.envint.2015.10.012 10.1016/j.jhazmat.2014.10.033 10.1016/j.chemosphere.2019.02.119 10.1016/j.ecoenv.2020.111221 10.1016/j.envpol.2019.07.083 10.1016/j.jhazmat.2019.121835 10.1016/j.pestbp.2018.01.007 10.1016/j.jhazmat.2008.10.061 10.1021/acs.est.7b05825 10.1016/j.envint.2019.04.018 10.1002/chir.22661 10.1016/j.scitotenv.2014.03.054 10.1021/acs.jafc.9b05083 10.1073/pnas.1808255116 10.1046/j.1365-2125.2003.01973.x 10.1039/C0AN00643B 10.1016/j.envpol.2019.04.124 10.1080/03601230701391823 10.1016/j.scitotenv.2015.10.132 10.1016/j.pestbp.2015.11.001 10.3389/fphar.2015.00123 10.1021/acs.est.6b02676 10.1016/j.toxlet.2016.04.005 10.1016/j.chemosphere.2007.03.063 10.1897/08-658.1 10.1016/j.ecoenv.2016.10.027 10.1016/j.envpol.2019.02.080 10.1016/j.envpol.2018.10.056 10.1002/ldr.3179 10.1016/j.tox.2010.08.005 10.1016/j.phymed.2011.12.005 10.1016/j.jhazmat.2017.05.015 10.1016/j.envint.2015.01.016 10.2174/138920007779315062 10.1016/0048-3575(78)90060-3 10.1016/j.watres.2016.08.063 10.1007/s00216-015-8543-3 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.pestbp.2021.104861 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Agriculture |
EISSN | 1095-9939 |
ExternalDocumentID | 10_1016_j_pestbp_2021_104861 S0048357521000924 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO AAYJJ ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG CBWCG COF CS3 DM4 DOVZS DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLW HVGLF HZ~ IHE J1W KOM LG5 LW8 LX2 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SBG SDF SDG SDP SES SEW SPCBC SSA SSU SSZ T5K UHS UNMZH WH7 WUQ XOL XPP ZMT ZU3 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c372t-6bbbea89b12f7f39464ff07c325870bdfa946bd1d76dd666d2713ffb6b7fc843 |
IEDL.DBID | .~1 |
ISSN | 0048-3575 1095-9939 |
IngestDate | Fri Jul 11 12:04:50 EDT 2025 Fri Jul 11 00:51:57 EDT 2025 Tue Jul 01 00:49:31 EDT 2025 Thu Apr 24 23:06:29 EDT 2025 Fri Feb 23 02:45:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Enantiomer transformation Enzyme activity Phenylpyrazole insecticide Molecular docking Enantioselectivity metabolism |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-6bbbea89b12f7f39464ff07c325870bdfa946bd1d76dd666d2713ffb6b7fc843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2540718820 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2551990880 proquest_miscellaneous_2540718820 crossref_primary_10_1016_j_pestbp_2021_104861 crossref_citationtrail_10_1016_j_pestbp_2021_104861 elsevier_sciencedirect_doi_10_1016_j_pestbp_2021_104861 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2021 2021-07-00 20210701 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationTitle | Pesticide biochemistry and physiology |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Qu, Wang, Ma, Qiu, Xu, Zhou, Liu (bb0145) 2014; 485 Romero, Ramos, Ares, Castellano, Martínez, Martínez-Larrañaga, Martínez (bb0165) 2016; 252 Gao, Wang, Jiang, Miao, Wang, Zhou, Liu (bb0065) 2020; 114808 Birolli, Arai, Nitschke, Porto (bb0015) 2019; 156 Masbou, Meite, Guyot, Imfeld (bb0110) 2018; 353 McMahen, Strynar, Dagnino, Herr, Moser, Garantziotis, Lindstrom (bb0115) 2015; 78 Ahlawat, Singh, Virdi, Sharma (bb0010) 2019; 253 Gao, Wang, Wang, Jiang, Zhang, Liu, Zhou (bb0050) 2019; 244 Gao, Qu, Zhang, Li, Wang, Zhou (bb0045) 2017; 29 Hou, Huang, Rao, Xu, Wang (bb0075) 2018; 52 Zhang, Gao, He, Li, Shi, Wang (bb0240) 2019; 224 Stewart, Buch, Conrads, Branch (bb0185) 2011; 136 Meredith, Harper, Harper (bb0120) 2016; 86 Li, Bao, Yang, Zheng, Li, Shu (bb0100) 2010; 29 Raunio, Kuusisto, Juvonen, Pentikäinen (bb0155) 2015; 6 Abhilash, Singh (bb0005) 2009; 165 Hu, Zhou, Gao, Lai, Shi, Wang (bb0080) 2020; 126572 Zhang, Zhang, Zhao, Gao, He, Li, Wang (bb0245) 2020; 122756 Kazuki, Kobayashi, Hirabayashi, Abe, Kajitani, Kazuki, Sakuma (bb0085) 2019; 116 Song, Zhang, Yan, Wang, Lu, Zhang, Zhao (bb0170) 2017; 338 Zhan, Liang, Liu, Liu, Liu, Wang, Zhou (bb0210) 2018; 145 Khazri, Sellami, Dellali, Corcellas, Eljarrat, Barceló, Mahmoudi (bb0090) 2016; 129 Or, Lam, Kwan, Cho, Lau, Yu, Yeung (bb0130) 2012; 19 Croom, Wallace, Hodgson (bb0030) 2010; 276 Wang, Liu, Zhao, Tian, Sun, Zhang, Wang (bb0195) 2020; 207 Zhang, Xiong, Gao, Cryder, Zhang, Tian, Wang (bb0230) 2018; 29 Zhan, Pan, Liu, Chen, Ge, Lu, Zhuang (bb0215) 2018; 52 Stanley, Preetha, Stanley (bb0180) 2016 Gao, Wang, Jiang, Han, Liu, Zhou, Wang (bb0060) 