Hyperspectral Image Classification With Independent Component Discriminant Analysis
In this paper, the use of Independent Component (IC) Discriminant Analysis (ICDA) for remote sensing classification is proposed. ICDA is a nonparametric method for discriminant analysis based on the application of a Bayesian classification rule on a signal composed by ICs. The method uses IC Analysi...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 49; no. 12; pp. 4865 - 4876 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.12.2011
Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, the use of Independent Component (IC) Discriminant Analysis (ICDA) for remote sensing classification is proposed. ICDA is a nonparametric method for discriminant analysis based on the application of a Bayesian classification rule on a signal composed by ICs. The method uses IC Analysis (ICA) to choose a transform matrix so that the transformed components are as independent as possible. When the data are projected in an independent space, the estimates of their multivariate density function can be computed in a much easier way as the product of univariate densities. A nonparametric kernel density estimator is used to compute the density functions of each IC. Finally, the Bayes rule is applied for the classification assignment. In this paper, we investigate the possibility of using ICDA for the classification of hyperspectral images. We study the influence of the algorithm used to enforce independence and of the number of IC retained for the classification, proposing an effective method to estimate the most suitable number. The proposed method is applied to several hyperspectral images, in order to test different data set conditions (urban/agricultural area, size of the training set, and type of sensor). Obtained results are compared with one of the most commonly used classifier of hyperspectral images (support vector machines) and show the comparative effectiveness of the proposed method in terms of accuracy. |
---|---|
AbstractList | In this paper, the use of Independent Component (IC) Discriminant Analysis (ICDA) for remote sensing classification is proposed. ICDA is a nonparametric method for discriminant analysis based on the application of a Bayesian classification rule on a signal composed by ICs. The method uses IC Analysis (ICA) to choose a transform matrix so that the transformed components are as independent as possible. When the data are projected in an independent space, the estimates of their multivariate density function can be computed in a much easier way as the product of univariate densities. A nonparametric kernel density estimator is used to compute the density functions of each IC. Finally, the Bayes rule is applied for the classification assignment. In this paper, we investigate the possibility of using ICDA for the classification of hyperspectral images. We study the influence of the algorithm used to enforce independence and of the number of IC retained for the classification, proposing an effective method to estimate the most suitable number. The proposed method is applied to several hyperspectral images, in order to test different data set conditions (urban/agricultural area, size of the training set, and type of sensor). Obtained results are compared with one of the most commonly used classifier of hyperspectral images (support vector machines) and show the comparative effectiveness of the proposed method in terms of accuracy. |
