Behavioral Modeling for Mental Health using Machine Learning Algorithms
Mental health is an indicator of emotional, psychological and social well-being of an individual. It determines how an individual thinks, feels and handle situations. Positive mental health helps one to work productively and realize their full potential. Mental health is important at every stage of...
Saved in:
Published in | Journal of medical systems Vol. 42; no. 5; pp. 88 - 12 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.05.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0148-5598 1573-689X 1573-689X |
DOI | 10.1007/s10916-018-0934-5 |
Cover
Loading…
Abstract | Mental health is an indicator of emotional, psychological and social well-being of an individual. It determines how an individual thinks, feels and handle situations. Positive mental health helps one to work productively and realize their full potential. Mental health is important at every stage of life, from childhood and adolescence through adulthood. Many factors contribute to mental health problems which lead to mental illness like stress, social anxiety, depression, obsessive compulsive disorder, drug addiction, and personality disorders. It is becoming increasingly important to determine the onset of the mental illness to maintain proper life balance
.
The nature of machine learning algorithms and Artificial Intelligence (AI) can be fully harnessed for predicting the onset of mental illness. Such applications when implemented in real time will benefit the society by serving as a monitoring tool for individuals with deviant behavior. This research work proposes to apply various machine learning algorithms such as support vector machines, decision trees, naïve bayes classifier, K-nearest neighbor classifier and logistic regression to identify state of mental health in a target group. The responses obtained from the target group for the designed questionnaire were first subject to unsupervised learning techniques. The labels obtained as a result of clustering were validated by computing the Mean Opinion Score. These cluster labels were then used to build classifiers to predict the mental health of an individual. Population from various groups like high school students, college students and working professionals were considered as target groups. The research presents an analysis of applying the aforementioned machine learning algorithms on the target groups and also suggests directions for future work. |
---|---|
AbstractList | Mental health is an indicator of emotional, psychological and social well-being of an individual. It determines how an individual thinks, feels and handle situations. Positive mental health helps one to work productively and realize their full potential. Mental health is important at every stage of life, from childhood and adolescence through adulthood. Many factors contribute to mental health problems which lead to mental illness like stress, social anxiety, depression, obsessive compulsive disorder, drug addiction, and personality disorders. It is becoming increasingly important to determine the onset of the mental illness to maintain proper life balance. The nature of machine learning algorithms and Artificial Intelligence (AI) can be fully harnessed for predicting the onset of mental illness. Such applications when implemented in real time will benefit the society by serving as a monitoring tool for individuals with deviant behavior. This research work proposes to apply various machine learning algorithms such as support vector machines, decision trees, naïve bayes classifier, K-nearest neighbor classifier and logistic regression to identify state of mental health in a target group. The responses obtained from the target group for the designed questionnaire were first subject to unsupervised learning techniques. The labels obtained as a result of clustering were validated by computing the Mean Opinion Score. These cluster labels were then used to build classifiers to predict the mental health of an individual. Population from various groups like high school students, college students and working professionals were considered as target groups. The research presents an analysis of applying the aforementioned machine learning algorithms on the target groups and also suggests directions for future work.Mental health is an indicator of emotional, psychological and social well-being of an individual. It determines how an individual thinks, feels and handle situations. Positive mental health helps one to work productively and realize their full potential. Mental health is important at every stage of life, from childhood and adolescence through adulthood. Many factors contribute to mental health problems which lead to mental illness like stress, social anxiety, depression, obsessive compulsive disorder, drug addiction, and personality disorders. It is becoming increasingly important to determine the onset of the mental illness to maintain proper life balance. The nature of machine learning algorithms and Artificial Intelligence (AI) can be fully harnessed for predicting the onset of mental illness. Such applications when implemented in real time will benefit the society by serving as a monitoring tool for individuals with deviant behavior. This research work proposes to apply various machine learning algorithms such as support vector machines, decision trees, naïve bayes classifier, K-nearest neighbor classifier and logistic regression to identify state of mental health in a target group. The responses obtained from the target group for the designed questionnaire were first subject to unsupervised learning techniques. The labels obtained as a result of clustering were validated by computing the Mean Opinion Score. These cluster labels were then used to build classifiers to predict the mental health of an individual. Population from various groups like high school students, college students and working professionals were considered as target groups. The research presents an analysis of applying the aforementioned machine learning