Behavioral Modeling for Mental Health using Machine Learning Algorithms

Mental health is an indicator of emotional, psychological and social well-being of an individual. It determines how an individual thinks, feels and handle situations. Positive mental health helps one to work productively and realize their full potential. Mental health is important at every stage of...

Full description

Saved in:
Bibliographic Details
Published inJournal of medical systems Vol. 42; no. 5; pp. 88 - 12
Main Authors Srividya, M., Mohanavalli, S., Bhalaji, N.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0148-5598
1573-689X
1573-689X
DOI10.1007/s10916-018-0934-5

Cover

Loading…
Abstract Mental health is an indicator of emotional, psychological and social well-being of an individual. It determines how an individual thinks, feels and handle situations. Positive mental health helps one to work productively and realize their full potential. Mental health is important at every stage of life, from childhood and adolescence through adulthood. Many factors contribute to mental health problems which lead to mental illness like stress, social anxiety, depression, obsessive compulsive disorder, drug addiction, and personality disorders. It is becoming increasingly important to determine the onset of the mental illness to maintain proper life balance . The nature of machine learning algorithms and Artificial Intelligence (AI) can be fully harnessed for predicting the onset of mental illness. Such applications when implemented in real time will benefit the society by serving as a monitoring tool for individuals with deviant behavior. This research work proposes to apply various machine learning algorithms such as support vector machines, decision trees, naïve bayes classifier, K-nearest neighbor classifier and logistic regression to identify state of mental health in a target group. The responses obtained from the target group for the designed questionnaire were first subject to unsupervised learning techniques. The labels obtained as a result of clustering were validated by computing the Mean Opinion Score. These cluster labels were then used to build classifiers to predict the mental health of an individual. Population from various groups like high school students, college students and working professionals were considered as target groups. The research presents an analysis of applying the aforementioned machine learning algorithms on the target groups and also suggests directions for future work.
AbstractList Mental health is an indicator of emotional, psychological and social well-being of an individual. It determines how an individual thinks, feels and handle situations. Positive mental health helps one to work productively and realize their full potential. Mental health is important at every stage of life, from childhood and adolescence through adulthood. Many factors contribute to mental health problems which lead to mental illness like stress, social anxiety, depression, obsessive compulsive disorder, drug addiction, and personality disorders. It is becoming increasingly important to determine the onset of the mental illness to maintain proper life balance. The nature of machine learning algorithms and Artificial Intelligence (AI) can be fully harnessed for predicting the onset of mental illness. Such applications when implemented in real time will benefit the society by serving as a monitoring tool for individuals with deviant behavior. This research work proposes to apply various machine learning algorithms such as support vector machines, decision trees, naïve bayes classifier, K-nearest neighbor classifier and logistic regression to identify state of mental health in a target group. The responses obtained from the target group for the designed questionnaire were first subject to unsupervised learning techniques. The labels obtained as a result of clustering were validated by computing the Mean Opinion Score. These cluster labels were then used to build classifiers to predict the mental health of an individual. Population from various groups like high school students, college students and working professionals were considered as target groups. The research presents an analysis of applying the aforementioned machine learning algorithms on the target groups and also suggests directions for future work.Mental health is an indicator of emotional, psychological and social well-being of an individual. It determines how an individual thinks, feels and handle situations. Positive mental health helps one to work productively and realize their full potential. Mental health is important at every stage of life, from childhood and adolescence through adulthood. Many factors contribute to mental health problems which lead to mental illness like stress, social anxiety, depression, obsessive compulsive disorder, drug addiction, and personality disorders. It is becoming increasingly important to determine the onset of the mental illness to maintain proper life balance. The nature of machine learning algorithms and Artificial Intelligence (AI) can be fully harnessed for predicting the onset of mental illness. Such applications when implemented in real time will benefit the society by serving as a monitoring tool for individuals with deviant behavior. This research work proposes to apply various machine learning algorithms such as support vector machines, decision trees, naïve bayes classifier, K-nearest neighbor classifier and logistic regression to identify state of mental health in a target group. The responses obtained from the target group for the designed questionnaire were first subject to unsupervised learning techniques. The labels obtained as a result of clustering were validated by computing the Mean Opinion Score. These cluster labels were then used to build classifiers to predict the mental health of an individual. Population from various groups like high school students, college students and working professionals were considered as target groups. The research presents an analysis of applying the aforementioned machine learning algorithms on the target groups and also suggests directions for future work.
Mental health is an indicator of emotional, psychological and social well-being of an individual. It determines how an individual thinks, feels and handle situations. Positive mental health helps one to work productively and realize their full potential. Mental health is important at every stage of life, from childhood and adolescence through adulthood. Many factors contribute to mental health problems which lead to mental illness like stress, social anxiety, depression, obsessive compulsive disorder, drug addiction, and personality disorders. It is becoming increasingly important to determine the onset of the mental illness to maintain proper life balance. The nature of machine learning algorithms and Artificial Intelligence (AI) can be fully harnessed for predicting the onset of mental illness. Such applications when implemented in real time will benefit the society by serving as a monitoring tool for individuals with deviant behavior. This research work proposes to apply various machine learning algorithms such as support vector machines, decision trees, naïve bayes classifier, K-nearest neighbor classifier and logistic regression to identify state of mental health in a target group. The responses obtained from the target group for the designed questionnaire were first subject to unsupervised learning techniques. The labels obtained as a result of clustering were validated by computing the Mean Opinion Score. These cluster labels were then used to build classifiers to predict the mental health of an individual. Population from various groups like high school students, college students and working professionals were considered as target groups. The research presents an analysis of applying the aforementioned machine learning algorithms on the target groups and also suggests directions for future work.
Mental health is an indicator of emotional, psychological and social well-being of an individual. It determines how an individual thinks, feels and handle situations. Positive mental health helps one to work productively and realize their full potential. Mental health is important at every stage of life, from childhood and adolescence through adulthood. Many factors contribute to mental health problems which lead to mental illness like stress, social anxiety, depression, obsessive compulsive disorder, drug addiction, and personality disorders. It is becoming increasingly important to determine the onset of the mental illness to maintain proper life balance . The nature of machine learning algorithms and Artificial Intelligence (AI) can be fully harnessed for predicting the onset of mental illness. Such applications when implemented in real time will benefit the society by serving as a monitoring tool for individuals with deviant behavior. This research work proposes to apply various machine learning algorithms such as support vector machines, decision trees, naïve bayes classifier, K-nearest neighbor classifier and logistic regression to identify state of mental health in a target group. The responses obtained from the target group for the designed questionnaire were first subject to unsupervised learning techniques. The labels obtained as a result of clustering were validated by computing the Mean Opinion Score. These cluster labels were then used to build classifiers to predict the mental health of an individual. Population from various groups like high school students, college students and working professionals were considered as target groups. The research presents an analysis of applying the aforementioned machine learning algorithms on the target groups and also suggests directions for future work.
