Adsorption and diffusion of lithium on heteroatom-doped monolayer molybdenum disulfide
[Display omitted] •Adsorption and diffusion of Li on heteroatom-doped MoS2 were investigated.•Doping enhance the adsorption of Li on monolayer MoS2.•Heteroatom-doped monolayer MoS2 can be used as anode materials of LIBs. In this work, heteroatom doping in monolayer MoS2 by substitution of S with non...
Saved in:
Published in | Applied surface science Vol. 455; pp. 911 - 918 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Adsorption and diffusion of Li on heteroatom-doped MoS2 were investigated.•Doping enhance the adsorption of Li on monolayer MoS2.•Heteroatom-doped monolayer MoS2 can be used as anode materials of LIBs.
In this work, heteroatom doping in monolayer MoS2 by substitution of S with nonmetal elements (N, P, As, F, Cl, and I) and substitution of Mo with metal elements (Fe, Co, Ni, Cu, and Zn) was investigated using density functional theory. The adsorption and diffusion of Li on the heteroatom-doped MoS2 monolayer were also studied. Results showed that heteroatom doping can be realized by controlling the synthesis condition, and can enhance the adsorption of Li on monolayer MoS2, especially for p-type doped monolayers. The diffusion energy barriers were slightly decreased as Li diffused towards the doping site, whereas they were increased for the diffusion around the doping site. The maximum values of the diffusion energy barriers were 0.82, 0.62, and 0.72 eV for Ni, Cu, and Cu dopants, respectively, with others around 0.25 eV. The diffusion was not affected by the doping for sites far from the doping position. Thus, heteroatom-doped monolayer MoS2 can be used as an anode material for lithium ion batteries. |
---|---|
AbstractList | [Display omitted]
•Adsorption and diffusion of Li on heteroatom-doped MoS2 were investigated.•Doping enhance the adsorption of Li on monolayer MoS2.•Heteroatom-doped monolayer MoS2 can be used as anode materials of LIBs.
In this work, heteroatom doping in monolayer MoS2 by substitution of S with nonmetal elements (N, P, As, F, Cl, and I) and substitution of Mo with metal elements (Fe, Co, Ni, Cu, and Zn) was investigated using density functional theory. The adsorption and diffusion of Li on the heteroatom-doped MoS2 monolayer were also studied. Results showed that heteroatom doping can be realized by controlling the synthesis condition, and can enhance the adsorption of Li on monolayer MoS2, especially for p-type doped monolayers. The diffusion energy barriers were slightly decreased as Li diffused towards the doping site, whereas they were increased for the diffusion around the doping site. The maximum values of the diffusion energy barriers were 0.82, 0.62, and 0.72 eV for Ni, Cu, and Cu dopants, respectively, with others around 0.25 eV. The diffusion was not affected by the doping for sites far from the doping position. Thus, heteroatom-doped monolayer MoS2 can be used as an anode material for lithium ion batteries. |
Author | Sun, Xiaoli Wang, Zhiguo |
Author_xml | – sequence: 1 givenname: Xiaoli surname: Sun fullname: Sun, Xiaoli – sequence: 2 givenname: Zhiguo orcidid: 0000-0002-5652-5362 surname: Wang fullname: Wang, Zhiguo email: zgwang@uestc.edu.cn |
BookMark | eNqFkEtLxDAUhYOM4MzoP3DRP9CaV9vUhTAMvmDAjboNaR5MhrYpSSrMvzelrlzo6t7DPefA_TZgNbhBA3CLYIEgqu5OhRjDFGSBIWIFrApI8AVYI1aTvCwZXYF1sjU5JQRfgU0IJwgRTtc1-Nyp4PwYrRsyMahMWWOmMCtnss7Go536LKmjjto7EV2fKzdqlfVucJ04a5-27twqPSSjsmHqjFX6Glwa0QV98zO34OPp8X3_kh_enl_3u0MuSY1jXjFBJdWMNpQYhiGp2haXAlFKoSBlI1rWCirqtpQKNxLBxhAJRVXWtSxbxcgW0KVXeheC14aP3vbCnzmCfGbDT3xhw2c2HFY8sUmx-18xaaOYIUQvbPdf-GEJ6_TYl9WeB2n1ILWyXsvIlbN_F3wDdMOGtQ |
CitedBy_id | crossref_primary_10_1016_j_cclet_2020_12_014 crossref_primary_10_1007_s12678_018_0485_z crossref_primary_10_1016_j_cej_2020_124144 crossref_primary_10_1063_5_0177280 crossref_primary_10_1016_j_mattod_2022_02_011 crossref_primary_10_1021_acsnano_1c00797 crossref_primary_10_1016_j_surfrep_2022_100567 crossref_primary_10_1021_acs_jpcc_3c01819 crossref_primary_10_1063_5_0132894 crossref_primary_10_1021_acsomega_9b01354 crossref_primary_10_1002_cssc_202001562 crossref_primary_10_1039_C9EE03549D crossref_primary_10_1039_D4QI02473G crossref_primary_10_1002_aenm_202100864 crossref_primary_10_3390_nano13152182 crossref_primary_10_1016_j_ccr_2019_213020 crossref_primary_10_1364_OE_547099 crossref_primary_10_1016_j_ces_2021_116795 