Hyperspectral Image Classification With Independent Component Discriminant Analysis

In this paper, the use of Independent Component (IC) Discriminant Analysis (ICDA) for remote sensing classification is proposed. ICDA is a nonparametric method for discriminant analysis based on the application of a Bayesian classification rule on a signal composed by ICs. The method uses IC Analysi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 49; no. 12; pp. 4865 - 4876
Main Authors Villa, A., Benediktsson, J. A., Chanussot, J., Jutten, C.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.12.2011
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, the use of Independent Component (IC) Discriminant Analysis (ICDA) for remote sensing classification is proposed. ICDA is a nonparametric method for discriminant analysis based on the application of a Bayesian classification rule on a signal composed by ICs. The method uses IC Analysis (ICA) to choose a transform matrix so that the transformed components are as independent as possible. When the data are projected in an independent space, the estimates of their multivariate density function can be computed in a much easier way as the product of univariate densities. A nonparametric kernel density estimator is used to compute the density functions of each IC. Finally, the Bayes rule is applied for the classification assignment. In this paper, we investigate the possibility of using ICDA for the classification of hyperspectral images. We study the influence of the algorithm used to enforce independence and of the number of IC retained for the classification, proposing an effective method to estimate the most suitable number. The proposed method is applied to several hyperspectral images, in order to test different data set conditions (urban/agricultural area, size of the training set, and type of sensor). Obtained results are compared with one of the most commonly used classifier of hyperspectral images (support vector machines) and show the comparative effectiveness of the proposed method in terms of accuracy.
AbstractList In this paper, the use of Independent Component (IC) Discriminant Analysis (ICDA) for remote sensing classification is proposed. ICDA is a nonparametric method for discriminant analysis based on the application of a Bayesian classification rule on a signal composed by ICs. The method uses IC Analysis (ICA) to choose a transform matrix so that the transformed components are as independent as possible. When the data are projected in an independent space, the estimates of their multivariate density function can be computed in a much easier way as the product of univariate densities. A nonparametric kernel density estimator is used to compute the density functions of each IC. Finally, the Bayes rule is applied for the classification assignment. In this paper, we investigate the possibility of using ICDA for the classification of hyperspectral images. We study the influence of the algorithm used to enforce independence and of the number of IC retained for the classification, proposing an effective method to estimate the most suitable number. The proposed method is applied to several hyperspectral images, in order to test different data set conditions (urban/agricultural area, size of the training set, and type of sensor). Obtained results are compared with one of the most commonly used classifier of hyperspectral images (support vector machines) and show the comparative effectiveness of the proposed method in terms of accuracy.
Author Jutten, C.
Benediktsson, J. A.
Chanussot, J.
Villa, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Villa
  fullname: Villa, A.
  email: alberto.villa@hyperinet.eu
  organization: GIPSA-Lab., Grenoble Inst. of Technol. (Grenoble INP), Grenoble, France
– sequence: 2
  givenname: J. A.
  surname: Benediktsson
  fullname: Benediktsson, J. A.
  email: benedikt@hi.is
  organization: Fac. of Electr. & Comput. Eng., Univ. of Iceland, Reykjavik, Iceland
– sequence: 3
  givenname: J.
  surname: Chanussot
  fullname: Chanussot, J.
  email: jocelyn.chanussot@gipsa-lab.grenoble-inp.fr
  organization: GIPSA-Lab., Grenoble Inst. of Technol. (Grenoble INP), Grenoble, France
– sequence: 4
  givenname: C.
  surname: Jutten
  fullname: Jutten, C.
