Large Language Models Enable Few-Shot Clustering

Unlike traditional unsupervised clustering, semi-supervised clustering allows users to provide meaningful structure to the data, which helps the clustering algorithm to match the user’s intent. Existing approaches to semi-supervised clustering require a significant amount of feedback from an expert...

Full description

Saved in:
Bibliographic Details
Published inTransactions of the Association for Computational Linguistics Vol. 12; pp. 321 - 333
Main Authors Viswanathan, Vijay, Gashteovski, Kiril, Lawrence, Carolin, Wu, Tongshuang, Neubig, Graham
Format Journal Article
LanguageEnglish
Published One Broadway, 12th Floor, Cambridge, Massachusetts 02142, USA MIT Press 05.04.2024
The MIT Press
Online AccessGet full text
ISSN2307-387X
2307-387X
DOI10.1162/tacl_a_00648

Cover

Loading…
Abstract Unlike traditional unsupervised clustering, semi-supervised clustering allows users to provide meaningful structure to the data, which helps the clustering algorithm to match the user’s intent. Existing approaches to semi-supervised clustering require a significant amount of feedback from an expert to improve the clusters. In this paper, we ask whether a large language model (LLM) can amplify an expert’s guidance to enable query-efficient, few-shot semi-supervised text clustering. We show that LLMs are surprisingly effective at improving clustering. We explore three stages where LLMs can be incorporated into clustering: before clustering (improving input features), during clustering (by providing constraints to the clusterer), and after clustering (using LLMs post-correction). We find that incorporating LLMs in the first two stages routinely provides significant improvements in cluster quality, and that LLMs enable a user to make trade-offs between cost and accuracy to produce desired clusters. We release our code and LLM prompts for the public to use.
AbstractList Unlike traditional unsupervised clustering, semi-supervised clustering allows users to provide meaningful structure to the data, which helps the clustering algorithm to match the user’s intent. Existing approaches to semi-supervised clustering require a significant amount of feedback from an expert to improve the clusters. In this paper, we ask whether a large language model (LLM) can amplify an expert’s guidance to enable query-efficient, few-shot semi-supervised text clustering. We show that LLMs are surprisingly effective at improving clustering. We explore three stages where LLMs can be incorporated into clustering: before clustering (improving input features), during clustering (by providing constraints to the clusterer), and after clustering (using LLMs post-correction). We find that incorporating LLMs in the first two stages routinely provides significant improvements in cluster quality, and that LLMs enable a user to make trade-offs between cost and accuracy to produce desired clusters. We release our code and LLM prompts for the public to use.
Unlike traditional unsupervised clustering, semi-supervised clustering allows users to provide meaningful structure to the data, which helps the clustering algorithm to match the user’s intent. Existing approaches to semi-supervised clustering require a significant amount of feedback from an expert to improve the clusters. In this paper, we ask whether a large language model (LLM) can amplify an expert’s guidance to enable query-efficient, few-shot semi-supervised text clustering. We show that LLMs are surprisingly effective at improving clustering. We explore three stages where LLMs can be incorporated into clustering: before clustering (improving input features), during clustering (by providing constraints to the clusterer), and after clustering (using LLMs post-correction). We find that incorporating LLMs in the first two stages routinely provides significant improvements in cluster quality, and that LLMs enable a user to make trade-offs between cost and accuracy to produce desired clusters. We release our code and LLM prompts for the public to use.1