2019; 67 Gripp, Freitas, Almeida, Bisinoti, Moreira (bb0070) 2017; 136 Zhang, Du, Gao, Hu, Kaziem, Li, Wang (bb0235) 2019; 251 Raveton, Aajoud, Willison, Cherifi, Tissut, Ravanel (bb0160) 2007; 69 de Graaf, Oostenbrink, Keizers, van Vugt-Lussenburg, van Waterschoot, Tschirret-Guth, Vermeulen (bb0035) 2007; 8 Zhang, Shi, Gao, Tian, Hua, Wang (bb0225) 2016; 542 Lee, Allahyari, Fukuto (bb0095) 1978; 9 Overmyer, Rouse, Avants, Garrison, DeLorenzo, Chung, Key, Wilson, Black (bb0135) 2007; 42 Srinivasan, Sadasivam, Gunalan, Shanmugam, Kothandan (bb0175) 2019; 248 Chen, Tian, Wu, Wu, Xu, Dong, Zheng (bb0025) 2019; 161 Liu, Li, Wang, Liu, Zhou (bb0105) 2020; 389 Tian, Zhang, Shi, Gao, Hua, Wang (bb0190) 2015; 407 Blakey, Lockton, Perrett, Norwood, Russell, Aherne, Plume (bb0020) 2004; 57 Qu, Ma, Liu, Gao, Wang, Zhou, Wang (bb0150) 2016; 105 Zhang, Shi, Liu, Tian, Wang (bb0220) 2015; 284 Yao, Qian, Zhang, Nie, Ye, Li (bb0200) 2016; 50 Qiu, Zhou, He, Zhang, Zhou, Zhu (bb0140) 2015; 9 Yao, Sheng, Yan, Tian, Meng, Zhou, Zhu (bb0205) 2020; 104619 Gao, Zhao, Zhang, Li, Hu, Kaziem, Wang (bb0055) 2019; 127 Nillos, Lin, Gan, Bondarenko, Schlenk (bb0125) 2009; 28 Zhan (10.1016/j.pestbp.2021.104861_bb0210) 2018; 145 Birolli (10.1016/j.pestbp.2021.104861_bb0015) 2019; 156 Zhang (10.1016/j.pestbp.2021.104861_bb0245) 2020; 122756 Gao (10.1016/j.pestbp.2021.104861_bb0045) 2017; 29 Qu (10.1016/j.pestbp.2021.104861_bb0145) 2014; 485 Li (10.1016/j.pestbp.2021.104861_bb0100) 2010; 29 Yao (10.1016/j.pestbp.2021.104861_bb0205) 2020; 104619 Zhang (10.1016/j.pestbp.2021.104861_bb0220) 2015; 284 Zhang (10.1016/j.pestbp.2021.104861_bb0240) 2019; 224 Qu (10.1016/j.pestbp.2021.104861_bb0150) 2016; 105 Zhang (10.1016/j.pestbp.2021.104861_bb0235) 2019; 251 Gao (10.1016/j.pestbp.2021.104861_bb0065) 2020; 114808 Nillos (10.1016/j.pestbp.2021.104861_bb0125) 2009; 28 Croom (10.1016/j.pestbp.2021.104861_bb0030) 2010; 276 Song (10.1016/j.pestbp.2021.104861_bb0170) 2017; 338 Tian (10.1016/j.pestbp.2021.104861_bb0190) 2015; 407 Wang (10.1016/j.pestbp.2021.104861_bb0195) 2020; 207 Gao (10.1016/j.pestbp.2021.104861_bb0055) 2019; 127 Stanley (10.1016/j.pestbp.2021.104861_bb0180) 2016 Raunio (10.1016/j.pestbp.2021.104861_bb0155) 2015; 6 McMahen (10.1016/j.pestbp.2021.104861_bb0115) 2015; 78 Hu (10.1016/j.pestbp.2021.104861_bb0080) 2020; 126572 Raveton (10.1016/j.pestbp.2021.104861_bb0160) 2007; 69 Khazri (10.1016/j.pestbp.2021.104861_bb0090) 2016; 129 Zhang (10.1016/j.pestbp.2021.104861_bb0230) 2018; 29 Meredith (10.1016/j.pestbp.2021.104861_bb0120) 2016; 86 Romero (10.1016/j.pestbp.2021.104861_bb0165) 2016; 252 Gao (10.1016/j.pestbp.2021.104861_bb0050) 2019; 244 Kazuki (10.1016/j.pestbp.2021.104861_bb0085) 2019; 116 Masbou (10.1016/j.pestbp.2021.104861_bb0110) 2018; 353 Gao (10.1016/j.pestbp.2021.104861_bb0060) 2019; 67 Lee (10.1016/j.pestbp.2021.104861_bb0095) 1978; 9 Yao (10.1016/j.pestbp.2021.104861_bb0200) 2016; 50 Or (10.1016/j.pestbp.2021.104861_bb0130) 2012; 19 Abhilash (10.1016/j.pestbp.2021.104861_bb0005) 2009; 165 Qiu (10.1016/j.pestbp.2021.104861_bb0140) 2015; 9 Srinivasan (10.1016/j.pestbp.2021.104861_bb0175) 2019; 248 Gripp (10.1016/j.pestbp.2021.104861_bb0070) 2017; 136 Overmyer (10.1016/j.pestbp.2021.104861_bb0135) 2007; 42 Zhang (10.1016/j.pestbp.2021.104861_bb0225) 2016; 542 Ahlawat (10.1016/j.pestbp.2021.104861_bb0010) 2019; 253 Zhan (10.1016/j.pestbp.2021.104861_bb0215) 2018; 52 Chen (10.1016/j.pestbp.2021.104861_bb0025) 2019; 161 de Graaf (10.1016/j.pestbp.2021.104861_bb0035) 2007; 8 Blakey (10.1016/j.pestbp.2021.104861_bb0020) 2004; 57 Hou (10.1016/j.pestbp.2021.104861_bb0075) 2018; 52 Liu (10.1016/j.pestbp.2021.104861_bb0105) 2020; 389 Stewart (10.1016/j.pestbp.2021.104861_bb0185) 2011; 136 |