  email: christian.jutten@gipsa-lab.grenoble-inp.fr
  organization: GIPSA Lab., Univ. Joseph Fourier, Grenoble, France
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25274158$$DView record in Pascal Francis
https://hal.science/hal-00607195$$DView record in HAL
BookMark eNp9kM9LwzAUx4NMcJv-AeKlFw8eOvPyu8cxdRsMBDfxWLI0cZGuLU0R9t-burGDBy9JXvh833t8RmhQ1ZVF6BbwBABnj5v523pCMMCEAKdKwAUaAucqxYKxARpiyERKVEau0CiEL4yBcZBDtF4cGtuGxpqu1WWy3OtPm8xKHYJ33ujO11Xy4btdsqwK29h4VF0yq_dNHB9fTz6Y1u99pWMxrXR5CD5co0uny2BvTvcYvb88b2aLdPU6X86mq9RQSbpUcCcotYZsXSEZ31oGtNgaKzPNGQMlDVduq2imFCuUcJRQA8Ipi4WSDhd0jB6OfXe6zJu4hm4Pea19vpiu8v4PY4ElZPwbInt_ZBsdjC5dqyvjwzlFOJEMuIocHDnT1iG01p0RwHlvOu9N573p_GQ6ZuSfjPHdr7ro1Jf_Ju-OSW-tPU_iGYuAoD-j1Y1w
CODEN IGRSD2
CitedBy_id crossref_primary_10_3390_rs14132997
crossref_primary_10_1109_JSTARS_2021_3123087
crossref_primary_10_1109_TGRS_2020_3014313
crossref_primary_10_1109_TGRS_2019_2918387
crossref_primary_10_1016_j_ejrs_2018_01_003
crossref_primary_10_1007_s11220_018_0196_9
crossref_primary_10_3390_rs15040983
crossref_primary_10_1109_JSTARS_2013_2255981
crossref_primary_10_1109_TGRS_2019_2911993
crossref_primary_10_1038_s41598_024_74835_1
crossref_primary_10_3390_rs16010067
crossref_primary_10_1080_01431161_2021_2022238
crossref_primary_10_1109_TCYB_2021_3070577
crossref_primary_10_3934_mbe_2020195
crossref_primary_10_1109_TGRS_2023_3237668
crossref_primary_10_1007_s11760_023_02964_7
crossref_primary_10_1109_TGRS_2021_3095056
crossref_primary_10_1109_TCI_2017_2666551
crossref_primary_10_1109_TGRS_2019_2907932
crossref_primary_10_1109_TGRS_2015_2409195
crossref_primary_10_1109_TGRS_2020_3044094
crossref_primary_10_1142_S021800142432001X
crossref_primary_10_1007_s12065_021_00591_0
crossref_primary_10_3390_s23177628
crossref_primary_10_1109_TGRS_2018_2814781
crossref_primary_10_1109_TGRS_2017_2730583
crossref_primary_10_1016_j_oregeorev_2020_103332
crossref_primary_10_3390_rs12010125
crossref_primary_10_1109_LGRS_2019_2923540
crossref_primary_10_1109_TGRS_2019_2947033
crossref_primary_10_3390_s25061858
crossref_primary_10_1109_TGRS_2022_3185612
crossref_primary_10_1109_JSTARS_2020_3018710
crossref_primary_10_1016_j_infrared_2024_105220
crossref_primary_10_1088_1742_6596_1950_1_012087
crossref_primary_10_1016_j_infrared_2016_12_010
crossref_primary_10_3390_s18103213
crossref_primary_10_1109_LGRS_2019_2939356
crossref_primary_10_1109_TIP_2018_2799324
crossref_primary_10_1007_s10489_022_04232_6
crossref_primary_10_1016_j_ins_2017_08_051
crossref_primary_10_1117_1_JRS_12_046010
crossref_primary_10_1109_TGRS_2022_3174015
crossref_primary_10_1117_1_JRS_12_046015
crossref_primary_10_1142_S0218126624500713
crossref_primary_10_1109_LGRS_2013_2268847
crossref_primary_10_1109_ACCESS_2020_3014975
crossref_primary_10_3390_app12010174
crossref_primary_10_1109_JSTARS_2015_2477364
crossref_primary_10_1109_TGRS_2024_3361906
crossref_primary_10_3390_rs12010159
crossref_primary_10_1016_j_heliyon_2023_e17363
crossref_primary_10_3390_rs15194797
crossref_primary_10_1007_s11431_020_1600_9
crossref_primary_10_1109_JSTARS_2013_2292901
crossref_primary_10_3390_sym12040561
crossref_primary_10_3390_rs14061332
crossref_primary_10_3390_rs16050895
crossref_primary_10_1109_JSTARS_2023_3271901
crossref_primary_10_1109_JSTARS_2020_3016739
crossref_primary_10_1109_TGRS_2020_2999957
crossref_primary_10_1007_s12524_023_01754_5
crossref_primary_10_1109_TGRS_2018_2801387
crossref_primary_10_1016_j_eswa_2021_114708