Author | Jutten, C. Benediktsson, J. A. Chanussot, J. Villa, A. |
Author_xml | – sequence: 1 givenname: A. surname: Villa fullname: Villa, A. email: alberto.villa@hyperinet.eu organization: GIPSA-Lab., Grenoble Inst. of Technol. (Grenoble INP), Grenoble, France – sequence: 2 givenname: J. A. surname: Benediktsson fullname: Benediktsson, J. A. email: benedikt@hi.is organization: Fac. of Electr. & Comput. Eng., Univ. of Iceland, Reykjavik, Iceland – sequence: 3 givenname: J. surname: Chanussot fullname: Chanussot, J. email: jocelyn.chanussot@gipsa-lab.grenoble-inp.fr organization: GIPSA-Lab., Grenoble Inst. of Technol. (Grenoble INP), Grenoble, France – sequence: 4 givenname: C. surname: Jutten fullname: Jutten, C. email: christian.jutten@gipsa-lab.grenoble-inp.fr organization: GIPSA Lab., Univ. Joseph Fourier, Grenoble, France |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25274158$$DView record in Pascal Francis https://hal.science/hal-00607195$$DView record in HAL |
BookMark | eNp9kM9LwzAUx4NMcJv-AeKlFw8eOvPyu8cxdRsMBDfxWLI0cZGuLU0R9t-burGDBy9JXvh833t8RmhQ1ZVF6BbwBABnj5v523pCMMCEAKdKwAUaAucqxYKxARpiyERKVEau0CiEL4yBcZBDtF4cGtuGxpqu1WWy3OtPm8xKHYJ33ujO11Xy4btdsqwK29h4VF0yq_dNHB9fTz6Y1u99pWMxrXR5CD5co0uny2BvTvcYvb88b2aLdPU6X86mq9RQSbpUcCcotYZsXSEZ31oGtNgaKzPNGQMlDVduq2imFCuUcJRQA8Ipi4WSDhd0jB6OfXe6zJu4hm4Pea19vpiu8v4PY4ElZPwbInt_ZBsdjC5dqyvjwzlFOJEMuIocHDnT1iG01p0RwHlvOu9N573p_GQ6ZuSfjPHdr7ro1Jf_Ju-OSW-tPU_iGYuAoD-j1Y1w |
CODEN | IGRSD2 |
CitedBy_id | crossref_primary_10_3390_rs14132997 crossref_primary_10_1109_JSTARS_2021_3123087 crossref_primary_10_1109_TGRS_2020_3014313 crossref_primary_10_1109_TGRS_2019_2918387 crossref_primary_10_1016_j_ejrs_2018_01_003 crossref_primary_10_1007_s11220_018_0196_9 crossref_primary_10_3390_rs15040983 crossref_primary_10_1109_JSTARS_2013_2255981 crossref_primary_10_1109_TGRS_2019_2911993 crossref_primary_10_1038_s41598_024_74835_1 crossref_primary_10_3390_rs16010067 crossref_primary_10_1080_01431161_2021_2022238 crossref_primary_10_1109_TCYB_2021_3070577 crossref_primary_10_3934_mbe_2020195 crossref_primary_10_1109_TGRS_2023_3237668 crossref_primary_10_1007_s11760_023_02964_7 crossref_primary_10_1109_TGRS_2021_3095056 crossref_primary_10_1109_TCI_2017_2666551 crossref_primary_10_1109_TGRS_2019_2907932 crossref_primary_10_1109_TGRS_2015_2409195 crossref_primary_10_1109_TGRS_2020_3044094 crossref_primary_10_1142_S021800142432001X crossref_primary_10_1007_s12065_021_00591_0 crossref_primary_10_3390_s23177628 crossref_primary_10_1109_TGRS_2018_2814781 crossref_primary_10_1109_TGRS_2017_2730583 crossref_primary_10_1016_j_oregeorev_2020_103332 crossref_primary_10_3390_rs12010125 crossref_primary_10_1109_LGRS_2019_2923540 crossref_primary_10_1109_TGRS_2019_2947033 crossref_primary_10_3390_s25061858 crossref_primary_10_1109_TGRS_2022_3185612 crossref_primary_10_1109_JSTARS_2020_3018710 crossref_primary_10_1016_j_infrared_2024_105220 crossref_primary_10_1088_1742_6596_1950_1_012087 crossref_primary_10_1016_j_infrared_2016_12_010 crossref_primary_10_3390_s18103213 crossref_primary_10_1109_LGRS_2019_2939356 crossref_primary_10_1109_TIP_2018_2799324 crossref_primary_10_1007_s10489_022_04232_6 crossref_primary_10_1016_j_ins_2017_08_051 crossref_primary_10_1117_1_JRS_12_046010 crossref_primary_10_1109_TGRS_2022_3174015 crossref_primary_10_1117_1_JRS_12_046015 crossref_primary_10_1142_S0218126624500713 crossref_primary_10_1109_LGRS_2013_2268847 crossref_primary_10_1109_ACCESS_2020_3014975 crossref_primary_10_3390_app12010174 crossref_primary_10_1109_JSTARS_2015_2477364 crossref_primary_10_1109_TGRS_2024_3361906 crossref_primary_10_3390_rs12010159 crossref_primary_10_1016_j_heliyon_2023_e17363 crossref_primary_10_3390_rs15194797 crossref_primary_10_1007_s11431_020_1600_9 crossref_primary_10_1109_JSTARS_2013_2292901 crossref_primary_10_3390_sym12040561 crossref_primary_10_3390_rs14061332 crossref_primary_10_3390_rs16050895 crossref_primary_10_1109_JSTARS_2023_3271901 crossref_primary_10_1109_JSTARS_2020_3016739 crossref_primary_10_1109_TGRS_2020_2999957 crossref_primary_10_1007_s12524_023_01754_5 crossref_primary_10_1109_TGRS_2018_2801387 crossref_primary_10_1016_j_eswa_2021_114708 crossref_primary_10_1016_j_image_2021_116549 crossref_primary_10_1080_01431161_2024_2398822 crossref_primary_10_1016_j_eswa_2014_09_004 crossref_primary_10_1155_2018_8602103 crossref_primary_10_3390_rs12030536 crossref_primary_10_1080_01431161_2024_2398820 crossref_primary_10_3390_rs14205199 crossref_primary_10_1364_BOE_9_006283 crossref_primary_10_1016_j_sigpro_2020_107949 crossref_primary_10_3390_rs15030848 crossref_primary_10_1109_TIM_2014_2298153 crossref_primary_10_1080_01431161_2020_1734249 crossref_primary_10_1109_JSTARS_2018_2866901 crossref_primary_10_1109_TGRS_2016_2616355 crossref_primary_10_1049_iet_ipr_2019_0561 crossref_primary_10_1016_j_neucom_2018_03_012 crossref_primary_10_1007_s13042_024_02272_7 crossref_primary_10_1109_TGRS_2024_3390575 crossref_primary_10_1080_22797254_2020_1735947 crossref_primary_10_1002_col_22788 crossref_primary_10_1080_22797254_2019_1634980 crossref_primary_10_1109_LGRS_2017_2786272 crossref_primary_10_3390_rs16224202 crossref_primary_10_1109_TGRS_2023_3254523 crossref_primary_10_3390_rs16111918 crossref_primary_10_1109_LGRS_2024_3419778 crossref_primary_10_3390_rs16111912 crossref_primary_10_1109_TGRS_2019_2949082 crossref_primary_10_1007_s12145_020_00485_2 crossref_primary_10_1080_10106049_2022_2158948 crossref_primary_10_1109_JSTARS_2016_2542113 crossref_primary_10_1109_TGRS_2020_3042274 crossref_primary_10_1109_TGRS_2021_3113721 crossref_primary_10_1109_TGRS_2013_2272760 crossref_primary_10_1109_JSTARS_2018_2856741 crossref_primary_10_1007_s12518_014_0134_z crossref_primary_10_1016_j_ejrs_2016_09_003 crossref_primary_10_3390_rs15123123 crossref_primary_10_1109_JSTARS_2024_3383854 crossref_primary_10_1590_1678_4324_2016161052 crossref_primary_10_1109_TGRS_2020_3046757 crossref_primary_10_1109_TIP_2023_3244414 crossref_primary_10_1109_TIP_2020_3028452 crossref_primary_10_1002_cem_2970 crossref_primary_10_3390_rs14194866 crossref_primary_10_1016_j_rse_2020_111938 crossref_primary_10_1109_JSTARS_2014_2329792 crossref_primary_10_1109_TGRS_2020_3045790 crossref_primary_10_1109_LGRS_2013_2273792 crossref_primary_10_1109_TGRS_2024_3370919 crossref_primary_10_1016_j_asoc_2025_112949 crossref_primary_10_1016_j_neucom_2019_02_019 crossref_primary_10_1109_TGRS_2016_2584107 crossref_primary_10_1109_JSTSP_2018_2877474 crossref_primary_10_3390_rs15153900 crossref_primary_10_2139_ssrn_4111827 crossref_primary_10_1109_TGRS_2021_3050491 crossref_primary_10_1109_TGRS_2022_3144158 crossref_primary_10_1109_JPROC_2012_2229082 crossref_primary_10_1007_s11042_023_15444_4 crossref_primary_10_1016_j_cmpb_2023_107721 crossref_primary_10_3390_s19235276 crossref_primary_10_1109_TGRS_2019_2956159 crossref_primary_10_1109_TIM_2021_3056750 crossref_primary_10_1109_TGRS_2019_2938724 crossref_primary_10_1145_3522713 crossref_primary_10_1016_j_patcog_2021_108316 crossref_primary_10_3390_electronics12030488 crossref_primary_10_1007_s11220_015_0126_z crossref_primary_10_1109_TGRS_2020_3034656 crossref_primary_10_1109_TNNLS_2023_3274745 crossref_primary_10_1109_JSTARS_2015_2493887 crossref_primary_10_1109_TGRS_2019_2902568 crossref_primary_10_1109_JBHI_2021_3065050 crossref_primary_10_1016_j_asoc_2015_09_045 crossref_primary_10_1109_TGRS_2023_3284074 crossref_primary_10_1007_s00371_019_01753_z crossref_primary_10_1016_j_heliyon_2022_e09252 crossref_primary_10_1016_j_cosrev_2024_100658 crossref_primary_10_1109_TGRS_2024_3356524 crossref_primary_10_1109_JSTARS_2023_3337132 crossref_primary_10_1109_TGRS_2023_3258488 crossref_primary_10_1109_TGRS_2024_3351997 crossref_primary_10_3390_rs13040746 crossref_primary_10_1007_s11042_023_16638_6 crossref_primary_10_1109_TGRS_2024_3361555 crossref_primary_10_1109_JSTARS_2016_2591004 crossref_primary_10_1109_TGRS_2025_3528411 crossref_primary_10_3390_rs9121330 crossref_primary_10_1109_TGRS_2020_3011429 crossref_primary_10_1109_LGRS_2017_2743742 crossref_primary_10_32604_csse_2023_034374 crossref_primary_10_1109_TGRS_2018_2872830 crossref_primary_10_1007_s10586_018_2243_7 crossref_primary_10_3390_rs16162988 crossref_primary_10_3390_s21196467 crossref_primary_10_1080_01431161_2020_1798553 crossref_primary_10_1109_TGRS_2014_2319373 crossref_primary_10_3989_dra_2024_982 crossref_primary_10_1109_TGRS_2022_3177935 crossref_primary_10_3390_rs11131552 crossref_primary_10_1109_TCSVT_2024_3386578 crossref_primary_10_1109_ACCESS_2019_2927786 crossref_primary_10_1109_TGRS_2015_2503886 crossref_primary_10_1049_iet_ipr_2020_0728 crossref_primary_10_1080_01431161_2025_2467294 crossref_primary_10_1016_j_patcog_2017_09_007 crossref_primary_10_1016_j_neucom_2021_08_130 crossref_primary_10_1038_s41598_025_90926_z crossref_primary_10_1016_j_engappai_2023_107070 crossref_primary_10_1080_01431161_2018_1553324 crossref_primary_10_3390_rs11020121 crossref_primary_10_1080_01431161_2025_2457130 crossref_primary_10_1109_JSTARS_2018_2872969 crossref_primary_10_1080_01431161_2020_1736729 crossref_primary_10_1109_LGRS_2018_2878773 crossref_primary_10_3390_s17102421 crossref_primary_10_3390_rs9040323 crossref_primary_10_1080_14498596_2020_1770137 crossref_primary_10_1111_tgis_12164 crossref_primary_10_1109_LGRS_2022_3199208 crossref_primary_10_1109_TGRS_2014_2358615 crossref_primary_10_1109_ACCESS_2019_2922675 crossref_primary_10_1109_TGRS_2019_2952319 crossref_primary_10_3390_rs14020302 crossref_primary_10_3390_rs11050484 crossref_primary_10_1109_TGRS_2017_2743102 crossref_primary_10_1016_j_matpr_2021_01_045 crossref_primary_10_1109_TGRS_2022_3161139 crossref_primary_10_1109_TGRS_2022_3191541 crossref_primary_10_1109_JSTARS_2015_2441771 crossref_primary_10_1142_S0218001422500185 crossref_primary_10_1007_s10994_016_5559_7 crossref_primary_10_1080_2150704X_2019_1569274 crossref_primary_10_1109_JSTARS_2024_3394771 crossref_primary_10_1016_j_sigpro_2024_109850 crossref_primary_10_1109_TGRS_2018_2853178 crossref_primary_10_1109_TGRS_2024_3463187 crossref_primary_10_3390_rs8040344 crossref_primary_10_1007_s11554_018_0793_9 crossref_primary_10_1016_j_asr_2019_01_035 crossref_primary_10_1109_JSTARS_2019_2939857 crossref_primary_10_1109_TGRS_2020_2982064 crossref_primary_10_1109_TGRS_2022_3205966 crossref_primary_10_1109_LGRS_2013_2281311 crossref_primary_10_1109_TIP_2014_2319735 crossref_primary_10_1109_TGRS_2016_2593463 crossref_primary_10_1109_TGRS_2012_2222418 crossref_primary_10_1109_TGRS_2017_2769673 crossref_primary_10_3390_s20236823 crossref_primary_10_1109_TGRS_2021_3100496 crossref_primary_10_1109_JSTARS_2019_2915272 crossref_primary_10_1109_TGRS_2022_3184117 crossref_primary_10_1109_TMM_2019_2928491 crossref_primary_10_1109_TGRS_2021_3057768 crossref_primary_10_1080_01431161_2016_1259682 crossref_primary_10_3390_rs11131565 crossref_primary_10_1109_TGRS_2024_3476932 crossref_primary_10_1016_j_jvcir_2018_09_016 crossref_primary_10_1109_TGRS_2013_2264508 crossref_primary_10_1109_TGRS_2023_3274778 crossref_primary_10_1080_01431161_2022_2083459 crossref_primary_10_1007_s41870_022_01075_9 crossref_primary_10_1016_j_chemolab_2022_104538 crossref_primary_10_3390_rs10101564 crossref_primary_10_53070_bbd_989159 crossref_primary_10_1109_TGRS_2016_2594848 crossref_primary_10_1016_j_eswa_2024_123939 crossref_primary_10_17482_uumfd_435723 crossref_primary_10_3103_S1060992X22050071 crossref_primary_10_1109_ACCESS_2020_3004968 crossref_primary_10_1109_TGRS_2016_2536685 crossref_primary_10_3390_rs9050506 crossref_primary_10_1117_1_JRS_14_048504 crossref_primary_10_1109_TGRS_2018_2860125 crossref_primary_10_1109_TGRS_2018_2823750 crossref_primary_10_1109_TGRS_2018_2890508 crossref_primary_10_1016_j_bspc_2016_11_022 crossref_primary_10_3390_rs13122268 crossref_primary_10_1109_ACCESS_2019_2923776 crossref_primary_10_12677_CSA_2020_1012242 crossref_primary_10_11834_jig_230738 crossref_primary_10_1109_TGRS_2017_2768479 crossref_primary_10_1088_1742_6596_1911_1_012019 crossref_primary_10_3390_rs6065795 crossref_primary_10_1109_TGRS_2014_2381602 crossref_primary_10_1109_TGRS_2019_2933588 crossref_primary_10_1080_07038992_2024_2347631 crossref_primary_10_1109_JSTARS_2022_3145917 crossref_primary_10_1109_JSTARS_2020_3042959 crossref_primary_10_1109_TGRS_2021_3091860 crossref_primary_10_1109_TGRS_2019_2912507 crossref_primary_10_1016_j_neucom_2021_07_015 crossref_primary_10_3390_electronics12030674 crossref_primary_10_1007_s00138_022_01340_8 crossref_primary_10_1109_TGRS_2023_3340517 crossref_primary_10_1109_TGRS_2023_3343909 crossref_primary_10_3390_rs13030335 crossref_primary_10_1109_JSTARS_2019_2954865 crossref_primary_10_1109_TGRS_2018_2869004 crossref_primary_10_1080_01431161_2021_1939906 crossref_primary_10_1007_s42484_023_00110_7 crossref_primary_10_1109_TGRS_2023_3298848 crossref_primary_10_1007_s44196_023_00370_y crossref_primary_10_1109_JIOT_2024_3412925 crossref_primary_10_1109_TGRS_2022_3198931 crossref_primary_10_1080_22797254_2024_2330979 crossref_primary_10_1080_14498596_2018_1490213 crossref_primary_10_1109_TGRS_2021_3133878 crossref_primary_10_1109_TGRS_2024_3508737 crossref_primary_10_1016_j_ejrs_2024_01_005 crossref_primary_10_1080_01431161_2022_2105668 crossref_primary_10_1109_TGRS_2013_2275613 crossref_primary_10_1080_01431161_2022_2105666 crossref_primary_10_3390_app10196680 crossref_primary_10_1109_JSTARS_2024_3509538 crossref_primary_10_3390_rs15010261 crossref_primary_10_1080_22797254_2024_2353290 crossref_primary_10_1007_s42965_023_00318_5 crossref_primary_10_1109_ACCESS_2019_2936295 crossref_primary_10_3390_rs15051206 crossref_primary_10_1080_10106049_2018_1544287 crossref_primary_10_1109_TIM_2020_3038557 crossref_primary_10_1109_LGRS_2020_2979604 crossref_primary_10_1080_03772063_2014_962629 crossref_primary_10_1007_s11227_020_03474_w crossref_primary_10_1016_j_infrared_2020_103457 crossref_primary_10_1080_2150704X_2017_1280200 crossref_primary_10_1109_TGRS_2019_2916329 crossref_primary_10_1117_1_JRS_11_035007 crossref_primary_10_1109_JSTARS_2019_2900705 crossref_primary_10_21307_ijssis_2017_224 crossref_primary_10_1109_TGRS_2022_3223508 crossref_primary_10_1109_JSTARS_2023_3328389 crossref_primary_10_1109_JSTARS_2021_3063679 |
Cites_doi | 10.1109/TGRS.2005.846154 10.1049/ip-f-2.1993.0054 10.1007/978-1-4471-0825-2 10.1109/TGRS.2008.2004708 10.1016/0165-1684(94)90029-9 10.1109/TGRS.2001.934066 10.14358/PERS.70.5.627 10.1002/0471723800 10.1109/TGRS.2004.827257 10.1109/TIT.1968.1054102 10.1016/j.neucom.2007.07.034 10.1109/TGRS.2004.827262 10.1109/TGRS.2002.805088 10.1109/34.506799 10.1109/34.206958 10.1016/S0898-1221(00)00101-2 10.2307/1403797 10.1109/TGRS.2005.863297 10.1177/001316446002000104 10.1109/TGRS.2004.839806 10.1109/TGRS.2006.876704 10.1007/BF00994018 10.1214/aos/1176343344 10.1002/9780470316849 10.1109/IGARSS.2009.5417363 10.1109/36.469483 10.1109/TGRS.2009.2023983 10.1109/36.975001 10.1109/LGRS.2009.2020922 10.1109/TGRS.2008.922034 10.1109/TGRS.2007.898446 10.1109/36.803413 10.1016/S0034-4257(98)00064-9 10.1080/02664768900000049 10.1080/01621459.1987.10478427 10.1109/TGRS.2007.894929 10.1109/72.761722 10.1109/TGRS.2008.2007128 10.1109/TGRS.2009.2016214 10.1109/36.774728 10.1109/TGRS.2006.880628 10.1002/0470854774 10.1109/TGRS.2004.831865 10.1007/978-1-4612-5156-9 10.1109/TGRS.2005.859953 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 97E RIA RIE AAYXX CITATION IQODW 1XC VOOES |
DOI | 10.1109/TGRS.2011.2153861 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics Computer Science |
EISSN | 1558-0644 |
EndPage | 4876 |
ExternalDocumentID | oai_HAL_hal_00607195v1 25274158 10_1109_TGRS_2011_2153861 5942156 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYOK AAYXX CITATION RIG IQODW 1XC VOOES |
ID | FETCH-LOGICAL-c372t-65f633ec2bfd745be413dbce79a544187c58fb839884d86f323c16f8e0687f0d3 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Fri May 09 12:18:25 EDT 2025 Mon Jul 21 09:14:52 EDT 2025 Tue Jul 01 04:30:29 EDT 2025 Thu Apr 24 23:08:24 EDT 2025 Tue Aug 26 17:18:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | algorithms hyperspectral data discriminant analysis projects density Bayesian classification Independent Component (IC) Analysis (ICA) curse of dimensionality accuracy remote sensing classification |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-65f633ec2bfd745be413dbce79a544187c58fb839884d86f323c16f8e0687f0d3 |
ORCID | 0000-0003-4817-2875 0000-0002-4477-4847 |
OpenAccessLink | https://hal.science/hal-00607195 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_TGRS_2011_2153861 pascalfrancis_primary_25274158 ieee_primary_5942156 hal_primary_oai_HAL_hal_00607195v1 crossref_citationtrail_10_1109_TGRS_2011_2153861 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-12-01 |
PublicationDateYYYYMMDD | 2011-12-01 |
PublicationDate_xml | – month: 12 year: 2011 text: 2011-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2011 |
Publisher | IEEE Institute of Electrical and Electronics Engineers |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
