A Bayesian method for multi-pollution source water quality model and seasonal water quality management in river segments

Excessive pollutant discharge from multi-pollution resources can lead to a rise in downriver contaminant concentration in river segments. A multi-pollution source water quality model (MPSWQM) was integrated with Bayesian statistics to develop a robust method for supporting load (I) reduction and eff...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental modelling & software : with environment data news Vol. 57; pp. 216 - 226
Main Authors Zhao, Ying, Sharma, Ashish, Sivakumar, Bellie, Marshall, Lucy, Wang, Peng, Jiang, Jiping
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.07.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Excessive pollutant discharge from multi-pollution resources can lead to a rise in downriver contaminant concentration in river segments. A multi-pollution source water quality model (MPSWQM) was integrated with Bayesian statistics to develop a robust method for supporting load (I) reduction and effective water quality management in the Harbin City Reach of the Songhua River system in northeastern China. The monthly water quality data observed during the period 2005–2010 was analyzed and compared, using ammonia as the study variable. The decay rate (k) was considered a key factor in the MPSWQM, and the distribution curve of k was estimated for the whole year. The distribution curves indicated small differences between the marginal distribution of k of each period and that water quality management strategies can be designed seasonally. From the curves, decision makers could pick up key posterior values of k in each month to attain the water quality goal at any specified time. Such flexibility is an effective way to improve the robustness of water quality management. For understanding the potential collinearity of k and I, a sensitivity test of k for I2i (loadings in segment 2 of the study river) was done under certain water quality goals. It indicated that the posterior distributions of I2i show seasonal variation and are sensitive to the marginal posteriors of k. Thus, the seasonal posteriors of k were selected according to the marginal distributions and used to estimate I2i in next water quality management. All kinds of pollutant sources, including polluted branches, point and non-point source, can be identified for multiple scenarios. The analysis enables decision makers to assess the influence of each loading and how best to manage water quality targets in each period. Decision makers can also visualize potential load reductions under different water quality goals. The results show that the proposed method is robust for management of multi-pollutant loadings under different water quality goals to help ensure that the water quality of river segments meets targeted goals. •An environmental modeling (EM) approach is presented for controlling pollutant discharge.•A Bayesian approach is used in the EM to manage water quality targets.•The EM is an effective way to improve the robustness of water quality management.•The potential collinearity of ammonia decay rate (k) and loading (I) is analyzed.•The best way to manage water quality targets in each period is described.
AbstractList Excessive pollutant discharge from multi-pollution resources can lead to a rise in downriver contaminant concentration in river segments. A multi-pollution source water quality model (MPSWQM) was integrated with Bayesian statistics to develop a robust method for supporting load (I) reduction and effective water quality management in the Harbin City Reach of the Songhua River system in northeastern China. The monthly water quality data observed during the period 2005–2010 was analyzed and compared, using ammonia as the study variable. The decay rate (k) was considered a key factor in the MPSWQM, and the distribution curve of k was estimated for the whole year. The distribution curves indicated small differences between the marginal distribution of k of each period and that water quality management strategies can be designed seasonally. From the curves, decision makers could pick up key posterior values of k in each month to attain the water quality goal at any specified time. Such flexibility is an effective way to improve the robustness of water quality management. For understanding the potential collinearity of k and I, a sensitivity test of k for I2i (loadings in segment 2 of the study river) was done under certain water quality goals. It indicated that the posterior distributions of I2i show seasonal variation and are sensitive to the marginal posteriors of k. Thus, the seasonal posteriors of k were selected according to the marginal distributions and used to estimate I2i in next water quality management. All kinds of pollutant sources, including polluted branches, point and non-point source, can be identified for multiple scenarios. The analysis enables decision makers to assess the influence of each loading and how best to manage water quality targets in each period. Decision makers can also visualize potential load reductions under different water quality goals. The results show that the proposed method is robust for management of multi-pollutant loadings under different water quality goals to help ensure that the water quality of river segments meets targeted goals. •An environmental modeling (EM) approach is presented for controlling pollutant discharge.•A Bayesian approach is used in the EM to manage water quality targets.•The EM is an effective way to improve the robustness of water quality management.•The potential collinearity of ammonia decay rate (k) and loading (I) is analyzed.•The best way to manage water quality targets in each period is described.
Excessive pollutant discharge from multi-pollution resources can lead to a rise in downriver contaminant concentration in river segments. A multi-pollution source water quality model (MPSWQM) was integrated with Bayesian statistics to develop a robust method for supporting load (I) reduction and effective water quality management in the Harbin City Reach of the Songhua River system in northeastern China. The monthly water quality data observed during the period 2005–2010 was analyzed and compared, using ammonia as the study variable. The decay rate (k) was considered a key factor in the MPSWQM, and the distribution curve of k was estimated for the whole year. The distribution curves indicated small differences between the marginal distribution of k of each period and that water quality management strategies can be designed seasonally. From the curves, decision makers could pick up key posterior values of k in each month to attain the water quality goal at any specified time. Such flexibility is an effective way to improve the robustness of water quality management. For understanding the potential collinearity of k and I, a sensitivity test of k for I2i (loadings in segment 2 of the study river) was done under certain water quality goals. It indicated that the posterior distributions of I2i show seasonal variation and are sensitive to the marginal posteriors of k. Thus, the seasonal posteriors of k were selected according to the marginal distributions and used to estimate I2i in next water quality management. All kinds of pollutant sources, including polluted branches, point and non-point source, can be identified for multiple scenarios. The analysis enables decision makers to assess the influence of each loading and how best to manage water quality targets in each period. Decision makers can also visualize potential load reductions under different water quality goals. The results show that the proposed method is robust for management of multi-pollutant loadings under different water quality goals to help ensure that the water quality of river segments meets targeted goals.