crossref_primary_10_1016_j_image_2021_116549
crossref_primary_10_1080_01431161_2024_2398822
crossref_primary_10_1016_j_eswa_2014_09_004
crossref_primary_10_1155_2018_8602103
crossref_primary_10_3390_rs12030536
crossref_primary_10_1080_01431161_2024_2398820
crossref_primary_10_3390_rs14205199
crossref_primary_10_1364_BOE_9_006283
crossref_primary_10_1016_j_sigpro_2020_107949
crossref_primary_10_3390_rs15030848
crossref_primary_10_1109_TIM_2014_2298153
crossref_primary_10_1080_01431161_2020_1734249
crossref_primary_10_1109_JSTARS_2018_2866901
crossref_primary_10_1109_TGRS_2016_2616355
crossref_primary_10_1049_iet_ipr_2019_0561
crossref_primary_10_1016_j_neucom_2018_03_012
crossref_primary_10_1007_s13042_024_02272_7
crossref_primary_10_1109_TGRS_2024_3390575
crossref_primary_10_1080_22797254_2020_1735947
crossref_primary_10_1002_col_22788
crossref_primary_10_1080_22797254_2019_1634980
crossref_primary_10_1109_LGRS_2017_2786272
crossref_primary_10_3390_rs16224202
crossref_primary_10_1109_TGRS_2023_3254523
crossref_primary_10_3390_rs16111918
crossref_primary_10_1109_LGRS_2024_3419778
crossref_primary_10_3390_rs16111912
crossref_primary_10_1109_TGRS_2019_2949082
crossref_primary_10_1007_s12145_020_00485_2
crossref_primary_10_1080_10106049_2022_2158948
crossref_primary_10_1109_JSTARS_2016_2542113
crossref_primary_10_1109_TGRS_2020_3042274
crossref_primary_10_1109_TGRS_2021_3113721
crossref_primary_10_1109_TGRS_2013_2272760
crossref_primary_10_1109_JSTARS_2018_2856741
crossref_primary_10_1007_s12518_014_0134_z
crossref_primary_10_1016_j_ejrs_2016_09_003
crossref_primary_10_3390_rs15123123
crossref_primary_10_1109_JSTARS_2024_3383854
crossref_primary_10_1590_1678_4324_2016161052
crossref_primary_10_1109_TGRS_2020_3046757
crossref_primary_10_1109_TIP_2023_3244414
crossref_primary_10_1109_TIP_2020_3028452
crossref_primary_10_1002_cem_2970
crossref_primary_10_3390_rs14194866
crossref_primary_10_1016_j_rse_2020_111938
crossref_primary_10_1109_JSTARS_2014_2329792
crossref_primary_10_1109_TGRS_2020_3045790
crossref_primary_10_1109_LGRS_2013_2273792
crossref_primary_10_1109_TGRS_2024_3370919
crossref_primary_10_1016_j_asoc_2025_112949
crossref_primary_10_1016_j_neucom_2019_02_019
crossref_primary_10_1109_TGRS_2016_2584107
crossref_primary_10_1109_JSTSP_2018_2877474
crossref_primary_10_3390_rs15153900
crossref_primary_10_2139_ssrn_4111827
crossref_primary_10_1109_TGRS_2021_3050491
crossref_primary_10_1109_TGRS_2022_3144158
crossref_primary_10_1109_JPROC_2012_2229082
crossref_primary_10_1007_s11042_023_15444_4
crossref_primary_10_1016_j_cmpb_2023_107721
crossref_primary_10_3390_s19235276
crossref_primary_10_1109_TGRS_2019_2956159
crossref_primary_10_1109_TIM_2021_3056750
crossref_primary_10_1109_TGRS_2019_2938724
crossref_primary_10_1145_3522713
crossref_primary_10_1016_j_patcog_2021_108316
crossref_primary_10_3390_electronics12030488
crossref_primary_10_1007_s11220_015_0126_z
crossref_primary_10_1109_TGRS_2020_3034656
crossref_primary_10_1109_TNNLS_2023_3274745
crossref_primary_10_1109_JSTARS_2015_2493887
crossref_primary_10_1109_TGRS_2019_2902568
crossref_primary_10_1109_JBHI_2021_3065050
crossref_primary_10_1016_j_asoc_2015_09_045
crossref_primary_10_1109_TGRS_2023_3284074
crossref_primary_10_1007_s00371_019_01753_z
crossref_primary_10_1016_j_heliyon_2022_e09252
crossref_primary_10_1016_j_cosrev_2024_100658
crossref_primary_10_1109_TGRS_2024_3356524
crossref_primary_10_1109_JSTARS_2023_3337132