crossref_primary_10_1016_j_est_2024_113060 crossref_primary_10_1039_D1QM00442E crossref_primary_10_1016_j_ensm_2020_11_004 crossref_primary_10_1016_j_apsusc_2022_154164 crossref_primary_10_1016_j_matre_2023_100213 crossref_primary_10_1016_j_cej_2021_128811 crossref_primary_10_1016_j_physb_2024_416296 crossref_primary_10_1039_D3SC05768B crossref_primary_10_1016_j_bios_2019_111529 crossref_primary_10_1016_j_jallcom_2023_169689 crossref_primary_10_1016_j_partic_2023_08_009 crossref_primary_10_1007_s11664_020_08333_1 crossref_primary_10_20964_2018_12_55 crossref_primary_10_1142_S0217984920501407 crossref_primary_10_3390_ma16072559 crossref_primary_10_3390_cryst13060929 crossref_primary_10_1002_slct_202204575 crossref_primary_10_1039_D1DT00490E crossref_primary_10_1088_1402_4896_acacd1 crossref_primary_10_1016_j_apsusc_2022_153723 |
Cites_doi | 10.1016/j.electacta.2014.09.132 10.1088/0953-8984/14/11/302 10.1016/j.electacta.2016.04.160 10.1103/PhysRevB.88.144409 10.1063/1.1680654 10.1039/C5RA27540G 10.1007/s00214-011-0961-5 10.1039/C6TA09264K 10.1021/nl301485q 10.1103/PhysRevB.87.195201 10.1021/jp2000442 10.1021/nl2043612 10.1063/1.4891495 10.1016/j.physleta.2013.03.034 10.1080/00268977000101561 10.1186/s11671-016-1376-y 10.1002/adma.201402728 10.1088/0957-4484/27/17/175402 10.1039/c3ra22740e 10.1088/0953-8984/26/25/256003 10.1021/nn2006249 10.1063/1.4919565 10.1021/jz300792n 10.1016/j.physe.2015.04.029 10.1016/j.materresbull.2009.05.018 10.1038/srep12571 10.1016/j.apsusc.2016.05.038 10.1103/PhysRevB.88.075420 10.1002/celc.201402056 10.1039/C5CP05001D 10.1021/nn100740x 10.1038/nnano.2006.171 10.1038/nnano.2010.279 10.1021/nn1003937 10.1103/PhysRevLett.30.1175 10.1039/c3cp54320j 10.1021/jp512411g 10.1016/j.jallcom.2014.06.018 10.1038/srep03987 10.1021/nl4007479 10.1103/PhysRevB.87.100401 10.1038/srep11989 10.1002/adma.201104798 10.1016/j.jpowsour.2014.06.049 10.1038/srep18712 10.1016/j.matdes.2016.10.005 10.1002/anie.201502117 10.1016/j.physe.2015.05.010 10.1016/S1452-3981(23)14301-X |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.apsusc.2018.06.032 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-5584 |
EndPage | 918 |
ExternalDocumentID | 10_1016_j_apsusc_2018_06_032 S0169433218316003 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCB SDF SDG SDP SES SMS SPC SPCBC SPD SPG SSK SSM SSQ SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB G-2 HMV HVGLF HZ~ NDZJH R2- SEW SSH WUQ |
ID | FETCH-LOGICAL-c372t-68a4c4e84943f82036bb25a14440a359ab8ba4a7b5cd29c109f3c0a6577c5bd83 |
IEDL.DBID | .~1 |
ISSN | 0169-4332 |
IngestDate | Tue Jul 01 02:09:12 EDT 2025 Thu Apr 24 23:06:58 EDT 2025 Fri Feb 23 02:25:17 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lithium ion batteries Monolayer MoS2 Adsorption Diffusion Doping |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-68a4c4e84943f82036bb25a14440a359ab8ba4a7b5cd29c109f3c0a6577c5bd83 |
ORCID | 0000-0002-5652-5362 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1016_j_apsusc_2018_06_032 crossref_citationtrail_10_1016_j_apsusc_2018_06_032 elsevier_sciencedirect_doi_10_1016_j_apsusc_2018_06_032 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-15 |
PublicationDateYYYYMMDD | 2018-10-15 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Applied surface science |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Boys, Bernardi (b0230) 1970; 19 Sun, Wang, Fu (b0105) 2015; 5 Qiuhong, Xia, Zhenjun, Jia, Dongdong, Qiang, Shuangyin (b0215) 2016; 27 Liu, Chen, Deng, Su, Guo, Zhu (b0100) 2016; 206 Mishra, Zhou, Pennycook, Pantelides, Idrobo (b0190) 2013; 88 Wu, Xu, Li, Cheng (b0205) 2011; 5 Liu, McLean (b0225) 1973; 59 Zhao, Liu, Cheng, Li, Qi, Chen, Tang (b0130) 2017; 113 Lee, Zhang, Zhang, Chang, Lin, Chang, Yu, Wang, Chang, Li, Lin (b0055) 2012; 24 Lee, Yan, Brus, Heinz, Hone, Ryu (b0035) 2010; 4 Feng, Mi, Cheng, Guo, Schwingenschlogl, Bai (b0135) 2014; 4 Jing, Ortiz-Quiles, Cabrera, Chen, Zhou (b0005) 2014; 147 Ataca, Ciraci (b0235) 2011; 115 Li, Duan, Wan, Kuo (b0020) 2015; 119 Kasowski (b0120) 1973; 30 Ramasubramaniam, Naveh (b0145) 2013; 87 Dolui, Rungger, Das Pemmaraju, Sanvito (b0240) 2013; 88 Qi, Li, Chen, Hu (b0180) 2014; 26 Kulish, Malyi, Ng, Chen, Manzhos, Wu (b0025) 2014; 16 Lin, Ni (b0195) 2014; 116 Sahu, Mitra (b0070) 2015; 5 Lauritsen, Kibsgaard, Helveg, Topsoe, Clausen, Laegsgaard, Besenbacher (b0040) 2007; 2 Liu, Zhang, Lee, Lin, Chang, Su, Chang, Li, Shi, Zhang, Lai, Li (b0045) 2012; 12 Li, Wang, Ding, Pang, Nie, Shen, Zhang (b0080) 2014; 1 Lu, Li, Zhao, Gong, Niu, Liu (b0150) 2016; 384 Kapildeb Dolui, Pemmaraju, Sanvito (b0155) 2013; 88 Wu, Ren, Wen, Gao, Zhao, Chen, Zhou, Li, Cheng (b0210) 2010; 4 Feng, Ma, Li, Zeng, Guo, Liu (b0095) 2009; 44 Wang, Liu, Chao, Yan, Lin, Shen (b0075) 2014; 26 Zou, Zhu, Gao, Wu, Yao (b0140) 2016; 18 Kalluri, Seng, Guo, Du, Konstantinov, Liu, Dou (b0065) 2015; 5 Fan, An, Guo (b0170) 2016; 11 Soler, Artacho, Gale, Garcia, Junquera, Ordejon, Sanchez-Portal (b0220) 2002; 14 Yu, Hu, Wang, Chen, Lou (b0060) 2015; 54 Kulish, Malyi, Ng, Wu, Chen (b0015) 2013; 3 Yue, Chang, Qin, Li (b0200) 2013; 377 Wu, Li, Zhou (b0245) 2011; 130 Zhou, Zou, Najmaei, Liu, Shi, Kong, Lou, Ajayan, Yakobson, Idrobo (b0110) 2013; 13 Zhao, Chen, Xia, Wang, Dai (b0125) 2016; 6 Jiang, Shyy, Liu, Wei, Wu, Zhao (b0250) 2017; 5 Cheng, Zhu, Mi, Guo, Schwingenschlögl (b0160) 2013; 87 Chen, Huang, Lei, Wu, Liu, Ouyang, Xu (b0090) 2013; 8 Lee, Min, Chang, Park, Nam, Kim, Kim, Ryu, Im (b0050) 2012; 12 Das, Demarteau, Roelofs (b0185) 2015; 106 Li, Wu, Zhou, Cabrera, Chen (b0085) 2012; 3 Mortazavi, Wang, Deng, Shenoy, Medhekar (b0010) 2014; 268 Radisavljevic, Radenovic, Brivio, Giacometti, Kis (b0030) 2011; 6 Xu, Li, Li, Huang, Zhang, Wang (b0165) 2015; 73 Feng, Su, Liu (b0115) 2014; 613 Hu, Wang, Xiao, Meng (b0175) 2015; 73 Zhao (10.1016/j.apsusc.2018.06.032_b0130) 2017; 113 Lu (10.1016/j.apsusc.2018.06.032_b0150) 2016; 384 Cheng (10.1016/j.apsusc.2018.06.032_b0160) 2013; 87 Wang (10.1016/j.apsusc.2018.06.032_b0075) 2014; 26 Li (10.1016/j.apsusc.2018.06.032_b0020) 2015; 119 Lee (10.1016/j.apsusc.2018.06.032_b0035) 2010; 4 Qi (10.1016/j.apsusc.2018.06.032_b0180) 2014; 26 Feng (10.1016/j.apsusc.2018.06.032_b0095) 2009; 44 Liu (10.1016/j.apsusc.2018.06.032_b0225) 1973; 59 Qiuhong (10.1016/j.apsusc.2018.06.032_b0215) 2016; 27 Kulish (10.1016/j.apsusc.2018.06.032_b0025) 2014; 16 Yue (10.1016/j.apsusc.2018.06.032_b0200) 2013; 377 Sahu (10.1016/j.apsusc.2018.06.032_b0070) 2015; 5 Ataca (10.1016/j.apsusc.2018.06.032_b0235) 2011; 115 Feng (10.1016/j.apsusc.2018.06.032_b0135) 2014; 4 Kasowski (10.1016/j.apsusc.2018.06.032_b0120) 1973; 30 Jing (10.1016/j.apsusc.2018.06.032_b0005) 2014; 147 Liu (10.1016/j.apsusc.2018.06.032_b0100) 2016; 206 Zou (10.1016/j.apsusc.2018.06.032_b0140) 2016; 18 Hu (10.1016/j.apsusc.2018.06.032_b0175) 2015; 73 Wu (10.1016/j.apsusc.2018.06.032_b0245) 2011; 130 Mishra (10.1016/j.apsusc.2018.06.032_b0190) 2013; 88 Xu (10.1016/j.apsusc.2018.06.032_b0165) 2015; 73 Lin (10.1016/j.apsusc.2018.06.032_b0195) 2014; 116 Radisavljevic (10.1016/j.apsusc.2018.06.032_b0030) 2011; 6 Zhao (10.1016/j.apsusc.2018.06.032_b0125) 2016; 6 Lee (10.1016/j.apsusc.2018.06.032_b0055) 2012; 24 Wu (10.1016/j.apsusc.2018.06.032_b0205) 2011; 5 Li (10.1016/j.apsusc.2018.06.032_b0080) 2014; 1 Lee (10.1016/j.apsusc.2018.06.032_b0050) 2012; 12 Fan (10.1016/j.apsusc.2018.06.032_b0170) 2016; 11 Boys (10.1016/j.apsusc.2018.06.032_b0230) 1970; 19 Liu (10.1016/j.apsusc.2018.06.032_b0045) 2012; 12 Das (10.1016/j.apsusc.2018.06.032_b0185) 2015; 106 Soler (10.1016/j.apsusc.2018.06.032_b0220) 2002; 14 Lauritsen (10.1016/j.apsusc.2018.06.032_b0040) 2007; 2 Feng (10.1016/j.apsusc.2018.06.032_b0115) 2014; 613 Li (10.1016/j.apsusc.2018.06.032_b0085) 2012; 3 Kapildeb Dolui (10.1016/j.apsusc.2018.06.032_b0155) 2013; 88 Sun (10.1016/j.apsusc.2018.06.032_b0105) 2015; 5 Yu (10.1016/j.apsusc.2018.06.032_b0060) 2015; 54 Zhou (10.1016/j.apsusc.2018.06.032_b0110) 2013; 13 Jiang (10.1016/j.apsusc.2018.06.032_b0250) 2017; 5 Kulish (10.1016/j.apsusc.2018.06.032_b0015) 2013; 3 Ramasubramaniam (10.1016/j.apsusc.2018.06.032_b0145) 2013; 87 Dolui (10.1016/j.apsusc.2018.06.032_b0240) 2013; 88 Chen (10.1016/j.apsusc.2018.06.032_b0090) 2013; 8 Wu (10.1016/j.apsusc.2018.06.032_b0210) 2010; 4 Mortazavi (10.1016/j.apsusc.2018.06.032_b0010) 2014; 268 Kalluri (10.1016/j.apsusc.2018.06.032_b0065) 2015; 5 |