Author Wang, Peng
Jiang, Jiping
Marshall, Lucy
Sivakumar, Bellie
Zhao, Ying
Sharma, Ashish
Author_xml – sequence: 1
  givenname: Ying
  surname: Zhao
  fullname: Zhao, Ying
  email: zhaoying@hit.edu.cn
  organization: School of Municipal and Environment Engineering, Harbin Institute of Technology, Harbin 150090, China
– sequence: 2
  givenname: Ashish
  surname: Sharma
  fullname: Sharma, Ashish
  organization: School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia
– sequence: 3
  givenname: Bellie
  surname: Sivakumar
  fullname: Sivakumar, Bellie
  organization: School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia
– sequence: 4
  givenname: Lucy
  surname: Marshall
  fullname: Marshall, Lucy
  organization: School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia
– sequence: 5
  givenname: Peng
  surname: Wang
  fullname: Wang, Peng
  organization: School of Municipal and Environment Engineering, Harbin Institute of Technology, Harbin 150090, China
– sequence: 6
  givenname: Jiping
  surname: Jiang
  fullname: Jiang, Jiping
  organization: School of Municipal and Environment Engineering, Harbin Institute of Technology, Harbin 150090, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28499602$$DView record in Pascal Francis
BookMark eNqFkc1v1DAQxS1UJNrCn4DkCxKXBH8kTiIOqFR8SZW4wNma2JPilWNvbWfL_vck2hWHXnqap5nfm8N7V-QixICEvOWs5oyrD7sawyHHqdSC8aZmsmasfUEued_JSnVCXaxaqqbqeStekaucd4yxVTeX5O8N_QxHzA4CnbH8iZZOMdF58cVV--j9UlwMNMclGaSPUDDRhwW8K0c6R4ueQrA0I-QYwD8FIMA9zhgKdYEmd1hvGe-3RX5NXk7gM745z2vy--uXX7ffq7uf337c3txVRnaiVEpJI4Sww9QL0XMh7cCw5SBbO_ZdO4xmatjQwmjsOPKGt6NQZhybng-mY9LKa_L-9Hef4sOCuejZZYPeQ8C4ZC22KJRqG76i784oZAN-ShCMy3qf3AzpqEXfDINiYuXaE2dSzDnh9B_hTG-N6J0-N6K3RjSTem1k9X184jOuwJZvSeD8s-5PJzeuaR0cJp2Nw2DQuoSmaBvdMx_-AVryr0U
CitedBy_id crossref_primary_10_1016_j_ecolind_2019_105733
crossref_primary_10_1016_j_scitotenv_2017_03_003
crossref_primary_10_2166_nh_2019_076
crossref_primary_10_1016_j_jhydrol_2019_123962
crossref_primary_10_1016_j_scitotenv_2022_153486
crossref_primary_10_1016_j_jhydrol_2024_131686
crossref_primary_10_1039_C5EM00130G
crossref_primary_10_1029_2020WR027721
crossref_primary_10_1016_j_watres_2020_116162
crossref_primary_10_1088_1755_1315_182_1_012007
crossref_primary_10_1016_j_scitotenv_2016_10_085
crossref_primary_10_4028_www_scientific_net_AMR_955_959_1737
crossref_primary_10_1007_s40314_020_01289_2
crossref_primary_10_5004_dwt_2021_27049
crossref_primary_10_1016_j_ecolmodel_2015_05_025
crossref_primary_10_1007_s11783_023_1685_1
crossref_primary_10_1007_s11269_018_2035_0
crossref_primary_10_1016_j_envres_2020_110206
crossref_primary_10_3390_ijerph121012212
crossref_primary_10_3390_w17020162
crossref_primary_10_1007_s12665_018_7545_9
crossref_primary_10_1080_10402381_2018_1530318
crossref_primary_10_1080_19443994_2014_986202
Cites_doi 10.1029/2004WR003719
10.1007/s00267-009-9278-8
10.1029/2010WR009514
10.1029/2004WR003214
10.1007/s00267-006-0029-9
10.1016/j.watres.2007.02.040
10.1061/(ASCE)0733-9372(1998)124:5(409)
10.1038/35001562
10.1007/s11356-011-0502-8
10.1029/2003WR002378
10.1080/02508060.2006.9709677
10.1111/j.1752-1688.2007.00123.x
10.1016/j.scitotenv.2012.04.042
10.1029/2007WR006638
10.1029/2000WR900086
10.1111/j.1752-1688.2009.00310.x
10.1029/2008WR006825
10.1016/S0304-3800(02)00299-5
10.1111/1467-9868.00353
10.1016/j.watres.2009.09.002
10.1029/2004WR003698
10.1029/2006WR005158
10.1016/j.jenvman.2008.11.007
10.1016/j.watres.2008.04.007
10.1016/S0304-3800(03)00186-8
10.1016/j.jhydrol.2010.07.043
10.1214/ss/1177011136
10.1016/j.envsoft.2009.10.011
10.1007/s11269-006-9077-4
10.1016/j.advwatres.2011.02.007
10.1007/s10533-009-9376-y
10.1002/hyp.7766
10.1016/j.watres.2010.08.003
10.1029/2002WR001480
10.1029/2000WR000126
10.1016/j.watres.2006.07.035
ContentType Journal Article
Copyright 2014 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7S9
L.6
DOI 10.1016/j.envsoft.2014.03.005
DatabaseName CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Ecology
Computer Science
Environmental Sciences
EISSN 1873-6726
EndPage 226
ExternalDocumentID 28499602
10_1016_j_envsoft_2014_03_005
S1364815214000838
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
AAYOK
ABBOA
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFJKZ
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSJ
SSV
SSZ
T5K
UHS
~02
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
AAIAV
AALMO
ABPIF
ABPTK
ABYKQ
ADALY
AJBFU
IPNFZ
IQODW
7S9
L.6
ID FETCH-LOGICAL-c372t-663c222d9f8228123d90e51a35db8759bcf4095abcdbb1415b26cbb4819c703d3
IEDL.DBID .~1
ISSN 1364-8152
IngestDate Fri Jul 11 15:58:05 EDT 2025
Fri Nov 25 06:03:45 EST 2022
Tue Jul 01 01:20:13 EDT 2025
Thu Apr 24 23:10:07 EDT 2025
Thu Nov 14 02:16:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Water quality modeling
Multi-pollution resources
Bayesian
Seasonal water quality management
Markov chain Monte Carlo (MCMC)
Water resource management
Method
Environmental management
Modeling
Freshwater environment
Markov chain
Pollution
Seasonal variation
Water quality
Pollution source
Stream
Models
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-663c222d9f8228123d90e51a35db8759bcf4095abcdbb1415b26cbb4819c703d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2000166541
PQPubID 24069
PageCount 11
ParticipantIDs proquest_miscellaneous_2000166541
pascalfrancis_primary_28499602
crossref_primary_10_1016_j_envsoft_2014_03_005
crossref_citationtrail_10_1016_j_envsoft_2014_03_005
elsevier_sciencedirect_doi_10_1016_j_envsoft_2014_03_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-07-01
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: 2014-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Environmental modelling & software : with environment data news
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Zou, Lung, Wu (bib43) 2007; 43
Chen, Dahlgren, Shen, Lu (bib7) 2012; 430
Marshall, Nott, Sharma (bib17) 2005; 41
Rode, Arhonditsis, Balin, Kebede, Krysanova, Griensven, van der Zee (bib29) 2010; 24
Spiegelhalter, Best, Carlin, Vander Linde (bib37) 2002; 64
Gelman, Rubin (bib12) 1992; 7
Chen, Lu, Wang, Shen, Gong (bib6) 2011; 18
Chapra (bib5) 1997
Liu, Yang, Hu, Guo (bib14) 2008; 42
Liu, Guo, Zhang, Wang, Dai, Fan (bib15) 2007; 39
Mujumdar, Sasikumar (bib20) 2002; 38
National Research Council (bib22) 2001
Stow, Reckhow, Qian, Lamon, Arhonditsis, Borsuk, Seo (bib38) 2007; 43
Nigel, Ricardo, Patrick, Caleb (bib24) 2010; 25
National People's Congress (bib21) 2008
Faulkner (bib10) 2008; 44
Marshall, Nott, Sharma (bib16) 2004; 40
Snehalatha, Rastogi, Patil (bib36) 2006; 31
Robertson, Schwarz, Saad, Alexander (bib28) 2009; 42
Michalak, Kitanidis (bib19) 2004; 40
Shen, Zhao (bib32) 2010; 44
Alameddine, Qian, Reckhow (bib1) 2011; 45
Alexander, Smith, Schwarz (bib2) 2000; 403
Schoups, Vrugt (bib31) 2010; 6
Freni, Mannina (bib11) 2010; 392
Michalak, Kitanidis (bib18) 2003; 39
Woodbury, Ulrych (bib41) 2000
Thyer, Renard, Kavetski, Kuczera, Franks, Srikanthan (bib39) 2009; 45
Claessens, Tague, Groffman, Melack (bib8) 2010; 98
Vermeulen, Heemink, Valstar (bib40) 2005; 41
Dowd, Meyer (bib9) 2003; 168
Lia, Huang (bib13) 2009; 90
Zhou (bib42) 2011
Smith, Sharma, Marshall, Mehrotra, Sisson (bib35) 2010; 46
Shen, Jia, Sisson (bib33) 2006; 40
Bumgarner, McCray (bib4) 2007; 41
Saadatpour, Afshar (bib30) 2007; 21
Qian, Stow, Borsuk (bib26) 2003; 59
Patil, Deng (bib25) 2011; 92
Neuman, Xue, Ye, Lu (bib23) 2012; 36
Babaeyan-Koopaei, Ervine, Pender (bib3) 2003; 1
Qin, Huang, Chen, Zhang (bib27) 2009; 43
Shen, Kuo (bib34) 1998; 124
Saadatpour (10.1016/j.envsoft.2014.03.005_bib30) 2007; 21
Gelman (10.1016/j.envsoft.2014.03.005_bib12) 1992; 7
Mujumdar (10.1016/j.envsoft.2014.03.005_bib20) 2002; 38
Chapra (10.1016/j.envsoft.2014.03.005_bib5) 1997
Michalak (10.1016/j.envsoft.2014.03.005_bib19) 2004; 40
Rode (10.1016/j.envsoft.2014.03.005_bib29) 2010; 24
Shen (10.1016/j.envsoft.2014.03.005_bib33) 2006; 40
Patil (10.1016/j.envsoft.2014.03.005_bib25) 2011; 92
Bumgarner (10.1016/j.envsoft.2014.03.005_bib4) 2007; 41
Qin (10.1016/j.envsoft.2014.03.005_bib27) 2009; 43
Snehalatha (10.1016/j.envsoft.2014.03.005_bib36) 2006; 31
Neuman (10.1016/j.envsoft.2014.03.005_bib23) 2012; 36
Smith (10.1016/j.envsoft.2014.03.005_bib35) 2010; 46
Zhou (10.1016/j.envsoft.2014.03.005_bib42) 2011
Nigel (10.1016/j.envsoft.2014.03.005_bib24) 2010; 25
Schoups (10.1016/j.envsoft.2014.03.005_bib31) 2010; 6
Chen (10.1016/j.envsoft.2014.03.005_bib7) 2012; 430
Thyer (10.1016/j.envsoft.2014.03.005_bib39) 2009; 45
Woodbury (10.1016/j.envsoft.2014.03.005_bib41) 2000
Marshall (10.1016/j.envsoft.2014.03.005_bib17) 2005; 41