crossref_primary_10_1109_TGRS_2023_3258488
crossref_primary_10_1109_TGRS_2024_3351997
crossref_primary_10_3390_rs13040746
crossref_primary_10_1007_s11042_023_16638_6
crossref_primary_10_1109_TGRS_2024_3361555
crossref_primary_10_1109_JSTARS_2016_2591004
crossref_primary_10_1109_TGRS_2025_3528411
crossref_primary_10_3390_rs9121330
crossref_primary_10_1109_TGRS_2020_3011429
crossref_primary_10_1109_LGRS_2017_2743742
crossref_primary_10_32604_csse_2023_034374
crossref_primary_10_1109_TGRS_2018_2872830
crossref_primary_10_1007_s10586_018_2243_7
crossref_primary_10_3390_rs16162988
crossref_primary_10_3390_s21196467
crossref_primary_10_1080_01431161_2020_1798553
crossref_primary_10_1109_TGRS_2014_2319373
crossref_primary_10_3989_dra_2024_982
crossref_primary_10_1109_TGRS_2022_3177935
crossref_primary_10_3390_rs11131552
crossref_primary_10_1109_TCSVT_2024_3386578
crossref_primary_10_1109_ACCESS_2019_2927786
crossref_primary_10_1109_TGRS_2015_2503886
crossref_primary_10_1049_iet_ipr_2020_0728
crossref_primary_10_1080_01431161_2025_2467294
crossref_primary_10_1016_j_patcog_2017_09_007
crossref_primary_10_1016_j_neucom_2021_08_130
crossref_primary_10_1038_s41598_025_90926_z
crossref_primary_10_1016_j_engappai_2023_107070
crossref_primary_10_1080_01431161_2018_1553324
crossref_primary_10_3390_rs11020121
crossref_primary_10_1080_01431161_2025_2457130
crossref_primary_10_1109_JSTARS_2018_2872969
crossref_primary_10_1080_01431161_2020_1736729
crossref_primary_10_1109_LGRS_2018_2878773
crossref_primary_10_3390_s17102421
crossref_primary_10_3390_rs9040323
crossref_primary_10_1080_14498596_2020_1770137
crossref_primary_10_1111_tgis_12164
crossref_primary_10_1109_LGRS_2022_3199208
crossref_primary_10_1109_TGRS_2014_2358615
crossref_primary_10_1109_ACCESS_2019_2922675
crossref_primary_10_1109_TGRS_2019_2952319
crossref_primary_10_3390_rs14020302
crossref_primary_10_3390_rs11050484
crossref_primary_10_1109_TGRS_2017_2743102
crossref_primary_10_1016_j_matpr_2021_01_045
crossref_primary_10_1109_TGRS_2022_3161139
crossref_primary_10_1109_TGRS_2022_3191541
crossref_primary_10_1109_JSTARS_2015_2441771
crossref_primary_10_1142_S0218001422500185
crossref_primary_10_1007_s10994_016_5559_7
crossref_primary_10_1080_2150704X_2019_1569274
crossref_primary_10_1109_JSTARS_2024_3394771
crossref_primary_10_1016_j_sigpro_2024_109850
crossref_primary_10_1109_TGRS_2018_2853178
crossref_primary_10_1109_TGRS_2024_3463187
crossref_primary_10_3390_rs8040344
crossref_primary_10_1007_s11554_018_0793_9
crossref_primary_10_1016_j_asr_2019_01_035
crossref_primary_10_1109_JSTARS_2019_2939857
crossref_primary_10_1109_TGRS_2020_2982064
crossref_primary_10_1109_TGRS_2022_3205966
crossref_primary_10_1109_LGRS_2013_2281311
crossref_primary_10_1109_TIP_2014_2319735
crossref_primary_10_1109_TGRS_2016_2593463
crossref_primary_10_1109_TGRS_2012_2222418
crossref_primary_10_1109_TGRS_2017_2769673
crossref_primary_10_3390_s20236823
crossref_primary_10_1109_TGRS_2021_3100496
crossref_primary_10_1109_JSTARS_2019_2915272
crossref_primary_10_1109_TGRS_2022_3184117
crossref_primary_10_1109_TMM_2019_2928491
crossref_primary_10_1109_TGRS_2021_3057768
crossref_primary_10_1080_01431161_2016_1259682
crossref_primary_10_3390_rs11131565
crossref_primary_10_1109_TGRS_2024_3476932
crossref_primary_10_1016_j_jvcir_2018_09_016
crossref_primary_10_1109_TGRS_2013_2264508
crossref_primary_10_1109_TGRS_2023_3274778