algorithms on the target groups and also suggests directions for future work. Mental health is an indicator of emotional, psychological and social well-being of an individual. It determines how an individual thinks, feels and handle situations. Positive mental health helps one to work productively and realize their full potential. Mental health is important at every stage of life, from childhood and adolescence through adulthood. Many factors contribute to mental health problems which lead to mental illness like stress, social anxiety, depression, obsessive compulsive disorder, drug addiction, and personality disorders. It is becoming increasingly important to determine the onset of the mental illness to maintain proper life balance. The nature of machine learning algorithms and Artificial Intelligence (AI) can be fully harnessed for predicting the onset of mental illness. Such applications when implemented in real time will benefit the society by serving as a monitoring tool for individuals with deviant behavior. This research work proposes to apply various machine learning algorithms such as support vector machines, decision trees, naïve bayes classifier, K-nearest neighbor classifier and logistic regression to identify state of mental health in a target group. The responses obtained from the target group for the designed questionnaire were first subject to unsupervised learning techniques. The labels obtained as a result of clustering were validated by computing the Mean Opinion Score. These cluster labels were then used to build classifiers to predict the mental health of an individual. Population from various groups like high school students, college students and working professionals were considered as target groups. The research presents an analysis of applying the aforementioned machine learning algorithms on the target groups and also suggests directions for future work. Mental health is an indicator of emotional, psychological and social well-being of an individual. It determines how an individual thinks, feels and handle situations. Positive mental health helps one to work productively and realize their full potential. Mental health is important at every stage of life, from childhood and adolescence through adulthood. Many factors contribute to mental health problems which lead to mental illness like stress, social anxiety, depression, obsessive compulsive disorder, drug addiction, and personality disorders. It is becoming increasingly important to determine the onset of the mental illness to maintain proper life balance . The nature of machine learning algorithms and Artificial Intelligence (AI) can be fully harnessed for predicting the onset of mental illness. Such applications when implemented in real time will benefit the society by serving as a monitoring tool for individuals with deviant behavior. This research work proposes to apply various machine learning algorithms such as support vector machines, decision trees, naïve bayes classifier, K-nearest neighbor classifier and logistic regression to identify state of mental health in a target group. The responses obtained from the target group for the designed questionnaire were first subject to unsupervised learning techniques. The labels obtained as a result of clustering were validated by computing the Mean Opinion Score. These cluster labels were then used to build classifiers to predict the mental health of an individual. Population from various groups like high school students, college students and working professionals were considered as target groups. The research presents an analysis of applying the aforementioned machine learning algorithms on the target groups and also suggests directions for future work. |
ArticleNumber | 88 |
Author | Bhalaji, N. Mohanavalli, S. Srividya, M. |
Author_xml | – sequence: 1 givenname: M. surname: Srividya fullname: Srividya, M. organization: SSN College of Engineering – sequence: 2 givenname: S. surname: Mohanavalli fullname: Mohanavalli, S. email: mohanas@ssn.edu.in organization: SSN College of Engineering – sequence: 3 givenname: N. surname: Bhalaji fullname: Bhalaji, N. organization: SSN College of Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29610979$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctKxDAUhoMoOl4ewI0U3Lip5tLcljp4gxncKLgLmfZ0JtJJNGkF396UUQRBVwd-vu9wOP8-2vbBA0LHBJ8TjOVFIlgTUWKiSqxZVfItNCFcslIo_byNJphUquRcqz20n9ILxlgLIXfRHtUiq1JP0O0VrOy7C9F2xTw00Dm_LNoQizn4Pmd3YLt-VQxpzOe2XjkPxQxs9GNw2S1DdP1qnQ7RTmu7BEdf8wA93Vw_Tu_K2cPt_fRyVtZM0r4UTLVca9bwlhAtGiXkwirKuWJc1IJDq3nbcikakFKxxoIletFkjXHCGbADdLbZ-xrD2wCpN2uXaug66yEMyVBMCaNVRVVGT3-hL2GIPl83UlhiWlGWqZMvalisoTGv0a1t_DDfL8qA3AB1DClFaE3tetu74PtoXWcINmMZZlOGyWWYsQzDs0l-md_L_3PoxkmZ9UuIP0f_LX0ClECZEA |
CitedBy_id | crossref_primary_10_1093_oodh_oqaf005 crossref_primary_10_1111_add_15038 crossref_primary_10_1016_j_matpr_2020_10_585 crossref_primary_10_1109_ACCESS_2023_3327126 crossref_primary_10_1007_s42979_024_03416_w crossref_primary_10_1038_s41598_024_56674_2 crossref_primary_10_3390_rel13111021 crossref_primary_10_3390_bioengineering10050575 crossref_primary_10_3233_JIFS_235503 crossref_primary_10_32628_CSEIT23903114 crossref_primary_10_1186_s40708_021_00125_5 crossref_primary_10_1016_j_ajp_2020_101977 crossref_primary_10_1109_TCBB_2021_3053181 crossref_primary_10_3389_fpubh_2021_795007 crossref_primary_10_3390_w10070873 crossref_primary_10_1007_s10639_023_12267_6 crossref_primary_10_1007_s10916_018_1136_x crossref_primary_10_3390_app12178678 crossref_primary_10_1016_j_imu_2023_101405 crossref_primary_10_26634_jaim_2_2_20875 crossref_primary_10_1016_j_ssaho_2023_100558 crossref_primary_10_4103_shb_shb_38_22 crossref_primary_10_1145_3564752 crossref_primary_10_3390_s23094178 crossref_primary_10_1016_j_imu_2023_101295 crossref_primary_10_3389_fnhum_2024_1376338 crossref_primary_10_1007_s10802_024_01253_2 crossref_primary_10_1016_j_chb_2021_107029 crossref_primary_10_1007_s11042_024_18346_1 crossref_primary_10_1155_2022_7586918 crossref_primary_10_1109_JBHI_2024_3501254 crossref_primary_10_3389_fpsyg_2022_909439 