Stow (10.1016/j.envsoft.2014.03.005_bib38) 2007; 43
Babaeyan-Koopaei (10.1016/j.envsoft.2014.03.005_bib3) 2003; 1
Qian (10.1016/j.envsoft.2014.03.005_bib26) 2003; 59
Freni (10.1016/j.envsoft.2014.03.005_bib11) 2010; 392
Robertson (10.1016/j.envsoft.2014.03.005_bib28) 2009; 42
National Research Council (10.1016/j.envsoft.2014.03.005_bib22) 2001
National People's Congress (10.1016/j.envsoft.2014.03.005_bib21) 2008
Alameddine (10.1016/j.envsoft.2014.03.005_bib1) 2011; 45
Dowd (10.1016/j.envsoft.2014.03.005_bib9) 2003; 168
Michalak (10.1016/j.envsoft.2014.03.005_bib18) 2003; 39
Chen (10.1016/j.envsoft.2014.03.005_bib6) 2011; 18
Alexander (10.1016/j.envsoft.2014.03.005_bib2) 2000; 403
Spiegelhalter (10.1016/j.envsoft.2014.03.005_bib37) 2002; 64
Faulkner (10.1016/j.envsoft.2014.03.005_bib10) 2008; 44
Shen (10.1016/j.envsoft.2014.03.005_bib32) 2010; 44
Zou (10.1016/j.envsoft.2014.03.005_bib43) 2007; 43
Claessens (10.1016/j.envsoft.2014.03.005_bib8) 2010; 98
Vermeulen (10.1016/j.envsoft.2014.03.005_bib40) 2005; 41
Lia (10.1016/j.envsoft.2014.03.005_bib13) 2009; 90
Liu (10.1016/j.envsoft.2014.03.005_bib14) 2008; 42
Marshall (10.1016/j.envsoft.2014.03.005_bib16) 2004; 40
Liu (10.1016/j.envsoft.2014.03.005_bib15) 2007; 39
Shen (10.1016/j.envsoft.2014.03.005_bib34) 1998; 124
References_xml – volume: 124
  start-page: 409
  year: 1998
  end-page: 418
  ident: bib34
  article-title: Application of inverse method to calibrate estuarine eutrophication model
  publication-title: J. Environ. Eng.—ASCE
– volume: 392
  start-page: 31
  year: 2010
  end-page: 39
  ident: bib11
  article-title: Bayesian approach for uncertainty quantification in water quality modelling: the influence of prior distribution
  publication-title: J. Hydrol.
– year: 2008
  ident: bib21
  article-title: The Law of the People's Republic of China on the Prevention and Control of Water Pollution
– volume: 6
  start-page: W10531
  year: 2010
  ident: bib31
  article-title: A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic and non-Gaussian errors
  publication-title: Water Resour. Res.
– volume: 42
  start-page: 3305
  year: 2008
  end-page: 3314
  ident: bib14
  article-title: Water quality modeling for load reduction under uncertainty: a Bayesian approach
  publication-title: Water Res.
– volume: 46
  start-page: W12551
  year: 2010
  ident: bib35
  article-title: Development of a formal likelihood function for improved Bayesian inference of ephemeral catchments
  publication-title: Water Resour. Res.
– volume: 64
  start-page: 583
  year: 2002
  end-page: 616
  ident: bib37
  article-title: Bayesian measures of model complexity and fit (with discussion)
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 59
  start-page: 269
  year: 2003
  end-page: 277
  ident: bib26
  article-title: On Monte Carlo methods for Bayesian inference
  publication-title: Ecol. Model1.
– year: 2001
  ident: bib22
  article-title: Assessing the TMDL Approach to Water Quality Management
– volume: 43
  start-page: W08427
  year: 2007
  ident: bib43
  article-title: An adaptive neural network embedded genetic algorithm approach for inverse water quality modeling
  publication-title: Water Resour. Res.
– volume: 25
  start-page: 1045
  year: 2010
  end-page: 1058
  ident: bib24
  article-title: Use of environmental sensors and sensor networks to develop water and salinity budgets for seasonal wetland real-time water quality management
  publication-title: Environ. Model. Softw.
– volume: 90
  start-page: 2402
  year: 2009
  end-page: 2413
  ident: bib13
  article-title: Two-stage planning for sustainable water-quality management under uncertainty
  publication-title: Environ. Manag.
– volume: 43
  start-page: 999
  year: 2009
  end-page: 1012
  ident: bib27
  article-title: An Interval-Parameter Waste-Load-Allocation Model for river water quality management under uncertainty
  publication-title: Environ. Manag.
– volume: 41
  start-page: W06003
  year: 2005
  ident: bib40
  article-title: Inverse modeling of groundwater flow using model reduction
  publication-title: Water Resour. Res.
– volume: 45
  start-page: W00B14
  year: 2009
  ident: bib39
  article-title: Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: a case study using Bayesian total error analysis
  publication-title: Water Resour. Res.
– volume: 168
  start-page: 39
  year: 2003
  end-page: 55
  ident: bib9
  article-title: A Bayesian approach to the ecosystem inverse problem
  publication-title: Ecol. Model.
– volume: 44
  start-page: W08415
  year: 2008
  ident: bib10
  article-title: Bayesian modeling of the assimilative capacity component of nutrient total maximum daily loads
  publication-title: Water Resour. Res.
– volume: 36
  start-page: 75
  year: 2012
  end-page: 85
  ident: bib23
  article-title: Bayesian analysis of data-worth considering model and parameter uncertainties
  publication-title: Adv. Water Resour.
– volume: 21
  start-page: 1207
  year: 2007
  end-page: 1224
  ident: bib30
  article-title: Waste load allocation modeling with fuzzy goals simulation–optimization approach
  publication-title: Water Resour. Manage.
– volume: 44
  start-page: 77
  year: 2010
  end-page: 84
  ident: bib32
  article-title: Combined Bayesian statistics and load duration curve method for bacteria nonpoint source loading estimation
  publication-title: Water Res.
– volume: 41
  year: 2005
  ident: bib17
  article-title: Hydrological model selection: a Bayesian alternative
  publication-title: Water Resour. Res.
– volume: 7
  start-page: 457
  year: 1992
  end-page: 511
  ident: bib12
  article-title: Inference from iterative simulation using multiple sequences
  publication-title: Stat. Sci.
– start-page: 2081
  year: 2000
  end-page: 2093
  ident: bib41
  article-title: A full-Bayesian approach to the groundwater inverse problem for steady state flow
  publication-title: Water Resour. Res.
– volume: 403
  start-page: 758
  year: 2000
  end-page: 761
  ident: bib2
  article-title: Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico
  publication-title: Nature
– volume: 31
  start-page: 266
  year: 2006
  end-page: 271
  ident: bib36
  article-title: Development of numerical model for inverse modeling of confined aquifer: application of simulated annealing method
  publication-title: Water Int.
– volume: 24
  start-page: 3447
  year: 2010
  end-page: 3461
  ident: bib29
  article-title: New challenges in integrated water quality modeling
  publication-title: Hydrol. Process.
– volume: 1
  start-page: 28
  year: 2003
  end-page: 36
  ident: bib3
  article-title: Field measurements and flow modeling of overbank flows in River Severn, UK
  publication-title: J. Environ. Inform.
– volume: 41
  start-page: 2349
  year: 2007
  end-page: 2360
  ident: bib4
  article-title: Estimating biozone hydraulic conductivity in wastewater soil-infiltration systems using inverse numerical modeling
  publication-title: Water Res.
– volume: 18
  start-page: 1405
  year: 2011
  end-page: 1413
  ident: bib6
  article-title: Combined inverse-modeling approach and load duration curve method for variable nitrogen total maximum daily load development in an agricultural watershed
  publication-title: Environ. Sci. Pollut. Res.
– volume: 98
  start-page: 63
  year: 2010
  end-page: 74
  ident: bib8
  article-title: Longitudinal assessment of the effect of concentration on stream N uptake rates in an urbanizing watershed
  publication-title: Biogeochemistry
– volume: 40
  start-page: W08302
  year: 2004
  ident: bib19
  article-title: Estimation of historical groundwater contaminant distribution using the adjoint state method applied to geostatistical inverse modeling
  publication-title: Water Resour. Res.
– year: 1997
  ident: bib5
  article-title: Surface Water-quality Modeling
– volume: 430
  start-page: 59
  year: 2012
  end-page: 67
  ident: bib7
  article-title: A Bayesian approach for calculating variable total maximum daily loads and uncertainty assessment
  publication-title: Sci. Total Environ.
– volume: 43
  start-page: 1499
  year: 2007
  end-page: 1507
  ident: bib38
  article-title: Approaches to evaluate water quality model parameter uncertainty for adaptive TMDL implementation
  publication-title: Am. Water Resour. Assoc.
– volume: 38
  start-page: 1004
  year: 2002
  end-page: 1012
  ident: bib20
  article-title: A fuzzy risk approach for seasonal water quality management of a river system
  publication-title: Water Resour. Res.
– volume: 42
  start-page: 534
  year: 2009
  end-page: 549
  ident: bib28
  article-title: Incorporating uncertainty into the ranking of SPARROW model nutrient yields from Mississippi/Atchafalaya River basin watersheds
  publication-title: J. Am. Water Resour. Assoc.
– volume: 45
  start-page: 51
  year: 2011
  end-page: 62
  ident: bib1
  article-title: A Bayesian changepoint-threshold model to examine the effect of TMDL implementation on the flow-nitrogen concentration relationship in the Neuse River basin
  publication-title: Water Res.
– volume: 39
  start-page: 1033
  year: 2003
  ident: bib18
  article-title: A method for enforcing parameter nonnegativity in Bayesian inverse problems with an application to contaminant source identification
  publication-title: Water Resour. Res.
– year: 2011
  ident: bib42
  article-title: Ensure Comprehensive Improvement for Water Quality of Songhua River Basin from 2011 to 2015
– volume: 92
  start-page: 910
  year: 2011
  end-page: 918
  ident: bib25
  article-title: Bayesian approach to estimating margin of safety for total maximum daily load development
  publication-title: J. Environ. Manag.
– volume: 39
  start-page: 678
  year: 2007
  end-page: 690
  ident: bib15
  article-title: An optimization method based on scenario analyses for watershed management under uncertainty
  publication-title: Environ. Manage.