References_xml | – volume: 26 start-page: 256003 year: 2014 ident: b0180 article-title: Strain tuning of magnetism in Mn doped MoS publication-title: J. Phys. Condens. Matter – volume: 27 start-page: 175402 year: 2016 ident: b0215 article-title: The origin of the enhanced performance of nitrogen-doped MoS publication-title: Nanotechnology – volume: 73 start-page: 83 year: 2015 end-page: 88 ident: b0165 article-title: A novel optical property induced by Mo, S vacancy and V-doped in monolayer MoS publication-title: Physica E – volume: 87 start-page: 195201 year: 2013 ident: b0145 article-title: Mn-doped monolayer MoS publication-title: Phys. Rev. B – volume: 116 start-page: 044311 year: 2014 ident: b0195 article-title: Charge and magnetic states of Mn-, Fe-, and Co-doped monolayer MoS publication-title: J. Appl. Phys. – volume: 5 start-page: 672 year: 2017 end-page: 679 ident: b0250 article-title: Boron phosphide monolayer as a potential anode material for alkali metal-based batteries publication-title: J. Mater. Chem. A – volume: 18 start-page: 6053 year: 2016 end-page: 6058 ident: b0140 article-title: Temperature-controlled spin filter and spin valve based on Fe-doped monolayer MoS publication-title: Phys. Chem. Chem. Phys. – volume: 11 start-page: 154 year: 2016 ident: b0170 article-title: Ferromagnetism in transitional metal-doped MoS publication-title: Nanoscale Res. Lett. – volume: 19 start-page: 553 year: 1970 end-page: 566 ident: b0230 article-title: The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors publication-title: Mol. Phys. – volume: 16 start-page: 4260 year: 2014 end-page: 4267 ident: b0025 article-title: Controlling Na diffusion by rational design of Si-based layered architectures publication-title: Phys. Chem. Chem. Phys. – volume: 206 start-page: 184 year: 2016 end-page: 191 ident: b0100 article-title: Preparation of ultrathin 2D MoS publication-title: Electrochim. Acta – volume: 54 start-page: 7395 year: 2015 end-page: 7398 ident: b0060 article-title: Ultrathin MoS publication-title: Ang. Chem. Int. Ed. – volume: 87 start-page: 100401 year: 2013 ident: b0160 article-title: Prediction of two-dimensional diluted magnetic semiconductors: doped monolayer MoS publication-title: Phys. Rev. B – volume: 2 start-page: 53 year: 2007 end-page: 58 ident: b0040 article-title: Size-dependent structure of MoS publication-title: Nat. Nanotechnol. – volume: 3 start-page: 2221 year: 2012 end-page: 2227 ident: b0085 article-title: Enhanced Li adsorption and diffusion on MoS publication-title: J. Phys. Chem. Lett. – volume: 13 start-page: 2615 year: 2013 end-page: 2622 ident: b0110 article-title: Intrinsic structural defects in monolayer molybdenum disulfide publication-title: Nano Lett. – volume: 268 start-page: 279 year: 2014 end-page: 286 ident: b0010 article-title: Ab initio characterization of layered MoS publication-title: J. Power Sources – volume: 88 start-page: 144409 year: 2013 ident: b0190 article-title: Long-range ferromagnetic ordering in manganese-doped two-dimensional dichalcogenides publication-title: Phys. Rev. B – volume: 6 start-page: 147 year: 2011 end-page: 150 ident: b0030 article-title: Single-layer MoS publication-title: Nat. Nanotechnol. – volume: 3 start-page: 4231 year: 2013 end-page: 4236 ident: b0015 article-title: Enhanced Li adsorption and diffusion in silicon nanosheets based on first principles calculations publication-title: RSC Adv. – volume: 88 start-page: 075420 year: 2013 ident: b0240 article-title: Possible doping strategies for MoS publication-title: Phys. Rev. B – volume: 613 start-page: 122 year: 2014 end-page: 127 ident: b0115 article-title: Effect of vacancies on structural, electronic and optical properties of monolayer MoS publication-title: J. Alloy. Comp. – volume: 44 start-page: 1811 year: 2009 end-page: 1815 ident: b0095 article-title: Synthesis of molybdenum disulfide (MoS publication-title: Mater. Res. Bull. – volume: 4 start-page: 3187 year: 2010 end-page: 3194 ident: b0210 article-title: graphene anchored with Co publication-title: ACS Nano – volume: 26 start-page: 7162 year: 2014 end-page: 7169 ident: b0075 article-title: Self-assembly of honeycomb-like MoS publication-title: Adv. Mater. – volume: 377 start-page: 1362 year: 2013 end-page: 1367 ident: b0200 article-title: Functionalization of monolayer MoS publication-title: Phys. Lett. A – volume: 73 start-page: 69 year: 2015 end-page: 75 ident: b0175 article-title: Electronic structures and magnetic properties in Cu-doped two-dimensional dichalcogenides publication-title: Physica E – volume: 14 start-page: 2745 year: 2002 end-page: 2779 ident: b0220 article-title: The SIESTA method for ab initio order-N materials simulation publication-title: J. Phys.