crossref_primary_10_1080_01431161_2022_2083459
crossref_primary_10_1007_s41870_022_01075_9
crossref_primary_10_1016_j_chemolab_2022_104538
crossref_primary_10_3390_rs10101564
crossref_primary_10_53070_bbd_989159
crossref_primary_10_1109_TGRS_2016_2594848
crossref_primary_10_1016_j_eswa_2024_123939
crossref_primary_10_17482_uumfd_435723
crossref_primary_10_3103_S1060992X22050071
crossref_primary_10_1109_ACCESS_2020_3004968
crossref_primary_10_1109_TGRS_2016_2536685
crossref_primary_10_3390_rs9050506
crossref_primary_10_1117_1_JRS_14_048504
crossref_primary_10_1109_TGRS_2018_2860125
crossref_primary_10_1109_TGRS_2018_2823750
crossref_primary_10_1109_TGRS_2018_2890508
crossref_primary_10_1016_j_bspc_2016_11_022
crossref_primary_10_3390_rs13122268
crossref_primary_10_1109_ACCESS_2019_2923776
crossref_primary_10_12677_CSA_2020_1012242
crossref_primary_10_11834_jig_230738
crossref_primary_10_1109_TGRS_2017_2768479
crossref_primary_10_1088_1742_6596_1911_1_012019
crossref_primary_10_3390_rs6065795
crossref_primary_10_1109_TGRS_2014_2381602
crossref_primary_10_1109_TGRS_2019_2933588
crossref_primary_10_1080_07038992_2024_2347631
crossref_primary_10_1109_JSTARS_2022_3145917
crossref_primary_10_1109_JSTARS_2020_3042959
crossref_primary_10_1109_TGRS_2021_3091860
crossref_primary_10_1109_TGRS_2019_2912507
crossref_primary_10_1016_j_neucom_2021_07_015
crossref_primary_10_3390_electronics12030674
crossref_primary_10_1007_s00138_022_01340_8
crossref_primary_10_1109_TGRS_2023_3340517
crossref_primary_10_1109_TGRS_2023_3343909
crossref_primary_10_3390_rs13030335
crossref_primary_10_1109_JSTARS_2019_2954865
crossref_primary_10_1109_TGRS_2018_2869004
crossref_primary_10_1080_01431161_2021_1939906
crossref_primary_10_1007_s42484_023_00110_7
crossref_primary_10_1109_TGRS_2023_3298848
crossref_primary_10_1007_s44196_023_00370_y
crossref_primary_10_1109_JIOT_2024_3412925
crossref_primary_10_1109_TGRS_2022_3198931
crossref_primary_10_1080_22797254_2024_2330979
crossref_primary_10_1080_14498596_2018_1490213
crossref_primary_10_1109_TGRS_2021_3133878
crossref_primary_10_1109_TGRS_2024_3508737
crossref_primary_10_1016_j_ejrs_2024_01_005
crossref_primary_10_1080_01431161_2022_2105668
crossref_primary_10_1109_TGRS_2013_2275613
crossref_primary_10_1080_01431161_2022_2105666
crossref_primary_10_3390_app10196680
crossref_primary_10_1109_JSTARS_2024_3509538
crossref_primary_10_3390_rs15010261
crossref_primary_10_1080_22797254_2024_2353290
crossref_primary_10_1007_s42965_023_00318_5
crossref_primary_10_1109_ACCESS_2019_2936295
crossref_primary_10_3390_rs15051206
crossref_primary_10_1080_10106049_2018_1544287
crossref_primary_10_1109_TIM_2020_3038557
crossref_primary_10_1109_LGRS_2020_2979604
crossref_primary_10_1080_03772063_2014_962629
crossref_primary_10_1007_s11227_020_03474_w
crossref_primary_10_1016_j_infrared_2020_103457
crossref_primary_10_1080_2150704X_2017_1280200
crossref_primary_10_1109_TGRS_2019_2916329
crossref_primary_10_1117_1_JRS_11_035007
crossref_primary_10_1109_JSTARS_2019_2900705
crossref_primary_10_21307_ijssis_2017_224
crossref_primary_10_1109_TGRS_2022_3223508
crossref_primary_10_1109_JSTARS_2023_3328389
crossref_primary_10_1109_JSTARS_2021_3063679
Cites_doi 10.1109/TGRS.2005.846154
10.1049/ip-f-2.1993.0054
10.1007/978-1-4471-0825-2
10.1109/TGRS.2008.2004708
10.1016/0165-1684(94)90029-9
10.1109/TGRS.2001.934066
10.14358/PERS.70.5.627
10.1002/0471723800
10.1109/TGRS.2004.827257
10.1109/TIT.1968.1054102