– volume: 40
  start-page: W02501
  year: 2004
  ident: bib16
  article-title: A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling
  publication-title: Water Resour. Res.
– volume: 40
  start-page: 3333
  year: 2006
  end-page: 3342
  ident: bib33
  article-title: Inverse estimation of nonpoint sources of fecal coliform for establishing allowable load for Wye River, Maryland
  publication-title: Water Res.
– volume: 41
  issue: 10
  year: 2005
  ident: 10.1016/j.envsoft.2014.03.005_bib17
  article-title: Hydrological model selection: a Bayesian alternative
  publication-title: Water Resour. Res.
  doi: 10.1029/2004WR003719
– volume: 6
  start-page: W10531
  year: 2010
  ident: 10.1016/j.envsoft.2014.03.005_bib31
  article-title: A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic and non-Gaussian errors
  publication-title: Water Resour. Res.
– volume: 1
  start-page: 28
  year: 2003
  ident: 10.1016/j.envsoft.2014.03.005_bib3
  article-title: Field measurements and flow modeling of overbank flows in River Severn, UK
  publication-title: J. Environ. Inform.
– year: 2011
  ident: 10.1016/j.envsoft.2014.03.005_bib42
– volume: 43
  start-page: 999
  year: 2009
  ident: 10.1016/j.envsoft.2014.03.005_bib27
  article-title: An Interval-Parameter Waste-Load-Allocation Model for river water quality management under uncertainty
  publication-title: Environ. Manag.
  doi: 10.1007/s00267-009-9278-8
– volume: 46
  start-page: W12551
  year: 2010
  ident: 10.1016/j.envsoft.2014.03.005_bib35
  article-title: Development of a formal likelihood function for improved Bayesian inference of ephemeral catchments
  publication-title: Water Resour. Res.
  doi: 10.1029/2010WR009514
– volume: 40
  start-page: W08302
  issue: 8
  year: 2004
  ident: 10.1016/j.envsoft.2014.03.005_bib19
  article-title: Estimation of historical groundwater contaminant distribution using the adjoint state method applied to geostatistical inverse modeling
  publication-title: Water Resour. Res.
  doi: 10.1029/2004WR003214
– volume: 39
  start-page: 678
  issue: 5
  year: 2007
  ident: 10.1016/j.envsoft.2014.03.005_bib15
  article-title: An optimization method based on scenario analyses for watershed management under uncertainty
  publication-title: Environ. Manage.
  doi: 10.1007/s00267-006-0029-9
– volume: 41
  start-page: 2349
  issue: 11
  year: 2007
  ident: 10.1016/j.envsoft.2014.03.005_bib4
  article-title: Estimating biozone hydraulic conductivity in wastewater soil-infiltration systems using inverse numerical modeling
  publication-title: Water Res.
  doi: 10.1016/j.watres.2007.02.040
– volume: 124
  start-page: 409
  issue: 5
  year: 1998
  ident: 10.1016/j.envsoft.2014.03.005_bib34
  article-title: Application of inverse method to calibrate estuarine eutrophication model
  publication-title: J. Environ. Eng.—ASCE
  doi: 10.1061/(ASCE)0733-9372(1998)124:5(409)
– volume: 403
  start-page: 758
  year: 2000
  ident: 10.1016/j.envsoft.2014.03.005_bib2
  article-title: Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico
  publication-title: Nature
  doi: 10.1038/35001562
– volume: 18
  start-page: 1405
  year: 2011
  ident: 10.1016/j.envsoft.2014.03.005_bib6
  article-title: Combined inverse-modeling approach and load duration curve method for variable nitrogen total maximum daily load development in an agricultural watershed
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-011-0502-8
– volume: 40
  start-page: W02501
  year: 2004
  ident: 10.1016/j.envsoft.2014.03.005_bib16
  article-title: A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling
  publication-title: Water Resour. Res.
  doi: 10.1029/2003WR002378
– volume: 31
  start-page: 266
  issue: 2
  year: 2006
  ident: 10.1016/j.envsoft.2014.03.005_bib36
  article-title: Development of numerical model for inverse modeling of confined aquifer: application of simulated annealing method
  publication-title: Water Int.
  doi: 10.1080/02508060.2006.9709677
– volume: 43
  start-page: 1499
  issue: 6
  year: 2007
  ident: 10.1016/j.envsoft.2014.03.005_bib38
  article-title: Approaches to evaluate water quality model parameter uncertainty for adaptive TMDL implementation
  publication-title: Am. Water Resour. Assoc.
  doi: 10.1111/j.1752-1688.2007.00123.x
– volume: 92
  start-page: 910
  year: 2011
  ident: 10.1016/j.envsoft.2014.03.005_bib25
  article-title: Bayesian approach to estimating margin of safety for total maximum daily load development
  publication-title: J. Environ. Manag.
– volume: 430
  start-page: 59
  year: 2012
  ident: 10.1016/j.envsoft.2014.03.005_bib7
  article-title: A Bayesian approach for calculating variable total maximum daily loads and uncertainty assessment
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2012.04.042
– volume: 44
  start-page: W08415
  year: 2008
  ident: 10.1016/j.envsoft.2014.03.005_bib10
  article-title: Bayesian modeling of the assimilative capacity component of nutrient total maximum daily loads
  publication-title: Water Resour. Res.
  doi: 10.1029/2007WR006638
– start-page: 2081
  issue: 8
  year: 2000
  ident: 10.1016/j.envsoft.2014.03.005_bib41
  article-title: A full-Bayesian approach to the groundwater inverse problem for steady state flow
  publication-title: Water Resour. Res.
  doi: 10.1029/2000WR900086
– volume: 42
  start-page: 534
  year: 2009
  ident: 10.1016/j.envsoft.2014.03.005_bib28
  article-title: Incorporating uncertainty into the ranking of SPARROW model nutrient yields from Mississippi/Atchafalaya River basin watersheds
  publication-title: J. Am. Water Resour. Assoc.
  doi: 10.1111/j.1752-1688.2009.00310.x
– volume: 45
  start-page: W00B14
  year: 2009
  ident: 10.1016/j.envsoft.2014.03.005_bib39
  article-title: Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: a case study using Bayesian total error analysis
  publication-title: Water Resour. Res.
  doi: 10.1029/2008WR006825
– year: 1997
  ident: 10.1016/j.envsoft.2014.03.005_bib5
– year: 2008
  ident: 10.1016/j.envsoft.2014.03.005_bib21
– volume: 59
  start-page: 269
  issue: 2–3
  year: 2003
  ident: 10.1016/j.envsoft.2014.03.005_bib26
  article-title: On Monte Carlo methods for Bayesian inference
  publication-title: Ecol. Model1.
  doi: 10.1016/S0304-3800(02)00299-5
– volume: 64
  start-page: 583
  issue: 4
  year: 2002
  ident: 10.1016/j.envsoft.2014.03.005_bib37
  article-title: Bayesian measures of model complexity and fit (with discussion)
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/1467-9868.00353
– volume: 44
  start-page: 77
  year: 2010
  ident: 10.1016/j.envsoft.2014.03.005_bib32
  article-title: Combined Bayesian statistics and load duration curve method for bacteria nonpoint source loading estimation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2009.09.002
– year: 2001
  ident: 10.1016/j.envsoft.2014.03.005_bib22
– volume: 41
  start-page: W06003
  issue: 6
  year: 2005
  ident: 10.1016/j.envsoft.2014.03.005_bib40
  article-title: Inverse modeling of groundwater flow using model reduction
  publication-title: Water Resour. Res.
  doi: 10.1029/2004WR003698
– volume: 43
  start-page: W08427
  year: 2007
  ident: 10.1016/j.envsoft.2014.03.005_bib43
  article-title: An adaptive neural network embedded genetic algorithm approach for inverse water quality modeling
  publication-title: Water Resour. Res.
  doi: 10.1029/2006WR005158
– volume: 90
  start-page: 2402
  year: 2009
  ident: 10.1016/j.envsoft.2014.03.005_bib13
  article-title: Two-stage planning for sustainable water-quality management under uncertainty
  publication-title: Environ. Manag.
  doi: 10.1016/j.jenvman.2008.11.007
– volume: 42
  start-page: 3305
  year: 2008
  ident: 10.1016/j.envsoft.2014.03.005_bib14
  article-title: Water quality modeling for load reduction under uncertainty: a Bayesian approach
  publication-title: Water Res.
  doi: 10.1016/j.watres.2008.04.007
– volume: 168
  start-page: 39
  year: 2003
  ident: 10.1016/j.envsoft.2014.03.005_bib9
  article-title: A Bayesian approach to the ecosystem inverse problem
  publication-title: Ecol. Model.
  doi: 10.1016/S0304-3800(03)00186-8
– volume: 392
  start-page: 31
  year: 2010
  ident: 10.1016/j.envsoft.2014.03.005_bib11
  article-title: Bayesian approach for uncertainty quantification in water quality modelling: the influence of prior distribution
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.07.043
– volume: 7
  start-page: 457
  issue: 4
  year: 1992
  ident: 10.1016/j.envsoft.2014.03.005_bib12
  article-title: Inference from iterative simulation using multiple sequences
  publication-title: Stat. Sci.
  doi: 10.1214/ss/1177011136
– volume: 25
  start-page: 1045
  year: 2010
  ident: 10.1016/j.envsoft.2014.03.005_bib24
  article-title: Use of environmental sensors and sensor networks to develop water and salinity budgets for seasonal wetland real-time water quality management
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2009.10.011
– volume: 21
  start-page: 1207
  year: 2007
  ident: 10.1016/j.envsoft.2014.03.005_bib30
  article-title: Waste load allocation modeling with fuzzy goals simulation–optimization approach
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-006-9077-4
– volume: 36
  start-page: 75
  year: 2012
  ident: 10.1016/j.envsoft.2014.03.005_bib23
  article-title: Bayesian analysis of data-worth considering model and parameter uncertainties
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2011.02.007
– volume: 98
  start-page: 63
  issue: 1
  year: 2010
  ident: 10.1016/j.envsoft.2014.03.005_bib8
  article-title: Longitudinal assessment of the effect of concentration on stream N uptake rates in an urbanizing watershed
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-009-9376-y
– volume: 24
  start-page: 3447
  year: 2010
  ident: 10.1016/j.envsoft.2014.03.005_bib29
  article-title: New challenges in integrated water quality modeling
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.7766
– volume: 45
  start-page: 51
  year: 2011
  ident: 10.1016/j.envsoft.2014.03.005_bib1
  article-title: A Bayesian changepoint-threshold model to examine the effect of TMDL implementation on the flow-nitrogen concentration relationship in the Neuse River basin
  publication-title: Water Res.
  doi: 10.1016/j.watres.2010.08.003
– volume: 39
  start-page: 1033
  issue: 2
  year: 2003
  ident: 10.1016/j.envsoft.2014.03.005_bib18
  article-title: A method for enforcing parameter nonnegativity in Bayesian inverse problems with an application to contaminant source identification
  publication-title: Water Resour. Res.
  doi: 10.1029/2002WR001480
– volume: 38
  start-page: 1004
  issue: 1
  year: 2002
  ident: 10.1016/j.envsoft.2014.03.005_bib20
  article-title: A fuzzy risk approach for seasonal water quality management of a river system
  publication-title: Water Resour. Res.
  doi: 10.1029/2000WR000126
– volume: 40
  start-page: 3333
  issue: 18
  year: 2006
  ident: 10.1016/j.envsoft.2014.03.005_bib33
  article-title: Inverse estimation of nonpoint sources of fecal coliform for establishing allowable load for Wye River, Maryland
  publication-title: Water Res.
  doi: 10.1016/j.watres.2006.07.035
SSID ssj0001524
Score 2.235196
Snippet Excessive pollutant discharge from multi-pollution resources can lead to a rise in downriver contaminant concentration in river segments. A multi-pollution...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 216
SubjectTerms ammonia
Animal and plant ecology
Animal, plant and microbial ecology
Applied ecology
Bayesian
Bayesian theory
Biological and medical sciences
branches
China
computer software
Conservation, protection and management of environment and wildlife
Ecotoxicology, biological effects of pollution
Fresh water ecosystems
Fundamental and applied biological sciences. Psychology
General aspects
General aspects. Techniques
hydrologic models
Markov chain Monte Carlo (MCMC)
Methods and techniques (sampling, tagging, trapping, modelling...)
Multi-pollution resources
pollutants
rivers
seasonal variation
Seasonal water quality management
Synecology
water quality
Water quality modeling
Title A Bayesian method for multi-pollution source water quality model and seasonal water quality management in river segments
URI https://dx.doi.org/10.1016/j.envsoft.2014.03.005
https://www.proquest.com/docview/2000166541
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5EERTxURWfZQWvaW1ebY61VKqiFxV6W_YVqUha2vroxd_uTHbTWkUEjwmz2SSzO_NNMjMfwGk9iFOdYJAjpJ966KG0J1TdxyiFAG8QGR1RgfPNbdx5CK-6UXcBWkUtDKVVOttvbXpurd2Zqnub1UGvV72rBTF1GvExRCAgQQW_YVinVV75mKV5oIAlto1Dj6RnVTzVp4rJXkdo7SjDK7S9TqPf_NPaQIzwraWW7uKH5c7d0cUmrDscyZr2VrdgwWQl2Cg4GpjbsiVYbudtqSclWP3SerAEu-1ZhRtex8mPtuG9yc7FxFBtJbP00gxxLcsTD70BESOTKpn96M_eBM1mKzMnLKfVYSLTjD49Esb_LjBNtmG9jA0pJwRFH_Myux14uGjftzqeo2fwVFD3xx5iFYXoQicpggzECYFOzkxUE0GkJUZBiVQpBo-RkEpLWUOgIP1YSYk6SxTaGR3swmLWz8weMF9S2y8cVVM6bAghKQpCp5oYP8GT_j6EhVK4cr3LiULjmRdJak_c6ZKTLvlZwFGX-1CZDhvY5h1_DWgUGudzq5Cjg_lraHluhUwnRP9PHXDwGU6KJcNxC9N_GZGZ_suImEDxskTIfvD_-Q9hhY5sJvERLI6HL-YY8dJYlvMNUYal5uV15_YT25YXZg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB4BVUVR1ZZQxKOlWwmOzmP9SHzoAdpESSG5FCRuy75cBVUmwqE0l_6p_kFmvOuktKqQKnFd78P27M43Y8_MB7DfDpPMpOjkSMWzABHKBFK3OXopZPCGsTUxJTgPR0n_LPp8Hp8vwa8qF4bCKr3udzq91Na-peHfZmMyHje-tMKEKo1wdBHIkOj4yMpjO7tFv634MPiEQj7gvNc9_dgPPLVAoMM2nwaIsxqR0aQZAiRiXGjSpo1bMoyNQgs-VTpDxyeWShulWghyiidaKVwv1XhGTIjzLsOTCNUF0SbUfy7iSvCOHJNuEgV0e4u0ocZl3ebfC1SvFFIWueKq8b8A8flEFiimzPFr_AUVJf71XsELb7iyQ_du1mHJ5jV4WZFCMK8javC0W9bBntVg7bdahzXY7C5S6nAe37_YgB-H7EjOLCVzMsdnzdCQZmWkYzAhJmbaO8z9ZWC3klZzqaAzVvL4MJkbRt86yan4s8M8uoeNc3ZNQSjY9WuZ1_cazh5FaJuwkl_ldgsYV1RnDEe1tIk6UipyuxDFU8tTbOTbEFVCEdoXSyfOjm-iioq7FF6WgmQpmqFAWW5DfT5s4qqFPDSgU0lc3Nv2AhHtoaF793bIfEE0OKjkDj7D-2rLCNQZ9CNI5vbqpiDqUZyWGOB3_n_9d7DaPx2eiJPB6HgXntEVF8b8Blam1zf2LRprU7VXHg4GF499Gu8AbT9SUA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bayesian+method+for+multi-pollution+source+water+quality+model+and+seasonal+water+quality+management+in+river+segments&rft.jtitle=Environmental+modelling+%26+software+%3A+with+environment+data+news&rft.au=Zhao%2C+Ying&rft.au=Sharma%2C+Ashish&rft.au=Sivakumar%2C+Bellie&rft.au=Marshall%2C+Lucy&rft.date=2014-07-01&rft.issn=1364-8152&rft.volume=57+p.216-226&rft.spage=216&rft.epage=226&rft_id=info:doi/10.1016%2Fj.envsoft.2014.03.005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-8152&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-8152&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-8152&client=summon