References_xml | – volume: 248 start-page: 599 year: 2019 end-page: 608 ident: bb0175 article-title: Application of docking and active site analysis for enzyme linked biodegradation of textile dyes publication-title: Environ. Pollut. – start-page: 99 year: 2016 end-page: 152 ident: bb0180 article-title: Pesticide Toxicity to Non-target Organisms – volume: 207 start-page: 111221 year: 2020 ident: bb0195 article-title: Enantioseparation and stereoselective dissipation of the novel chiral fungicide pydiflumetofen by ultra-high-performance liquid chromatography tandem mass spectrometry publication-title: Ecotoxicol. Environ. Safe. – volume: 8 start-page: 59 year: 2007 end-page: 77 ident: bb0035 article-title: Molecular modeling-guided site-directed mutagenesis of cytochrome P450 2D6 publication-title: Curr. Drug Metab. – volume: 129 start-page: 83 year: 2016 end-page: 88 ident: bb0090 article-title: Diastereomeric and enantiomeric selective accumulation of cypermethrin in the freshwater mussel Unio gibbus and its effects on biochemical parameters publication-title: Pestic. Biochem. Phys. – volume: 353 start-page: 99 year: 2018 end-page: 107 ident: bb0110 article-title: Enantiomer-specific stable carbon isotope analysis (ESIA) to evaluate degradation of the chiral fungicide metalaxyl in soils publication-title: J. Hazard. Mater. – volume: 276 start-page: 184 year: 2010 end-page: 191 ident: bb0030 article-title: Human variation in CYP-specific chlorpyrifos metabolism publication-title: Toxicology – volume: 126572 year: 2020 ident: bb0080 article-title: Enantioselective endocrine-disrupting effects of the phenylpyrazole chiral insecticides in vitro and in silico publication-title: Chemosphere – volume: 28 start-page: 1825 year: 2009 end-page: 1833 ident: bb0125 article-title: Enantioselectivity in fipronil aquatic toxicity and degradation publication-title: Environ. Toxicol. Chem. – volume: 253 start-page: 1056 year: 2019 end-page: 1065 ident: bb0010 article-title: Molecular modeling and MD-simulation studies: fast and reliable tool to study the role of low-redox bacterial laccases in the decolorization of various commercial dyes publication-title: Environ. Pollut. – volume: 6 start-page: 123 year: 2015 ident: bb0155 article-title: Modeling of interactions between xenobiotics and cytochrome P450 (CYP) enzymes publication-title: Front. Pharmacol. – volume: 407 start-page: 3499 year: 2015 end-page: 3507 ident: bb0190 article-title: Simultaneous determination of chiral pesticide flufiprole enantiomers in vegetables, fruits, and soil by high-performance liquid chromatography publication-title: Anal. Bioanal. Chem. – volume: 78 start-page: 16 year: 2015 end-page: 23 ident: bb0115 article-title: Identification of fipronil metabolites by time-of-flight mass spectrometry for application in a human exposure study publication-title: Environ. Int. – volume: 57 start-page: 162 year: 2004 end-page: 169 ident: bb0020 article-title: Pharmacokinetic and pharmacodynamic assessment of a five-probe metabolic cocktail for CYPs 1A2, 3A4, 2C9, 2D6 and 2E1 publication-title: Brit. J. Clin. Pharmacol. – volume: 50 start-page: 9682 year: 2016 end-page: 9688 ident: bb0200 article-title: Etoxazole is metabolized enantioselectively in liver microsomes of rat and human in vitro publication-title: Environ. Sci. Technol. – volume: 244 start-page: 757 year: 2019 end-page: 765 ident: bb0050 article-title: Enantioselective toxic effects and environmental behavior of ethiprole and its metabolites against publication-title: Environ. Pollut. – volume: 136 start-page: 605 year: 2011 end-page: 612 ident: bb0185 article-title: A UPLC-MS/MS assay of the “Pittsburgh cocktail”: six CYP probe-drug/metabolites from human plasma and urine using stable isotope dilution publication-title: Analyst – volume: 145 start-page: 76 year: 2018 end-page: 83 ident: bb0210 article-title: Organochlorine pesticide acetofenate and its hydrolytic metabolite in rabbits: enantioselective metabolism and cytotoxicity publication-title: Pestic. Biochem. Phys. – volume: 9 start-page: 841 year: 2015 ident: bb0140 article-title: Estimation of the binding modes with important human cytochrome P450 enzymes, drug interaction potential, pharmacokinetics, and hepatotoxicity of ginger components using molecular docking, computational, and pharmacokinetic modeling studies publication-title: Drug Des. Dev. Ther. – volume: 105 start-page: 138 year: 2016 end-page: 146 ident: bb0150 article-title: Environmental behavior of the chiral insecticide fipronil: enantioselective toxicity, distribution and transformation in aquatic ecosystem publication-title: Water Res. – volume: 19 start-page: 535 year: 2012 end-page: 544 ident: bb0130 article-title: Effects of Radix Astragali and Radix Rehmanniae, the components of an anti-diabetic foot ulcer herbal formula, on metabolism of model CYP1A2, CYP2C9, CYP2D6, CYP2E1 and CYP3A4 probe substrates in pooled human liver microsomes and specific CYP isoforms publication-title: Phytomedicine – volume: 42 start-page: 471 year: 2007 end-page: 480 ident: bb0135 article-title: Toxicity of fipronil and its enantiomers to marine and freshwater non-targets publication-title: J. Environ. Sci. Health, Part B – volume: 122756 year: 2020 ident: bb0245 article-title: Stereoselective uptake and metabolism of prothioconazole caused oxidative stress in zebrafish ( publication-title: J. Hazard. Mater. – volume: 389 start-page: 121835 year: 2020 ident: bb0105 article-title: Toxicity risk assessment of pyriproxyfen and metabolites in the rat liver: A vitro study publication-title: J. Hazard. Mater. – volume: 161 start-page: 531 year: 2019 end-page: 539 ident: bb0025 article-title: Degradation products and pathway of ethiprole in water and soil publication-title: Water Res. – volume: 52 start-page: 11904 year: 2018 end-page: 11912 ident: bb0215 article-title: Metabolic susceptibility of 2-chlorothioxanthone and its toxic effects on mRNA and protein expression and activities of human CYP1A2 and CYP3A4 enzymes publication-title: Environ. Sci. Technol. – volume: 9 start-page: 23 year: 1978 end-page: 32 ident: bb0095 article-title: Studies on the chiral isomers of fonofos and fonofos oxon: III. In vivo metabolism publication-title: Pestic. Biochem. Phys. – volume: 114808 year: 2020 ident: bb0065 article-title: A full evaluation of chiral phenylpyrazole pesticide flufiprole and the metabolites to non-target organism in paddy field publication-title: Environ. Pollut. – volume: 116 start-page: 3072 year: 2019 end-page: 3081 ident: bb0085 article-title: Humanized UGT2 and CYP3A transchromosomic rats for improved prediction of human drug metabolism publication-title: Proc. Natl. Acad. Sci. USA – volume: 252 start-page: 42 year: 2016 end-page: 49 ident: bb0165 article-title: Fipronil sulfone induced higher cytotoxicity than fipronil in SH-SY5Y cells: protection by antioxidants publication-title: Toxicol. Lett. – volume: 165 start-page: 1 year: 2009 end-page: 12 ident: bb0005 article-title: Pesticide use and application: an Indian scenario publication-title: J. Hazard. Mater. – volume: 224 start-page: 77 year: 2019 end-page: 84 ident: bb0240 article-title: Enantioselective metabolism of four chiral triazole fungicides in rat liver microsomes publication-title: Chemosphere – volume: 29 start-page: 4242 year: 2018 end-page: 4251 ident: bb0230 article-title: Enantioselectivity in degradation and ecological risk of the chiral pesticide ethiprole publication-title: Land Degrad. Dev. – volume: 485 start-page: 415 year: 2014 end-page: 420 ident: bb0145 article-title: Enantioselective toxicity, bioaccumulation and degradation of the chiral insecticide fipronil in earthworms ( publication-title: Sci. Total Environ. – volume: 156 start-page: 129 year: 2019 end-page: 137 ident: bb0015 article-title: The pyrethroid (±)-lambda-cyhalothrin enantioselective biodegradation by a bacterial consortium publication-title: Pestic. Biochem. Phys. – volume: 29 start-page: 19 year: 2017 end-page: 25 ident: bb0045 article-title: Direct chiral separations of the enantiomers of phenylpyrazole pesticides and the metabolites by HPLC publication-title: Chirality – volume: 136 start-page: 173 year: 2017 end-page: 179 ident: bb0070 article-title: Biochemical effects of fipronil and its metabolites on lipid peroxidation and enzymatic antioxidant defense in tadpoles (Eupemphix nattereri: Leiuperidae) publication-title: Ecotox. Environ. Safe. – volume: 69 start-page: 1124 year: 2007 end-page: 1129 ident: bb0160 article-title: Soil distribution of fipronil and its metabolites originating from a seed-coated formulation publication-title: Chemosphere – volume: 251 start-page: 30 year: 2019 end-page: 36 ident: bb0235 article-title: Stereoselective endocrine-disrupting effects of the chiral triazole fungicide prothioconazole and its chiral metabolite publication-title: Environ. Pollut. – volume: 86 start-page: 68 year: 2016 end-page: 74 ident: bb0120 article-title: The influence of size on the toxicity of an encapsulated pesticide: a comparison of micron-and nano-sized capsules publication-title: Environ. Int. – volume: 29 start-page: 127 year: 2010 end-page: 132 ident: bb0100 article-title: Toxicities of fipronil enantiomers to the honeybee publication-title: Environ. Toxicol. Chem. – volume: 284 start-page: 65 year: 2015 end-page: 72 ident: bb0220 article-title: Enantioselective bioactivity, acute toxicity and dissipation in vegetables of the chiral triazole fungicide flutriafol publication-title: J. Hazard. Mater. – volume: 542 start-page: 845 year: 2016 end-page: 853 ident: bb0225 article-title: Enantioseparation and determination of the chiral phenylpyrazole insecticide ethiprole in agricultural and environmental samples and its enantioselective degradation in soil publication-title: Sci. Total Environ. – volume: 127 start-page: 694 year: 2019 end-page: 703 ident: bb0055 article-title: A potential biomarker of isofenphos-methyl in humans: a chiral view publication-title: Environ. Int. – volume: 52 start-page: 3202 year: 2018 end-page: 3210 ident: bb0075 article-title: Characterized in vitro metabolism kinetics of alkyl organophosphate esters in fish liver and intestinal microsomes publication-title: Environ. Sci. Technol. – volume: 338 start-page: 57 year: 2017 end-page: 65 ident: bb0170 article-title: Risk assessment of the endocrine-disrupting effects of nine chiral pesticides publication-title: J. Hazard. Mater. – volume: 67 start-page: 14019 year: 2019 end-page: 14026 ident: bb0060 article-title: Tissue distribution, accumulation, and metabolism of chiral flufiprole in loach ( publication-title: J. Agric. Food Chem. – volume: 104619 year: 2020 ident: bb0205 article-title: Enantioselectivity effects of imazethapyr enantiomers to metabolic responses in mice publication-title: Pestic. Biochem. Phys. – volume: 161 start-page: 531 year: 2019 ident: 10.1016/j.pestbp.2021.104861_bb0025 article-title: Degradation products and pathway of ethiprole in water and soil publication-title: Water Res. doi: 10.1016/j.watres.2019.06.004 – volume: 29 start-page: 127 issue: 1 year: 2010 ident: 10.1016/j.pestbp.2021.104861_bb0100 article-title: Toxicities of fipronil enantiomers to the honeybee Apis mellifera l. and enantiomeric compositions of fipronil in honey plant flowers publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.17 – volume: 52 start-page: 11904 issue: 20 year: 2018 ident: 10.1016/j.pestbp.2021.104861_bb0215 article-title: Metabolic susceptibility of 2-chlorothioxanthone and its toxic effects on mRNA and protein expression and activities of human CYP1A2 and CYP3A4 enzymes publication-title: Environ. Sci. Technol. – volume: 353 start-page: 99 year: 2018 ident: 10.1016/j.pestbp.2021.104861_bb0110 article-title: Enantiomer-specific stable carbon isotope analysis (ESIA) to evaluate degradation of the chiral fungicide metalaxyl in soils publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.03.047 – volume: 156 start-page: 129 year: 2019 ident: 10.1016/j.pestbp.2021.104861_bb0015 article-title: The pyrethroid (±)-lambda-cyhalothrin enantioselective biodegradation by a bacterial consortium publication-title: Pestic. Biochem. Phys. doi: 10.1016/j.pestbp.2019.02.014 – volume: 86 start-page: 68 year: 2016 ident: 10.1016/j.pestbp.2021.104861_bb0120 article-title: The influence of size on the toxicity of an encapsulated pesticide: a comparison of micron-and nano-sized capsules publication-title: Environ. Int. doi: 10.1016/j.envint.2015.10.012 – volume: 284 start-page: 65 year: 2015 ident: 10.1016/j.pestbp.2021.104861_bb0220 article-title: Enantioselective bioactivity, acute toxicity and dissipation in vegetables of the chiral triazole fungicide flutriafol publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2014.10.033 – volume: 224 start-page: 77 year: 2019 ident: 10.1016/j.pestbp.2021.104861_bb0240 article-title: Enantioselective metabolism of four chiral triazole fungicides in rat liver microsomes publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.02.119 – volume: 207 start-page: 111221 year: 2020 ident: 10.1016/j.pestbp.2021.104861_bb0195 article-title: Enantioseparation and stereoselective dissipation of the novel chiral fungicide pydiflumetofen by ultra-high-performance liquid chromatography tandem mass spectrometry publication-title: Ecotoxicol. Environ. Safe. doi: 10.1016/j.ecoenv.2020.111221 – volume: 253 start-page: 1056 year: 2019 ident: 10.1016/j.pestbp.2021.104861_bb0010 article-title: Molecular modeling and MD-simulation studies: fast and reliable tool to study the role of low-redox bacterial laccases in the decolorization of various commercial dyes publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.07.083 – volume: 389 start-page: 121835 year: 2020 ident: 10.1016/j.pestbp.2021.104861_bb0105 article-title: Toxicity risk assessment of pyriproxyfen and metabolites in the rat liver: A vitro study publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121835 – volume: 145 start-page: 76 year: 2018 ident: 10.1016/j.pestbp.2021.104861_bb0210 article-title: Organochlorine pesticide acetofenate and its hydrolytic metabolite in rabbits: enantioselective metabolism and cytotoxicity publication-title: Pestic. Biochem. Phys. doi: 10.1016/j.pestbp.2018.01.007 – volume: 165 start-page: 1 issue: 1–3 year: 2009 ident: 10.1016/j.pestbp.2021.104861_bb0005 article-title: Pesticide use and application: an Indian scenario publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.10.061 – volume: 52 start-page: 3202 issue: 5 year: 2018 ident: 10.1016/j.pestbp.2021.104861_bb0075 article-title: Characterized in vitro metabolism kinetics of alkyl organophosphate esters in fish liver and intestinal microsomes publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b05825 – volume: 127 start-page: 694 year: 2019 ident: 10.1016/j.pestbp.2021.104861_bb0055 article-title: A potential biomarker of isofenphos-methyl in humans: a chiral view publication-title: Environ. Int. doi: 10.1016/j.envint.2019.04.018 – volume: 114808 year: 2020 ident: 10.1016/j.pestbp.2021.104861_bb0065 article-title: A full evaluation of chiral phenylpyrazole pesticide flufiprole and the metabolites to non-target organism in paddy field publication-title: Environ. Pollut. – volume: 29 start-page: 19 issue: 1 year: 2017 ident: 10.1016/j.pestbp.2021.104861_bb0045 article-title: Direct chiral separations of the enantiomers of phenylpyrazole pesticides and the metabolites by HPLC publication-title: Chirality doi: 10.1002/chir.22661 – volume: 485 start-page: 415 year: 2014 ident: 10.1016/j.pestbp.2021.104861_bb0145 article-title: Enantioselective toxicity, bioaccumulation and degradation of the chiral insecticide fipronil in earthworms (Eisenia feotida) publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2014.03.054 – volume: 104619 year: 2020 ident: 10.1016/j.pestbp.2021.104861_bb0205 article-title: Enantioselectivity effects of imazethapyr enantiomers to metabolic responses in mice publication-title: Pestic. Biochem. Phys. – volume: 67 start-page: 14019 issue: 51 year: 2019 ident: 10.1016/j.pestbp.2021.104861_bb0060 article-title: Tissue distribution, accumulation, and metabolism of chiral flufiprole in loach (Misgurnus anguillicaudatus) publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.9b05083 – volume: 116 start-page: 3072 issue: 8 year: 2019 ident: 10.1016/j.pestbp.2021.104861_bb0085 article-title: Humanized UGT2 and CYP3A transchromosomic rats for improved prediction of human drug metabolism publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1808255116 – volume: 57 start-page: 162 issue: 2 year: 2004 ident: 10.1016/j.pestbp.2021.104861_bb0020 article-title: Pharmacokinetic and pharmacodynamic assessment of a five-probe metabolic cocktail for CYPs 1A2, 3A4, 2C9, 2D6 and 2E1 publication-title: Brit. J. Clin. Pharmacol. doi: 10.1046/j.1365-2125.2003.01973.x – volume: 136 start-page: 605 issue: 3 year: 2011 ident: 10.1016/j.pestbp.2021.104861_bb0185 article-title: A UPLC-MS/MS assay of the “Pittsburgh cocktail”: six CYP probe-drug/metabolites from human plasma and urine using stable isotope dilution publication-title: Analyst doi: 10.1039/C0AN00643B – volume: 251 start-page: 30 year: 2019 ident: 10.1016/j.pestbp.2021.104861_bb0235 article-title: Stereoselective endocrine-disrupting effects of the chiral triazole fungicide prothioconazole and its chiral metabolite publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.04.124 – volume: 42 start-page: 471 issue: 5 year: 2007 ident: 10.1016/j.pestbp.2021.104861_bb0135 article-title: Toxicity of fipronil and its enantiomers to marine and freshwater non-targets publication-title: J. Environ. Sci. Health, Part B doi: 10.1080/03601230701391823 – volume: 542 start-page: 845 year: 2016 ident: 10.1016/j.pestbp.2021.104861_bb0225 article-title: Enantioseparation and determination of the chiral phenylpyrazole insecticide ethiprole in agricultural and environmental samples and its enantioselective degradation in soil publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.10.132 – volume: 129 start-page: 83 year: 2016 ident: 10.1016/j.pestbp.2021.104861_bb0090 article-title: Diastereomeric and enantiomeric selective accumulation of cypermethrin in the freshwater mussel Unio gibbus and its effects on biochemical parameters publication-title: Pestic. Biochem. Phys. doi: 10.1016/j.pestbp.2015.11.001 – volume: 9 start-page: 841 year: 2015 ident: 10.1016/j.pestbp.2021.104861_bb0140 article-title: Estimation of the binding modes with important human cytochrome P450 enzymes, drug interaction potential, pharmacokinetics, and hepatotoxicity of ginger components using molecular docking, computational, and pharmacokinetic modeling studies publication-title: Drug Des. Dev. Ther. – volume: 6 start-page: 123 year: 2015 ident: 10.1016/j.pestbp.2021.104861_bb0155 article-title: Modeling of interactions between xenobiotics and cytochrome P450 (CYP) enzymes publication-title: Front. Pharmacol. doi: 10.3389/fphar.2015.00123 – volume: 50 start-page: 9682 issue: 17 year: 2016 ident: 10.1016/j.pestbp.2021.104861_bb0200 article-title: Etoxazole is metabolized enantioselectively in liver microsomes of rat and human in vitro publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b02676 – volume: 252 start-page: 42 year: 2016 ident: 10.1016/j.pestbp.2021.104861_bb0165 article-title: Fipronil sulfone induced higher cytotoxicity than fipronil in SH-SY5Y cells: protection by antioxidants publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2016.04.005 – volume: 69 start-page: 1124 issue: 7 year: 2007 ident: 10.1016/j.pestbp.2021.104861_bb0160 article-title: Soil distribution of fipronil and its metabolites originating from a seed-coated formulation publication-title: Chemosphere doi: 10.1016/j.chemosphere.2007.03.063 – volume: 122756 year: 2020 ident: 10.1016/j.pestbp.2021.104861_bb0245 article-title: Stereoselective uptake and metabolism of prothioconazole caused oxidative stress in zebrafish (Danio rerio) publication-title: J. Hazard. Mater. – volume: 28 start-page: 1825 issue: 9 year: 2009 ident: 10.1016/j.pestbp.2021.104861_bb0125 article-title: Enantioselectivity in fipronil aquatic toxicity and degradation publication-title: Environ. Toxicol. Chem. doi: 10.1897/08-658.1 – volume: 136 start-page: 173 year: 2017 ident: 10.1016/j.pestbp.2021.104861_bb0070 article-title: Biochemical effects of fipronil and its metabolites on lipid peroxidation and enzymatic antioxidant defense in tadpoles (Eupemphix nattereri: Leiuperidae) publication-title: Ecotox. Environ. Safe. doi: 10.1016/j.ecoenv.2016.10.027 – volume: 248 start-page: 599 year: 2019 ident: 10.1016/j.pestbp.2021.104861_bb0175 article-title: Application of docking and active site analysis for enzyme linked biodegradation of textile dyes publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.02.080 – volume: 244 start-page: 757 year: 2019 ident: 10.1016/j.pestbp.2021.104861_bb0050 article-title: Enantioselective toxic effects and environmental behavior of ethiprole and its metabolites against Chlorella pyrenoidosa publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.10.056 – volume: 29 start-page: 4242 issue: 12 year: 2018 ident: 10.1016/j.pestbp.2021.104861_bb0230 article-title: Enantioselectivity in degradation and ecological risk of the chiral pesticide ethiprole publication-title: Land Degrad. Dev. doi: 10.1002/ldr.3179 – volume: 276 start-page: 184 issue: 3 year: 2010 ident: 10.1016/j.pestbp.2021.104861_bb0030 article-title: Human variation in CYP-specific chlorpyrifos metabolism publication-title: Toxicology doi: 10.1016/j.tox.2010.08.005 – volume: 19 start-page: 535 issue: 6 year: 2012 ident: 10.1016/j.pestbp.2021.104861_bb0130 article-title: Effects of Radix Astragali and Radix Rehmanniae, the components of an anti-diabetic foot ulcer herbal formula, on metabolism of model CYP1A2, CYP2C9, CYP2D6, CYP2E1 and CYP3A4 probe substrates in pooled human liver microsomes and specific CYP isoforms publication-title: Phytomedicine doi: 10.1016/j.phymed.2011.12.005 – volume: 126572 year: 2020 ident: 10.1016/j.pestbp.2021.104861_bb0080 article-title: Enantioselective endocrine-disrupting effects of the phenylpyrazole chiral insecticides in vitro and in silico publication-title: Chemosphere – volume: 338 start-page: 57 year: 2017 ident: 10.1016/j.pestbp.2021.104861_bb0170 article-title: Risk assessment of the endocrine-disrupting effects of nine chiral pesticides publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.05.015 – volume: 78 start-page: 16 year: 2015 ident: 10.1016/j.pestbp.2021.104861_bb0115 article-title: Identification of fipronil metabolites by time-of-flight mass spectrometry for application in a human exposure study publication-title: Environ. Int. doi: 10.1016/j.envint.2015.01.016 – volume: 8 start-page: 59 issue: 1 year: 2007 ident: 10.1016/j.pestbp.2021.104861_bb0035 article-title: Molecular modeling-guided site-directed mutagenesis of cytochrome P450 2D6 publication-title: Curr. Drug Metab. doi: 10.2174/138920007779315062 – start-page: 99 year: 2016 ident: 10.1016/j.pestbp.2021.104861_bb0180 – volume: 9 start-page: 23 issue: 1 year: 1978 ident: 10.1016/j.pestbp.2021.104861_bb0095 article-title: Studies on the chiral isomers of fonofos and fonofos oxon: III. In vivo metabolism publication-title: Pestic. Biochem. Phys. doi: 10.1016/0048-3575(78)90060-3 – volume: 105 start-page: 138 year: 2016 ident: 10.1016/j.pestbp.2021.104861_bb0150 article-title: Environmental behavior of the chiral insecticide fipronil: enantioselective toxicity, distribution and transformation in aquatic ecosystem publication-title: Water Res. doi: 10.1016/j.watres.2016.08.063 – volume: 407 start-page: 3499 issue: 12 year: 2015 ident: 10.1016/j.pestbp.2021.104861_bb0190 article-title: Simultaneous determination of chiral pesticide flufiprole enantiomers in vegetables, fruits, and soil by high-performance liquid chromatography publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-015-8543-3 |
SSID | ssj0009409 |
Score | 2.358764 |
Snippet | The stereoselective difference of chiral pesticide enantiomers is an important factor of risk evaluation and the subject has received wide attention. In the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 104861 |
SubjectTerms | Enantiomer transformation enantiomers enantioselectivity Enantioselectivity metabolism Enzyme activity fipronil human health liver liver microsomes metabolism metabolites Molecular docking Phenylpyrazole insecticide rats risk assessment |
Title | Enantioselective metabolism of phenylpyrazole insecticides by rat liver microsomal CYP3A1, CYP2E1 and CYP2D2 |
URI | https://dx.doi.org/10.1016/j.pestbp.2021.104861 https://www.proquest.com/docview/2540718820 https://www.proquest.com/docview/2551990880 |
Volume | 176 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhPaQ9hCZtadImKJBj3diS1rKPy3bDNgshlJSmJ6FncfDay3pz2B762zvjR0oLaSAnWWKEhb5hZoQ-zRBymicjcLugvJJLFwlmdGRG0HVpzpyxuYxNm-3zMp19FRc3o5stMhnewiCtsrf9nU1vrXU_ctbv5tmyKPCNr4DwQYL_wUCBYU5QISRq-cdff2geuehpHiKLUHp4PtdyvJZgeQ1mrWQJXnZmafKQe_rHULfe5_wl2e3DRjruVrZHtny1T16Mf6z61Bl-n-xMhtptr0g5RX5LUTdtlRswaHTh1wB3WTQLWgeKxK5Nudys9M-69LSoGhSzhfMNNRsKWkFLJGzQBfL1mnoB_558v-Lj5AO2bJpQXbn28xN7Ta7Pp9eTWdTXVYgsl2wdpcYYr7PcJCzIwHORihBiaTkDlGLjgoYh4xInU-fgeOMYnGRDMKmRwWaCvyHbVV35t4SOpA5Sem40HEsctI6ZwFxmtU8za_kB4cNuKtvnHMfSF6UayGW3qsNAIQaqw-CARPezll3OjUfk5QCU-kt3FLiFR2aeDLgqQAjvSnTl67tGsTYxIRw_4v_JQPiLPLH48MkreEeeY68jAL8n2-vVnT-CMGdtjls9PibPxp_ns0ts51--zX8DFIb-8g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH8a3WFwQDBAjPFhJI5ES2wnTo5V6dSxUXEo0jhZdmyjoDSpmu5Q_vo9Jw4IJJjEyYljK5Z_T-9D_vk9gHdFkqLZReEVTJiIU60ineKryQpqdFmIWPfZPpfZ4gv_eJ1eH8BsvAvjaZVB9w86vdfWoecs7ObZpqr8HV-O7oNA--MdBcrvwaHPTpVO4HB6cblY_sq9ywPTg-eRnzDeoOtpXhtUvtonrqSJP-_Ms-RvFuoPXd0boPNH8DB4jmQ6LO4xHNjmGB5Mv21D9gx7DEezsXzbE6jnnuJStV1f6AZ1GlnbHSJeV92atI54bte-3uy36kdbW1I1nR9WVsZ2RO8JCgapPWeDrD1lr2vX-O_Z189smrz3LZ0nRDWmf_xAn8LqfL6aLaJQWiEqmaC7KNNaW5UXOqFOOFbwjDsXi5JRBCrWxins0iYxIjMGIxxDMZh1TmdauDLn7BlMmraxz4GkQjkhLNMKIxODraHaUZOXymZ5WbITYONuyjKkHffVL2o58su-ywED6TGQAwYnEP2ctRnSbtwxXoxAyd_ER6JluGPm2xFXiQj54xLV2Pamk7TPTYgRSPyvMegBe6pY_OK_V_AGjharT1fy6mJ5eQr3_ZeBD_wSJrvtjX2FXs9Ovw5SfQvLEwAP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enantioselective+metabolism+of+phenylpyrazole+insecticides+by+rat+liver+microsomal+CYP3A1%2C+CYP2E1+and+CYP2D2&rft.jtitle=Pesticide+biochemistry+and+physiology&rft.au=Zhang%2C+Zhaoxian&rft.au=Wang%2C+Zhiqiang&rft.au=Li%2C+Qing+X.&rft.au=Hua%2C+Rimao&rft.date=2021-07-01&rft.pub=Elsevier+Inc&rft.issn=0048-3575&rft.eissn=1095-9939&rft.volume=176&rft_id=info:doi/10.1016%2Fj.pestbp.2021.104861&rft.externalDocID=S0048357521000924 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-3575&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-3575&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-3575&client=summon |