ArticleNumber 88
Author Bhalaji, N.
Mohanavalli, S.
Srividya, M.
Author_xml – sequence: 1
  givenname: M.
  surname: Srividya
  fullname: Srividya, M.
  organization: SSN College of Engineering
– sequence: 2
  givenname: S.
  surname: Mohanavalli
  fullname: Mohanavalli, S.
  email: mohanas@ssn.edu.in
  organization: SSN College of Engineering
– sequence: 3
  givenname: N.
  surname: Bhalaji
  fullname: Bhalaji, N.
  organization: SSN College of Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29610979$$D View this record in MEDLINE/PubMed
BookMark eNp9kctKxDAUhoMoOl4ewI0U3Lip5tLcljp4gxncKLgLmfZ0JtJJNGkF396UUQRBVwd-vu9wOP8-2vbBA0LHBJ8TjOVFIlgTUWKiSqxZVfItNCFcslIo_byNJphUquRcqz20n9ILxlgLIXfRHtUiq1JP0O0VrOy7C9F2xTw00Dm_LNoQizn4Pmd3YLt-VQxpzOe2XjkPxQxs9GNw2S1DdP1qnQ7RTmu7BEdf8wA93Vw_Tu_K2cPt_fRyVtZM0r4UTLVca9bwlhAtGiXkwirKuWJc1IJDq3nbcikakFKxxoIletFkjXHCGbADdLbZ-xrD2wCpN2uXaug66yEMyVBMCaNVRVVGT3-hL2GIPl83UlhiWlGWqZMvalisoTGv0a1t_DDfL8qA3AB1DClFaE3tetu74PtoXWcINmMZZlOGyWWYsQzDs0l-md_L_3PoxkmZ9UuIP0f_LX0ClECZEA
CitedBy_id crossref_primary_10_1093_oodh_oqaf005
crossref_primary_10_1111_add_15038
crossref_primary_10_1016_j_matpr_2020_10_585
crossref_primary_10_1109_ACCESS_2023_3327126
crossref_primary_10_1007_s42979_024_03416_w
crossref_primary_10_1038_s41598_024_56674_2
crossref_primary_10_3390_rel13111021
crossref_primary_10_3390_bioengineering10050575
crossref_primary_10_3233_JIFS_235503
crossref_primary_10_32628_CSEIT23903114
crossref_primary_10_1186_s40708_021_00125_5
crossref_primary_10_1016_j_ajp_2020_101977
crossref_primary_10_1109_TCBB_2021_3053181
crossref_primary_10_3389_fpubh_2021_795007
crossref_primary_10_3390_w10070873
crossref_primary_10_1007_s10639_023_12267_6
crossref_primary_10_1007_s10916_018_1136_x
crossref_primary_10_3390_app12178678
crossref_primary_10_1016_j_imu_2023_101405
crossref_primary_10_26634_jaim_2_2_20875
crossref_primary_10_1016_j_ssaho_2023_100558
crossref_primary_10_4103_shb_shb_38_22
crossref_primary_10_1145_3564752
crossref_primary_10_3390_s23094178
crossref_primary_10_1016_j_imu_2023_101295
crossref_primary_10_3389_fnhum_2024_1376338
crossref_primary_10_1007_s10802_024_01253_2
crossref_primary_10_1016_j_chb_2021_107029
crossref_primary_10_1007_s11042_024_18346_1
crossref_primary_10_1155_2022_7586918
crossref_primary_10_1109_JBHI_2024_3501254
crossref_primary_10_3389_fpsyg_2022_909439
crossref_primary_10_3389_fpsyt_2022_902456
crossref_primary_10_12677_SSEM_2020_91007
crossref_primary_10_1016_j_joitmc_2023_100157
crossref_primary_10_1016_j_jbi_2022_104013
crossref_primary_10_1016_j_procs_2023_01_132
crossref_primary_10_1108_JPMH_07_2024_0095
crossref_primary_10_1145_3398069
crossref_primary_10_1371_journal_pone_0229354
crossref_primary_10_1155_2023_5507814
crossref_primary_10_3389_fpsyt_2021_728278
crossref_primary_10_1007_s11920_019_1094_0
crossref_primary_10_5498_wjp_v12_i7_860
crossref_primary_10_1016_j_ijhcs_2024_103438
crossref_primary_10_1051_itmconf_20214003035
crossref_primary_10_1016_j_cmpb_2020_105816
crossref_primary_10_48168_innosoft_s8_a48
crossref_primary_10_1088_1742_6596_2161_1_012021
crossref_primary_10_1016_j_compbiomed_2024_109146
crossref_primary_10_3233_IDT_200061
crossref_primary_10_48084_etasr_7812
crossref_primary_10_1371_journal_pone_0261131
crossref_primary_10_3390_electronics12214407
crossref_primary_10_1007_s00500_023_09422_z
crossref_primary_10_1016_j_health_2024_100350
crossref_primary_10_1080_0142159X_2021_1985097
crossref_primary_10_1111_jcal_12999
crossref_primary_10_1109_JBHI_2022_3140433
crossref_primary_10_1016_j_aej_2023_10_060
crossref_primary_10_3390_ijerph182212175
crossref_primary_10_2196_53714
crossref_primary_10_2174_2210327910666191220103417
crossref_primary_10_3390_info15040235
crossref_primary_10_1016_j_procs_2024_02_156
crossref_primary_10_2174_0126662558268813231120114051
crossref_primary_10_54392_irjmt2449
crossref_primary_10_1007_s13198_023_02052_6
crossref_primary_10_1108_CI_08_2022_0214
crossref_primary_10_33166_AETiC_2022_02_005
crossref_primary_10_1371_journal_pone_0267749
Cites_doi 10.1109/MCOM.2017.1700033
10.1016/S1532-0464(03)00034-0
10.1007/BFb0026683
10.1145/2939672.2939778
10.1016/j.patrec.2005.08.011
10.3233/978-1-61499-289-9-1024
10.1037/abn0000232
10.1016/j.sbspro.2013.06.605
10.1016/j.compeleceng.2017.07.022
10.1017/S0033291716000611
10.1109/ISM.2011.88
10.1093/bioinformatics/btw644
10.1177/014662168701100401
10.1007/s001270050098
10.1109/BigData.2013.6691740
10.1186/1471-2105-9-319
10.15439/2016F371
10.1162/neco.1991.3.3.440
10.1109/ICTAI.2014.131
10.2528/PIER13121310
10.1038/mp.2015.198
10.1002/0471660264
10.1016/j.suscom.2017.09.002
10.1109/TITB.2009.2037317
10.1007/s11042-016-3444-9
10.1038/mp.2016.201
10.1016/j.future.2017.08.042
10.1109/FSKD.2007.552
10.1023/A:1009715923555
10.1016/S0167-4048(02)00514-X
10.1037/pas0000201
10.1007/s007870050008
10.1007/978-3-319-32270-4_2
10.5772/1235
10.1016/j.sbspro.2013.06.602
10.1080/13102818.2014.949045
10.1016/S0034-4257(97)00049-7
10.1109/JBHI.2014.2360711
10.1155/S1110724303210032
10.1016/j.scs.2017.09.004
10.1176/appi.ajp-rj.2017.120105
10.1016/B978-0-12-420248-1.00001-5
10.1023/A:1010933404324
10.1109/TII.2017.2738842
10.1016/j.sbspro.2013.06.499
10.1007/978-1-4614-3223-4_6
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Journal of Medical Systems is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Journal of Medical Systems is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
NPM
3V.