Author Gashteovski, Kiril
Viswanathan, Vijay
Neubig, Graham
Lawrence, Carolin
Wu, Tongshuang
Author_xml – sequence: 1
  givenname: Vijay
  surname: Viswanathan
  fullname: Viswanathan, Vijay
  organization: Carnegie Mellon University, USA
– sequence: 2
  givenname: Kiril
  surname: Gashteovski
  fullname: Gashteovski, Kiril
  organization: NEC Laboratories Europe, Germany
– sequence: 2
  givenname: Kiril
  surname: Gashteovski
  fullname: Gashteovski, Kiril
  organization: Center for Advanced Interdisciplinary Research, Ss. Cyril and Methodius Uni. of Skopje, Germany
– sequence: 4
  givenname: Carolin
  surname: Lawrence
  fullname: Lawrence, Carolin
  organization: NEC Laboratories Europe, Germany
– sequence: 5
  givenname: Tongshuang
  surname: Wu
  fullname: Wu, Tongshuang
  organization: Carnegie Mellon University, USA
– sequence: 6
  givenname: Graham
  surname: Neubig
  fullname: Neubig, Graham
  organization: Carnegie Mellon University, USA
BookMark eNp1kE9Lw0AUxBepYK29-QF69GB0_2WzOUpptRDxoIK35SV5G7ekWdlsEb-9qVUooqc3DL8ZHnNKRp3vkJBzRq8YU_w6QtUaMJQqqY_ImAuaJUJnL6MDfUKmfb-mlDLNNFV8TGgBocFZAV2zhUHc-xrbfrbooGxxtsT35PHVx9m83fYRg-uaM3Jsoe1x-n0n5Hm5eJrfJcXD7Wp-UySVyHhMVCaslZjWaDVPrbYMpcaq0oMvZa7zvBQSKLDMsmyQVtfAMKVlWadaKyEmZLXvrT2szVtwGwgfxoMzX4YPjYEQXdWiUVSlSlnMqxRkrUptaZlKQblQvMZ818X3XVXwfR_QmspFiM53MYBrDaNmN6E5nHAIXf4K_TzxD36xxzcumrXfhm5Y52_0EyoxgdE
CitedBy_id crossref_primary_10_1109_RBME_2024_3492381
crossref_primary_10_3390_su17051896
crossref_primary_10_1016_j_jretconser_2024_104078
crossref_primary_10_3390_math12182928
Cites_doi 10.18653/v1/2023.nlp4convai-1.7
10.1145/2661829.2662073
10.18653/v1/2022.naacl-main.55
10.1145/3173574.3174023
10.1145/1458082.1458150
10.1145/3340960
10.18653/v1/D19-1131
10.1145/2505515.2514692
10.1137/1.9781611972740.31
10.1145/3534678.3539449
10.3386/w31122
10.1109/ICDE.2016.7498276
10.18653/v1/D19-1410
10.18653/v1/2021.emnlp-main.811
10.1007/BF01890115
10.1007/978-3-030-46150-8_4
10.18653/v1/D17-1278
10.1137/1.9781611974973.27
10.1613/jair.3003
10.18653/v1/2021.naacl-main.427
10.18653/v1/2020.nlp4convai-1.5
10.1007/978-1-4614-3223-4_4
10.1145/3178876.3186030
10.18653/v1/2023.emnlp-main.858
10.1109/TIT.1982.1056489
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1162/tacl_a_00648
DatabaseName CrossRef
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (WRLC)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2307-387X
EndPage 333
ExternalDocumentID oai_doaj_org_article_606566fe9c5a4d6b8f0b54302362de93
10_1162_tacl_a_00648
tacl_a_00648.pdf
GroupedDBID AAFWJ
ABUWG
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ARAPS
BENPR
BGLVJ
CCPQU
CPGLG
CRLPW
DWQXO
EBS
GROUPED_DOAJ
HCIFZ
JMNJE
K7-
M~E
OJV
OK1
PHGZT
PIMPY
RMI
AAYXX
CITATION
PHGZM
PQGLB
PRQQA
PUEGO
ID FETCH-LOGICAL-c372t-673ff4e5def825f8f1e48ecc873f449899b34a0a17f17b34f8da1e50bbd588633
IEDL.DBID DOA
ISSN 2307-387X
IngestDate Wed Aug 27 01:13:01 EDT 2025
Thu Apr 24 22:53:39 EDT 2025
Tue Jul 01 03:28:36 EDT 2025
Thu Apr 10 09:09:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-673ff4e5def825f8f1e48ecc873f449899b34a0a17f17b34f8da1e50bbd588633
Notes 2024
OpenAccessLink https://doaj.org/article/606566fe9c5a4d6b8f0b54302362de93
PageCount 13
ParticipantIDs crossref_citationtrail_10_1162_tacl_a_00648
mit_journals_10_1162_tacl_a_00648
crossref_primary_10_1162_tacl_a_00648
doaj_primary_oai_doaj_org_article_606566fe9c5a4d6b8f0b54302362de93
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-05
PublicationDateYYYYMMDD 2024-04-05
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-05
  day: 05
PublicationDecade 2020
PublicationPlace One Broadway, 12th Floor, Cambridge, Massachusetts 02142, USA
PublicationPlace_xml – name: One Broadway, 12th Floor, Cambridge, Massachusetts 02142, USA
PublicationTitle Transactions of the Association for Computational Linguistics
PublicationYear 2024
Publisher MIT Press
The MIT Press
Publisher_xml – name: MIT Press
– name: The MIT Press
References Awasthi (2024041219024513300_bib3) 2013; 18
Wagstaff (2024041219024513300_bib35) 2000
Aggarwal (2024041219024513300_bib1) 2012
Zhang (2024041219024513300_bib37) 2021
Zhang (2024041219024513300_bib38) 2019
Bae (2024041219024513300_bib4) 2020; 53
Park (2024041219024513300_bib28) 2023
Shen (2024041219024513300_bib32) 2022
Hara (2024041219024513300_bib22) 2017
Zhang (2024041219024513300_bib39) 2023
Gashteovski (2024041219024513300_bib20) 2017
2024041219024513300_bib23
Day (2024041219024513300_bib15) 1984; 1
Kuhn (2024041219024513300_bib24) 1955; 52
Banko (2024041219024513300_bib5) 2007
Hongjin (2024041219024513300_bib33) 2022
Devlin (2024041219024513300_bib16) 2019
De Raedt (2024041219024513300_bib29) 2023
Larson (2024041219024513300_bib25) 2019
Basu (2024041219024513300_bib6) 2002
Dash (2024041219024513300_bib14) 2020
Lloyd (2024041219024513300_bib26) 1982; 28
Zhou (2024041219024513300_bib40) 2022
Casanueva (2024041219024513300_bib11) 2020
Bordes (2024041219024513300_bib8) 2013
Bunescu (2024041219024513300_bib9) 2006
Galárraga (2024041219024513300_bib19) 2014
Arthur (2024041219024513300_bib2) 2007
Sanh (2024041219024513300_bib31) 2019
Gashteovski (2024041219024513300_bib21) 2019
Fader (2024041219024513300_bib17) 2011
Reimers (2024041219024513300_bib30) 2019
Dasgupta (2024041219024513300_bib13) 2010; 39
Jinlan (2024041219024513300_bib18) 2023; abs/2302.04166
Vashishth (2024041219024513300_bib34) 2018
Basu (2024041219024513300_bib7) 2004
Caruana (2024041219024513300_bib10) 2013
Coden (2024041219024513300_bib12) 2017
Milne (2024041219024513300_bib27) 2008
Yin (2024041219024513300_bib36) 2016
References_xml – year: 2023
  ident: 2024041219024513300_bib29
  article-title: Idas: Intent discovery with abstractive summarization
  publication-title: ArXiv
  doi: 10.18653/v1/2023.nlp4convai-1.7
– start-page: 4171
  volume-title: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)
  year: 2019
  ident: 2024041219024513300_bib16
  article-title: BERT: Pre-training of deep bidirectional transformers for language understanding
– year: 2014
  ident: 2024041219024513300_bib19
  article-title: Canonicalizing open knowledge bases
  publication-title: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management
  doi: 10.1145/2661829.2662073
– start-page: 754
  volume-title: Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
  year: 2022
  ident: 2024041219024513300_bib40
  article-title: Learning dialogue representations from consecutive utterances
  doi: 10.18653/v1/2022.naacl-main.55
– year: 2017
  ident: 2024041219024513300_bib22
  article-title: A data-driven analysis of workers’ earnings on Amazon Mechanical Turk
  publication-title: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
  doi: 10.1145/3173574.3174023
– volume-title: International Conference on Information and Knowledge Management
  year: 2008
  ident: 2024041219024513300_bib27
  article-title: Learning to link with wikipedia
  doi: 10.1145/1458082.1458150
– volume: 53
  start-page: 1
  issue: 1
  year: 2020
  ident: 2024041219024513300_bib4
  article-title: Interactive clustering: A comprehensive review
  publication-title: ACM Computing Surveys
  doi: 10.1145/3340960
– volume-title: Conference of the European Chapter of the Association for Computational Linguistics
  year: 2006
  ident: 2024041219024513300_bib9
  article-title: Using encyclopedic knowledge for named entity disambiguation
– start-page: 1311
  volume-title: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
  year: 2019
  ident: 2024041219024513300_bib25
  article-title: An evaluation dataset for intent classification and out-of-scope prediction
  doi: 10.18653/v1/D19-1131
– volume-title: arXiv
  year: 2022
  ident: 2024041219024513300_bib33
  article-title: One embedder, any task: Instruction-finetuned text embeddings
– volume-title: CACM
  year: 2007
  ident: 2024041219024513300_bib5
  article-title: Open information extraction from the web
– start-page: 1259
  volume-title: Proceedings of the 22nd ACM International Conference on Information & Knowledge Management
  year: 2013
  ident: 2024041219024513300_bib10
  article-title: Clustering: Probably approximately useless?
  doi: 10.1145/2505515.2514692
– volume: 18
  start-page: 3:1–3:35
  year: 2013
  ident: 2024041219024513300_bib3
  article-title: Local algorithms for interactive clustering
  publication-title: Journal of Machine Learning Research
– volume-title: SDM
  year: 2004
  ident: 2024041219024513300_bib7
  article-title: Active semi-supervision for pairwise constrained clustering
  doi: 10.1137/1.9781611972740.31
– volume-title: Proceedings of the Seventeenth International Conference on Machine Learning
  year: 2000
  ident: 2024041219024513300_bib35
  article-title: Clustering with instance-level constraints
– start-page: 1578
  volume-title: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
  year: 2022
  ident: 2024041219024513300_bib32
  article-title: Multi-view clustering for open knowledge base canonicalization
  doi: 10.1145/3534678.3539449
– year: 2019
  ident: 2024041219024513300_bib31
  article-title: Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter
  publication-title: ArXiv
– ident: 2024041219024513300_bib23
  doi: 10.3386/w31122
– volume: abs/2302.04166
  year: 2023
  ident: 2024041219024513300_bib18
  article-title: GPTscore: Evaluate as you desire
  publication-title: ArXiv
– start-page: 2787
  volume-title: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2
  year: 2013
  ident: 2024041219024513300_bib8
  article-title: Translating embeddings for modeling multi-relational data
– start-page: 625
  year: 2016
  ident: 2024041219024513300_bib36
  article-title: A model-based approach for text clustering with outlier detection
  publication-title: 2016 IEEE 32nd International Conference on Data Engineering (ICDE)
  doi: 10.1109/ICDE.2016.7498276
– year: 2023
  ident: 2024041219024513300_bib28
  article-title: Generative agents: Interactive simulacra of human behavior
  publication-title: arXiv preprint arXiv:2304.03442
– volume-title: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
  year: 2019
  ident: 2024041219024513300_bib30
  article-title: Sentence-bert: Sentence embeddings using siamese bert-networks
  doi: 10.18653/v1/D19-1410
– volume-title: Conference on Empirical Methods in Natural Language Processing
  year: 2020
  ident: 2024041219024513300_bib14
  article-title: Open knowledge graphs canonicalization using variational autoencoders
  doi: 10.18653/v1/2021.emnlp-main.811
– volume: 1
  start-page: 7
  year: 1984
  ident: 2024041219024513300_bib15
  article-title: Efficient algorithms for agglomerative hierarchical clustering methods
  publication-title: Journal of Classification
  doi: 10.1007/BF01890115
– volume-title: ECML/PKDD
  year: 2019
  ident: 2024041219024513300_bib38
  article-title: A framework for deep constrained clustering - algorithms and advances
  doi: 10.1007/978-3-030-46150-8_4
– volume-title: Conference on Empirical Methods in Natural Language Processing
  year: 2017
  ident: 2024041219024513300_bib20
  article-title: Minie: Minimizing facts in open information extraction
  doi: 10.18653/v1/D17-1278
– volume: 52
  year: 1955
  ident: 2024041219024513300_bib24
  article-title: The Hungarian method for the assignment problem
  publication-title: Naval Research Logistics (NRL)
– volume-title: Proceedings of the 2017 SIAM International Conference on Data Mining
  year: 2017
  ident: 2024041219024513300_bib12
  article-title: A method to accelerate human in the loop clustering
  doi: 10.1137/1.9781611974973.27
– volume: 39
  start-page: 581
  year: 2010
  ident: 2024041219024513300_bib13
  article-title: Which clustering do you want? Inducing your ideal clustering with minimal feedback
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.3003
– volume-title: Conference on Empirical Methods in Natural Language Processing
  year: 2011
  ident: 2024041219024513300_bib17
  article-title: Identifying relations for open information extraction
– volume-title: Proceedings of the Conference on Automatic Knowledge Base Construction (AKBC)
  year: 2019
  ident: 2024041219024513300_bib21
  article-title: Opiec: An open information extraction corpus
– start-page: 5419
  volume-title: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
  year: 2021
  ident: 2024041219024513300_bib37
  article-title: Supporting clustering with contrastive learning
  doi: 10.18653/v1/2021.naacl-main.427
– start-page: 38
  volume-title: Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI
  year: 2020
  ident: 2024041219024513300_bib11
  article-title: Efficient intent detection with dual sentence encoders
  doi: 10.18653/v1/2020.nlp4convai-1.5
– volume-title: Mining Text Data
  year: 2012
  ident: 2024041219024513300_bib1
  article-title: A survey of text clustering algorithms
  doi: 10.1007/978-1-4614-3223-4_4
– volume-title: ACM-SIAM Symposium on Discrete Algorithms
  year: 2007
  ident: 2024041219024513300_bib2
  article-title: k-means++: the advantages of careful seeding
– start-page: 1317
  volume-title: Proceedings of the 2018 World Wide Web Conference
  year: 2018
  ident: 2024041219024513300_bib34
  article-title: Cesi: Canonicalizing open knowledge bases using embeddings and side information
  doi: 10.1145/3178876.3186030
– volume-title: International Conference on Machine Learning
  year: 2002
  ident: 2024041219024513300_bib6
  article-title: Semi-supervised clustering by seeding
– year: 2023
  ident: 2024041219024513300_bib39
  article-title: Clusterllm: Large language models as a guide for text clustering
  publication-title: ArXiv
  doi: 10.18653/v1/2023.emnlp-main.858
– volume: 28
  start-page: 129
  issue: 2
  year: 1982
  ident: 2024041219024513300_bib26
  article-title: Least squares quantization in pcm
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.1982.1056489
SSID ssj0001818062
Score 2.4334476
Snippet Unlike traditional unsupervised clustering, semi-supervised clustering allows users to provide meaningful structure to the data, which helps the clustering...
SourceID doaj
crossref
mit
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 321
Title Large Language Models Enable Few-Shot Clustering
URI https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00648
https://doaj.org/article/606566fe9c5a4d6b8f0b54302362de93
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA6iFy-iqFgfZQU9ydJ9JLPZoy0tRWoRtdBbyGOCh6UVu8W_b5JuSwXFi7clDGT3myzfTJj5hpAbrYvSyMTGymoeU6QQc4MsBtSpgsJoFrT0HscwnNCHKZtujfryNWEreeAVcB0XYLuIw2KpmaQGFLeJYtSPuoHMYBl0Ph3nbSVT4XbFtzBDtq50h6xTS10JKTwF828cFKT6HbNs2ucDswwOyUETEkb3q1c5Ijs4OybJyJdoR6PmOjHyM8uqRdQPrU7RAD_jl7d5HfWqpVc6cPxzQiaD_mtvGDfTDWKdF1nta-6tpcgMWpelWW5TpNwByt06paXLg1ROZSLTwqaFe7TcyBRZopRhnEOen5Ld2XyGZySiWvIkU7ygiDQHq0AWAAZBGsxdttwid-vvFbqR_vYTKCoRUgDIxDY6LXK7sX5fSV78Ytf10G1svFB1WHDuE437xF_ua5FrB7xofpzFjxud_8dGF2Q_c_FIKLphl2S3_ljilYsnatUme93--Om5HY7QF0WdyaE
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qe9CLKCrWZwQ9STSP3c0WvGhpqTXtxRZ6W_Yxq0JtpU3x77ubpKWKgrewmZDNl2y-mWXmG4QulUoaWgTGl0YxHwOmPtNAfAoqlDTRiuRaer0-7Qxxd0RGFXS3rIUpfuQ3729FFk0m1Pi2xHAlNhDSKD_BBXeMyjZQjVoessuy1u31u2t7LK6QmUbLfPcfl31jolyw3_LLqog-55f2DtouHUPvvpjFLqrAZA8FqUvU9tJyU9FzncvGc6-VFzx5bfj0n1-nmdccL5zegWWhfTRstwbNjl_2OPBVnESZy7w3BgPRYGysZpgJATMLK7PjGDdsNCRjLAIRJiZM7KFhWoRAAik1YYzG8QGqTqYTOEQeVoIFkWQJBsAxNZKKhFINVGiIbcxcR9fL5-WqFAB3fSjGPA8EaMTX0amjq5X1RyF88Yfdg4NuZePkqvOB6eyFl2-O2yjJuo0GGooIrKlkJpAEu35FNNLQsFO7sMDzcvnMf73R0T9sztFmZ9BLefrYfzpGW5F1QPIsG3KCqtlsAafWgcjkWfmdfAGyk8OY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+Language+Models+Enable+Few-Shot+Clustering&rft.jtitle=Transactions+of+the+Association+for+Computational+Linguistics&rft.au=Vijay+Viswanathan&rft.au=Kiril+Gashteovski&rft.au=Carolin+Lawrence&rft.au=Tongshuang+Wu&rft.date=2024-04-05&rft.pub=The+MIT+Press&rft.eissn=2307-387X&rft.volume=12&rft_id=info:doi/10.1162%2Ftacl_a_00648&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_606566fe9c5a4d6b8f0b54302362de93
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2307-387X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2307-387X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2307-387X&client=summon