crossref_primary_10_3389_fpsyt_2022_902456 crossref_primary_10_12677_SSEM_2020_91007 crossref_primary_10_1016_j_joitmc_2023_100157 crossref_primary_10_1016_j_jbi_2022_104013 crossref_primary_10_1016_j_procs_2023_01_132 crossref_primary_10_1108_JPMH_07_2024_0095 crossref_primary_10_1145_3398069 crossref_primary_10_1371_journal_pone_0229354 crossref_primary_10_1155_2023_5507814 crossref_primary_10_3389_fpsyt_2021_728278 crossref_primary_10_1007_s11920_019_1094_0 crossref_primary_10_5498_wjp_v12_i7_860 crossref_primary_10_1016_j_ijhcs_2024_103438 crossref_primary_10_1051_itmconf_20214003035 crossref_primary_10_1016_j_cmpb_2020_105816 crossref_primary_10_48168_innosoft_s8_a48 crossref_primary_10_1088_1742_6596_2161_1_012021 crossref_primary_10_1016_j_compbiomed_2024_109146 crossref_primary_10_3233_IDT_200061 crossref_primary_10_48084_etasr_7812 crossref_primary_10_1371_journal_pone_0261131 crossref_primary_10_3390_electronics12214407 crossref_primary_10_1007_s00500_023_09422_z crossref_primary_10_1016_j_health_2024_100350 crossref_primary_10_1080_0142159X_2021_1985097 crossref_primary_10_1111_jcal_12999 crossref_primary_10_1109_JBHI_2022_3140433 crossref_primary_10_1016_j_aej_2023_10_060 crossref_primary_10_3390_ijerph182212175 crossref_primary_10_2196_53714 crossref_primary_10_2174_2210327910666191220103417 crossref_primary_10_3390_info15040235 crossref_primary_10_1016_j_procs_2024_02_156 crossref_primary_10_2174_0126662558268813231120114051 crossref_primary_10_54392_irjmt2449 crossref_primary_10_1007_s13198_023_02052_6 crossref_primary_10_1108_CI_08_2022_0214 crossref_primary_10_33166_AETiC_2022_02_005 crossref_primary_10_1371_journal_pone_0267749 |
Cites_doi | 10.1109/MCOM.2017.1700033 10.1016/S1532-0464(03)00034-0 10.1007/BFb0026683 10.1145/2939672.2939778 10.1016/j.patrec.2005.08.011 10.3233/978-1-61499-289-9-1024 10.1037/abn0000232 10.1016/j.sbspro.2013.06.605 10.1016/j.compeleceng.2017.07.022 10.1017/S0033291716000611 10.1109/ISM.2011.88 10.1093/bioinformatics/btw644 10.1177/014662168701100401 10.1007/s001270050098 10.1109/BigData.2013.6691740 10.1186/1471-2105-9-319 10.15439/2016F371 10.1162/neco.1991.3.3.440 10.1109/ICTAI.2014.131 10.2528/PIER13121310 10.1038/mp.2015.198 10.1002/0471660264 10.1016/j.suscom.2017.09.002 10.1109/TITB.2009.2037317 10.1007/s11042-016-3444-9 10.1038/mp.2016.201 10.1016/j.future.2017.08.042 10.1109/FSKD.2007.552 10.1023/A:1009715923555 10.1016/S0167-4048(02)00514-X 10.1037/pas0000201 10.1007/s007870050008 10.1007/978-3-319-32270-4_2 10.5772/1235 10.1016/j.sbspro.2013.06.602 10.1080/13102818.2014.949045 10.1016/S0034-4257(97)00049-7 10.1109/JBHI.2014.2360711 10.1155/S1110724303210032 10.1016/j.scs.2017.09.004 10.1176/appi.ajp-rj.2017.120105 10.1016/B978-0-12-420248-1.00001-5 10.1023/A:1010933404324 10.1109/TII.2017.2738842 10.1016/j.sbspro.2013.06.499 10.1007/978-1-4614-3223-4_6 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2018 Journal of Medical Systems is a copyright of Springer, (2018). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018 – notice: Journal of Medical Systems is a copyright of Springer, (2018). All Rights Reserved. |
DBID | AAYXX CITATION NPM 3V. 7QF 7QO 7QQ 7RV 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7X7 7XB 88C 88E 88I 8AL 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K7- K9. KB0 KR7 L7M LK8 L~C L~D M0N M0S M0T M1P M2P M7P NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1007/s10916-018-0934-5 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Nursing & Allied Health Database Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Healthcare Administration Database Medical Database Science Database Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Aluminium Industry Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest Nursing & Allied Health Source (Alumni) Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Computing ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Health Management ProQuest Nursing & Allied Health Source ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Public Health |
EISSN | 1573-689X |
EndPage | 12 |
ExternalDocumentID | 29610979 10_1007_s10916_018_0934_5 |
Genre | Journal Article |
GroupedDBID | --- -53 -5D -5G -BR -EM -Y2 -~C .86 .GJ .VR 04C 06C 06D 0R~ 0VY 199 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 3V. 4.4 406 408 409 40E 53G 5GY 5QI 5RE 5VS 67Z 6NX 77K 78A 7RV 7X7 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACUDM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG AQUVI ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIHBH EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW KPH LAK LK8 LLZTM M0N M0T M1P M2P M4Y M7P MA- MK0 N2Q NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZ9 SZN T13 T16 TEORI TN5 TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK8 WOW YLTOR Z45 Z7R Z7U Z7X Z7Z Z81 Z82 Z83 Z87 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PPXIY PQGLB NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7XB 8AL 8BQ 8FD 8FK ABRTQ F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 PJZUB PKEHL PQEST PQUKI PRINS Q9U 77I 7X8 PUEGO |
ID | FETCH-LOGICAL-c372t-638f5993d5f1196d867ba82558356c65ef95ff576de7783daea19bd63835153e3 |
IEDL.DBID | BENPR |
ISSN | 0148-5598 1573-689X |
IngestDate | Fri Sep 05 11:19:43 EDT 2025 Fri Jul 25 19:07:24 EDT 2025 Thu Apr 03 07:05:25 EDT 2025 Thu Apr 24 23:09:31 EDT 2025 Thu Jul 10 08:07:59 EDT 2025 Fri Feb 21 02:37:18 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Predictive analytics Behavioral healthcare Mental health Classification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-638f5993d5f1196d867ba82558356c65ef95ff576de7783daea19bd63835153e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 29610979 |
PQID | 2020702423 |
PQPubID | 54050 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2021324428 proquest_journals_2020702423 pubmed_primary_29610979 crossref_citationtrail_10_1007_s10916_018_0934_5 crossref_primary_10_1007_s10916_018_0934_5 springer_journals_10_1007_s10916_018_0934_5 |
PublicationCentury | 2000 |
PublicationDate | 2018-05-01 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Journal of medical systems |