7QF
7QO
7QQ
7RV
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
88C
88E
88I
8AL
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KB0
KR7
L7M
LK8
L~C
L~D
M0N
M0S
M0T
M1P
M2P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1007/s10916-018-0934-5
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Nursing & Allied Health Database
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Healthcare Administration Database
Medical Database
Science Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Aluminium Industry Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1573-689X
EndPage 12
ExternalDocumentID 29610979
10_1007_s10916_018_0934_5
Genre Journal Article
GroupedDBID ---
-53
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
04C
06C
06D
0R~
0VY
199
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
77K
78A
7RV
7X7
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
AQUVI
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M0N
M0T
M1P
M2P
M4Y
M7P
MA-
MK0
N2Q
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z81
Z82
Z83
Z87
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PPXIY
PQGLB
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
ABRTQ
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
PJZUB
PKEHL
PQEST
PQUKI
PRINS
Q9U
77I
7X8
PUEGO
ID FETCH-LOGICAL-c372t-638f5993d5f1196d867ba82558356c65ef95ff576de7783daea19bd63835153e3
IEDL.DBID BENPR
ISSN 0148-5598
1573-689X
IngestDate Fri Sep 05 11:19:43 EDT 2025
Fri Jul 25 19:07:24 EDT 2025
Thu Apr 03 07:05:25 EDT 2025
Thu Apr 24 23:09:31 EDT 2025
Thu Jul 10 08:07:59 EDT 2025
Fri Feb 21 02:37:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Predictive analytics
Behavioral healthcare
Mental health
Classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-638f5993d5f1196d867ba82558356c65ef95ff576de7783daea19bd63835153e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 29610979
PQID 2020702423
PQPubID 54050
PageCount 12
ParticipantIDs proquest_miscellaneous_2021324428
proquest_journals_2020702423
pubmed_primary_29610979
crossref_citationtrail_10_1007_s10916_018_0934_5
crossref_primary_10_1007_s10916_018_0934_5
springer_journals_10_1007_s10916_018_0934_5
PublicationCentury 2000
PublicationDate 2018-05-01
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Journal of medical systems
PublicationTitleAbbrev J Med Syst
PublicationTitleAlternate J Med Syst
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References MilliganGWCooperMCMethodology review: Clustering methodsAppl. Psychol. Meas.198711432935410.1177/014662168701100401
ZhangYWangSDongZClassification of Alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision treeProg. Electromagn. Res.201414417118410.2528/PIER13121310
JungYYoonYIMulti-level assessment model for wellness service based on human mental stress levelMultimedia Tools and Applications2017769113051131710.1007/s11042-016-3444-9
Joachims, T., Text categorization with support vector machines: learning with many relevant features. In: European conference on machine learning. Pp. 137–142. Berlin, Heidelberg: Springer, 1998.
Liu, B., et al. Scalable sentiment classification for big data analysis using naive bayes classifier. Big Data, 2013 I.E. International Conference on. IEEE, 2013.
Xu, J., et al. On the properties of mean opinion scores for quality of experience management. Multimedia (ISM), 2011 I.E. International Symposium on. IEEE, 2011.
GislasonPOBenediktssonJASveinssonJRRandom forests for land cover classificationPattern Recogn. Lett.200627429430010.1016/j.patrec.2005.08.011
Funk, M., Global burden of mental disorders and the need for a comprehensive, coordinated response from health and social sectors at the country level. http://apps.who.int/gb/ebwha/pdf_files/EB130/B130_9-en.pdf. Accessed 20 Feb 2016, 2016.
ChinavehMThe effectiveness of problem-solving on coping skills and psychological adjustmentProcedia. Soc. Behav. Sci.2013844910.1016/j.sbspro.2013.06.499
Luxton, D. D., (ed.) Artificial Intelligence in Behavioral and Mental Health Care. Amsterdam: Elsevier Inc., 2015.
RakeshGSuicide Prediction With Machine LearningAm. J. Psychiatry Residents' J.2017121151710.1176/appi.ajp-rj.2017.120105
ChengXiATC-mISF: a multi-label classifier for predicting the classes of anatomical therapeutic chemicalsBioinformatics2016333341346
HahnTNierenbergAAWhitfield-GabrieliSPredictive analytics in mental health: applications, guidelines, challenges and perspectivesMol. Psychiatry2017221374310.1038/mp.2016.201278431531:STN:280:DC%2BC2snlvF2rsA%3D%3D
QiuTQiaoRHanMSangaiahAKLeeIA Lifetime-Enhanced Data Collecting Scheme for the Internet of ThingsIEEE Commun. Mag.2017551113213710.1109/MCOM.2017.1700033
Ribeiro, M. T., Singh, S., and Guestrin, C., Why should i trust you?: Explaining the predictions of any classifier. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016.
Strauss, J., Peguero, A. M., and Hirst, G., Machine learning methods for clinical forms analysis in mental health. MedInfo. 192:1024, 2013.
GoodmanRRenfrewDMullickMPredicting type of psychiatric disorder from Strengths and Difficulties Questionnaire (SDQ) scores in child mental health clinics in London and DhakaEur. Child Adolesc. Psychiatry20009212913410.1007/s007870050008109260631:STN:280:DC%2BD3M%2FksVyjsQ%3D%3D
Qiu, T., Zhang, Y., Qiao, D., Zhang, X., Wymore, M. L., & Sangaiah, A. K., A robust time synchronization scheme for industrial internet of things. IEEE Trans. Ind. Inf., 2017. https://doi.org/10.1109/TII.2017.2738842.
BurgesCJCA tutorial on support vector machines for pattern recognitionData Min. Knowl. Disc.19982212116710.1023/A:1009715923555
BijlRVRavelliAVan ZessenGPrevalence of psychiatric disorder in the general population: results of The Netherlands Mental Health Survey and Incidence Study (NEMESIS)Soc. Psychiatry Psychiatr. Epidemiol.1998331258759510.1007/s00127005009898577911:STN:280:DyaK1M%2FnsFWiug%3D%3D
RibeiroJDLetter to the Editor: Suicide as a complex classification problem: machine learning and related techniques can advance suicide prediction-a reply to Roaldset (2016)Psychol. Med.2016469200910.1017/S0033291716000611270913091:STN:280:DC%2BC28bhtFaqtA%3D%3D
Sangaiah, A. K., Samuel, O. W., Li, X., Abdel-Basset, M., and Wang, H., Towards an efficient risk assessment in software projects–Fuzzy reinforcement paradigm. Comput. Electr. Eng., 2017. https://doi.org/10.1016/j.compeleceng.2017.07.022.
LeeYHandwritten digit recognition using k nearest-neighbor, radial-basis function, and backpropagation neural networksNeural Comput.19913344044910.1162/neco.1991.3.3.440
Kumar, P., Kumari, S., Sharma, V., Sangaiah, A. K., Wei, J., and Li, X., A Certificateless aggregate signature scheme for healthcare wireless sensor network. Sustain. Comput. Inf. Syst., 2017. https://doi.org/10.1016/j.suscom.2017.09.002.
AghaeiAKhayyamnekoueiZYousefyAGeneral health prediction based on life orientation, quality of life, life satisfaction and ageProcedia. Soc. Behav. Sci.20138456957310.1016/j.sbspro.2013.06.605
Wu, F., et al., A lightweight and robust two-factor authentication scheme for personalized healthcare systems using wireless medical sensor networks. Futur. Gener. Comput. Syst. 82:727–737, 2017.
SchaeferJDet al. "Enduring mental health: Prevalence and prediction."J. Abnorm. Psychol.2017126221210.1037/abn000023227929304
Kuncheva, L. I. Combining pattern classifiers: methods and algorithms. New York: John Wiley & Sons, 2004.
JungYGKangMSHeoJClustering performance comparison using K-means and expectation maximization algorithmsBiotechnol. Biotechnol. Equip.201428sup1S44S4810.1080/13102818.2014.949045260196104433949
BreimanLRandom forestsMach. Learn.200145153210.1023/A:1010933404324
KesslerRCTesting a machine-learning algorithm to predict the persistence and severity of major depressive disorder from baseline self-reportsMol. Psychiatry.20162110136610.1038/mp.2015.1982672856349356541:CAS:528:DC%2BC28XksFOnsw%3D%3D
KernMLet al. "The EPOCH Measure of Adolescent Well-Being."Psychol. Assess.201628558610.1037/pas000020126302102
Aborokbah, M. M., Al-Mutairi, S., Sangaiah, A. K., and Samuel, O. W., Adaptive context aware decision computing paradigm for intensive health care delivery in smart cities—A case analysis. Sustain. Cities Soc. 2017.
Smets, E., et al. Comparison of machine learning techniques for psychophysiological stress detection. International Symposium on Pervasive Computing Paradigms for Mental Health. Springer International Publishing, 2015.
Dziopa, T., Clustering Validity Indices Evaluation with Regard to Semantic Homogeneity. FedCSIS Position Papers 2016.
Jiang, L., et al. Survey of improving k-nearest-neighbor for classification." Fuzzy Systems and Knowledge Discovery, 2007. FSKD 2007. Fourth International Conference on. Vol. 1. IEEE, 2007.
LanataAComplexity index from a personalized wearable monitoring system for assessing remission in mental healthIEEE J. Biomed. Health Inform.201519113213910.1109/JBHI.2014.236071125291802
LiaoYRao VemuriVUse of k-nearest neighbor classifier for intrusion detectionComput Secur200221543944810.1016/S0167-4048(02)00514-X
StatnikovAWangLAliferisCFA comprehensive comparison of random forests and support vector machines for microarray-based cancer classificationBMC Bioinformatics20089131910.1186/1471-2105-9-3191864740124928811:CAS:528:DC%2BD1cXhtFKmsLfO
HajiyakhchaliAThe Effects of Creative Problem Solving Process Training on Academic Well-being of Shahid Chamran University StudentsProcedia. Soc. Behav. Sci.20138454955210.1016/j.sbspro.2013.06.602
DreiseitlSOhno-MachadoLLogistic regression and artificial neural network classification models: a methodology reviewJ. Biomed. Inform.200235535235910.1016/S1532-0464(03)00034-012968784
Miner, L., et al., Practical predictive analytics and decisioning systems for medicine: Informatics accuracy and cost-effectiveness for healthcare administration and delivery including medical research. Cambridge: Academic Press, 2014.
FleuryAVacherMNouryNSVM-based multimodal classification of activities of daily living in health smart homes: sensors, algorithms, and first experimental resultsIEEE Trans. Inf. Technol. Biomed.201014227428310.1109/TITB.2009.203731720007037
World Health OrganizationMental health: a call for action by world health ministers2001GenevaWorld Health Organization, Department of Mental Health and Substance Dependence
Wang, H., and Wang, J., An effective image representation method using kernel classification. Tools with Artificial Intelligence (ICTAI), 2014 I.E. 26th International Conference on. IEEE, 2014.
Drapeau, A., Marchand, A., and Beaulieu-Prévost, D. Mental illnesses-understanding, prediction and control. Epidemiol. Psychol. Distress, (2012). https://doi.org/10.5772/1235.
VlahouADiagnosis of ovarian cancer using decision tree classification of mass spectral dataBiomed. Res. Int.200320035308314
Aggarwal, C. C., and Zhai, C. X., A survey of text classification algorithms. Mining text data. Springer US, 163–222, 2012.