References | ref57 ref13 ref12 ref15 ref58 ref53 ref52 ref55 ref11 ref54 ref10 ref17 bell (ref41) 1995 ref16 ref19 ref18 rtsch (ref28) 1999 girolami (ref44) 1999 fukunaga (ref3) 1990 ref50 ref46 ref48 (ref51) 2010 ref47 ref42 swain (ref7) 1978 ref49 nikias (ref45) 1993 ref8 mika (ref26) 1999; 12 ref9 ref4 ref6 ref40 ref35 ref37 ref36 ref31 ref30 scott (ref39) 1992 ref33 ref32 ref2 ref1 duda (ref5) 2001 ref38 amato (ref34) 2003; 3 ref24 ref23 ref25 ref20 ref22 ref21 papoulis (ref43) 1991 haykin (ref14) 1999 ref29 ben-hur (ref27) 2001; 2 chang (ref56) 2007 |
References_xml | – ident: ref17 doi: 10.1109/TGRS.2005.846154 – ident: ref42 doi: 10.1049/ip-f-2.1993.0054 – year: 1999 ident: ref44 publication-title: Self-Organising Neural NetworksIndependent Component Analysis and Blind Source Separation doi: 10.1007/978-1-4471-0825-2 – ident: ref25 doi: 10.1109/TGRS.2008.2004708 – ident: ref49 doi: 10.1016/0165-1684(94)90029-9 – ident: ref1 doi: 10.1109/TGRS.2001.934066 – ident: ref58 doi: 10.14358/PERS.70.5.627 – ident: ref2 doi: 10.1002/0471723800 – start-page: 467 year: 1995 ident: ref41 publication-title: Advances in Neural Information Processing Systems 7 – ident: ref18 doi: 10.1109/TGRS.2004.827257 – ident: ref6 doi: 10.1109/TIT.1968.1054102 – year: 1999 ident: ref14 publication-title: Neural Networks A Comprehensive Foundation – ident: ref46 doi: 10.1016/j.neucom.2007.07.034 – ident: ref19 doi: 10.1109/TGRS.2004.827262 – ident: ref13 doi: 10.1109/TGRS.2002.805088 – ident: ref8 doi: 10.1109/34.506799 – ident: ref11 doi: 10.1109/34.206958 – ident: ref50 doi: 10.1016/S0898-1221(00)00101-2 – ident: ref36 doi: 10.2307/1403797 – volume: 3 start-page: 735 year: 2003 ident: ref34 article-title: Independent component discriminant analysis publication-title: Int Math J – ident: ref53 doi: 10.1109/TGRS.2005.863297 – ident: ref57 doi: 10.1177/001316446002000104 – ident: ref52 doi: 10.1109/TGRS.2004.839806 – ident: ref22 doi: 10.1109/TGRS.2006.876704 – ident: ref23 doi: 10.1007/BF00994018 – ident: ref37 doi: 10.1214/aos/1176343344 – year: 1990 ident: ref3 publication-title: Introduction to statistical pattern recognition – year: 1992 ident: ref39 publication-title: Multivariate Density Estimation Theory Practice and Visualization doi: 10.1002/9780470316849 – ident: ref47 doi: 10.1109/IGARSS.2009.5417363 – ident: ref15 doi: 10.1109/36.469483 – ident: ref31 doi: 10.1109/TGRS.2009.2023983 – ident: ref10 doi: 10.1109/36.975001 – ident: ref54 doi: 10.1109/LGRS.2009.2020922 – year: 1991 ident: ref43 publication-title: Probability random variables and stochastic processes – ident: ref32 doi: 10.1109/TGRS.2008.922034 – ident: ref30 doi: 10.1109/TGRS.2007.898446 – ident: ref12 doi: 10.1109/36.803413 – year: 2001 ident: ref5 publication-title: Pattern Classification – volume: 12 year: 1999 ident: ref26 publication-title: Advances in neural information processing systems – ident: ref55 doi: 10.1016/S0034-4257(98)00064-9 – ident: ref4 doi: 10.1080/02664768900000049 – ident: ref35 doi: 10.1080/01621459.1987.10478427 – ident: ref16 doi: 10.1109/TGRS.2007.894929 – ident: ref40 doi: 10.1109/72.761722 – ident: ref24 doi: 10.1109/TGRS.2008.2007128 – year: 1978 ident: ref7 publication-title: Remote Sensing The Quantitative Approach – start-page: 207 year: 1999 ident: ref28 publication-title: Advances in Large Margin Classifiers – ident: ref33 doi: 10.1109/TGRS.2009.2016214 – year: 2007 ident: ref56 publication-title: LIBSVM A library for support vector machines – ident: ref9 doi: 10.1109/36.774728 – ident: ref29 doi: 10.1109/TGRS.2006.880628 – ident: ref38 doi: 10.1002/0470854774 – year: 1993 ident: ref45 publication-title: Higher‐ Order Spectra Analysis A Nonlinear Signal Processing Framework – ident: ref20 doi: 10.1109/TGRS.2004.831865 – year: 2010 ident: ref51 publication-title: Handbook of Blind Source Separation Independent Component Analysis and Applications – ident: ref48 doi: 10.1007/978-1-4612-5156-9 – volume: 2 start-page: 125 year: 2001 ident: ref27 article-title: Support vector clustering publication-title: Journal of Machine Learning Research – ident: ref21 doi: 10.1109/TGRS.2005.859953 |
SSID | ssj0014517 |
Score | 2.5349362 |
Snippet | In this paper, the use of Independent Component (IC) Discriminant Analysis (ICDA) for remote sensing classification is proposed. ICDA is a nonparametric method... |
SourceID | hal pascalfrancis crossref ieee |
SourceType | Open Access Repository Index Database Enrichment Source Publisher |
StartPage | 4865 |
SubjectTerms | Accuracy Applied geophysics Bayes methods Bayesian classification Computer Science Covariance matrix curse of dimensionality Earth sciences Earth, ocean, space Engineering Sciences Exact sciences and technology hyperspectral data Hyperspectral imaging Independent Component (IC) Analysis (ICA) Independent component analysis Integrated circuits Internal geophysics Signal and Image Processing |
Title | Hyperspectral Image Classification With Independent Component Discriminant Analysis |
URI | https://ieeexplore.ieee.org/document/5942156 https://hal.science/hal-00607195 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED-cIOiDX1OcXxTxSezWpk2aPopfVdQH3XBvpUkTJuqUrfPBv95c2pUpIr6F9kKbXnqXS-5-P4BDYv6CTMTCRS4qNxRcuFkeYyvItI-UhbY8-vaOJb3wuk_7c3Bc18IopWzymWpj057l529ygltlHRqHxkOxBjRM4FbWatUnBiH1q9Jo5pogglQnmL4Xd7qX9w8lWCfB_5v533xQY4AZkJZaBRMjs7H5NroktZjxNBcrcDt9xzLB5Lk9KURbfv6Ab_zvIFZhuVpyOiflHFmDOTVch6UZIMJ1WLCJoHLchIfEBKZl_eXIdLp6NfbGscyZmFNk1eg8PhUD56rmzy0cNCpvQ2ydPaEZKtNrnCngyQb0Ls67p4lbES-4MohI4TKqWRAoSYTOo5AKZTxdLqSK4gwpy3gkKdfCLK04D3POdEAC6TPNlcd4pL082IT5oXnsFjgUTYbKzKrFjFuQWARMS6EIl16YkZC3wJuqIpUVKjmSY7ykNjrx4hS1l6L20kp7LTiqu7yXkBx_CR8Y_dZyCKadnNykeA2haCI_ph9GqIl6qqUqFbVg_9t0qO8TiqA_lG__3m8HFu3Os0162YX5YjRRe2bpUoh9O2e_ALOq6S8 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4QwEJ74iFEPvo3rkxhPRlYotJSj8cXqrgddozdCSxuNuppd1oO_3k5hiRpjvDUwDZQpM9N25vsA9oj5CzIRCxe5qNxQcOFmeYytINM-Uhba8ujOFUtuw4t7ej8GB3UtjFLKJp-pJjbtWX7-Koe4VXZI49B4KDYOk8bvU1JWa9VnBiH1q-Jo5pplBKnOMH0vPuyeX9-UcJ0E_3Dmf_NC4w-YA2nJVTA1MhuYr6NLWosvvuZsHjqjtyxTTJ6aw0I05ccPAMf_DmMB5qqg0zkqZ8kijKneEsx-gSJcgimbCioHy3CTmKVpWYHZN51aL8biOJY7E7OKrCKdu8fiwWnVDLqFg2bltYetk0c0RGWCjTOCPFmB27PT7nHiVtQLrgwiUriMahYEShKh8yikQhlflwupojhD0jIeScq1MMEV52HOmQ5IIH2mufIYj7SXB6sw0TOPXQOHotFQmYlbzLgFiUXAtBSKcOmFGQl5A7yRKlJZ4ZIjPcZzatcnXpyi9lLUXlpprwH7dZe3EpTjL-Fdo99aDuG0k6N2itcQjCbyY_puhJZRT7VUpaIGbH-bDvV9QhH2h_L13_vtwHTS7bTTduvqcgNm7D60TYHZhImiP1RbJpApxLadv58H2Ox5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperspectral+Image+Classification+With+Independent+Component+Discriminant+Analysis&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Villa%2C+A.&rft.au=Benediktsson%2C+J.+A.&rft.au=Chanussot%2C+J.&rft.au=Jutten%2C+C.&rft.date=2011-12-01&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=49&rft.issue=12&rft.spage=4865&rft.epage=4876&rft_id=info:doi/10.1109%2FTGRS.2011.2153861&rft.externalDocID=5942156 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |