A Bayesian method for multi-pollution source water quality model and seasonal water quality management in river segments
Excessive pollutant discharge from multi-pollution resources can lead to a rise in downriver contaminant concentration in river segments. A multi-pollution source water quality model (MPSWQM) was integrated with Bayesian statistics to develop a robust method for supporting load (I) reduction and eff...
Saved in:
Published in | Environmental modelling & software : with environment data news Vol. 57; pp. 216 - 226 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.07.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Excessive pollutant discharge from multi-pollution resources can lead to a rise in downriver contaminant concentration in river segments. A multi-pollution source water quality model (MPSWQM) was integrated with Bayesian statistics to develop a robust method for supporting load (I) reduction and effective water quality management in the Harbin City Reach of the Songhua River system in northeastern China. The monthly water quality data observed during the period 2005–2010 was analyzed and compared, using ammonia as the study variable. The decay rate (k) was considered a key factor in the MPSWQM, and the distribution curve of k was estimated for the whole year. The distribution curves indicated small differences between the marginal distribution of k of each period and that water quality management strategies can be designed seasonally. From the curves, decision makers could pick up key posterior values of k in each month to attain the water quality goal at any specified time. Such flexibility is an effective way to improve the robustness of water quality management. For understanding the potential collinearity of k and I, a sensitivity test of k for I2i (loadings in segment 2 of the study river) was done under certain water quality goals. It indicated that the posterior distributions of I2i show seasonal variation and are sensitive to the marginal posteriors of k. Thus, the seasonal posteriors of k were selected according to the marginal distributions and used to estimate I2i in next water quality management. All kinds of pollutant sources, including polluted branches, point and non-point source, can be identified for multiple scenarios. The analysis enables decision makers to assess the influence of each loading and how best to manage water quality targets in each period. Decision makers can also visualize potential load reductions under different water quality goals. The results show that the proposed method is robust for management of multi-pollutant loadings under different water quality goals to help ensure that the water quality of river segments meets targeted goals.
•An environmental modeling (EM) approach is presented for controlling pollutant discharge.•A Bayesian approach is used in the EM to manage water quality targets.•The EM is an effective way to improve the robustness of water quality management.•The potential collinearity of ammonia decay rate (k) and loading (I) is analyzed.•The best way to manage water quality targets in each period is described. |
---|---|
AbstractList | Excessive pollutant discharge from multi-pollution resources can lead to a rise in downriver contaminant concentration in river segments. A multi-pollution source water quality model (MPSWQM) was integrated with Bayesian statistics to develop a robust method for supporting load (I) reduction and effective water quality management in the Harbin City Reach of the Songhua River system in northeastern China. The monthly water quality data observed during the period 2005–2010 was analyzed and compared, using ammonia as the study variable. The decay rate (k) was considered a key factor in the MPSWQM, and the distribution curve of k was estimated for the whole year. The distribution curves indicated small differences between the marginal distribution of k of each period and that water quality management strategies can be designed seasonally. From the curves, decision makers could pick up key posterior values of k in each month to attain the water quality goal at any specified time. Such flexibility is an effective way to improve the robustness of water quality management. For understanding the potential collinearity of k and I, a sensitivity test of k for I2i (loadings in segment 2 of the study river) was done under certain water quality goals. It indicated that the posterior distributions of I2i show seasonal variation and are sensitive to the marginal posteriors of k. Thus, the seasonal posteriors of k were selected according to the marginal distributions and used to estimate I2i in next water quality management. All kinds of pollutant sources, including polluted branches, point and non-point source, can be identified for multiple scenarios. The analysis enables decision makers to assess the influence of each loading and how best to manage water quality targets in each period. Decision makers can also visualize potential load reductions under different water quality goals. The results show that the proposed method is robust for management of multi-pollutant loadings under different water quality goals to help ensure that the water quality of river segments meets targeted goals.
•An environmental modeling (EM) approach is presented for controlling pollutant discharge.•A Bayesian approach is used in the EM to manage water quality targets.•The EM is an effective way to improve the robustness of water quality management.•The potential collinearity of ammonia decay rate (k) and loading (I) is analyzed.•The best way to manage water quality targets in each period is described. Excessive pollutant discharge from multi-pollution resources can lead to a rise in downriver contaminant concentration in river segments. A multi-pollution source water quality model (MPSWQM) was integrated with Bayesian statistics to develop a robust method for supporting load (I) reduction and effective water quality management in the Harbin City Reach of the Songhua River system in northeastern China. The monthly water quality data observed during the period 2005–2010 was analyzed and compared, using ammonia as the study variable. The decay rate (k) was considered a key factor in the MPSWQM, and the distribution curve of k was estimated for the whole year. The distribution curves indicated small differences between the marginal distribution of k of each period and that water quality management strategies can be designed seasonally. From the curves, decision makers could pick up key posterior values of k in each month to attain the water quality goal at any specified time. Such flexibility is an effective way to improve the robustness of water quality management. For understanding the potential collinearity of k and I, a sensitivity test of k for I2i (loadings in segment 2 of the study river) was done under certain water quality goals. It indicated that the posterior distributions of I2i show seasonal variation and are sensitive to the marginal posteriors of k. Thus, the seasonal posteriors of k were selected according to the marginal distributions and used to estimate I2i in next water quality management. All kinds of pollutant sources, including polluted branches, point and non-point source, can be identified for multiple scenarios. The analysis enables decision makers to assess the influence of each loading and how best to manage water quality targets in each period. Decision makers can also visualize potential load reductions under different water quality goals. The results show that the proposed method is robust for management of multi-pollutant loadings under different water quality goals to help ensure that the water quality of river segments meets targeted goals. |
Author | Wang, Peng Jiang, Jiping Marshall, Lucy Sivakumar, Bellie Zhao, Ying Sharma, Ashish |
Author_xml | – sequence: 1 givenname: Ying surname: Zhao fullname: Zhao, Ying email: zhaoying@hit.edu.cn organization: School of Municipal and Environment Engineering, Harbin Institute of Technology, Harbin 150090, China – sequence: 2 givenname: Ashish surname: Sharma fullname: Sharma, Ashish organization: School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia – sequence: 3 givenname: Bellie surname: Sivakumar fullname: Sivakumar, Bellie organization: School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia – sequence: 4 givenname: Lucy surname: Marshall fullname: Marshall, Lucy organization: School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, Australia – sequence: 5 givenname: Peng surname: Wang fullname: Wang, Peng organization: School of Municipal and Environment Engineering, Harbin Institute of Technology, Harbin 150090, China – sequence: 6 givenname: Jiping surname: Jiang fullname: Jiang, Jiping organization: School of Municipal and Environment Engineering, Harbin Institute of Technology, Harbin 150090, China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28499602$$DView record in Pascal Francis |
BookMark | eNqFkc1v1DAQxS1UJNrCn4DkCxKXBH8kTiIOqFR8SZW4wNma2JPilWNvbWfL_vck2hWHXnqap5nfm8N7V-QixICEvOWs5oyrD7sawyHHqdSC8aZmsmasfUEued_JSnVCXaxaqqbqeStekaucd4yxVTeX5O8N_QxHzA4CnbH8iZZOMdF58cVV--j9UlwMNMclGaSPUDDRhwW8K0c6R4ueQrA0I-QYwD8FIMA9zhgKdYEmd1hvGe-3RX5NXk7gM745z2vy--uXX7ffq7uf337c3txVRnaiVEpJI4Sww9QL0XMh7cCw5SBbO_ZdO4xmatjQwmjsOPKGt6NQZhybng-mY9LKa_L-9Hef4sOCuejZZYPeQ8C4ZC22KJRqG76i784oZAN-ShCMy3qf3AzpqEXfDINiYuXaE2dSzDnh9B_hTG-N6J0-N6K3RjSTem1k9X184jOuwJZvSeD8s-5PJzeuaR0cJp2Nw2DQuoSmaBvdMx_-AVryr0U |
CitedBy_id | crossref_primary_10_1016_j_ecolind_2019_105733 crossref_primary_10_1016_j_scitotenv_2017_03_003 crossref_primary_10_2166_nh_2019_076 crossref_primary_10_1016_j_jhydrol_2019_123962 crossref_primary_10_1016_j_scitotenv_2022_153486 crossref_primary_10_1016_j_jhydrol_2024_131686 crossref_primary_10_1039_C5EM00130G crossref_primary_10_1029_2020WR027721 crossref_primary_10_1016_j_watres_2020_116162 crossref_primary_10_1088_1755_1315_182_1_012007 crossref_primary_10_1016_j_scitotenv_2016_10_085 crossref_primary_10_4028_www_scientific_net_AMR_955_959_1737 crossref_primary_10_1007_s40314_020_01289_2 crossref_primary_10_5004_dwt_2021_27049 crossref_primary_10_1016_j_ecolmodel_2015_05_025 crossref_primary_10_1007_s11783_023_1685_1 crossref_primary_10_1007_s11269_018_2035_0 crossref_primary_10_1016_j_envres_2020_110206 crossref_primary_10_3390_ijerph121012212 crossref_primary_10_3390_w17020162 crossref_primary_10_1007_s12665_018_7545_9 crossref_primary_10_1080_10402381_2018_1530318 crossref_primary_10_1080_19443994_2014_986202 |
Cites_doi | 10.1029/2004WR003719 10.1007/s00267-009-9278-8 10.1029/2010WR009514 10.1029/2004WR003214 10.1007/s00267-006-0029-9 10.1016/j.watres.2007.02.040 10.1061/(ASCE)0733-9372(1998)124:5(409) 10.1038/35001562 10.1007/s11356-011-0502-8 10.1029/2003WR002378 10.1080/02508060.2006.9709677 10.1111/j.1752-1688.2007.00123.x 10.1016/j.scitotenv.2012.04.042 10.1029/2007WR006638 10.1029/2000WR900086 10.1111/j.1752-1688.2009.00310.x 10.1029/2008WR006825 10.1016/S0304-3800(02)00299-5 10.1111/1467-9868.00353 10.1016/j.watres.2009.09.002 10.1029/2004WR003698 10.1029/2006WR005158 10.1016/j.jenvman.2008.11.007 10.1016/j.watres.2008.04.007 10.1016/S0304-3800(03)00186-8 10.1016/j.jhydrol.2010.07.043 10.1214/ss/1177011136 10.1016/j.envsoft.2009.10.011 10.1007/s11269-006-9077-4 10.1016/j.advwatres.2011.02.007 10.1007/s10533-009-9376-y 10.1002/hyp.7766 10.1016/j.watres.2010.08.003 10.1029/2002WR001480 10.1029/2000WR000126 10.1016/j.watres.2006.07.035 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2014 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7S9 L.6 |
DOI | 10.1016/j.envsoft.2014.03.005 |
DatabaseName | CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Ecology Computer Science Environmental Sciences |
EISSN | 1873-6726 |
EndPage | 226 |
ExternalDocumentID | 28499602 10_1016_j_envsoft_2014_03_005 S1364815214000838 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYFN AAYOK ABBOA ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ACDAQ ACGFS ACIWK ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFJKZ AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSJ SSV SSZ T5K UHS ~02 ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH AAIAV AALMO ABPIF ABPTK ABYKQ ADALY AJBFU IPNFZ IQODW 7S9 L.6 |
ID | FETCH-LOGICAL-c372t-663c222d9f8228123d90e51a35db8759bcf4095abcdbb1415b26cbb4819c703d3 |
IEDL.DBID | .~1 |
ISSN | 1364-8152 |
IngestDate | Fri Jul 11 15:58:05 EDT 2025 Fri Nov 25 06:03:45 EST 2022 Tue Jul 01 01:20:13 EDT 2025 Thu Apr 24 23:10:07 EDT 2025 Thu Nov 14 02:16:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Water quality modeling Multi-pollution resources Bayesian Seasonal water quality management Markov chain Monte Carlo (MCMC) Water resource management Method Environmental management Modeling Freshwater environment Markov chain Pollution Seasonal variation Water quality Pollution source Stream Models |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-663c222d9f8228123d90e51a35db8759bcf4095abcdbb1415b26cbb4819c703d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2000166541 |
PQPubID | 24069 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2000166541 pascalfrancis_primary_28499602 crossref_primary_10_1016_j_envsoft_2014_03_005 crossref_citationtrail_10_1016_j_envsoft_2014_03_005 elsevier_sciencedirect_doi_10_1016_j_envsoft_2014_03_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-07-01 |
PublicationDateYYYYMMDD | 2014-07-01 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Environmental modelling & software : with environment data news |
PublicationYear | 2014 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Zou, Lung, Wu (bib43) 2007; 43 Chen, Dahlgren, Shen, Lu (bib7) 2012; 430 Marshall, Nott, Sharma (bib17) 2005; 41 Rode, Arhonditsis, Balin, Kebede, Krysanova, Griensven, van der Zee (bib29) 2010; 24 Spiegelhalter, Best, Carlin, Vander Linde (bib37) 2002; 64 Gelman, Rubin (bib12) 1992; 7 Chen, Lu, Wang, Shen, Gong (bib6) 2011; 18 Chapra (bib5) 1997 Liu, Yang, Hu, Guo (bib14) 2008; 42 Liu, Guo, Zhang, Wang, Dai, Fan (bib15) 2007; 39 Mujumdar, Sasikumar (bib20) 2002; 38 National Research Council (bib22) 2001 Stow, Reckhow, Qian, Lamon, Arhonditsis, Borsuk, Seo (bib38) 2007; 43 Nigel, Ricardo, Patrick, Caleb (bib24) 2010; 25 National People's Congress (bib21) 2008 Faulkner (bib10) 2008; 44 Marshall, Nott, Sharma (bib16) 2004; 40 Snehalatha, Rastogi, Patil (bib36) 2006; 31 Robertson, Schwarz, Saad, Alexander (bib28) 2009; 42 Michalak, Kitanidis (bib19) 2004; 40 Shen, Zhao (bib32) 2010; 44 Alameddine, Qian, Reckhow (bib1) 2011; 45 Alexander, Smith, Schwarz (bib2) 2000; 403 Schoups, Vrugt (bib31) 2010; 6 Freni, Mannina (bib11) 2010; 392 Michalak, Kitanidis (bib18) 2003; 39 Woodbury, Ulrych (bib41) 2000 Thyer, Renard, Kavetski, Kuczera, Franks, Srikanthan (bib39) 2009; 45 Claessens, Tague, Groffman, Melack (bib8) 2010; 98 Vermeulen, Heemink, Valstar (bib40) 2005; 41 Dowd, Meyer (bib9) 2003; 168 Lia, Huang (bib13) 2009; 90 Zhou (bib42) 2011 Smith, Sharma, Marshall, Mehrotra, Sisson (bib35) 2010; 46 Shen, Jia, Sisson (bib33) 2006; 40 Bumgarner, McCray (bib4) 2007; 41 Saadatpour, Afshar (bib30) 2007; 21 Qian, Stow, Borsuk (bib26) 2003; 59 Patil, Deng (bib25) 2011; 92 Neuman, Xue, Ye, Lu (bib23) 2012; 36 Babaeyan-Koopaei, Ervine, Pender (bib3) 2003; 1 Qin, Huang, Chen, Zhang (bib27) 2009; 43 Shen, Kuo (bib34) 1998; 124 Saadatpour (10.1016/j.envsoft.2014.03.005_bib30) 2007; 21 Gelman (10.1016/j.envsoft.2014.03.005_bib12) 1992; 7 Mujumdar (10.1016/j.envsoft.2014.03.005_bib20) 2002; 38 Chapra (10.1016/j.envsoft.2014.03.005_bib5) 1997 Michalak (10.1016/j.envsoft.2014.03.005_bib19) 2004; 40 Rode (10.1016/j.envsoft.2014.03.005_bib29) 2010; 24 Shen (10.1016/j.envsoft.2014.03.005_bib33) 2006; 40 Patil (10.1016/j.envsoft.2014.03.005_bib25) 2011; 92 Bumgarner (10.1016/j.envsoft.2014.03.005_bib4) 2007; 41 Qin (10.1016/j.envsoft.2014.03.005_bib27) 2009; 43 Snehalatha (10.1016/j.envsoft.2014.03.005_bib36) 2006; 31 Neuman (10.1016/j.envsoft.2014.03.005_bib23) 2012; 36 Smith (10.1016/j.envsoft.2014.03.005_bib35) 2010; 46 Zhou (10.1016/j.envsoft.2014.03.005_bib42) 2011 Nigel (10.1016/j.envsoft.2014.03.005_bib24) 2010; 25 Schoups (10.1016/j.envsoft.2014.03.005_bib31) 2010; 6 Chen (10.1016/j.envsoft.2014.03.005_bib7) 2012; 430 Thyer (10.1016/j.envsoft.2014.03.005_bib39) 2009; 45 Woodbury (10.1016/j.envsoft.2014.03.005_bib41) 2000 Marshall (10.1016/j.envsoft.2014.03.005_bib17) 2005; 41 Stow (10.1016/j.envsoft.2014.03.005_bib38) 2007; 43 Babaeyan-Koopaei (10.1016/j.envsoft.2014.03.005_bib3) 2003; 1 Qian (10.1016/j.envsoft.2014.03.005_bib26) 2003; 59 Freni (10.1016/j.envsoft.2014.03.005_bib11) 2010; 392 Robertson (10.1016/j.envsoft.2014.03.005_bib28) 2009; 42 National Research Council (10.1016/j.envsoft.2014.03.005_bib22) 2001 National People's Congress (10.1016/j.envsoft.2014.03.005_bib21) 2008 Alameddine (10.1016/j.envsoft.2014.03.005_bib1) 2011; 45 Dowd (10.1016/j.envsoft.2014.03.005_bib9) 2003; 168 Michalak (10.1016/j.envsoft.2014.03.005_bib18) 2003; 39 Chen (10.1016/j.envsoft.2014.03.005_bib6) 2011; 18 Alexander (10.1016/j.envsoft.2014.03.005_bib2) 2000; 403 Spiegelhalter (10.1016/j.envsoft.2014.03.005_bib37) 2002; 64 Faulkner (10.1016/j.envsoft.2014.03.005_bib10) 2008; 44 Shen (10.1016/j.envsoft.2014.03.005_bib32) 2010; 44 Zou (10.1016/j.envsoft.2014.03.005_bib43) 2007; 43 Claessens (10.1016/j.envsoft.2014.03.005_bib8) 2010; 98 Vermeulen (10.1016/j.envsoft.2014.03.005_bib40) 2005; 41 Lia (10.1016/j.envsoft.2014.03.005_bib13) 2009; 90 Liu (10.1016/j.envsoft.2014.03.005_bib14) 2008; 42 Marshall (10.1016/j.envsoft.2014.03.005_bib16) 2004; 40 Liu (10.1016/j.envsoft.2014.03.005_bib15) 2007; 39 Shen (10.1016/j.envsoft.2014.03.005_bib34) 1998; 124 |
References_xml | – volume: 124 start-page: 409 year: 1998 end-page: 418 ident: bib34 article-title: Application of inverse method to calibrate estuarine eutrophication model publication-title: J. Environ. Eng.—ASCE – volume: 392 start-page: 31 year: 2010 end-page: 39 ident: bib11 article-title: Bayesian approach for uncertainty quantification in water quality modelling: the influence of prior distribution publication-title: J. Hydrol. – year: 2008 ident: bib21 article-title: The Law of the People's Republic of China on the Prevention and Control of Water Pollution – volume: 6 start-page: W10531 year: 2010 ident: bib31 article-title: A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic and non-Gaussian errors publication-title: Water Resour. Res. – volume: 42 start-page: 3305 year: 2008 end-page: 3314 ident: bib14 article-title: Water quality modeling for load reduction under uncertainty: a Bayesian approach publication-title: Water Res. – volume: 46 start-page: W12551 year: 2010 ident: bib35 article-title: Development of a formal likelihood function for improved Bayesian inference of ephemeral catchments publication-title: Water Resour. Res. – volume: 64 start-page: 583 year: 2002 end-page: 616 ident: bib37 article-title: Bayesian measures of model complexity and fit (with discussion) publication-title: J. R. Stat. Soc. Ser. B – volume: 59 start-page: 269 year: 2003 end-page: 277 ident: bib26 article-title: On Monte Carlo methods for Bayesian inference publication-title: Ecol. Model1. – year: 2001 ident: bib22 article-title: Assessing the TMDL Approach to Water Quality Management – volume: 43 start-page: W08427 year: 2007 ident: bib43 article-title: An adaptive neural network embedded genetic algorithm approach for inverse water quality modeling publication-title: Water Resour. Res. – volume: 25 start-page: 1045 year: 2010 end-page: 1058 ident: bib24 article-title: Use of environmental sensors and sensor networks to develop water and salinity budgets for seasonal wetland real-time water quality management publication-title: Environ. Model. Softw. – volume: 90 start-page: 2402 year: 2009 end-page: 2413 ident: bib13 article-title: Two-stage planning for sustainable water-quality management under uncertainty publication-title: Environ. Manag. – volume: 43 start-page: 999 year: 2009 end-page: 1012 ident: bib27 article-title: An Interval-Parameter Waste-Load-Allocation Model for river water quality management under uncertainty publication-title: Environ. Manag. – volume: 41 start-page: W06003 year: 2005 ident: bib40 article-title: Inverse modeling of groundwater flow using model reduction publication-title: Water Resour. Res. – volume: 45 start-page: W00B14 year: 2009 ident: bib39 article-title: Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: a case study using Bayesian total error analysis publication-title: Water Resour. Res. – volume: 168 start-page: 39 year: 2003 end-page: 55 ident: bib9 article-title: A Bayesian approach to the ecosystem inverse problem publication-title: Ecol. Model. – volume: 44 start-page: W08415 year: 2008 ident: bib10 article-title: Bayesian modeling of the assimilative capacity component of nutrient total maximum daily loads publication-title: Water Resour. Res. – volume: 36 start-page: 75 year: 2012 end-page: 85 ident: bib23 article-title: Bayesian analysis of data-worth considering model and parameter uncertainties publication-title: Adv. Water Resour. – volume: 21 start-page: 1207 year: 2007 end-page: 1224 ident: bib30 article-title: Waste load allocation modeling with fuzzy goals simulation–optimization approach publication-title: Water Resour. Manage. – volume: 44 start-page: 77 year: 2010 end-page: 84 ident: bib32 article-title: Combined Bayesian statistics and load duration curve method for bacteria nonpoint source loading estimation publication-title: Water Res. – volume: 41 year: 2005 ident: bib17 article-title: Hydrological model selection: a Bayesian alternative publication-title: Water Resour. Res. – volume: 7 start-page: 457 year: 1992 end-page: 511 ident: bib12 article-title: Inference from iterative simulation using multiple sequences publication-title: Stat. Sci. – start-page: 2081 year: 2000 end-page: 2093 ident: bib41 article-title: A full-Bayesian approach to the groundwater inverse problem for steady state flow publication-title: Water Resour. Res. – volume: 403 start-page: 758 year: 2000 end-page: 761 ident: bib2 article-title: Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico publication-title: Nature – volume: 31 start-page: 266 year: 2006 end-page: 271 ident: bib36 article-title: Development of numerical model for inverse modeling of confined aquifer: application of simulated annealing method publication-title: Water Int. – volume: 24 start-page: 3447 year: 2010 end-page: 3461 ident: bib29 article-title: New challenges in integrated water quality modeling publication-title: Hydrol. Process. – volume: 1 start-page: 28 year: 2003 end-page: 36 ident: bib3 article-title: Field measurements and flow modeling of overbank flows in River Severn, UK publication-title: J. Environ. Inform. – volume: 41 start-page: 2349 year: 2007 end-page: 2360 ident: bib4 article-title: Estimating biozone hydraulic conductivity in wastewater soil-infiltration systems using inverse numerical modeling publication-title: Water Res. – volume: 18 start-page: 1405 year: 2011 end-page: 1413 ident: bib6 article-title: Combined inverse-modeling approach and load duration curve method for variable nitrogen total maximum daily load development in an agricultural watershed publication-title: Environ. Sci. Pollut. Res. – volume: 98 start-page: 63 year: 2010 end-page: 74 ident: bib8 article-title: Longitudinal assessment of the effect of concentration on stream N uptake rates in an urbanizing watershed publication-title: Biogeochemistry – volume: 40 start-page: W08302 year: 2004 ident: bib19 article-title: Estimation of historical groundwater contaminant distribution using the adjoint state method applied to geostatistical inverse modeling publication-title: Water Resour. Res. – year: 1997 ident: bib5 article-title: Surface Water-quality Modeling – volume: 430 start-page: 59 year: 2012 end-page: 67 ident: bib7 article-title: A Bayesian approach for calculating variable total maximum daily loads and uncertainty assessment publication-title: Sci. Total Environ. – volume: 43 start-page: 1499 year: 2007 end-page: 1507 ident: bib38 article-title: Approaches to evaluate water quality model parameter uncertainty for adaptive TMDL implementation publication-title: Am. Water Resour. Assoc. – volume: 38 start-page: 1004 year: 2002 end-page: 1012 ident: bib20 article-title: A fuzzy risk approach for seasonal water quality management of a river system publication-title: Water Resour. Res. – volume: 42 start-page: 534 year: 2009 end-page: 549 ident: bib28 article-title: Incorporating uncertainty into the ranking of SPARROW model nutrient yields from Mississippi/Atchafalaya River basin watersheds publication-title: J. Am. Water Resour. Assoc. – volume: 45 start-page: 51 year: 2011 end-page: 62 ident: bib1 article-title: A Bayesian changepoint-threshold model to examine the effect of TMDL implementation on the flow-nitrogen concentration relationship in the Neuse River basin publication-title: Water Res. – volume: 39 start-page: 1033 year: 2003 ident: bib18 article-title: A method for enforcing parameter nonnegativity in Bayesian inverse problems with an application to contaminant source identification publication-title: Water Resour. Res. – year: 2011 ident: bib42 article-title: Ensure Comprehensive Improvement for Water Quality of Songhua River Basin from 2011 to 2015 – volume: 92 start-page: 910 year: 2011 end-page: 918 ident: bib25 article-title: Bayesian approach to estimating margin of safety for total maximum daily load development publication-title: J. Environ. Manag. – volume: 39 start-page: 678 year: 2007 end-page: 690 ident: bib15 article-title: An optimization method based on scenario analyses for watershed management under uncertainty publication-title: Environ. Manage. – volume: 40 start-page: W02501 year: 2004 ident: bib16 article-title: A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling publication-title: Water Resour. Res. – volume: 40 start-page: 3333 year: 2006 end-page: 3342 ident: bib33 article-title: Inverse estimation of nonpoint sources of fecal coliform for establishing allowable load for Wye River, Maryland publication-title: Water Res. – volume: 41 issue: 10 year: 2005 ident: 10.1016/j.envsoft.2014.03.005_bib17 article-title: Hydrological model selection: a Bayesian alternative publication-title: Water Resour. Res. doi: 10.1029/2004WR003719 – volume: 6 start-page: W10531 year: 2010 ident: 10.1016/j.envsoft.2014.03.005_bib31 article-title: A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic and non-Gaussian errors publication-title: Water Resour. Res. – volume: 1 start-page: 28 year: 2003 ident: 10.1016/j.envsoft.2014.03.005_bib3 article-title: Field measurements and flow modeling of overbank flows in River Severn, UK publication-title: J. Environ. Inform. – year: 2011 ident: 10.1016/j.envsoft.2014.03.005_bib42 – volume: 43 start-page: 999 year: 2009 ident: 10.1016/j.envsoft.2014.03.005_bib27 article-title: An Interval-Parameter Waste-Load-Allocation Model for river water quality management under uncertainty publication-title: Environ. Manag. doi: 10.1007/s00267-009-9278-8 – volume: 46 start-page: W12551 year: 2010 ident: 10.1016/j.envsoft.2014.03.005_bib35 article-title: Development of a formal likelihood function for improved Bayesian inference of ephemeral catchments publication-title: Water Resour. Res. doi: 10.1029/2010WR009514 – volume: 40 start-page: W08302 issue: 8 year: 2004 ident: 10.1016/j.envsoft.2014.03.005_bib19 article-title: Estimation of historical groundwater contaminant distribution using the adjoint state method applied to geostatistical inverse modeling publication-title: Water Resour. Res. doi: 10.1029/2004WR003214 – volume: 39 start-page: 678 issue: 5 year: 2007 ident: 10.1016/j.envsoft.2014.03.005_bib15 article-title: An optimization method based on scenario analyses for watershed management under uncertainty publication-title: Environ. Manage. doi: 10.1007/s00267-006-0029-9 – volume: 41 start-page: 2349 issue: 11 year: 2007 ident: 10.1016/j.envsoft.2014.03.005_bib4 article-title: Estimating biozone hydraulic conductivity in wastewater soil-infiltration systems using inverse numerical modeling publication-title: Water Res. doi: 10.1016/j.watres.2007.02.040 – volume: 124 start-page: 409 issue: 5 year: 1998 ident: 10.1016/j.envsoft.2014.03.005_bib34 article-title: Application of inverse method to calibrate estuarine eutrophication model publication-title: J. Environ. Eng.—ASCE doi: 10.1061/(ASCE)0733-9372(1998)124:5(409) – volume: 403 start-page: 758 year: 2000 ident: 10.1016/j.envsoft.2014.03.005_bib2 article-title: Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico publication-title: Nature doi: 10.1038/35001562 – volume: 18 start-page: 1405 year: 2011 ident: 10.1016/j.envsoft.2014.03.005_bib6 article-title: Combined inverse-modeling approach and load duration curve method for variable nitrogen total maximum daily load development in an agricultural watershed publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-011-0502-8 – volume: 40 start-page: W02501 year: 2004 ident: 10.1016/j.envsoft.2014.03.005_bib16 article-title: A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling publication-title: Water Resour. Res. doi: 10.1029/2003WR002378 – volume: 31 start-page: 266 issue: 2 year: 2006 ident: 10.1016/j.envsoft.2014.03.005_bib36 article-title: Development of numerical model for inverse modeling of confined aquifer: application of simulated annealing method publication-title: Water Int. doi: 10.1080/02508060.2006.9709677 – volume: 43 start-page: 1499 issue: 6 year: 2007 ident: 10.1016/j.envsoft.2014.03.005_bib38 article-title: Approaches to evaluate water quality model parameter uncertainty for adaptive TMDL implementation publication-title: Am. Water Resour. Assoc. doi: 10.1111/j.1752-1688.2007.00123.x – volume: 92 start-page: 910 year: 2011 ident: 10.1016/j.envsoft.2014.03.005_bib25 article-title: Bayesian approach to estimating margin of safety for total maximum daily load development publication-title: J. Environ. Manag. – volume: 430 start-page: 59 year: 2012 ident: 10.1016/j.envsoft.2014.03.005_bib7 article-title: A Bayesian approach for calculating variable total maximum daily loads and uncertainty assessment publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2012.04.042 – volume: 44 start-page: W08415 year: 2008 ident: 10.1016/j.envsoft.2014.03.005_bib10 article-title: Bayesian modeling of the assimilative capacity component of nutrient total maximum daily loads publication-title: Water Resour. Res. doi: 10.1029/2007WR006638 – start-page: 2081 issue: 8 year: 2000 ident: 10.1016/j.envsoft.2014.03.005_bib41 article-title: A full-Bayesian approach to the groundwater inverse problem for steady state flow publication-title: Water Resour. Res. doi: 10.1029/2000WR900086 – volume: 42 start-page: 534 year: 2009 ident: 10.1016/j.envsoft.2014.03.005_bib28 article-title: Incorporating uncertainty into the ranking of SPARROW model nutrient yields from Mississippi/Atchafalaya River basin watersheds publication-title: J. Am. Water Resour. Assoc. doi: 10.1111/j.1752-1688.2009.00310.x – volume: 45 start-page: W00B14 year: 2009 ident: 10.1016/j.envsoft.2014.03.005_bib39 article-title: Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: a case study using Bayesian total error analysis publication-title: Water Resour. Res. doi: 10.1029/2008WR006825 – year: 1997 ident: 10.1016/j.envsoft.2014.03.005_bib5 – year: 2008 ident: 10.1016/j.envsoft.2014.03.005_bib21 – volume: 59 start-page: 269 issue: 2–3 year: 2003 ident: 10.1016/j.envsoft.2014.03.005_bib26 article-title: On Monte Carlo methods for Bayesian inference publication-title: Ecol. Model1. doi: 10.1016/S0304-3800(02)00299-5 – volume: 64 start-page: 583 issue: 4 year: 2002 ident: 10.1016/j.envsoft.2014.03.005_bib37 article-title: Bayesian measures of model complexity and fit (with discussion) publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/1467-9868.00353 – volume: 44 start-page: 77 year: 2010 ident: 10.1016/j.envsoft.2014.03.005_bib32 article-title: Combined Bayesian statistics and load duration curve method for bacteria nonpoint source loading estimation publication-title: Water Res. doi: 10.1016/j.watres.2009.09.002 – year: 2001 ident: 10.1016/j.envsoft.2014.03.005_bib22 – volume: 41 start-page: W06003 issue: 6 year: 2005 ident: 10.1016/j.envsoft.2014.03.005_bib40 article-title: Inverse modeling of groundwater flow using model reduction publication-title: Water Resour. Res. doi: 10.1029/2004WR003698 – volume: 43 start-page: W08427 year: 2007 ident: 10.1016/j.envsoft.2014.03.005_bib43 article-title: An adaptive neural network embedded genetic algorithm approach for inverse water quality modeling publication-title: Water Resour. Res. doi: 10.1029/2006WR005158 – volume: 90 start-page: 2402 year: 2009 ident: 10.1016/j.envsoft.2014.03.005_bib13 article-title: Two-stage planning for sustainable water-quality management under uncertainty publication-title: Environ. Manag. doi: 10.1016/j.jenvman.2008.11.007 – volume: 42 start-page: 3305 year: 2008 ident: 10.1016/j.envsoft.2014.03.005_bib14 article-title: Water quality modeling for load reduction under uncertainty: a Bayesian approach publication-title: Water Res. doi: 10.1016/j.watres.2008.04.007 – volume: 168 start-page: 39 year: 2003 ident: 10.1016/j.envsoft.2014.03.005_bib9 article-title: A Bayesian approach to the ecosystem inverse problem publication-title: Ecol. Model. doi: 10.1016/S0304-3800(03)00186-8 – volume: 392 start-page: 31 year: 2010 ident: 10.1016/j.envsoft.2014.03.005_bib11 article-title: Bayesian approach for uncertainty quantification in water quality modelling: the influence of prior distribution publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.07.043 – volume: 7 start-page: 457 issue: 4 year: 1992 ident: 10.1016/j.envsoft.2014.03.005_bib12 article-title: Inference from iterative simulation using multiple sequences publication-title: Stat. Sci. doi: 10.1214/ss/1177011136 – volume: 25 start-page: 1045 year: 2010 ident: 10.1016/j.envsoft.2014.03.005_bib24 article-title: Use of environmental sensors and sensor networks to develop water and salinity budgets for seasonal wetland real-time water quality management publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2009.10.011 – volume: 21 start-page: 1207 year: 2007 ident: 10.1016/j.envsoft.2014.03.005_bib30 article-title: Waste load allocation modeling with fuzzy goals simulation–optimization approach publication-title: Water Resour. Manage. doi: 10.1007/s11269-006-9077-4 – volume: 36 start-page: 75 year: 2012 ident: 10.1016/j.envsoft.2014.03.005_bib23 article-title: Bayesian analysis of data-worth considering model and parameter uncertainties publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2011.02.007 – volume: 98 start-page: 63 issue: 1 year: 2010 ident: 10.1016/j.envsoft.2014.03.005_bib8 article-title: Longitudinal assessment of the effect of concentration on stream N uptake rates in an urbanizing watershed publication-title: Biogeochemistry doi: 10.1007/s10533-009-9376-y – volume: 24 start-page: 3447 year: 2010 ident: 10.1016/j.envsoft.2014.03.005_bib29 article-title: New challenges in integrated water quality modeling publication-title: Hydrol. Process. doi: 10.1002/hyp.7766 – volume: 45 start-page: 51 year: 2011 ident: 10.1016/j.envsoft.2014.03.005_bib1 article-title: A Bayesian changepoint-threshold model to examine the effect of TMDL implementation on the flow-nitrogen concentration relationship in the Neuse River basin publication-title: Water Res. doi: 10.1016/j.watres.2010.08.003 – volume: 39 start-page: 1033 issue: 2 year: 2003 ident: 10.1016/j.envsoft.2014.03.005_bib18 article-title: A method for enforcing parameter nonnegativity in Bayesian inverse problems with an application to contaminant source identification publication-title: Water Resour. Res. doi: 10.1029/2002WR001480 – volume: 38 start-page: 1004 issue: 1 year: 2002 ident: 10.1016/j.envsoft.2014.03.005_bib20 article-title: A fuzzy risk approach for seasonal water quality management of a river system publication-title: Water Resour. Res. doi: 10.1029/2000WR000126 – volume: 40 start-page: 3333 issue: 18 year: 2006 ident: 10.1016/j.envsoft.2014.03.005_bib33 article-title: Inverse estimation of nonpoint sources of fecal coliform for establishing allowable load for Wye River, Maryland publication-title: Water Res. doi: 10.1016/j.watres.2006.07.035 |
SSID | ssj0001524 |
Score | 2.235196 |
Snippet | Excessive pollutant discharge from multi-pollution resources can lead to a rise in downriver contaminant concentration in river segments. A multi-pollution... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 216 |
SubjectTerms | ammonia Animal and plant ecology Animal, plant and microbial ecology Applied ecology Bayesian Bayesian theory Biological and medical sciences branches China computer software Conservation, protection and management of environment and wildlife Ecotoxicology, biological effects of pollution Fresh water ecosystems Fundamental and applied biological sciences. Psychology General aspects General aspects. Techniques hydrologic models Markov chain Monte Carlo (MCMC) Methods and techniques (sampling, tagging, trapping, modelling...) Multi-pollution resources pollutants rivers seasonal variation Seasonal water quality management Synecology water quality Water quality modeling |
Title | A Bayesian method for multi-pollution source water quality model and seasonal water quality management in river segments |
URI | https://dx.doi.org/10.1016/j.envsoft.2014.03.005 https://www.proquest.com/docview/2000166541 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5EERTxURWfZQWvaW1ebY61VKqiFxV6W_YVqUha2vroxd_uTHbTWkUEjwmz2SSzO_NNMjMfwGk9iFOdYJAjpJ966KG0J1TdxyiFAG8QGR1RgfPNbdx5CK-6UXcBWkUtDKVVOttvbXpurd2Zqnub1UGvV72rBTF1GvExRCAgQQW_YVinVV75mKV5oIAlto1Dj6RnVTzVp4rJXkdo7SjDK7S9TqPf_NPaQIzwraWW7uKH5c7d0cUmrDscyZr2VrdgwWQl2Cg4GpjbsiVYbudtqSclWP3SerAEu-1ZhRtex8mPtuG9yc7FxFBtJbP00gxxLcsTD70BESOTKpn96M_eBM1mKzMnLKfVYSLTjD49Esb_LjBNtmG9jA0pJwRFH_Myux14uGjftzqeo2fwVFD3xx5iFYXoQicpggzECYFOzkxUE0GkJUZBiVQpBo-RkEpLWUOgIP1YSYk6SxTaGR3swmLWz8weMF9S2y8cVVM6bAghKQpCp5oYP8GT_j6EhVK4cr3LiULjmRdJak_c6ZKTLvlZwFGX-1CZDhvY5h1_DWgUGudzq5Cjg_lraHluhUwnRP9PHXDwGU6KJcNxC9N_GZGZ_suImEDxskTIfvD_-Q9hhY5sJvERLI6HL-YY8dJYlvMNUYal5uV15_YT25YXZg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB4BVUVR1ZZQxKOlWwmOzmP9SHzoAdpESSG5FCRuy75cBVUmwqE0l_6p_kFmvOuktKqQKnFd78P27M43Y8_MB7DfDpPMpOjkSMWzABHKBFK3OXopZPCGsTUxJTgPR0n_LPp8Hp8vwa8qF4bCKr3udzq91Na-peHfZmMyHje-tMKEKo1wdBHIkOj4yMpjO7tFv634MPiEQj7gvNc9_dgPPLVAoMM2nwaIsxqR0aQZAiRiXGjSpo1bMoyNQgs-VTpDxyeWShulWghyiidaKVwv1XhGTIjzLsOTCNUF0SbUfy7iSvCOHJNuEgV0e4u0ocZl3ebfC1SvFFIWueKq8b8A8flEFiimzPFr_AUVJf71XsELb7iyQ_du1mHJ5jV4WZFCMK8javC0W9bBntVg7bdahzXY7C5S6nAe37_YgB-H7EjOLCVzMsdnzdCQZmWkYzAhJmbaO8z9ZWC3klZzqaAzVvL4MJkbRt86yan4s8M8uoeNc3ZNQSjY9WuZ1_cazh5FaJuwkl_ldgsYV1RnDEe1tIk6UipyuxDFU8tTbOTbEFVCEdoXSyfOjm-iioq7FF6WgmQpmqFAWW5DfT5s4qqFPDSgU0lc3Nv2AhHtoaF793bIfEE0OKjkDj7D-2rLCNQZ9CNI5vbqpiDqUZyWGOB3_n_9d7DaPx2eiJPB6HgXntEVF8b8Blam1zf2LRprU7VXHg4GF499Gu8AbT9SUA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bayesian+method+for+multi-pollution+source+water+quality+model+and+seasonal+water+quality+management+in+river+segments&rft.jtitle=Environmental+modelling+%26+software+%3A+with+environment+data+news&rft.au=Zhao%2C+Ying&rft.au=Sharma%2C+Ashish&rft.au=Sivakumar%2C+Bellie&rft.au=Marshall%2C+Lucy&rft.date=2014-07-01&rft.issn=1364-8152&rft.volume=57+p.216-226&rft.spage=216&rft.epage=226&rft_id=info:doi/10.1016%2Fj.envsoft.2014.03.005&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-8152&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-8152&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-8152&client=summon |