FriedlMABrodleyCEDecision tree classification of land cover from remotely sensed dataRemote Sens. Environ.199761339940910.1016/S0034-4257(97)00049-7
934_CR14
934_CR13
Y Jung (934_CR21) 2017; 76
934_CR11
A Vlahou (934_CR40) 2003; 2003
T Hahn (934_CR3) 2017; 22
JD Schaefer (934_CR10) 2017; 126
L Breiman (934_CR48) 2001; 45
934_CR16
934_CR15
934_CR7
934_CR6
A Aghaei (934_CR19) 2013; 84
M Chinaveh (934_CR17) 2013; 84
World Health Organization (934_CR5) 2001
934_CR22
934_CR20
GW Milligan (934_CR32) 1987; 11
A Hajiyakhchali (934_CR18) 2013; 84
934_CR29
A Statnikov (934_CR37) 2008; 9
934_CR28
A Fleury (934_CR27) 2010; 14
A Lanata (934_CR9) 2015; 19
YG Jung (934_CR30) 2014; 28
S Dreiseitl (934_CR45) 2002; 35
934_CR34
934_CR33
X Cheng (934_CR23) 2016; 33
JD Ribeiro (934_CR25) 2016; 46
Y Liao (934_CR43) 2002; 21
934_CR38
RC Kessler (934_CR26) 2016; 21
PO Gislason (934_CR49) 2006; 27
G Rakesh (934_CR24) 2017; 12
CJC Burges (934_CR35) 1998; 2
MA Friedl (934_CR39) 1997; 61
934_CR47
934_CR46
934_CR44
934_CR42
934_CR2
934_CR1
T Qiu (934_CR12) 2017; 55
R Goodman (934_CR8) 2000; 9
Y Lee (934_CR36) 1991; 3
ML Kern (934_CR31) 2016; 28
RV Bijl (934_CR4) 1998; 33
Y Zhang (934_CR41) 2014; 144
25291802 - IEEE J Biomed Health Inform. 2015 Jan;19(1):132-9
26302102 - Psychol Assess. 2016 May;28(5):586-97
20007037 - IEEE Trans Inf Technol Biomed. 2010 Mar;14(2):274-83
26019610 - Biotechnol Biotechnol Equip. 2014 Nov 14;28(sup1):S44-S48
10926063 - Eur Child Adolesc Psychiatry. 2000 Jun;9(2):129-34
9857791 - Soc Psychiatry Psychiatr Epidemiol. 1998 Dec;33(12):587-95
27091309 - Psychol Med. 2016 Jul;46(9):2009-10
23920798 - Stud Health Technol Inform. 2013;192:1024
14688417 - J Biomed Biotechnol. 2003;2003(5):308-314
18647401 - BMC Bioinformatics. 2008 Jul 22;9:319
26728563 - Mol Psychiatry. 2016 Oct;21(10 ):1366-71
28172617 - Bioinformatics. 2017 Feb 1;33(3):341-346
12968784 - J Biomed Inform. 2002 Oct-Dec;35(5-6):352-9
27843153 - Mol Psychiatry. 2017 Jan;22(1):37-43
27929304 - J Abnorm Psychol. 2017 Feb;126(2):212-224
References_xml – reference: Xu, J., et al. On the properties of mean opinion scores for quality of experience management. Multimedia (ISM), 2011 I.E. International Symposium on. IEEE, 2011.
– reference: Dziopa, T., Clustering Validity Indices Evaluation with Regard to Semantic Homogeneity. FedCSIS Position Papers 2016.
– reference: Smets, E., et al. Comparison of machine learning techniques for psychophysiological stress detection. International Symposium on Pervasive Computing Paradigms for Mental Health. Springer International Publishing, 2015.
– reference: Aborokbah, M. M., Al-Mutairi, S., Sangaiah, A. K., and Samuel, O. W., Adaptive context aware decision computing paradigm for intensive health care delivery in smart cities—A case analysis. Sustain. Cities Soc. 2017.
– reference: Ribeiro, M. T., Singh, S., and Guestrin, C., Why should i trust you?: Explaining the predictions of any classifier. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016.
– reference: Funk, M., Global burden of mental disorders and the need for a comprehensive, coordinated response from health and social sectors at the country level. http://apps.who.int/gb/ebwha/pdf_files/EB130/B130_9-en.pdf. Accessed 20 Feb 2016, 2016.
– reference: Kuncheva, L. I. Combining pattern classifiers: methods and algorithms. New York: John Wiley & Sons, 2004.
– reference: DreiseitlSOhno-MachadoLLogistic regression and artificial neural network classification models: a methodology reviewJ. Biomed. Inform.200235535235910.1016/S1532-0464(03)00034-012968784
– reference: LiaoYRao VemuriVUse of k-nearest neighbor classifier for intrusion detectionComput Secur200221543944810.1016/S0167-4048(02)00514-X
– reference: Joachims, T., Text categorization with support vector machines: learning with many relevant features. In: European conference on machine learning. Pp. 137–142. Berlin, Heidelberg: Springer, 1998.
– reference: Luxton, D. D., (ed.) Artificial Intelligence in Behavioral and Mental Health Care. Amsterdam: Elsevier Inc., 2015.
– reference: BurgesCJCA tutorial on support vector machines for pattern recognitionData Min. Knowl. Disc.19982212116710.1023/A:1009715923555
– reference: LanataAComplexity index from a personalized wearable monitoring system for assessing remission in mental healthIEEE J. Biomed. Health Inform.201519113213910.1109/JBHI.2014.236071125291802
– reference: Jiang, L., et al. Survey of improving k-nearest-neighbor for classification." Fuzzy Systems and Knowledge Discovery, 2007. FSKD 2007. Fourth International Conference on. Vol. 1. IEEE, 2007.
– reference: HajiyakhchaliAThe Effects of Creative Problem Solving Process Training on Academic Well-being of Shahid Chamran University StudentsProcedia. Soc. Behav. Sci.20138454955210.1016/j.sbspro.2013.06.602
– reference: FleuryAVacherMNouryNSVM-based multimodal classification of activities of daily living in health smart homes: sensors, algorithms, and first experimental resultsIEEE Trans. Inf. Technol. Biomed.201014227428310.1109/TITB.2009.203731720007037
– reference: MilliganGWCooperMCMethodology review: Clustering methodsAppl. Psychol. Meas.198711432935410.1177/014662168701100401
– reference: Wu, F., et al., A lightweight and robust two-factor authentication scheme for personalized healthcare systems using wireless medical sensor networks. Futur. Gener. Comput. Syst. 82:727–737, 2017.
– reference: StatnikovAWangLAliferisCFA comprehensive comparison of random forests and support vector machines for microarray-based cancer classificationBMC Bioinformatics20089131910.1186/1471-2105-9-3191864740124928811:CAS:528:DC%2BD1cXhtFKmsLfO
– reference: Sangaiah, A. K., Samuel, O. W., Li, X., Abdel-Basset, M., and Wang, H., Towards an efficient risk assessment in software projects–Fuzzy reinforcement paradigm. Comput. Electr. Eng., 2017. https://doi.org/10.1016/j.compeleceng.2017.07.022.
– reference: RakeshGSuicide Prediction With Machine LearningAm. J. Psychiatry Residents' J.2017121151710.1176/appi.ajp-rj.2017.120105
– reference: FriedlMABrodleyCEDecision tree classification of land cover from remotely sensed dataRemote Sens. Environ.199761339940910.1016/S0034-4257(97)00049-7
– reference: AghaeiAKhayyamnekoueiZYousefyAGeneral health prediction based on life orientation, quality of life, life satisfaction and ageProcedia. Soc. Behav. Sci.20138456957310.1016/j.sbspro.2013.06.605
– reference: JungYYoonYIMulti-level assessment model for wellness service based on human mental stress levelMultimedia Tools and Applications2017769113051131710.1007/s11042-016-3444-9
– reference: Liu, B., et al. Scalable sentiment classification for big data analysis using naive bayes classifier. Big Data, 2013 I.E. International Conference on. IEEE, 2013.
– reference: RibeiroJDLetter to the Editor: Suicide as a complex classification problem: machine learning and related techniques can advance suicide prediction-a reply to Roaldset (2016)Psychol. Med.2016469200910.1017/S0033291716000611270913091:STN:280:DC%2BC28bhtFaqtA%3D%3D
– reference: GoodmanRRenfrewDMullickMPredicting type of psychiatric disorder from Strengths and Difficulties Questionnaire (SDQ) scores in child mental health clinics in London and DhakaEur. Child Adolesc. Psychiatry20009212913410.1007/s007870050008109260631:STN:280:DC%2BD3M%2FksVyjsQ%3D%3D
– reference: JungYGKangMSHeoJClustering performance comparison using K-means and expectation maximization algorithmsBiotechnol. Biotechnol. Equip.201428sup1S44S4810.1080/13102818.2014.949045260196104433949
– reference: Drapeau, A., Marchand, A., and Beaulieu-Prévost, D. Mental illnesses-understanding, prediction and control. Epidemiol. Psychol. Distress, (2012). https://doi.org/10.5772/1235.
– reference: ChinavehMThe effectiveness of problem-solving on coping skills and psychological adjustmentProcedia. Soc. Behav. Sci.2013844910.1016/j.sbspro.2013.06.499
– reference: KernMLet al. "The EPOCH Measure of Adolescent Well-Being."Psychol. Assess.201628558610.1037/pas000020126302102
– reference: ChengXiATC-mISF: a multi-label classifier for predicting the classes of anatomical therapeutic chemicalsBioinformatics2016333341346
– reference: LeeYHandwritten digit recognition using k nearest-neighbor, radial-basis function, and backpropagation neural networksNeural Comput.19913344044910.1162/neco.1991.3.3.440
– reference: Aggarwal, C. C., and Zhai, C. X., A survey of text classification algorithms. Mining text data. Springer US, 163–222, 2012.
– reference: World Health OrganizationMental health: a call for action by world health ministers2001GenevaWorld Health Organization, Department of Mental Health and Substance Dependence
– reference: GislasonPOBenediktssonJASveinssonJRRandom forests for land cover classificationPattern Recogn. Lett.200627429430010.1016/j.patrec.2005.08.011
– reference: Qiu, T., Zhang, Y., Qiao, D., Zhang, X., Wymore, M. L., & Sangaiah, A. K., A robust time synchronization scheme for industrial internet of things. IEEE Trans. Ind. Inf., 2017. https://doi.org/10.1109/TII.2017.2738842.
– reference: BreimanLRandom forestsMach. Learn.200145153210.1023/A:1010933404324
– reference: Strauss, J., Peguero, A. M., and Hirst, G., Machine learning methods for clinical forms analysis in mental health. MedInfo. 192:1024, 2013.
– reference: Wang, H., and Wang, J., An effective image representation method using kernel classification. Tools with Artificial Intelligence (ICTAI), 2014 I.E. 26th International Conference on. IEEE, 2014.
– reference: VlahouADiagnosis of ovarian cancer using decision tree classification of mass spectral dataBiomed. Res. Int.200320035308314
– reference: Miner, L., et al., Practical predictive analytics and decisioning systems for medicine: Informatics accuracy and cost-effectiveness for healthcare administration and delivery including medical research. Cambridge: Academic Press, 2014.
– reference: KesslerRCTesting a machine-learning algorithm to predict the persistence and severity of major depressive disorder from baseline self-reportsMol. Psychiatry.20162110136610.1038/mp.2015.1982672856349356541:CAS:528:DC%2BC28XksFOnsw%3D%3D
– reference: Kumar, P., Kumari, S., Sharma, V., Sangaiah, A. K., Wei, J., and Li, X., A Certificateless aggregate signature scheme for healthcare wireless sensor network. Sustain. Comput. Inf. Syst., 2017. https://doi.org/10.1016/j.suscom.2017.09.002.
– reference: HahnTNierenbergAAWhitfield-GabrieliSPredictive analytics in mental health: applications, guidelines, challenges and perspectivesMol. Psychiatry2017221374310.1038/mp.2016.201278431531:STN:280:DC%2BC2snlvF2rsA%3D%3D
– reference: ZhangYWangSDongZClassification of Alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision treeProg. Electromagn. Res.201414417118410.2528/PIER13121310
– reference: BijlRVRavelliAVan ZessenGPrevalence of psychiatric disorder in the general population: results of The Netherlands Mental Health Survey and Incidence Study (NEMESIS)Soc. Psychiatry Psychiatr. Epidemiol.1998331258759510.1007/s00127005009898577911:STN:280:DyaK1M%2FnsFWiug%3D%3D
– reference: SchaeferJDet al. "Enduring mental health: Prevalence and prediction."J. Abnorm. Psychol.2017126221210.1037/abn000023227929304
– reference: QiuTQiaoRHanMSangaiahAKLeeIA Lifetime-Enhanced Data Collecting Scheme for the Internet of ThingsIEEE Commun. Mag.2017551113213710.1109/MCOM.2017.1700033
– volume: 55
  start-page: 132
  issue: 11
  year: 2017
  ident: 934_CR12
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2017.1700033
– volume: 35
  start-page: 352
  issue: 5
  year: 2002
  ident: 934_CR45
  publication-title: J. Biomed. Inform.
  doi: 10.1016/S1532-0464(03)00034-0
– ident: 934_CR38
  doi: 10.1007/BFb0026683
– ident: 934_CR46
  doi: 10.1145/2939672.2939778
– volume: 27
  start-page: 294
  issue: 4
  year: 2006
  ident: 934_CR49
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2005.08.011
– ident: 934_CR20
  doi: 10.3233/978-1-61499-289-9-1024
– volume: 126
  start-page: 212
  issue: 2
  year: 2017
  ident: 934_CR10
  publication-title: J. Abnorm. Psychol.
  doi: 10.1037/abn0000232
– volume: 84
  start-page: 569
  year: 2013
  ident: 934_CR19
  publication-title: Procedia. Soc. Behav. Sci.
  doi: 10.1016/j.sbspro.2013.06.605
– ident: 934_CR14
  doi: 10.1016/j.compeleceng.2017.07.022
– volume: 46
  start-page: 2009
  issue: 9
  year: 2016
  ident: 934_CR25
  publication-title: Psychol. Med.
  doi: 10.1017/S0033291716000611
– ident: 934_CR29
  doi: 10.1109/ISM.2011.88
– volume: 33
  start-page: 341
  issue: 3
  year: 2016
  ident: 934_CR23
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw644
– volume: 11
  start-page: 329
  issue: 4
  year: 1987
  ident: 934_CR32
  publication-title: Appl. Psychol. Meas.
  doi: 10.1177/014662168701100401
– volume: 33
  start-page: 587
  issue: 12
  year: 1998
  ident: 934_CR4
  publication-title: Soc. Psychiatry Psychiatr. Epidemiol.
  doi: 10.1007/s001270050098
– ident: 934_CR44
  doi: 10.1109/BigData.2013.6691740
– volume: 9
  start-page: 319
  issue: 1
  year: 2008
  ident: 934_CR37
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-319
– ident: 934_CR33
  doi: 10.15439/2016F371
– volume: 3
  start-page: 440
  issue: 3
  year: 1991
  ident: 934_CR36
  publication-title: Neural Comput.
  doi: 10.1162/neco.1991.3.3.440
– ident: 934_CR22
  doi: 10.1109/ICTAI.2014.131
– volume: 144
  start-page: 171
  year: 2014
  ident: 934_CR41
  publication-title: Prog. Electromagn. Res.
  doi: 10.2528/PIER13121310
– volume: 21
  start-page: 1366
  issue: 10
  year: 2016
  ident: 934_CR26
  publication-title: Mol. Psychiatry.
  doi: 10.1038/mp.2015.198
– ident: 934_CR47
  doi: 10.1002/0471660264
– ident: 934_CR13
  doi: 10.1016/j.suscom.2017.09.002
– volume: 14
  start-page: 274
  issue: 2
  year: 2010
  ident: 934_CR27
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2009.2037317
– volume: 76
  start-page: 11305
  issue: 9
  year: 2017
  ident: 934_CR21
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-016-3444-9
– volume: 22
  start-page: 37
  issue: 1
  year: 2017
  ident: 934_CR3
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2016.201
– ident: 934_CR15
  doi: 10.1016/j.future.2017.08.042
– ident: 934_CR42
  doi: 10.1109/FSKD.2007.552
– volume: 2
  start-page: 121
  issue: 2
  year: 1998
  ident: 934_CR35
  publication-title: Data Min. Knowl. Disc.
  doi: 10.1023/A:1009715923555
– volume: 21
  start-page: 439
  issue: 5
  year: 2002
  ident: 934_CR43
  publication-title: Comput Secur
  doi: 10.1016/S0167-4048(02)00514-X
– volume: 28
  start-page: 586
  issue: 5
  year: 2016
  ident: 934_CR31
  publication-title: Psychol. Assess.
  doi: 10.1037/pas0000201
– volume: 9
  start-page: 129
  issue: 2
  year: 2000
  ident: 934_CR8
  publication-title: Eur. Child Adolesc. Psychiatry
  doi: 10.1007/s007870050008
– ident: 934_CR28
  doi: 10.1007/978-3-319-32270-4_2
– ident: 934_CR7
  doi: 10.5772/1235
– volume: 84
  start-page: 549
  year: 2013
  ident: 934_CR18
  publication-title: Procedia. Soc. Behav. Sci.
  doi: 10.1016/j.sbspro.2013.06.602
– volume: 28
  start-page: S44
  issue: sup1
  year: 2014
  ident: 934_CR30
  publication-title: Biotechnol. Biotechnol. Equip.
  doi: 10.1080/13102818.2014.949045
– volume: 61
  start-page: 399
  issue: 3
  year: 1997
  ident: 934_CR39
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(97)00049-7
– volume: 19
  start-page: 132
  issue: 1
  year: 2015
  ident: 934_CR9
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2014.2360711
– ident: 934_CR1
– volume: 2003
  start-page: 308
  issue: 5
  year: 2003
  ident: 934_CR40
  publication-title: Biomed. Res. Int.
  doi: 10.1155/S1110724303210032
– ident: 934_CR16
  doi: 10.1016/j.scs.2017.09.004
– volume: 12
  start-page: 15
  issue: 1
  year: 2017
  ident: 934_CR24
  publication-title: Am. J. Psychiatry Residents' J.
  doi: 10.1176/appi.ajp-rj.2017.120105
– ident: 934_CR2
  doi: 10.1016/B978-0-12-420248-1.00001-5
– ident: 934_CR6
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 934_CR48
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– ident: 934_CR11
  doi: 10.1109/TII.2017.2738842
– volume: 84
  start-page: 4
  year: 2013
  ident: 934_CR17
  publication-title: Procedia. Soc. Behav. Sci.
  doi: 10.1016/j.sbspro.2013.06.499
– volume-title: Mental health: a call for action by world health ministers
  year: 2001
  ident: 934_CR5
– ident: 934_CR34
  doi: 10.1007/978-1-4614-3223-4_6
– reference: 9857791 - Soc Psychiatry Psychiatr Epidemiol. 1998 Dec;33(12):587-95
– reference: 27929304 - J Abnorm Psychol. 2017 Feb;126(2):212-224
– reference: 12968784 - J Biomed Inform. 2002 Oct-Dec;35(5-6):352-9
– reference: 10926063 - Eur Child Adolesc Psychiatry. 2000 Jun;9(2):129-34
– reference: 18647401 - BMC Bioinformatics. 2008 Jul 22;9:319
– reference: 27091309 - Psychol Med. 2016 Jul;46(9):2009-10
– reference: 27843153 - Mol Psychiatry. 2017 Jan;22(1):37-43
– reference: 23920798 - Stud Health Technol Inform. 2013;192:1024
– reference: 20007037 - IEEE Trans Inf Technol Biomed. 2010 Mar;14(2):274-83
– reference: 26019610 - Biotechnol Biotechnol Equip. 2014 Nov 14;28(sup1):S44-S48
– reference: 25291802 - IEEE J Biomed Health Inform. 2015 Jan;19(1):132-9
– reference: 26302102 - Psychol Assess. 2016 May;28(5):586-97
– reference: 14688417 - J Biomed Biotechnol. 2003;2003(5):308-314
– reference: 28172617 - Bioinformatics. 2017 Feb 1;33(3):341-346
– reference: 26728563 - Mol Psychiatry. 2016 Oct;21(10 ):1366-71
SSID ssj0009667
Score 2.4463236
Snippet Mental health is an indicator of emotional, psychological and social well-being of an individual. It determines how an individual thinks, feels and handle...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 88
SubjectTerms Adolescents
Algorithms
Anxiety
Artificial intelligence
Bayesian analysis
Children
Classifiers
Clustering
Colleges & universities
Convergence of Deep Machine Learning and Nature Inspired Computing Paradigms for Medical Informatics
Decision trees
Drug abuse
Drug addiction
Education & Training
Health Informatics
Health problems
Health Sciences
K-nearest neighbors algorithm
Labels
Learning algorithms
Machine learning
Medicine
Medicine & Public Health
Mental depression
Mental disorders
Mental health
Mental health care
Obsessive compulsive disorder
Occupational health
Predictive analytics
Regression analysis
Social interactions
Statistics for Life Sciences
Students
Support vector machines
Target groups
Well being
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60gggiWl_RKit4UgJNNpvHsYq1CPVkobew2UcVaipt-v-dTTapUhU8Z7IbZnZ2vsm8AK6ZQKMpY-n6yoww4yx24yyIXaGlQIOg_ZibAufhczgYBU9jNrZ13Is6270OSZY39ZdiN4Qy6PqacD0NXLYJWwxdd5PHN_J7q067YVjVSOOOpvt4Hcr8aYnvxmgNYa5FR0uj09-HPYsWSa8S7wFsqLwN20MbD2_DbvXXjVTFRIfweNdU3RMz5czUmhOEpaRq1WPpiEl2n5BhmUepiG2xOiG96WQ2fyte3xdHMOo_vNwPXDsqwRU08gsXtUgzhBqSaQ91SsZhlHF0_hgCrFCETOmEaY2-hVRRFFPJFfeSTOJrFAENVfQYWvksV6dAeMAzwRHJKY8GXZ5lGQsTxrtUBZoK33OgW_MsFbaPuBlnMU1XHZANm1Nkc2rYnDIHbppXPqomGn8Rd2pBpFafFinKGe8mg_0cuGoeoyaY8AbP1WxZ0qBrHaA_5cBJJcBmNz8xbeWjxIHbWqKrxX_9lLN_UZ_Djl8eLZMN2YFWMV-qC0QsRXZZntBPaTDefg
  priority: 102
  providerName: Springer Nature
Title Behavioral Modeling for Mental Health using Machine Learning Algorithms
URI https://link.springer.com/article/10.1007/s10916-018-0934-5
https://www.ncbi.nlm.nih.gov/pubmed/29610979
https://www.proquest.com/docview/2020702423
https://www.proquest.com/docview/2021324428
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-WBMZgjDb7qLc0aLCnDUNiWbb8NOISp2wkjLFA9mRkSc4e2iRbnP9_d7acUEL7Yj9IsmTdSfc7ne4O4JPQKDSNNH5gKYWZEtKXRSh9XRqNAqEMpCIH5_kiul2G31Zi5Q7c9u5aZbsn1hu12Wo6IyclHbmTpP_X3V-fskaRddWl0OhAD7dgKbrQS6eLHz9PYXejqHGYxu4pFHlr12yc5xAaoSpN5n8e-uKhZDqDm2em0loCZRfwykFHNmlofQnP7KYPz-fOON6Hl80RHGs8i17DLD264DNKeUaO5wwxKmvi9rh6jG6-r9m8vlRpmYu3umaTuzX-fvXnfv8Gltn0182t7_Im-JrHQeXjkioF4g4jyjEuMCOjuFCoCQpEW5GOhC0TUZaoaBgbx5IbZdU4KQw244huuOVvobvZbuwVMBWqQiuEdXbMw5EqikJEiVAjbsOS62Dswaids1y7oOKU2-IuP4VDpmnOcZpzmuZcePD52GTXRNR4qvKgJUTuFtc-P7GCBx-PxbgsyNahNnZ7qOugnh2icuXBu4aAx96ChGLMx4kHX1qKnj7-6FDePz2UD_AiqHmJ7kIOoFv9O9hrxCtVMYROvIrxKbPZEHqTLE0X9J79_j4dOobF0mUw-Q-2mej1
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZS8QwEB48QAURb-sZQV-Uwm7T9HgQ8V6PXUQUfKtpkq4P6666K-Kf8jc607S7iOibz03TdGaS-SZzAWwJhUpTR9r1DLUwkyJyo9SPXJVphQoh8yJJCc71RlC78y_uxf0QfJa5MBRWWZ6J-UGtO4ruyMlIR-kk7b___OJS1yjyrpYtNKxYXJqPdzTZunvnx8jfbc87Pbk9qrlFVwFX8dDruShwmUCtrEVWRfHTURCmEu0kgVgkUIEwWSyyDGG4NmEYcS2NrMapxtc46n5uOM47DKMIM2LcRaOHJ43rm0GZ3yCwCdr4u1T6vPSj2mQ9hGJoulO4Afdd8V0T_oC3P1yzucY7nYapAqqyAytbMzBk2rMwVi-c8bMwaa_8mM1kmoOzw37KP6MWa5TozhATM1snqBjHKNK-yep5EKdhRX3XJjtoNZHcvcen7jzc_QtFF2Ck3WmbJWDSl6mSCCNNlfsVmaapCGIhK9z4GVde1YFKSbNEFUXMqZdGKxmUXyYyJ0jmhMicCAd2-q882woefw1eLRmRFJu5mwxEz4HN_mPchuRbkW3TecvHoF3vozHnwKJlYP9rXkw17cPYgd2So4PJf13K8t9L2YDx2m39Krk6b1yuwISXyxXFYa7CSO_1zawhVuql64WAMnj47z3xBYSXHuk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZT9wwEB7RRUKVqoqj0JTLSPBSFLEbxzkeEOJazl0hBBJvwfGxfaC7tLsI9a_11zETO7uqUHnjOY7jzIw933gugE2hUGnqTIeRoRZmUmRhVsZZqKxWqBBslElKcO50k9Pb-PxO3E3B3zoXhsIq6zOxOqj1QNEdORnpKJ2k_XesD4u4OmrvPf4KqYMUeVrrdhpORC7Mn2c034a7Z0fI660oah_fHJ6GvsNAqHgajUIUPitQQ2thWyiKOkvSUqLNJBCXJCoRxubCWoTk2qRpxrU0spWXGl_jiAO44TjvB5hOUStmDZg-OO5eXU9K_iaJS9bGX6cy6LVP1SXuISxDM55CD3gcin-14iuo-8pNW2m_9ix89rCV7Ts5m4Mp05-HmY53zM_DJ3f9x1xW0wKcHIzT_xm1W6Okd4b4mLmaQX4co6j7HutUAZ2G-VqvPbb_0ENyj378HH6B23eh6CI0-oO--QpMxrJUEiGlafG4KcuyFEkuZJOb2HIVtQJo1jQrlC9oTn01HopJKWYic4FkLojMhQjg-_iVR1fN463BKzUjCr-xh8VEDAPYGD_GLUl-Ftk3g6dqDNr4MRp2ASw5Bo6_FuVU3z7NA9iuOTqZ_L9L-fb2UtZhBvdCcXnWvViGj1ElVhSSuQKN0e8ns4qwaVSueflkcP_eW-IFCQkjFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Behavioral+Modeling+for+Mental+Health+using+Machine+Learning+Algorithms&rft.jtitle=Journal+of+medical+systems&rft.au=Srividya%2C+M&rft.au=Mohanavalli%2C+S&rft.au=Bhalaji%2C+N&rft.date=2018-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0148-5598&rft.eissn=1573-689X&rft.volume=42&rft.issue=5&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1007%2Fs10916-018-0934-5&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-5598&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-5598&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-5598&client=summon