PublicationTitleAbbrev | J Med Syst |
PublicationTitleAlternate | J Med Syst |
PublicationYear | 2018 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | MilliganGWCooperMCMethodology review: Clustering methodsAppl. Psychol. Meas.198711432935410.1177/014662168701100401 ZhangYWangSDongZClassification of Alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision treeProg. Electromagn. Res.201414417118410.2528/PIER13121310 JungYYoonYIMulti-level assessment model for wellness service based on human mental stress levelMultimedia Tools and Applications2017769113051131710.1007/s11042-016-3444-9 Joachims, T., Text categorization with support vector machines: learning with many relevant features. In: European conference on machine learning. Pp. 137–142. Berlin, Heidelberg: Springer, 1998. Liu, B., et al. Scalable sentiment classification for big data analysis using naive bayes classifier. Big Data, 2013 I.E. International Conference on. IEEE, 2013. Xu, J., et al. On the properties of mean opinion scores for quality of experience management. Multimedia (ISM), 2011 I.E. International Symposium on. IEEE, 2011. GislasonPOBenediktssonJASveinssonJRRandom forests for land cover classificationPattern Recogn. Lett.200627429430010.1016/j.patrec.2005.08.011 Funk, M., Global burden of mental disorders and the need for a comprehensive, coordinated response from health and social sectors at the country level. http://apps.who.int/gb/ebwha/pdf_files/EB130/B130_9-en.pdf. Accessed 20 Feb 2016, 2016. ChinavehMThe effectiveness of problem-solving on coping skills and psychological adjustmentProcedia. Soc. Behav. Sci.2013844910.1016/j.sbspro.2013.06.499 Luxton, D. D., (ed.) Artificial Intelligence in Behavioral and Mental Health Care. Amsterdam: Elsevier Inc., 2015. RakeshGSuicide Prediction With Machine LearningAm. J. Psychiatry Residents' J.2017121151710.1176/appi.ajp-rj.2017.120105 ChengXiATC-mISF: a multi-label classifier for predicting the classes of anatomical therapeutic chemicalsBioinformatics2016333341346 HahnTNierenbergAAWhitfield-GabrieliSPredictive analytics in mental health: applications, guidelines, challenges and perspectivesMol. Psychiatry2017221374310.1038/mp.2016.201278431531:STN:280:DC%2BC2snlvF2rsA%3D%3D QiuTQiaoRHanMSangaiahAKLeeIA Lifetime-Enhanced Data Collecting Scheme for the Internet of ThingsIEEE Commun. Mag.2017551113213710.1109/MCOM.2017.1700033 Ribeiro, M. T., Singh, S., and Guestrin, C., Why should i trust you?: Explaining the predictions of any classifier. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016. Strauss, J., Peguero, A. M., and Hirst, G., Machine learning methods for clinical forms analysis in mental health. MedInfo. 192:1024, 2013. GoodmanRRenfrewDMullickMPredicting type of psychiatric disorder from Strengths and Difficulties Questionnaire (SDQ) scores in child mental health clinics in London and DhakaEur. Child Adolesc. Psychiatry20009212913410.1007/s007870050008109260631:STN:280:DC%2BD3M%2FksVyjsQ%3D%3D Qiu, T., Zhang, Y., Qiao, D., Zhang, X., Wymore, M. L., & Sangaiah, A. K., A robust time synchronization scheme for industrial internet of things. IEEE Trans. Ind. Inf., 2017. https://doi.org/10.1109/TII.2017.2738842. BurgesCJCA tutorial on support vector machines for pattern recognitionData Min. Knowl. Disc.19982212116710.1023/A:1009715923555 BijlRVRavelliAVan ZessenGPrevalence of psychiatric disorder in the general population: results of The Netherlands Mental Health Survey and Incidence Study (NEMESIS)Soc. Psychiatry Psychiatr. Epidemiol.1998331258759510.1007/s00127005009898577911:STN:280:DyaK1M%2FnsFWiug%3D%3D RibeiroJDLetter to the Editor: Suicide as a complex classification problem: machine learning and related techniques can advance suicide prediction-a reply to Roaldset (2016)Psychol. Med.2016469200910.1017/S0033291716000611270913091:STN:280:DC%2BC28bhtFaqtA%3D%3D Sangaiah, A. K., Samuel, O. W., Li, X., Abdel-Basset, M., and Wang, H., Towards an efficient risk assessment in software projects–Fuzzy reinforcement paradigm. Comput. Electr. Eng., 2017. https://doi.org/10.1016/j.compeleceng.2017.07.022. LeeYHandwritten digit recognition using k nearest-neighbor, radial-basis function, and backpropagation neural networksNeural Comput.19913344044910.1162/neco.1991.3.3.440 Kumar, P., Kumari, S., Sharma, V., Sangaiah, A. K., Wei, J., and Li, X., A Certificateless aggregate signature scheme for healthcare wireless sensor network. Sustain. Comput. Inf. Syst., 2017. https://doi.org/10.1016/j.suscom.2017.09.002. AghaeiAKhayyamnekoueiZYousefyAGeneral health prediction based on life orientation, quality of life, life satisfaction and ageProcedia. Soc. Behav. Sci.20138456957310.1016/j.sbspro.2013.06.605 Wu, F., et al., A lightweight and robust two-factor authentication scheme for personalized healthcare systems using wireless medical sensor networks. Futur. Gener. Comput. Syst. 82:727–737, 2017. SchaeferJDet al. "Enduring mental health: Prevalence and prediction."J. Abnorm. Psychol.2017126221210.1037/abn000023227929304 Kuncheva, L. I. Combining pattern classifiers: methods and algorithms. New York: John Wiley & Sons, 2004. JungYGKangMSHeoJClustering performance comparison using K-means and expectation maximization algorithmsBiotechnol. Biotechnol. Equip.201428sup1S44S4810.1080/13102818.2014.949045260196104433949 BreimanLRandom forestsMach. Learn.200145153210.1023/A:1010933404324 KesslerRCTesting a machine-learning algorithm to predict the persistence and severity of major depressive disorder from baseline self-reportsMol. Psychiatry.20162110136610.1038/mp.2015.1982672856349356541:CAS:528:DC%2BC28XksFOnsw%3D%3D KernMLet al. "The EPOCH Measure of Adolescent Well-Being."Psychol. Assess.201628558610.1037/pas000020126302102 Aborokbah, M. M., Al-Mutairi, S., Sangaiah, A. K., and Samuel, O. W., Adaptive context aware decision computing paradigm for intensive health care delivery in smart cities—A case analysis. Sustain. Cities Soc. 2017. Smets, E., et al. Comparison of machine learning techniques for psychophysiological stress detection. International Symposium on Pervasive Computing Paradigms for Mental Health. Springer International Publishing, 2015. Dziopa, T., Clustering Validity Indices Evaluation with Regard to Semantic Homogeneity. FedCSIS Position Papers 2016. Jiang, L., et al. Survey of improving k-nearest-neighbor for classification." Fuzzy Systems and Knowledge Discovery, 2007. FSKD 2007. Fourth International Conference on. Vol. 1. IEEE, 2007. LanataAComplexity index from a personalized wearable monitoring system for assessing remission in mental healthIEEE J. Biomed. Health Inform.201519113213910.1109/JBHI.2014.236071125291802 LiaoYRao VemuriVUse of k-nearest neighbor classifier for intrusion detectionComput Secur200221543944810.1016/S0167-4048(02)00514-X StatnikovAWangLAliferisCFA comprehensive comparison of random forests and support vector machines for microarray-based cancer classificationBMC Bioinformatics20089131910.1186/1471-2105-9-3191864740124928811:CAS:528:DC%2BD1cXhtFKmsLfO HajiyakhchaliAThe Effects of Creative Problem Solving Process Training on Academic Well-being of Shahid Chamran University StudentsProcedia. Soc. Behav. Sci.20138454955210.1016/j.sbspro.2013.06.602 DreiseitlSOhno-MachadoLLogistic regression and artificial neural network classification models: a methodology reviewJ. Biomed. Inform.200235535235910.1016/S1532-0464(03)00034-012968784 Miner, L., et al., Practical predictive analytics and decisioning systems for medicine: Informatics accuracy and cost-effectiveness for healthcare administration and delivery including medical research. Cambridge: Academic Press, 2014. FleuryAVacherMNouryNSVM-based multimodal classification of activities of daily living in health smart homes: sensors, algorithms, and first experimental resultsIEEE Trans. Inf. Technol. Biomed.201014227428310.1109/TITB.2009.203731720007037 World Health OrganizationMental health: a call for action by world health ministers2001GenevaWorld Health Organization, Department of Mental Health and Substance Dependence Wang, H., and Wang, J., An effective image representation method using kernel classification. Tools with Artificial Intelligence (ICTAI), 2014 I.E. 26th International Conference on. IEEE, 2014. Drapeau, A., Marchand, A., and Beaulieu-Prévost, D. Mental illnesses-understanding, prediction and control. Epidemiol. Psychol. Distress, (2012). https://doi.org/10.5772/1235. VlahouADiagnosis of ovarian cancer using decision tree classification of mass spectral dataBiomed. Res. Int.200320035308314 Aggarwal, C. C., and Zhai, C. X., A survey of text classification algorithms. Mining text data. Springer US, 163–222, 2012. FriedlMABrodleyCEDecision tree classification of land cover from remotely sensed dataRemote Sens. Environ.199761339940910.1016/S0034-4257(97)00049-7 934_CR14 934_CR13 Y Jung (934_CR21) 2017; 76 934_CR11 A Vlahou (934_CR40) 2003; 2003 T Hahn (934_CR3) 2017; 22 JD Schaefer (934_CR10) 2017; 126 L Breiman (934_CR48) 2001; 45 934_CR16 934_CR15 934_CR7 934_CR6 A Aghaei (934_CR19) 2013; 84 M Chinaveh (934_CR17) 2013; 84 World Health Organization (934_CR5) 2001 934_CR22 934_CR20 GW Milligan (934_CR32) 1987; 11 A Hajiyakhchali (934_CR18) 2013; 84 934_CR29 A Statnikov (934_CR37) 2008; 9 934_CR28 A Fleury (934_CR27) 2010; 14 A Lanata (934_CR9) 2015; 19 YG Jung (934_CR30) 2014; 28 S Dreiseitl (934_CR45) 2002; 35 934_CR34 934_CR33 X Cheng (934_CR23) 2016; 33 JD Ribeiro (934_CR25) 2016; 46 Y Liao (934_CR43) 2002; 21 934_CR38 RC Kessler (934_CR26) 2016; 21 PO Gislason (934_CR49) 2006; 27 G Rakesh (934_CR24) 2017; 12 CJC Burges (934_CR35) 1998; 2 MA Friedl (934_CR39) 1997; 61 934_CR47 934_CR46 934_CR44 934_CR42 934_CR2 934_CR1 T Qiu (934_CR12) 2017; 55 R Goodman (934_CR8) 2000; 9 Y Lee (934_CR36) 1991; 3 ML Kern (934_CR31) 2016; 28 RV Bijl (934_CR4) 1998; 33 Y Zhang (934_CR41) 2014; 144 25291802 - IEEE J Biomed Health Inform. 2015 Jan;19(1):132-9 26302102 - Psychol Assess. 2016 May;28(5):586-97 20007037 - IEEE Trans Inf Technol Biomed. 2010 Mar;14(2):274-83 26019610 - Biotechnol Biotechnol Equip. 2014 Nov 14;28(sup1):S44-S48 10926063 - Eur Child Adolesc Psychiatry. 2000 Jun;9(2):129-34 9857791 - Soc Psychiatry Psychiatr Epidemiol. 1998 Dec;33(12):587-95 27091309 - Psychol Med. 2016 Jul;46(9):2009-10 23920798 - Stud Health Technol Inform. 2013;192:1024 14688417 - J Biomed Biotechnol. 2003;2003(5):308-314 18647401 - BMC Bioinformatics. 2008 Jul 22;9:319 26728563 - Mol Psychiatry. 2016 Oct;21(10 ):1366-71 28172617 - Bioinformatics. 2017 Feb 1;33(3):341-346 12968784 - J Biomed Inform. 2002 Oct-Dec;35(5-6):352-9 27843153 - Mol Psychiatry. 2017 Jan;22(1):37-43 27929304 - J Abnorm Psychol. 2017 Feb;126(2):212-224 |
References_xml | – reference: Xu, J., et al. On the properties of mean opinion scores for quality of experience management. Multimedia (ISM), 2011 I.E. International Symposium on. IEEE, 2011. – reference: Dziopa, T., Clustering Validity Indices Evaluation with Regard to Semantic Homogeneity. FedCSIS Position Papers 2016. – reference: Smets, E., et al. Comparison of machine learning techniques for psychophysiological stress detection. International Symposium on Pervasive Computing Paradigms for Mental Health. Springer International Publishing, 2015. – reference: Aborokbah, M. M., Al-Mutairi, S., Sangaiah, A. K., and Samuel, O. W., Adaptive context aware decision computing paradigm for intensive health care delivery in smart cities—A case analysis. Sustain. Cities Soc. 2017. – reference: Ribeiro, M. T., Singh, S., and Guestrin, C., Why should i trust you?: Explaining the predictions of any classifier. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016. – reference: Funk, M., Global burden of mental disorders and the need for a comprehensive, coordinated response from health and social sectors at the country level. http://apps.who.int/gb/ebwha/pdf_files/EB130/B130_9-en.pdf. Accessed 20 Feb 2016, 2016. – reference: Kuncheva, L. I. Combining pattern classifiers: methods and algorithms. New York: John Wiley & Sons, 2004. – reference: DreiseitlSOhno-MachadoLLogistic regression and artificial neural network classification models: a methodology reviewJ. Biomed. Inform.200235535235910.1016/S1532-0464(03)00034-012968784 – reference: LiaoYRao VemuriVUse of k-nearest neighbor classifier for intrusion detectionComput Secur200221543944810.1016/S0167-4048(02)00514-X – reference: Joachims, T., Text categorization with support vector machines: learning with many relevant features. In: European conference on machine learning. Pp. 137–142. Berlin, Heidelberg: Springer, 1998. – reference: Luxton, D. D., (ed.) Artificial Intelligence in Behavioral and Mental Health Care. Amsterdam: Elsevier Inc., 2015. – reference: BurgesCJCA tutorial on support vector machines for pattern recognitionData Min. Knowl. Disc.19982212116710.1023/A:1009715923555 – reference: LanataAComplexity index from a personalized wearable monitoring system for assessing remission in mental healthIEEE J. Biomed. Health Inform.201519113213910.1109/JBHI.2014.236071125291802 – reference: Jiang, L., et al. Survey of improving k-nearest-neighbor for classification." Fuzzy Systems and Knowledge Discovery, 2007. FSKD 2007. Fourth International Conference on. Vol. 1. IEEE, 2007. – reference: HajiyakhchaliAThe Effects of Creative Problem Solving Process Training on Academic Well-being of Shahid Chamran University StudentsProcedia. Soc. Behav. Sci.20138454955210.1016/j.sbspro.2013.06.602 – reference: FleuryAVacherMNouryNSVM-based multimodal classification of activities of daily living in health smart homes: sensors, algorithms, and first experimental resultsIEEE Trans. Inf. Technol. Biomed.201014227428310.1109/TITB.2009.203731720007037 – reference: MilliganGWCooperMCMethodology review: Clustering methodsAppl. Psychol. Meas.198711432935410.1177/014662168701100401 – reference: Wu, F., et al., A lightweight and robust two-factor authentication scheme for personalized healthcare systems using wireless medical sensor networks. Futur. Gener. Comput. Syst. 82:727–737, 2017. – reference: StatnikovAWangLAliferisCFA comprehensive comparison of random forests and support vector machines for microarray-based cancer classificationBMC Bioinformatics20089131910.1186/1471-2105-9-3191864740124928811:CAS:528:DC%2BD1cXhtFKmsLfO – reference: Sangaiah, A. K., Samuel, O. W., Li, X., Abdel-Basset, M., and Wang, H., Towards an efficient risk assessment in software projects–Fuzzy reinforcement paradigm. Comput. Electr. Eng., 2017. https://doi.org/10.1016/j.compeleceng.2017.07.022. – reference: RakeshGSuicide Prediction With Machine LearningAm. J. Psychiatry Residents' J.2017121151710.1176/appi.ajp-rj.2017.120105 – reference: FriedlMABrodleyCEDecision tree classification of land cover from remotely sensed dataRemote Sens. Environ.199761339940910.1016/S0034-4257(97)00049-7 – reference: AghaeiAKhayyamnekoueiZYousefyAGeneral health prediction based on life orientation, quality of life, life satisfaction and ageProcedia. Soc. Behav. Sci.20138456957310.1016/j.sbspro.2013.06.605 – reference: JungYYoonYIMulti-level assessment model for wellness service based on human mental stress levelMultimedia Tools and Applications2017769113051131710.1007/s11042-016-3444-9 – reference: Liu, B., et al. Scalable sentiment classification for big data analysis using naive bayes classifier. Big Data, 2013 I.E. International Conference on. IEEE, 2013. – reference: RibeiroJDLetter to the Editor: Suicide as a complex classification problem: machine learning and related techniques can advance suicide prediction-a reply to Roaldset (2016)Psychol. Med.2016469200910.1017/S0033291716000611270913091:STN:280:DC%2BC28bhtFaqtA%3D%3D – reference: GoodmanRRenfrewDMullickMPredicting type of psychiatric disorder from Strengths and Difficulties Questionnaire (SDQ) scores in child mental health clinics in London and DhakaEur. Child Adolesc. Psychiatry20009212913410.1007/s007870050008109260631:STN:280:DC%2BD3M%2FksVyjsQ%3D%3D – reference: JungYGKangMSHeoJClustering performance comparison using K-means and expectation maximization algorithmsBiotechnol. Biotechnol. Equip.201428sup1S44S4810.1080/13102818.2014.949045260196104433949 – reference: Drapeau, A., Marchand, A., and Beaulieu-Prévost, D. Mental illnesses-understanding, prediction and control. Epidemiol. Psychol. Distress, (2012). https://doi.org/10.5772/1235. – reference: ChinavehMThe effectiveness of problem-solving on coping skills and psychological adjustmentProcedia. Soc. Behav. Sci.2013844910.1016/j.sbspro.2013.06.499 – reference: KernMLet al. "The EPOCH Measure of Adolescent Well-Being."Psychol. Assess.201628558610.1037/pas000020126302102 – reference: ChengXiATC-mISF: a multi-label classifier for predicting the classes of anatomical therapeutic chemicalsBioinformatics2016333341346 – reference: LeeYHandwritten digit recognition using k nearest-neighbor, radial-basis function, and backpropagation neural networksNeural Comput.19913344044910.1162/neco.1991.3.3.440 – reference: Aggarwal, C. C., and Zhai, C. X., A survey of text classification algorithms. Mining text data. Springer US, 163–222, 2012. – reference: World Health OrganizationMental health: a call for action by world health ministers2001GenevaWorld Health Organization, Department of Mental Health and Substance Dependence – reference: GislasonPOBenediktssonJASveinssonJRRandom forests for land cover classificationPattern Recogn. Lett.200627429430010.1016/j.patrec.2005.08.011 – reference: Qiu, T., Zhang, Y., Qiao, D., Zhang, X., Wymore, M. L., & Sangaiah, A. K., A robust time synchronization scheme for industrial internet of things. IEEE Trans. Ind. Inf., 2017. https://doi.org/10.1109/TII.2017.2738842. – reference: BreimanLRandom forestsMach. Learn.200145153210.1023/A:1010933404324 – reference: Strauss, J., Peguero, A. M., and Hirst, G., Machine learning methods for clinical forms analysis in mental health. MedInfo. 