-Condens. Mat. – volume: 24 start-page: 2320 year: 2012 end-page: 2325 ident: b0055 article-title: Synthesis of large-area MoS publication-title: Adv. Mater. – volume: 6 start-page: 16772 year: 2016 end-page: 16778 ident: b0125 article-title: Electronic and magnetic properties of n-type and p-doped MoS publication-title: RSC Adv. – volume: 5 year: 2015 ident: b0105 article-title: Defect-mediated lithium adsorption and diffusion on monolayer molybdenum disulfide publication-title: Sci. Rep. – volume: 113 start-page: 1 year: 2017 end-page: 8 ident: b0130 article-title: Interaction of O publication-title: Mater. Des. – volume: 30 start-page: 1175 year: 1973 end-page: 1178 ident: b0120 article-title: Band structure of MoS publication-title: Phys. Rev. Lett. – volume: 12 start-page: 1538 year: 2012 end-page: 1544 ident: b0045 article-title: Growth of large-area and highly crystalline MoS publication-title: Nano Lett. – volume: 88 start-page: 075420 year: 2013 ident: b0155 article-title: Ab-initio study on the possible doping strategies for MoS publication-title: Phys. Rev. B – volume: 8 start-page: 2196 year: 2013 end-page: 22003 ident: b0090 article-title: Adsorption and diffusion of lithium on MoS publication-title: Int. J. Electrochem. Sci. – volume: 59 start-page: 4557 year: 1973 end-page: 4558 ident: b0225 article-title: Accurate calculation of the attractive interaction of two ground state helium atoms publication-title: J. Chem. Phys. – volume: 106 start-page: 173506 year: 2015 ident: b0185 article-title: Nb-doped single crystalline MoS publication-title: Appl. Phys. Lett. – volume: 130 start-page: 209 year: 2011 end-page: 213 ident: b0245 article-title: First-principles studies on doped graphene as anode materials in lithium-ion batteries publication-title: Theor. Chem. ACC. – volume: 147 start-page: 392 year: 2014 end-page: 400 ident: b0005 article-title: Layer-by-layer hybrids of MoS publication-title: Electrochim. Acta – volume: 1 start-page: 1118 year: 2014 end-page: 1125 ident: b0080 article-title: Enhanced lithium-storage performance from three-dimensional MoS publication-title: ChemElectroChem – volume: 5 start-page: 5463 year: 2011 end-page: 5471 ident: b0205 article-title: Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries publication-title: ACS Nano – volume: 384 start-page: 360 year: 2016 end-page: 367 ident: b0150 article-title: Tunable redox potential of nonmetal doped monolayer MoS publication-title: Appl. Surf. Sci. – volume: 119 start-page: 8662 year: 2015 end-page: 8670 ident: b0020 article-title: Theoretical prediction of anode materials in Li-ion batteries on layered black and blue phosphorus publication-title: J. Phys. Chem. C – volume: 12 start-page: 3695 year: 2012 end-page: 3700 ident: b0050 article-title: MoS publication-title: Nano Lett. – volume: 4 start-page: 2695 year: 2010 end-page: 2700 ident: b0035 article-title: Anomalous lattice vibrations of single- and few-Layer MoS publication-title: ACS Nano – volume: 5 start-page: 12571 year: 2015 ident: b0070 article-title: Exfoliated MoS publication-title: Sci. Rep. – volume: 5 start-page: 11989 year: 2015 ident: b0065 article-title: Sodium and lithium storage properties of spray-dried molybdenum disulfide-graphene hierarchical microspheres publication-title: Sci. Rep. – volume: 4 start-page: 3987 year: 2014 ident: b0135 article-title: First principles prediction of the magnetic properties of FeX publication-title: Sci. Rep. – volume: 115 start-page: 13303 year: 2011 end-page: 13311 ident: b0235 article-title: Functionalization of single-layer MoS publication-title: J. Phys. Chem. C – volume: 147 start-page: 392 year: 2014 ident: 10.1016/j.apsusc.2018.06.032_b0005 article-title: Layer-by-layer hybrids of MoS2 and reduced graphene oxide for lithium ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.09.132 – volume: 14 start-page: 2745 year: 2002 ident: 10.1016/j.apsusc.2018.06.032_b0220 article-title: The SIESTA method for ab initio order-N materials simulation publication-title: J. Phys.