10.1016/j.neucom.2007.07.034
10.1109/TGRS.2004.827262
10.1109/TGRS.2002.805088
10.1109/34.506799
10.1109/34.206958
10.1016/S0898-1221(00)00101-2
10.2307/1403797
10.1109/TGRS.2005.863297
10.1177/001316446002000104
10.1109/TGRS.2004.839806
10.1109/TGRS.2006.876704
10.1007/BF00994018
10.1214/aos/1176343344
10.1002/9780470316849
10.1109/IGARSS.2009.5417363
10.1109/36.469483
10.1109/TGRS.2009.2023983
10.1109/36.975001
10.1109/LGRS.2009.2020922
10.1109/TGRS.2008.922034
10.1109/TGRS.2007.898446
10.1109/36.803413
10.1016/S0034-4257(98)00064-9
10.1080/02664768900000049
10.1080/01621459.1987.10478427
10.1109/TGRS.2007.894929
10.1109/72.761722
10.1109/TGRS.2008.2007128
10.1109/TGRS.2009.2016214
10.1109/36.774728
10.1109/TGRS.2006.880628
10.1002/0470854774
10.1109/TGRS.2004.831865
10.1007/978-1-4612-5156-9
10.1109/TGRS.2005.859953
ContentType Journal Article
Copyright 2015 INIST-CNRS
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
1XC
VOOES
DOI 10.1109/TGRS.2011.2153861
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
Computer Science
EISSN 1558-0644
EndPage 4876
ExternalDocumentID oai_HAL_hal_00607195v1
25274158
10_1109_TGRS_2011_2153861
5942156
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYOK
AAYXX
CITATION
RIG
IQODW
1XC
VOOES
ID FETCH-LOGICAL-c372t-65f633ec2bfd745be413dbce79a544187c58fb839884d86f323c16f8e0687f0d3
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Fri May 09 12:18:25 EDT 2025
Mon Jul 21 09:14:52 EDT 2025
Tue Jul 01 04:30:29 EDT 2025
Thu Apr 24 23:08:24 EDT 2025
Tue Aug 26 17:18:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords algorithms
hyperspectral data
discriminant analysis
projects
density
Bayesian classification
Independent Component (IC) Analysis (ICA)
curse of dimensionality
accuracy
remote sensing
classification
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-65f633ec2bfd745be413dbce79a544187c58fb839884d86f323c16f8e0687f0d3
ORCID 0000-0003-4817-2875
0000-0002-4477-4847
OpenAccessLink https://hal.science/hal-00607195
PageCount 12
ParticipantIDs crossref_primary_10_1109_TGRS_2011_2153861
pascalfrancis_primary_25274158
ieee_primary_5942156
hal_primary_oai_HAL_hal_00607195v1
crossref_citationtrail_10_1109_TGRS_2011_2153861
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-12-01
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2011
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref57
ref13
ref12
ref15
ref58
ref53
ref52
ref55
ref11
ref54
ref10
ref17
bell (ref41) 1995
ref16
ref19
ref18
rtsch (ref28) 1999
girolami (ref44) 1999
fukunaga (ref3) 1990
ref50
ref46
ref48
(ref51) 2010
ref47
ref42
swain (ref7) 1978
ref49
nikias (ref45) 1993
ref8
mika (ref26) 1999; 12
ref9
ref4
ref6
ref40
ref35
ref37
ref36
ref31
ref30
scott (ref39) 1992
ref33
ref32
ref2
ref1
duda (ref5) 2001
ref38
amato (ref34) 2003; 3
ref24
ref23
ref25
ref20
ref22
ref21
papoulis (ref43) 1991
haykin (ref14) 1999
ref29
ben-hur (ref27) 2001; 2
chang (ref56) 2007
References_xml – ident: ref17
  doi: 10.1109/TGRS.2005.846154
– ident: ref42
  doi: 10.1049/ip-f-2.1993.0054
– year: 1999
  ident: ref44
  publication-title: Self-Organising Neural NetworksIndependent Component Analysis and Blind Source Separation
  doi: 10.1007/978-1-4471-0825-2
– ident: ref25
  doi: 10.1109/TGRS.2008.2004708
– ident: ref49
  doi: 10.1016/0165-1684(94)90029-9
– ident: ref1
  doi: 10.1109/TGRS.2001.934066
– ident: ref58
  doi: 10.14358/PERS.70.5.627
– ident: ref2
  doi: 10.1002/0471723800