192:1024, 2013. – reference: Wang, H., and Wang, J., An effective image representation method using kernel classification. Tools with Artificial Intelligence (ICTAI), 2014 I.E. 26th International Conference on. IEEE, 2014. – reference: VlahouADiagnosis of ovarian cancer using decision tree classification of mass spectral dataBiomed. Res. Int.200320035308314 – reference: Miner, L., et al., Practical predictive analytics and decisioning systems for medicine: Informatics accuracy and cost-effectiveness for healthcare administration and delivery including medical research. Cambridge: Academic Press, 2014. – reference: KesslerRCTesting a machine-learning algorithm to predict the persistence and severity of major depressive disorder from baseline self-reportsMol. Psychiatry.20162110136610.1038/mp.2015.1982672856349356541:CAS:528:DC%2BC28XksFOnsw%3D%3D – reference: Kumar, P., Kumari, S., Sharma, V., Sangaiah, A. K., Wei, J., and Li, X., A Certificateless aggregate signature scheme for healthcare wireless sensor network. Sustain. Comput. Inf. Syst., 2017. https://doi.org/10.1016/j.suscom.2017.09.002. – reference: HahnTNierenbergAAWhitfield-GabrieliSPredictive analytics in mental health: applications, guidelines, challenges and perspectivesMol. Psychiatry2017221374310.1038/mp.2016.201278431531:STN:280:DC%2BC2snlvF2rsA%3D%3D – reference: ZhangYWangSDongZClassification of Alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision treeProg. Electromagn. Res.201414417118410.2528/PIER13121310 – reference: BijlRVRavelliAVan ZessenGPrevalence of psychiatric disorder in the general population: results of The Netherlands Mental Health Survey and Incidence Study (NEMESIS)Soc. Psychiatry Psychiatr. Epidemiol.1998331258759510.1007/s00127005009898577911:STN:280:DyaK1M%2FnsFWiug%3D%3D – reference: SchaeferJDet al. "Enduring mental health: Prevalence and prediction."J. Abnorm. Psychol.2017126221210.1037/abn000023227929304 – reference: QiuTQiaoRHanMSangaiahAKLeeIA Lifetime-Enhanced Data Collecting Scheme for the Internet of ThingsIEEE Commun. Mag.2017551113213710.1109/MCOM.2017.1700033 – volume: 55 start-page: 132 issue: 11 year: 2017 ident: 934_CR12 publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2017.1700033 – volume: 35 start-page: 352 issue: 5 year: 2002 ident: 934_CR45 publication-title: J. Biomed. Inform. doi: 10.1016/S1532-0464(03)00034-0 – ident: 934_CR38 doi: 10.1007/BFb0026683 – ident: 934_CR46 doi: 10.1145/2939672.2939778 – volume: 27 start-page: 294 issue: 4 year: 2006 ident: 934_CR49 publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2005.08.011 – ident: 934_CR20 doi: 10.3233/978-1-61499-289-9-1024 – volume: 126 start-page: 212 issue: 2 year: 2017 ident: 934_CR10 publication-title: J. Abnorm. Psychol. doi: 10.1037/abn0000232 – volume: 84 start-page: 569 year: 2013 ident: 934_CR19 publication-title: Procedia. Soc. Behav. Sci. doi: 10.1016/j.sbspro.2013.06.605 – ident: 934_CR14 doi: 10.1016/j.compeleceng.2017.07.022 – volume: 46 start-page: 2009 issue: 9 year: 2016 ident: 934_CR25 publication-title: Psychol. Med. doi: 10.1017/S0033291716000611 – ident: 934_CR29 doi: 10.1109/ISM.2011.88 – volume: 33 start-page: 341 issue: 3 year: 2016 ident: 934_CR23 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw644 – volume: 11 start-page: 329 issue: 4 year: 1987 ident: 934_CR32 publication-title: Appl. Psychol. Meas. doi: 10.1177/014662168701100401 – volume: 33 start-page: 587 issue: 12 year: 1998 ident: 934_CR4 publication-title: Soc. Psychiatry Psychiatr. Epidemiol. doi: 10.1007/s001270050098 – ident: 934_CR44 doi: 10.1109/BigData.2013.6691740 – volume: 9 start-page: 319 issue: 1 year: 2008 ident: 934_CR37 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-319 – ident: 934_CR33 doi: 10.15439/2016F371 – volume: 3 start-page: 440 issue: 3 year: 1991 ident: 934_CR36 publication-title: Neural Comput. doi: 10.1162/neco.1991.3.3.440 – ident: 934_CR22 doi: 10.1109/ICTAI.2014.131 – volume: 144 start-page: 171 year: 2014 ident: 934_CR41 publication-title: Prog. Electromagn. Res. doi: 10.2528/PIER13121310 – volume: 21 start-page: 1366 issue: 10 year: 2016 ident: 934_CR26 publication-title: Mol. Psychiatry. doi: 10.1038/mp.2015.198 – ident: 934_CR47 doi: 10.1002/0471660264 – ident: 934_CR13 doi: 10.1016/j.suscom.2017.09.002 – volume: 14 start-page: 274 issue: 2 year: 2010 ident: 934_CR27 publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2009.2037317 – volume: 76 start-page: 11305 issue: 9 year: 2017 ident: 934_CR21 publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-016-3444-9 – volume: 22 start-page: 37 issue: 1 year: 2017 ident: 934_CR3 publication-title: Mol. Psychiatry doi: 10.1038/mp.2016.201 – ident: 934_CR15 doi: 10.1016/j.future.2017.08.042 – ident: 934_CR42 doi: 10.1109/FSKD.2007.552 – volume: 2 start-page: 121 issue: 2 year: 1998 ident: 934_CR35 publication-title: Data Min. Knowl. Disc. doi: 10.1023/A:1009715923555 – volume: 21 start-page: 439 issue: 5 year: 2002 ident: 934_CR43 publication-title: Comput Secur doi: 10.1016/S0167-4048(02)00514-X – volume: 28 start-page: 586 issue: 5 year: 2016 ident: 934_CR31 publication-title: Psychol. Assess. doi: 10.1037/pas0000201 – volume: 9 start-page: 129 issue: 2 year: 2000 ident: 934_CR8 publication-title: Eur. Child Adolesc. Psychiatry doi: 10.1007/s007870050008 – ident: 934_CR28 doi: 10.1007/978-3-319-32270-4_2 – ident: 934_CR7 doi: 10.5772/1235 – volume: 84 start-page: 549 year: 2013 ident: 934_CR18 publication-title: Procedia. Soc. Behav. Sci. doi: 10.1016/j.sbspro.2013.06.602 – volume: 28 start-page: S44 issue: sup1 year: 2014 ident: 934_CR30 publication-title: Biotechnol. Biotechnol. Equip. doi: 10.1080/13102818.2014.949045 – volume: 61 start-page: 399 issue: 3 year: 1997 ident: 934_CR39 publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(97)00049-7 – volume: 19 start-page: 132 issue: 1 year: 2015 ident: 934_CR9 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2014.2360711 – ident: 934_CR1 – volume: 2003 start-page: 308 issue: 5 year: 2003 ident: 934_CR40 publication-title: Biomed. Res. Int. doi: 10.1155/S1110724303210032 – ident: 934_CR16 doi: 10.1016/j.scs.2017.09.004 – volume: 12 start-page: 15 issue: 1 year: 2017 ident: 934_CR24 publication-title: Am. J. Psychiatry Residents' J. doi: 10.1176/appi.ajp-rj.2017.120105 – ident: 934_CR2 doi: 10.1016/B978-0-12-420248-1.00001-5 – ident: 934_CR6 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 934_CR48 publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – ident: 934_CR11 doi: 10.1109/TII.2017.2738842 – volume: 84 start-page: 4 year: 2013 ident: 934_CR17 publication-title: Procedia. Soc. Behav. Sci. doi: 10.1016/j.sbspro.2013.06.499 – volume-title: Mental health: a call for action by world health ministers year: 2001 ident: 934_CR5 – ident: 934_CR34 doi: 10.1007/978-1-4614-3223-4_6 – reference: 9857791 - Soc Psychiatry Psychiatr Epidemiol. 1998 Dec;33(12):587-95 – reference: 27929304 - J Abnorm Psychol. 2017 Feb;126(2):212-224 – reference: 12968784 - J Biomed Inform. 2002 Oct-Dec;35(5-6):352-9 – reference: 10926063 - Eur Child Adolesc Psychiatry. 2000 Jun;9(2):129-34 – reference: 18647401 - BMC Bioinformatics. 2008 Jul 22;9:319 – reference: 27091309 - Psychol Med. 2016 Jul;46(9):2009-10 – reference: 27843153 - Mol Psychiatry. 2017 Jan;22(1):37-43 – reference: 23920798 - Stud Health Technol Inform. 2013;192:1024 – reference: 20007037 - IEEE Trans Inf Technol Biomed. 2010 Mar;14(2):274-83 – reference: 26019610 - Biotechnol Biotechnol Equip. 2014 Nov 14;28(sup1):S44-S48 – reference: 25291802 - IEEE J Biomed Health Inform. 2015 Jan;19(1):132-9 – reference: 26302102 - Psychol Assess. 2016 May;28(5):586-97 – reference: 14688417 - J Biomed Biotechnol. 2003;2003(5):308-314 – reference: 28172617 - Bioinformatics. 2017 Feb 1;33(3):341-346 – reference: 26728563 - Mol Psychiatry. 2016 Oct;21(10 ):1366-71 |
SSID | ssj0009667 |
Score | 2.4463236 |
Snippet | Mental health is an indicator of emotional, psychological and social well-being of an individual. It determines how an individual thinks, feels and handle... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 88 |
SubjectTerms | Adolescents Algorithms Anxiety Artificial intelligence Bayesian analysis Children Classifiers Clustering Colleges & universities Convergence of Deep Machine Learning and Nature Inspired Computing Paradigms for Medical Informatics Decision trees Drug abuse Drug addiction Education & Training Health Informatics Health problems Health Sciences K-nearest neighbors algorithm Labels Learning algorithms Machine learning Medicine Medicine & Public Health Mental depression Mental disorders Mental health Mental health care Obsessive compulsive disorder Occupational health Predictive analytics Regression analysis Social interactions Statistics for Life Sciences Students Support vector machines Target groups Well being |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60gggiWl_RKit4UgJNNpvHsYq1CPVkobew2UcVaipt-v-dTTapUhU8Z7IbZnZ2vsm8AK6ZQKMpY-n6yoww4yx24yyIXaGlQIOg_ZibAufhczgYBU9jNrZ13Is6270OSZY39ZdiN4Qy6PqacD0NXLYJWwxdd5PHN_J7q067YVjVSOOOpvt4Hcr8aYnvxmgNYa5FR0uj09-HPYsWSa8S7wFsqLwN20MbD2_DbvXXjVTFRIfweNdU3RMz5czUmhOEpaRq1WPpiEl2n5BhmUepiG2xOiG96WQ2fyte3xdHMOo_vNwPXDsqwRU08gsXtUgzhBqSaQ91SsZhlHF0_hgCrFCETOmEaY2-hVRRFFPJFfeSTOJrFAENVfQYWvksV6dAeMAzwRHJKY8GXZ5lGQsTxrtUBZoK33OgW_MsFbaPuBlnMU1XHZANm1Nkc2rYnDIHbppXPqomGn8Rd2pBpFafFinKGe8mg_0cuGoeoyaY8AbP1WxZ0qBrHaA_5cBJJcBmNz8xbeWjxIHbWqKrxX_9lLN_UZ_Djl8eLZMN2YFWMV-qC0QsRXZZntBPaTDefg priority: 102 providerName: Springer Nature |
Title | Behavioral Modeling for Mental Health using Machine Learning Algorithms |
URI | https://link.springer.com/article/10.1007/s10916-018-0934-5 https://www.ncbi.nlm.nih.gov/pubmed/29610979 https://www.proquest.com/docview/2020702423 https://www.proquest.com/docview/2021324428 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-WBMZgjDb7qLc0aLCnDUNiWbb8NOISp2wkjLFA9mRkSc4e2iRbnP9_d7acUEL7Yj9IsmTdSfc7ne4O4JPQKDSNNH5gKYWZEtKXRSh9XRqNAqEMpCIH5_kiul2G31Zi5Q7c9u5aZbsn1hu12Wo6IyclHbmTpP_X3V-fskaRddWl0OhAD7dgKbrQS6eLHz9PYXejqHGYxu4pFHlr12yc5xAaoSpN5n8e-uKhZDqDm2em0loCZRfwykFHNmlofQnP7KYPz-fOON6Hl80RHGs8i17DLD264DNKeUaO5wwxKmvi9rh6jG6-r9m8vlRpmYu3umaTuzX-fvXnfv8Gltn0182t7_Im-JrHQeXjkioF4g4jyjEuMCOjuFCoCQpEW5GOhC0TUZaoaBgbx5IbZdU4KQw244huuOVvobvZbuwVMBWqQiuEdXbMw5EqikJEiVAjbsOS62Dswaids1y7oOKU2-IuP4VDpmnOcZpzmuZcePD52GTXRNR4qvKgJUTuFtc-P7GCBx-PxbgsyNahNnZ7qOugnh2icuXBu4aAx96ChGLMx4kHX1qKnj7-6FDePz2UD_AiqHmJ7kIOoFv9O9hrxCtVMYROvIrxKbPZEHqTLE0X9J79_j4dOobF0mUw-Q-2mej1 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZS8QwEB48QAURb-sZQV-Uwm7T9HgQ8V6PXUQUfKtpkq4P6666K-Kf8jc607S7iOibz03TdGaS-SZzAWwJhUpTR9r1DLUwkyJyo9SPXJVphQoh8yJJCc71RlC78y_uxf0QfJa5MBRWWZ6J-UGtO4ruyMlIR-kk7b___OJS1yjyrpYtNKxYXJqPdzTZunvnx8jfbc87Pbk9qrlFVwFX8dDruShwmUCtrEVWRfHTURCmEu0kgVgkUIEwWSyyDGG4NmEYcS2NrMapxtc46n5uOM47DKMIM2LcRaOHJ43rm0GZ3yCwCdr4u1T6vPSj2mQ9hGJoulO4Afdd8V0T_oC3P1yzucY7nYapAqqyAytbMzBk2rMwVi-c8bMwaa_8mM1kmoOzw37KP6MWa5TozhATM1snqBjHKNK-yep5EKdhRX3XJjtoNZHcvcen7jzc_QtFF2Ck3WmbJWDSl6mSCCNNlfsVmaapCGIhK9z4GVde1YFKSbNEFUXMqZdGKxmUXyYyJ0jmhMicCAd2-q882woefw1eLRmRFJu5mwxEz4HN_mPchuRbkW3TecvHoF3vozHnwKJlYP9rXkw17cPYgd2So4PJf13K8t9L2YDx2m39Krk6b1yuwISXyxXFYa7CSO_1zawhVuql64WAMnj47z3xBYSXHuk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZT9wwEB7RRUKVqoqj0JTLSPBSFLEbxzkeEOJazl0hBBJvwfGxfaC7tLsI9a_11zETO7uqUHnjOY7jzIw933gugE2hUGnqTIeRoRZmUmRhVsZZqKxWqBBslElKcO50k9Pb-PxO3E3B3zoXhsIq6zOxOqj1QNEdORnpKJ2k_XesD4u4OmrvPf4KqYMUeVrrdhpORC7Mn2c034a7Z0fI660oah_fHJ6GvsNAqHgajUIUPitQQ2thWyiKOkvSUqLNJBCXJCoRxubCWoTk2qRpxrU0spWXGl_jiAO44TjvB5hOUStmDZg-OO5eXU9K_iaJS9bGX6cy6LVP1SXuISxDM55CD3gcin-14iuo-8pNW2m_9ix89rCV7Ts5m4Mp05-HmY53zM_DJ3f9x1xW0wKcHIzT_xm1W6Okd4b4mLmaQX4co6j7HutUAZ2G-VqvPbb_0ENyj378HH6B23eh6CI0-oO--QpMxrJUEiGlafG4KcuyFEkuZJOb2HIVtQJo1jQrlC9oTn01HopJKWYic4FkLojMhQjg-_iVR1fN463BKzUjCr-xh8VEDAPYGD_GLUl-Ftk3g6dqDNr4MRp2ASw5Bo6_FuVU3z7NA9iuOTqZ_L9L-fb2UtZhBvdCcXnWvViGj1ElVhSSuQKN0e8ns4qwaVSueflkcP_eW-IFCQkjFQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Behavioral+Modeling+for+Mental+Health+using+Machine+Learning+Algorithms&rft.jtitle=Journal+of+medical+systems&rft.au=Srividya%2C+M&rft.au=Mohanavalli%2C+S&rft.au=Bhalaji%2C+N&rft.date=2018-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0148-5598&rft.eissn=1573-689X&rft.volume=42&rft.issue=5&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1007%2Fs10916-018-0934-5&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-5598&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-5598&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-5598&client=summon |