-Condens. Mat. doi: 10.1088/0953-8984/14/11/302 – volume: 206 start-page: 184 year: 2016 ident: 10.1016/j.apsusc.2018.06.032_b0100 article-title: Preparation of ultrathin 2D MoS2/graphene heterostructure assembled foam-like structure with enhanced electrochemical performance for lithium-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.04.160 – volume: 88 start-page: 144409 year: 2013 ident: 10.1016/j.apsusc.2018.06.032_b0190 article-title: Long-range ferromagnetic ordering in manganese-doped two-dimensional dichalcogenides publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.144409 – volume: 59 start-page: 4557 year: 1973 ident: 10.1016/j.apsusc.2018.06.032_b0225 article-title: Accurate calculation of the attractive interaction of two ground state helium atoms publication-title: J. Chem. Phys. doi: 10.1063/1.1680654 – volume: 6 start-page: 16772 year: 2016 ident: 10.1016/j.apsusc.2018.06.032_b0125 article-title: Electronic and magnetic properties of n-type and p-doped MoS2 monolayers publication-title: RSC Adv. doi: 10.1039/C5RA27540G – volume: 130 start-page: 209 year: 2011 ident: 10.1016/j.apsusc.2018.06.032_b0245 article-title: First-principles studies on doped graphene as anode materials in lithium-ion batteries publication-title: Theor. Chem. ACC. doi: 10.1007/s00214-011-0961-5 – volume: 5 start-page: 672 year: 2017 ident: 10.1016/j.apsusc.2018.06.032_b0250 article-title: Boron phosphide monolayer as a potential anode material for alkali metal-based batteries publication-title: J. Mater. Chem. A doi: 10.1039/C6TA09264K – volume: 12 start-page: 3695 year: 2012 ident: 10.1016/j.apsusc.2018.06.032_b0050 article-title: MoS2 nanosheet phototransistors with thickness-modulated optical energy gap publication-title: Nano Lett. doi: 10.1021/nl301485q – volume: 87 start-page: 195201 year: 2013 ident: 10.1016/j.apsusc.2018.06.032_b0145 article-title: Mn-doped monolayer MoS2: an atomically thin dilute magnetic semiconductor publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.195201 – volume: 115 start-page: 13303 year: 2011 ident: 10.1016/j.apsusc.2018.06.032_b0235 article-title: Functionalization of single-layer MoS2 honeycomb structures publication-title: J. Phys. Chem. C doi: 10.1021/jp2000442 – volume: 12 start-page: 1538 year: 2012 ident: 10.1016/j.apsusc.2018.06.032_b0045 article-title: Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates publication-title: Nano Lett. doi: 10.1021/nl2043612 – volume: 116 start-page: 044311 year: 2014 ident: 10.1016/j.apsusc.2018.06.032_b0195 article-title: Charge and magnetic states of Mn-, Fe-, and Co-doped monolayer MoS2 publication-title: J. Appl. Phys. doi: 10.1063/1.4891495 – volume: 377 start-page: 1362 year: 2013 ident: 10.1016/j.apsusc.2018.06.032_b0200 article-title: Functionalization of monolayer MoS2 by substitutional doping: a first-principles study publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2013.03.034 – volume: 19 start-page: 553 year: 1970 ident: 10.1016/j.apsusc.2018.06.032_b0230 article-title: The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors publication-title: Mol. Phys. doi: 10.1080/00268977000101561 – volume: 11 start-page: 154 year: 2016 ident: 10.1016/j.apsusc.2018.06.032_b0170 article-title: Ferromagnetism in transitional metal-doped MoS2 monolayer publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-016-1376-y – volume: 26 start-page: 7162 year: 2014 ident: 10.1016/j.apsusc.2018.06.032_b0075 article-title: Self-assembly of honeycomb-like MoS2 nanoarchitectures anchored into graphene foam for enhanced lithium-ion storage publication-title: Adv. Mater. doi: 10.1002/adma.201402728 – volume: 27 start-page: 175402 year: 2016 ident: 10.1016/j.apsusc.2018.06.032_b0215 article-title: The origin of the enhanced performance of nitrogen-doped MoS2 in lithium ion batteries publication-title: Nanotechnology doi: 10.1088/0957-4484/27/17/175402 – volume: 3 start-page: 4231 year: 2013 ident: 10.1016/j.apsusc.2018.06.032_b0015 article-title: Enhanced Li adsorption and diffusion in silicon nanosheets based on first principles calculations publication-title: RSC Adv. doi: 10.1039/c3ra22740e – volume: 26 start-page: 256003 year: 2014 ident: 10.1016/j.apsusc.2018.06.032_b0180 article-title: Strain tuning of magnetism in Mn doped MoS2 monolayer publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/26/25/256003 – volume: 5 start-page: 5463 year: 2011 ident: 10.1016/j.apsusc.2018.06.032_b0205 article-title: Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries publication-title: ACS Nano doi: 10.1021/nn2006249 – volume: 106 start-page: 173506 year: 2015 ident: 10.1016/j.apsusc.2018.06.032_b0185 article-title: Nb-doped single crystalline MoS2 field effect transistor publication-title: Appl. Phys. Lett. doi: 10.1063/1.4919565 – volume: 3 start-page: 2221 year: 2012 ident: 10.1016/j.apsusc.2018.06.032_b0085 article-title: Enhanced Li adsorption and diffusion on MoS2 zigzag nanoribbons by edge effects: a computational study publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz300792n – volume: 73 start-page: 69 year: 2015 ident: 10.1016/j.apsusc.2018.06.032_b0175 article-title: Electronic structures and magnetic properties in Cu-doped two-dimensional dichalcogenides publication-title: Physica E doi: 10.1016/j.physe.2015.04.029 – volume: 44 start-page: 1811 year: 2009 ident: 10.1016/j.apsusc.2018.06.032_b0095 article-title: Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2009.05.018 – volume: 5 start-page: 12571 year: 2015 ident: 10.1016/j.apsusc.2018.06.032_b0070 article-title: Exfoliated MoS2 sheets and reduced graphene oxide-an excellent and fast anode for sodium-ion battery publication-title: Sci. Rep. doi: 10.1038/srep12571 – volume: 384 start-page: 360 year: 2016 ident: 10.1016/j.apsusc.2018.06.032_b0150 article-title: Tunable redox potential of nonmetal doped monolayer MoS2: first principle calculations publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.05.038 – volume: 88 start-page: 075420 year: 2013 ident: 10.1016/j.apsusc.2018.06.032_b0155 article-title: Ab-initio study on the possible doping strategies for MoS2 monolayers publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.075420 – volume: 1 start-page: 1118 year: 2014 ident: 10.1016/j.apsusc.2018.06.032_b0080 article-title: Enhanced lithium-storage performance from three-dimensional MoS2 nanosheets/carbon nanotube paper publication-title: ChemElectroChem doi: 10.1002/celc.201402056 – volume: 18 start-page: 6053 year: 2016 ident: 10.1016/j.apsusc.2018.06.032_b0140 article-title: Temperature-controlled spin filter and spin valve based on Fe-doped monolayer MoS2 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP05001D – volume: 4 start-page: 3187 year: 2010 ident: 10.1016/j.apsusc.2018.06.032_b0210 article-title: graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance publication-title: ACS Nano doi: 10.1021/nn100740x – volume: 2 start-page: 53 year: 2007 ident: 10.1016/j.apsusc.2018.06.032_b0040 article-title: Size-dependent structure of MoS2 nanocrystals publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2006.171 – volume: 6 start-page: 147 year: 2011 ident: 10.1016/j.apsusc.2018.06.032_b0030 article-title: Single-layer MoS2 transistors publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.279 – volume: 4 start-page: 2695 year: 2010 ident: 10.1016/j.apsusc.2018.06.032_b0035 article-title: Anomalous lattice vibrations of single- and few-Layer MoS2 publication-title: ACS Nano doi: 10.1021/nn1003937 – volume: 30 start-page: 1175 year: 1973 ident: 10.1016/j.apsusc.2018.06.032_b0120 article-title: Band structure of MoS2 and NbS2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.30.1175 – volume: 16 start-page: 4260 year: 2014 ident: 10.1016/j.apsusc.2018.06.032_b0025 article-title: Controlling Na diffusion by rational design of Si-based layered architectures publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp54320j – volume: 119 start-page: 8662 year: 2015 ident: 10.1016/j.apsusc.2018.06.032_b0020 article-title: Theoretical prediction of anode materials in Li-ion batteries on layered black and blue phosphorus publication-title: J. Phys. Chem. C doi: 10.1021/jp512411g – volume: 613 start-page: 122 year: 2014 ident: 10.1016/j.apsusc.2018.06.032_b0115 article-title: Effect of vacancies on structural, electronic and optical properties of monolayer MoS2: a first-principles study publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2014.06.018 – volume: 4 start-page: 3987 year: 2014 ident: 10.1016/j.apsusc.2018.06.032_b0135 article-title: First principles prediction of the magnetic properties of FeX6 (X = S, C, N, O, F) doped monolayer MoS2 publication-title: Sci. Rep. doi: 10.1038/srep03987 – volume: 13 start-page: 2615 year: 2013 ident: 10.1016/j.apsusc.2018.06.032_b0110 article-title: Intrinsic structural defects in monolayer molybdenum disulfide publication-title: Nano Lett. doi: 10.1021/nl4007479 – volume: 87 start-page: 100401 year: 2013 ident: 10.1016/j.apsusc.2018.06.032_b0160 article-title: Prediction of two-dimensional diluted magnetic semiconductors: doped monolayer MoS2 systems publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.100401 – volume: 5 start-page: 11989 year: 2015 ident: 10.1016/j.apsusc.2018.06.032_b0065 article-title: Sodium and lithium storage properties of spray-dried molybdenum disulfide-graphene hierarchical microspheres publication-title: Sci. Rep. doi: 10.1038/srep11989 – volume: 88 start-page: 075420 year: 2013 ident: 10.1016/j.apsusc.2018.06.032_b0240 article-title: Possible doping strategies for MoS2 monolayers: an ab initio study publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.075420 – volume: 24 start-page: 2320 year: 2012 ident: 10.1016/j.apsusc.2018.06.032_b0055 article-title: Synthesis of large-area MoS2 atomic layers with chemical vapor deposition publication-title: Adv. Mater. doi: 10.1002/adma.201104798 – volume: 268 start-page: 279 year: 2014 ident: 10.1016/j.apsusc.2018.06.032_b0010 article-title: Ab initio characterization of layered MoS2 as anode for sodium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.06.049 – volume: 5 year: 2015 ident: 10.1016/j.apsusc.2018.06.032_b0105 article-title: Defect-mediated lithium adsorption and diffusion on monolayer molybdenum disulfide publication-title: Sci. Rep. doi: 10.1038/srep18712 – volume: 113 start-page: 1 year: 2017 ident: 10.1016/j.apsusc.2018.06.032_b0130 article-title: Interaction of O2 with monolayer MoS2: effect of doping and hydrogenation publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.10.005 – volume: 54 start-page: 7395 year: 2015 ident: 10.1016/j.apsusc.2018.06.032_b0060 article-title: Ultrathin MoS2 nanosheets supported on N-doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties publication-title: Ang. Chem. Int. Ed. doi: 10.1002/anie.201502117 – volume: 73 start-page: 83 year: 2015 ident: 10.1016/j.apsusc.2018.06.032_b0165 article-title: A novel optical property induced by Mo, S vacancy and V-doped in monolayer MoS2 publication-title: Physica E doi: 10.1016/j.physe.2015.05.010 – volume: 8 start-page: 2196 year: 2013 ident: 10.1016/j.apsusc.2018.06.032_b0090 article-title: Adsorption and diffusion of lithium on MoS2 monolayer: the role of strain and concentration publication-title: Int. J. Electrochem. Sci. doi: 10.1016/S1452-3981(23)14301-X |
SSID | ssj0012873 |
Score | 2.432499 |
Snippet | [Display omitted]
•Adsorption and diffusion of Li on heteroatom-doped MoS2 were investigated.•Doping enhance the adsorption of Li on monolayer... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 911 |
SubjectTerms | Adsorption Diffusion Doping Lithium ion batteries Monolayer MoS2 |
Title | Adsorption and diffusion of lithium on heteroatom-doped monolayer molybdenum disulfide |
URI | https://dx.doi.org/10.1016/j.apsusc.2018.06.032 |
Volume | 455 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfOKz7MFrbJJ9JDmWYqkKvWilt7CPhEbaprTNwYu_3Zk8SgVR8JZddiAMk3lkv_mGkDurbKoCHJOqOYMCRXInNMY4npXWTZiRaVqifEdyOOZPEzFpkX7TC4Owytr3Vz699Nb1TrfWZneZZd0X5BFB9i0wSk9WjJ-cB2jl959bmAe43-qWGQ5jd5DftM-VGC8FlegaiQy9isWT-T-Hp52QMzgih3WuSHvV6xyTVrI4IQc7DIKn5K1n1_mq_OypWliK804K_AFG85RChj3NijmF1RRRLzkU2HPH5svEUrA-KGoh34an2Ye2iIgH6XUxSzObnJHx4OG1P3TqUQmOYYG_cWSouOFJyEEjaYiXi1r7QkG1xF3FRKR0qBVXgRbG-pHx3ChlxlVSBIER2obsnLQX-SK5IFQqCVvc8sjTHLITJUKVRkxYH4dTm-CSsEZDsal5xHGcxSxuAGPvcaXXGPUaI26O-ZfE2UotKx6NP84HjfLjb_YQg6v_VfLq35LXZB9XGJk8cUPam1WR3ELKsdGd0qY6ZK_3-DwcfQE1Odf7 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ja8JQEH6IHtoeSldq1xx6DZq8JclRpJJW66VavIW3JGjRRFwO_fedySIWSgu9Je9lIAyTWfK--YaQRyNNIj0ck6oYhQJFMNvXWtuOEaYdUy2SJEf5DkU4Zi8TPqmRbtULg7DK0vcXPj331uVKq9Rmazmbtd6QRwTZt8AoHZEzfjaQnYrXSaPz3A-Hu8MEKApoQfEdYIOQW3XQ5TAvCcXoGrkMnYLIk7o_R6i9qNM7Icdlumh1ijc6JbU4PSNHeySC5-S9Y9bZKv_yLZkaC0eebPEfmJUlFiTZ09l2YcHdFIEvGdTYC9tky9hYYIBQ10LKDVfzT2UQFA_S6-08mZn4gox7T6NuaJfTEmxNPXdjC18yzWKfgVISH88XlXK5hIKJtSXlgVS-kkx6imvjBtppBwnVbSm452mujE8vST3N0viKWEIKWGKGBY5ikKBI7sskoNy4OJ9ae01CKw1FuqQSx4kW86jCjH1EhV4j1GuE0DnqNom9k1oWVBp_PO9Vyo--mUQE3v5Xyet_Sz6Qg3D0OogGz8P-DTnEHQxUDr8l9c1qG99BBrJR96WFfQGlo9qs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adsorption+and+diffusion+of+lithium+on+heteroatom-doped+monolayer+molybdenum+disulfide&rft.jtitle=Applied+surface+science&rft.au=Sun%2C+Xiaoli&rft.au=Wang%2C+Zhiguo&rft.date=2018-10-15&rft.issn=0169-4332&rft.volume=455&rft.spage=911&rft.epage=918&rft_id=info:doi/10.1016%2Fj.apsusc.2018.06.032&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apsusc_2018_06_032 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-4332&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-4332&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-4332&client=summon |