– start-page: 467
  year: 1995
  ident: ref41
  publication-title: Advances in Neural Information Processing Systems 7
– ident: ref18
  doi: 10.1109/TGRS.2004.827257
– ident: ref6
  doi: 10.1109/TIT.1968.1054102
– year: 1999
  ident: ref14
  publication-title: Neural Networks A Comprehensive Foundation
– ident: ref46
  doi: 10.1016/j.neucom.2007.07.034
– ident: ref19
  doi: 10.1109/TGRS.2004.827262
– ident: ref13
  doi: 10.1109/TGRS.2002.805088
– ident: ref8
  doi: 10.1109/34.506799
– ident: ref11
  doi: 10.1109/34.206958
– ident: ref50
  doi: 10.1016/S0898-1221(00)00101-2
– ident: ref36
  doi: 10.2307/1403797
– volume: 3
  start-page: 735
  year: 2003
  ident: ref34
  article-title: Independent component discriminant analysis
  publication-title: Int Math J
– ident: ref53
  doi: 10.1109/TGRS.2005.863297
– ident: ref57
  doi: 10.1177/001316446002000104
– ident: ref52
  doi: 10.1109/TGRS.2004.839806
– ident: ref22
  doi: 10.1109/TGRS.2006.876704
– ident: ref23
  doi: 10.1007/BF00994018
– ident: ref37
  doi: 10.1214/aos/1176343344
– year: 1990
  ident: ref3
  publication-title: Introduction to statistical pattern recognition
– year: 1992
  ident: ref39
  publication-title: Multivariate Density Estimation Theory Practice and Visualization
  doi: 10.1002/9780470316849
– ident: ref47
  doi: 10.1109/IGARSS.2009.5417363
– ident: ref15
  doi: 10.1109/36.469483
– ident: ref31
  doi: 10.1109/TGRS.2009.2023983
– ident: ref10
  doi: 10.1109/36.975001
– ident: ref54
  doi: 10.1109/LGRS.2009.2020922
– year: 1991
  ident: ref43
  publication-title: Probability random variables and stochastic processes
– ident: ref32
  doi: 10.1109/TGRS.2008.922034
– ident: ref30
  doi: 10.1109/TGRS.2007.898446
– ident: ref12
  doi: 10.1109/36.803413
– year: 2001
  ident: ref5
  publication-title: Pattern Classification
– volume: 12
  year: 1999
  ident: ref26
  publication-title: Advances in neural information processing systems
– ident: ref55
  doi: 10.1016/S0034-4257(98)00064-9
– ident: ref4
  doi: 10.1080/02664768900000049
– ident: ref35
  doi: 10.1080/01621459.1987.10478427
– ident: ref16
  doi: 10.1109/TGRS.2007.894929
– ident: ref40
  doi: 10.1109/72.761722
– ident: ref24
  doi: 10.1109/TGRS.2008.2007128
– year: 1978
  ident: ref7
  publication-title: Remote Sensing The Quantitative Approach
– start-page: 207
  year: 1999
  ident: ref28
  publication-title: Advances in Large Margin Classifiers
– ident: ref33
  doi: 10.1109/TGRS.2009.2016214
– year: 2007
  ident: ref56
  publication-title: LIBSVM A library for support vector machines
– ident: ref9
  doi: 10.1109/36.774728
– ident: ref29
  doi: 10.1109/TGRS.2006.880628
– ident: ref38
  doi: 10.1002/0470854774
– year: 1993
  ident: ref45
  publication-title: Higher&#x2010 Order Spectra Analysis A Nonlinear Signal Processing Framework
– ident: ref20
  doi: 10.1109/TGRS.2004.831865
– year: 2010
  ident: ref51
  publication-title: Handbook of Blind Source Separation Independent Component Analysis and Applications
– ident: ref48
  doi: 10.1007/978-1-4612-5156-9
– volume: 2
  start-page: 125
  year: 2001
  ident: ref27
  article-title: Support vector clustering
  publication-title: Journal of Machine Learning Research
– ident: ref21
  doi: 10.1109/TGRS.2005.859953
SSID ssj0014517
Score 2.5349362
Snippet In this paper, the use of Independent Component (IC) Discriminant Analysis (ICDA) for remote sensing classification is proposed. ICDA is a nonparametric method...
SourceID hal
pascalfrancis
crossref
ieee
SourceType Open Access Repository
Index Database
Enrichment Source
Publisher
StartPage 4865
SubjectTerms Accuracy
Applied geophysics
Bayes methods
Bayesian classification
Computer Science
Covariance matrix
curse of dimensionality
Earth sciences
Earth, ocean, space
Engineering Sciences
Exact sciences and technology
hyperspectral data
Hyperspectral imaging
Independent Component (IC) Analysis (ICA)
Independent component analysis
Integrated circuits
Internal geophysics
Signal and Image Processing
Title Hyperspectral Image Classification With Independent Component Discriminant Analysis
URI https://ieeexplore.ieee.org/document/5942156
https://hal.science/hal-00607195
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED-cIOiDX1OcXxTxSezWpk2aPopfVdQH3XBvpUkTJuqUrfPBv95c2pUpIr6F9kKbXnqXS-5-P4BDYv6CTMTCRS4qNxRcuFkeYyvItI-UhbY8-vaOJb3wuk_7c3Bc18IopWzymWpj057l529ygltlHRqHxkOxBjRM4FbWatUnBiH1q9Jo5pogglQnmL4Xd7qX9w8lWCfB_5v533xQY4AZkJZaBRMjs7H5NroktZjxNBcrcDt9xzLB5Lk9KURbfv6Ab_zvIFZhuVpyOiflHFmDOTVch6UZIMJ1WLCJoHLchIfEBKZl_eXIdLp6NfbGscyZmFNk1eg8PhUD56rmzy0cNCpvQ2ydPaEZKtNrnCngyQb0Ls67p4lbES-4MohI4TKqWRAoSYTOo5AKZTxdLqSK4gwpy3gkKdfCLK04D3POdEAC6TPNlcd4pL082IT5oXnsFjgUTYbKzKrFjFuQWARMS6EIl16YkZC3wJuqIpUVKjmSY7ykNjrx4hS1l6L20kp7LTiqu7yXkBx_CR8Y_dZyCKadnNykeA2haCI_ph9GqIl6qqUqFbVg_9t0qO8TiqA_lG__3m8HFu3Os0162YX5YjRRe2bpUoh9O2e_ALOq6S8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4QwEJ74iFEPvo3rkxhPRlYotJSj8cXqrgddozdCSxuNuppd1oO_3k5hiRpjvDUwDZQpM9N25vsA9oj5CzIRCxe5qNxQcOFmeYytINM-Uhba8ujOFUtuw4t7ej8GB3UtjFLKJp-pJjbtWX7-Koe4VXZI49B4KDYOk8bvU1JWa9VnBiH1q-Jo5pplBKnOMH0vPuyeX9-UcJ0E_3Dmf_NC4w-YA2nJVTA1MhuYr6NLWosvvuZsHjqjtyxTTJ6aw0I05ccPAMf_DmMB5qqg0zkqZ8kijKneEsx-gSJcgimbCioHy3CTmKVpWYHZN51aL8biOJY7E7OKrCKdu8fiwWnVDLqFg2bltYetk0c0RGWCjTOCPFmB27PT7nHiVtQLrgwiUriMahYEShKh8yikQhlflwupojhD0jIeScq1MMEV52HOmQ5IIH2mufIYj7SXB6sw0TOPXQOHotFQmYlbzLgFiUXAtBSKcOmFGQl5A7yRKlJZ4ZIjPcZzatcnXpyi9lLUXlpprwH7dZe3EpTjL-Fdo99aDuG0k6N2itcQjCbyY_puhJZRT7VUpaIGbH-bDvV9QhH2h_L13_vtwHTS7bTTduvqcgNm7D60TYHZhImiP1RbJpApxLadv58H2Ox5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperspectral+Image+Classification+With+Independent+Component+Discriminant+Analysis&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Villa%2C+A.&rft.au=Benediktsson%2C+J.+A.&rft.au=Chanussot%2C+J.&rft.au=Jutten%2C+C.&rft.date=2011-12-01&rft.pub=IEEE&rft.issn=0196-2892&rft.volume=49&rft.issue=12&rft.spage=4865&rft.epage=4876&rft_id=info:doi/10.1109%2FTGRS.2011.2153861&rft.externalDocID=5942156
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon