Analysis of the proficiency of fully connected neural networks in the process of classifying digital images. Benchmark of different classification algorithms on high-level image features from convolutional layers
•Research that investigates CNN architectures for classification task.•Two steps method that combines CNN with other ML classifiers.•Large experimental phase considering different architectures and datasets.•Results used to provide guidelines on the choice of the best classifiers.•CNNs can improve t...
Saved in:
Published in | Expert systems with applications Vol. 135; pp. 12 - 38 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
30.11.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0957-4174 1873-6793 |
DOI | 10.1016/j.eswa.2019.05.058 |
Cover
Loading…
Abstract | •Research that investigates CNN architectures for classification task.•Two steps method that combines CNN with other ML classifiers.•Large experimental phase considering different architectures and datasets.•Results used to provide guidelines on the choice of the best classifiers.•CNNs can improve their performance by using the proposed method.
Over the course of research on convolutional neural network (CNN) architectures, few modifications have been made to the fully connected layers at the ends of the networks. In image classification, these neural network layers are responsible for creating the final classification results based on the output of the last layer of high-level image filters. Before the breakthrough of CNNs, these image filters were handcrafted, and any classification algorithm could be applied to their output. Because neural networks use gradient descent to learn their weights subject to the classification error, fully connected neural networks are a natural choice for CNNs. But a question arises: Are fully connected layers in a CNN superior to other classification algorithms? In this work, we benchmark different classification algorithms on CNNs by removing the existing fully connected classifiers. Thus, the flattened output from the last convolutional layer is used as the input for multiple benchmark classification algorithms. To ensure the generalisability of the findings, numerous CNNs are trained on CIFAR-10, CIFAR-100, and a subset of ILSVRC-2012 with 100 classes. The experimental results reveal that multiple classification algorithms, namely logistic regression, support vector machines, eXtreme gradient boosting, random forests and K-nearest neighbours, are capable of outperforming fully connected neural networks. Furthermore, the superiority of a particular classification algorithm depends on the underlying CNN structure and the nature of the classification problem. For classification problems with many classes or for CNNs that produce many high-level image features, other classification algorithms are likely to perform better than fully connected neural networks. It follows that it is advisable to benchmark multiple classification algorithms on high-level image features produced from the CNN layers to improve classification performance. |
---|---|
AbstractList | Over the course of research on convolutional neural network (CNN) architectures, few modifications have been made to the fully connected layers at the ends of the networks. In image classification, these neural network layers are responsible for creating the final classification results based on the output of the last layer of high-level image filters. Before the breakthrough of CNNs, these image filters were handcrafted, and any classification algorithm could be applied to their output. Because neural networks use gradient descent to learn their weights subject to the classification error, fully connected neural networks are a natural choice for CNNs. But a question arises: Are fully connected layers in a CNN superior to other classification algorithms? In this work, we benchmark different classification algorithms on CNNs by removing the existing fully connected classifiers. Thus, the flattened output from the last convolutional layer is used as the input for multiple benchmark classification algorithms. To ensure the generalisability of the findings, numerous CNNs are trained on CIFAR-10, CIFAR-100, and a subset of ILSVRC-2012 with 100 classes. The experimental results reveal that multiple classification algorithms, namely logistic regression, support vector machines, eXtreme gradient boosting, random forests and K-nearest neighbours, are capable of outperforming fully connected neural networks. Furthermore, the superiority of a particular classification algorithm depends on the underlying CNN structure and the nature of the classification problem. For classification problems with many classes or for CNNs that produce many high-level image features, other classification algorithms are likely to perform better than fully connected neural networks. It follows that it is advisable to benchmark multiple classification algorithms on high-level image features produced from the CNN layers to improve classification performance. •Research that investigates CNN architectures for classification task.•Two steps method that combines CNN with other ML classifiers.•Large experimental phase considering different architectures and datasets.•Results used to provide guidelines on the choice of the best classifiers.•CNNs can improve their performance by using the proposed method. Over the course of research on convolutional neural network (CNN) architectures, few modifications have been made to the fully connected layers at the ends of the networks. In image classification, these neural network layers are responsible for creating the final classification results based on the output of the last layer of high-level image filters. Before the breakthrough of CNNs, these image filters were handcrafted, and any classification algorithm could be applied to their output. Because neural networks use gradient descent to learn their weights subject to the classification error, fully connected neural networks are a natural choice for CNNs. But a question arises: Are fully connected layers in a CNN superior to other classification algorithms? In this work, we benchmark different classification algorithms on CNNs by removing the existing fully connected classifiers. Thus, the flattened output from the last convolutional layer is used as the input for multiple benchmark classification algorithms. To ensure the generalisability of the findings, numerous CNNs are trained on CIFAR-10, CIFAR-100, and a subset of ILSVRC-2012 with 100 classes. The experimental results reveal that multiple classification algorithms, namely logistic regression, support vector machines, eXtreme gradient boosting, random forests and K-nearest neighbours, are capable of outperforming fully connected neural networks. Furthermore, the superiority of a particular classification algorithm depends on the underlying CNN structure and the nature of the classification problem. For classification problems with many classes or for CNNs that produce many high-level image features, other classification algorithms are likely to perform better than fully connected neural networks. It follows that it is advisable to benchmark multiple classification algorithms on high-level image features produced from the CNN layers to improve classification performance. |
Author | Janke, Jonathan Castelli, Mauro Popovič, Aleš |
Author_xml | – sequence: 1 givenname: Jonathan surname: Janke fullname: Janke, Jonathan email: jonathan.janke@ghcs.de organization: Nova Information Management School (NOVA IMS), Universidade Nova de Lisboa. Lisboa, 1070-312, Portugal – sequence: 2 givenname: Mauro orcidid: 0000-0002-8793-1451 surname: Castelli fullname: Castelli, Mauro email: mcastelli@novaims.unl.pt organization: Nova Information Management School (NOVA IMS), Universidade Nova de Lisboa. Lisboa, 1070-312, Portugal – sequence: 3 givenname: Aleš orcidid: 0000-0002-6924-6119 surname: Popovič fullname: Popovič, Aleš email: ales.popovic@ef.uni-lj.si organization: Nova Information Management School (NOVA IMS), Universidade Nova de Lisboa. Lisboa, 1070-312, Portugal |
BookMark | eNp9kc9q3DAQxkVJoZu0L9CToGe7I9tr2dBLGvoPAr20ZyHLI1sbrZRK8ga_Zx-ocja59BAYGBDf79PMfJfkwnmHhLxnUDJg7cdDifFBlhWwvoR9ru4V2bGO10XL-_qC7KDf86JhvHlDLmM8ADAOwHfk77WTdo0mUq9pmpHeB6-NMujUuj3pxdqVKu8cqoQjdbgEaXNLDz7cRWrcM6UwPpooK2M0ejVuoqOZTMpyc5QTxpJ-zrbzUYa7TTgarTGgS8-IUTIZ76i0kw8mzcfs5-hsprmweMInG6pRpiVgpDr44zbaydtlA_NHVq4Y4lvyWksb8d1TvyK_v375dfO9uP357cfN9W2hal6loq05dqpu2kHuJdYwtFDDyMa-5diMnGtkPQxaqoEjU1r3vJMgGxwY5wisqq_Ih7NvXv_PgjGJg19CniOKquqgyTdvuqzqzioVfIwBtVD5KNvAKUhjBQOxZSgOYstQbBkK2Ofa0Oo_9D7kI4T1ZejTGcK8-slgEPExTxxNyCGK0ZuX8H_Y8b9S |
CitedBy_id | crossref_primary_10_1088_1361_6501_acf335 crossref_primary_10_1007_s10103_024_04078_z crossref_primary_10_1109_ACCESS_2023_3349291 crossref_primary_10_1007_s00170_024_14092_8 crossref_primary_10_1155_2022_8640115 crossref_primary_10_3390_app11062535 crossref_primary_10_1038_s41598_025_93159_2 crossref_primary_10_3390_agriculture13020480 crossref_primary_10_1007_s00500_021_06073_w crossref_primary_10_3390_ijms22157911 crossref_primary_10_1016_j_eswa_2020_113591 crossref_primary_10_1016_j_eswa_2019_112843 crossref_primary_10_1515_jisys_2024_0042 crossref_primary_10_1016_j_compag_2023_108146 crossref_primary_10_1109_ACCESS_2021_3054436 crossref_primary_10_3390_app10010338 crossref_primary_10_3390_electronics8101154 crossref_primary_10_1016_j_epsr_2022_108148 |
Cites_doi | 10.13052/jcsm2245-1439.825 10.1109/TGRS.2016.2584107 10.1007/s13042-017-0734-0 10.1080/2150704X.2017.1331053 10.5194/isprs-archives-XLII-3-277-2018 10.1109/JSTARS.2014.2329330 10.1109/TGRS.2018.2837142 10.1109/TIP.2018.2799324 10.1109/4235.585893 10.1109/5.726791 10.1109/TGRS.2015.2478379 10.1007/s11263-015-0816-y 10.5121/ijcsit.2018.10206 10.1109/TGRS.2017.2698503 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Nov 30, 2019 |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Nov 30, 2019 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.eswa.2019.05.058 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-6793 |
EndPage | 38 |
ExternalDocumentID | 10_1016_j_eswa_2019_05_058 S0957417419303938 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW SSH WUQ XPP ZMT 7SC 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c372t-637e8c346ba5ae30b6030d1d967e4d77fe190bfacb7e1cff978a0a4eb177e0123 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Fri Jul 25 03:04:15 EDT 2025 Tue Jul 01 04:05:46 EDT 2025 Thu Apr 24 23:10:34 EDT 2025 Fri Feb 23 02:24:25 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Convolutional neural networks Computer vision Image classification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-637e8c346ba5ae30b6030d1d967e4d77fe190bfacb7e1cff978a0a4eb177e0123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8793-1451 0000-0002-6924-6119 |
OpenAccessLink | http://hdl.handle.net/10362/95126 |
PQID | 2280495748 |
PQPubID | 2045477 |
PageCount | 27 |
ParticipantIDs | proquest_journals_2280495748 crossref_citationtrail_10_1016_j_eswa_2019_05_058 crossref_primary_10_1016_j_eswa_2019_05_058 elsevier_sciencedirect_doi_10_1016_j_eswa_2019_05_058 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-30 |
PublicationDateYYYYMMDD | 2019-11-30 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Expert systems with applications |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Chen, Lin, Zhao, Wang, Gu (bib0007) 2014; 7 Simonyan, Zisserman (bib0037) 2014 Bodapati, Veeranjaneyulu (bib0004) 2019; 8 Szegedy, Ioffe, Vanhoucke, Alemi (bib0043) 2017 Tang (bib0047) 2013 Hertel, Barth, Käster, Martinetz (bib0015) 2017 Springenberg, Dosovitskiy, Brox, Riedmiller (bib0038) 2014 Zagoruyko, Komodakis (bib0052) 2016 Chen, Jiang, Li, Jia, Ghamisi (bib0006) 2016; 54 Lu, Yuan, Fang (bib0031) 2017 Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (bib0045) 2016 Ma, Fu, Wang, Wang, Yin (bib0032) 2018; 56 Sun, Shrivastava, Singh, Gupta (bib0042) 2017 Thomaz, Carneiro, Patrocinio (bib0048) 2017; Vol. 10134 Jia, Shelhamer, Donahue, Karayev, Long, Girshick, Darrell (bib0019) 2014 Lin, Chen, Yan (bib0027) 2013 Romero, Gatta, Camps-Valls (bib0034) 2016; 54 Glorot, Bengio (bib0011) 2010; 9 LeCun, Bottou, Bengio, Haffner (bib0023) 1998; 86 Huang, Sun, Liu, Sedra, Weinberger (bib0017) 2016 Krizhevsky, Hinton (bib0020) 2009 Krizhevsky, Sutskever, Hinton (bib0021) 2012 Ling, Li, Zou, Guo (bib0028) 2018 He, Zhang, Ren, Sun (bib0014) 2016 Russakovsky, Deng, Su, Krause, Satheesh, Ma, Fei-Fei (bib0035) 2015; 115 Srivastava, Greff, Schmidhuber (bib0039) 2015 Li Fei-Fei, J. J., & Yeung, S. (2017). Stanford computer vision cs231n: Lecture 11 - detection and segmentation. Stollenga, Masci, Gomez, Schmidhuber (bib0041) 2014 LeCun, Cortes (bib0024) 2010 Minaee, Abdolrashidi, Wang (bib0033) 2017 Goodfellow, Warde-Farley, Mirza, Courville, Bengio (bib0012) 2013; Vol. 28 Srivastava, Mukherjee, Lall, Jaiswal (bib0040) 2017 Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Rabinovich (bib0044) 2015 Cao, Zhou, Xu, Meng, Xu, Paisley (bib0005) 2018; 27 HasanPour, Rouhani, Fayyaz, Sabokrou (bib0013) 2016 Sabour, Frosst, Hinton (bib0036) 2017 Ayinde, Inanc, Zurada (bib0003) 2019 Ding, Li, Hu, Zhang, Wang (bib0010) 2018; XLII-3 Chollet (bib0008) 2016 Accessed: 2018-01-02. Wolpert, Macready (bib0050) 1997; 1 Liu, Sun, Meng, Wang, Fu (bib0030) 2018 Alipourfard, Arefi, Mahmoudi (bib0002) 2018 Valpola (bib0049) 2015 Lapa, Gonçalves, Rundo, Castelli (bib0022) 2019 Alaslani, Elrefaei (bib0001) 2018; 10 Liu, Yu, Zhang, Tan, Yu, Xue (bib0029) 2017; 8 Yang, Zhao, Chan (bib0051) 2017; 55 Zhang, Meng, Wei, Tang, Tang, Wang, Yao (bib0053) 2019 Jagusch, Gonçalves, Castelli (bib0018) 2018 Hoffer, Hubara, Soudry (bib0016) 2018 Corchs, Fersini, Gasparini (bib0009) 2017 Lee, Xie, Gallagher, Zhang, Tu (bib0025) 2015; Vol. 38 Szeliski (bib0046) 2010 Szegedy (10.1016/j.eswa.2019.05.058_bib0044) 2015 Ma (10.1016/j.eswa.2019.05.058_bib0032) 2018; 56 Hertel (10.1016/j.eswa.2019.05.058_bib0015) 2017 Hoffer (10.1016/j.eswa.2019.05.058_bib0016) 2018 Minaee (10.1016/j.eswa.2019.05.058_bib0033) 2017 Chen (10.1016/j.eswa.2019.05.058_bib0007) 2014; 7 HasanPour (10.1016/j.eswa.2019.05.058_bib0013) 2016 Szeliski (10.1016/j.eswa.2019.05.058_bib0046) 2010 LeCun (10.1016/j.eswa.2019.05.058_bib0023) 1998; 86 Sun (10.1016/j.eswa.2019.05.058_bib0042) 2017 Stollenga (10.1016/j.eswa.2019.05.058_bib0041) 2014 Szegedy (10.1016/j.eswa.2019.05.058_bib0045) 2016 Simonyan (10.1016/j.eswa.2019.05.058_bib0037) 2014 Springenberg (10.1016/j.eswa.2019.05.058_bib0038) 2014 Zhang (10.1016/j.eswa.2019.05.058_bib0053) 2019 Zagoruyko (10.1016/j.eswa.2019.05.058_bib0052) 2016 Liu (10.1016/j.eswa.2019.05.058_bib0029) 2017; 8 Huang (10.1016/j.eswa.2019.05.058_bib0017) 2016 Cao (10.1016/j.eswa.2019.05.058_bib0005) 2018; 27 Krizhevsky (10.1016/j.eswa.2019.05.058_bib0020) 2009 LeCun (10.1016/j.eswa.2019.05.058_bib0024) 2010 Sabour (10.1016/j.eswa.2019.05.058_bib0036) 2017 Lu (10.1016/j.eswa.2019.05.058_bib0031) 2017 Valpola (10.1016/j.eswa.2019.05.058_bib0049) 2015 Corchs (10.1016/j.eswa.2019.05.058_bib0009) 2017 Chen (10.1016/j.eswa.2019.05.058_bib0006) 2016; 54 Goodfellow (10.1016/j.eswa.2019.05.058_bib0012) 2013; Vol. 28 Liu (10.1016/j.eswa.2019.05.058_bib0030) 2018 Alipourfard (10.1016/j.eswa.2019.05.058_bib0002) 2018 Lapa (10.1016/j.eswa.2019.05.058_bib0022) 2019 Jia (10.1016/j.eswa.2019.05.058_bib0019) 2014 Glorot (10.1016/j.eswa.2019.05.058_bib0011) 2010; 9 Jagusch (10.1016/j.eswa.2019.05.058_bib0018) 2018 Lee (10.1016/j.eswa.2019.05.058_bib0025) 2015; Vol. 38 Lin (10.1016/j.eswa.2019.05.058_bib0027) 2013 Thomaz (10.1016/j.eswa.2019.05.058_bib0048) 2017; Vol. 10134 10.1016/j.eswa.2019.05.058_bib0026 Srivastava (10.1016/j.eswa.2019.05.058_bib0039) 2015 He (10.1016/j.eswa.2019.05.058_bib0014) 2016 Alaslani (10.1016/j.eswa.2019.05.058_bib0001) 2018; 10 Yang (10.1016/j.eswa.2019.05.058_bib0051) 2017; 55 Szegedy (10.1016/j.eswa.2019.05.058_bib0043) 2017 Ding (10.1016/j.eswa.2019.05.058_bib0010) 2018; XLII-3 Wolpert (10.1016/j.eswa.2019.05.058_bib0050) 1997; 1 Chollet (10.1016/j.eswa.2019.05.058_bib0008) 2016 Ling (10.1016/j.eswa.2019.05.058_bib0028) 2018 Russakovsky (10.1016/j.eswa.2019.05.058_bib0035) 2015; 115 Bodapati (10.1016/j.eswa.2019.05.058_bib0004) 2019; 8 Ayinde (10.1016/j.eswa.2019.05.058_bib0003) 2019 Romero (10.1016/j.eswa.2019.05.058_bib0034) 2016; 54 Tang (10.1016/j.eswa.2019.05.058_bib0047) 2013 Krizhevsky (10.1016/j.eswa.2019.05.058_bib0021) 2012 Srivastava (10.1016/j.eswa.2019.05.058_bib0040) 2017 |
References_xml | – volume: Vol. 38 start-page: 562 year: 2015 end-page: 570 ident: bib0025 article-title: Deeply-supervised nets publication-title: Proceedings of the eighteenth international conference on artificial intelligence and statistics – volume: 10 start-page: 65 year: 2018 end-page: 78 ident: bib0001 article-title: Convolutional neural network-based feature extraction for IRIS recognition publication-title: International Journal of Computer Science and Information Technology – year: 2017 ident: bib0033 article-title: An experimental study of deep convolutional features for iris recognition – start-page: 2818 year: 2016 end-page: 2826 ident: bib0045 article-title: Rethinking the inception architecture for computer vision publication-title: 2016 IEEE conference on computer vision and pattern recognition, CVPR 2016, Las Vegas, NV, USA, June 27–30, 2016 – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: bib0050 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation – year: 2015 ident: bib0039 article-title: Highway networks – year: 2014 ident: bib0037 article-title: Very deep convolutional networks for large-scale image recognition – year: 2018 ident: bib0016 article-title: Fix your classifier: The marginal value of training the last weight layer publication-title: International conference on learning representations – start-page: 918 year: 2018 end-page: 922 ident: bib0030 article-title: Feature extraction and classification of hyperspectral image based on 3d- convolution neural network publication-title: 2018 ieee 7th data driven control and learning systems conference (DDCLS) – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: bib0023 article-title: Gradient-based learning applied to document recognition publication-title: Proceedings of the IEEE – year: 2019 ident: bib0022 article-title: Enhancing classification performance of convolutional neural networks for prostate cancer detection on magnetic resonance images: A study with the semantic learning machine publication-title: Proceedings of the genetic and evolutionary computation conference companion – volume: 7 start-page: 2094 year: 2014 end-page: 2107 ident: bib0007 article-title: Deep learning-based classification of hyperspectral data publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – year: 2010 ident: bib0046 article-title: Computer vision: Algorithms and applications – year: 2014 ident: bib0019 article-title: Caffe: Convolutional architecture for fast feature embedding – year: 2010 ident: bib0024 article-title: MNIST handwritten digit database – year: 2019 ident: bib0003 article-title: On correlation of features extracted by deep neural networks – volume: XLII-3 start-page: 277 year: 2018 end-page: 281 ident: bib0010 article-title: Alexnet feature extraction and multi-kernel learning for objectoriented classification publication-title: ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences – year: 2009 ident: bib0020 article-title: Learning multiple layers of features from tiny images publication-title: Technical Report – start-page: 770 year: 2016 end-page: 778 ident: bib0014 article-title: Deep residual learning for image recognition publication-title: 2016 IEEE conference on computer vision and pattern recognition, CVPR 2016, Las Vegas, NV, USA, June 27–30, 2016 – volume: 8 start-page: 839 year: 2017 end-page: 848 ident: bib0029 article-title: A semi-supervised convolutional neural network for hyperspectral image classification publication-title: Remote Sensing Letters – start-page: 4780 year: 2018 end-page: 4783 ident: bib0002 article-title: A novel deep learning framework by combination of subspace-based feature extraction and convolutional neural networks for hyperspectral images classification publication-title: IGARSS 2018 - 2018 IEEE international geoscience and remote sensing symposium – start-page: 1 year: 2015 end-page: 9 ident: bib0044 article-title: Going deeper with convolutions publication-title: IEEE conference on computer vision and pattern recognition, CVPR 2015, Boston, MA, USA, June 7–12, 2015 – start-page: 1 year: 2018 end-page: 6 ident: bib0028 article-title: Semi-supervised learning via convolutional neural network for hyperspectral image classification publication-title: 2018 24th international conference on pattern recognition (ICPR) – volume: 115 start-page: 211 year: 2015 end-page: 252 ident: bib0035 article-title: Imagenet large scale visual recognition challenge publication-title: International Journal of Computer Vision (IJCV) – year: 2016 ident: bib0013 article-title: Lets keep it simple, using simple architectures to outperform deeper and more complex architectures – year: 2014 ident: bib0038 article-title: Striving for simplicity: The all convolutional net – reference: . Accessed: 2018-01-02. – volume: Vol. 10134 start-page: 101342M year: 2017 ident: bib0048 article-title: Feature extraction using convolutional neural network for classifying breast density in mammographic images publication-title: Medical imaging 2017: Computer-aided diagnosis – year: 2013 ident: bib0027 article-title: Network in network – year: 2017 ident: bib0015 article-title: Deep convolutional neural networks as generic feature extractors – volume: 56 start-page: 4781 year: 2018 end-page: 4791 ident: bib0032 article-title: Hyperspectral image classification based on deep deconvolution network with skip architecture publication-title: IEEE Transactions on Geoscience and Remote Sensing – start-page: 843 year: 2017 end-page: 852 ident: bib0042 article-title: Revisiting unreasonable effectiveness of data in deep learning era publication-title: IEEE international conference on computer vision, ICCV 2017, Venice, Italy, October 22–29, 2017 – start-page: 4278 year: 2017 end-page: 4284 ident: bib0043 article-title: Inception-v4, inception-resnet and the impact of residual connections on learning publication-title: Proceedings of the thirty-first AAAI conference on artificial intelligence, february 4–9, 2017, San Francisco, California, USA. – year: 2016 ident: bib0008 article-title: Xception: Deep learning with depthwise separable convolutions – year: 2013 ident: bib0047 article-title: Deep learning using linear support vector machines – start-page: 1 year: 2017 end-page: 6 ident: bib0040 article-title: Object classification using ensemble of local and deep features publication-title: 2017 ninth international conference on advances in pattern recognition (ICAPR) – year: 2016 ident: bib0052 article-title: Wide residual networks publication-title: Proceedings of the british machine vision conference 2016, BMVC 2016, York, UK, September 19–22, 2016 – start-page: 3545 year: 2014 end-page: 3553 ident: bib0041 article-title: Deep networks with internal selective attention through feedback connections publication-title: Advances in neural information processing systems 27: Annual conference on neural information processing systems 2014, december 8–13 2014, Montreal, Quebec, Canada – volume: 9 start-page: 249 year: 2010 end-page: 256 ident: bib0011 article-title: Understanding the difficulty of training deep feedforward neural networks publication-title: Proceedings of the thirteenth international conference on artificial intelligence and statistics – reference: Li Fei-Fei, J. J., & Yeung, S. (2017). Stanford computer vision cs231n: Lecture 11 - detection and segmentation. – start-page: 2386 year: 2017 end-page: 2392 ident: bib0031 article-title: JM-net and cluster-SVM for aerial scene classification publication-title: Proceedings of the twenty-sixth international joint conference on artificial intelligence, IJCAI-17 – volume: Vol. 28 start-page: 1319 year: 2013 end-page: 1327 ident: bib0012 article-title: Maxout networks publication-title: Proceedings of the 30th international conference on machine learning – volume: 54 start-page: 6232 year: 2016 end-page: 6251 ident: bib0006 article-title: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks publication-title: IEEE Transactions on Geoscience and Remote Sensing – start-page: 143 year: 2015 end-page: 171 ident: bib0049 article-title: From neural PCA to deep unsupervised learning publication-title: Advances in independent component analysis and learning machines – year: 2017 ident: bib0009 article-title: Ensemble learning on visual and textual data for social image emotion classification publication-title: International Journal of Machine Learning and Cybernetics – year: 2019 ident: bib0053 article-title: 1d-convolutional capsule network for hyperspectral image classification – year: 2016 ident: bib0017 article-title: Deep networks with stochastic depth – volume: 55 start-page: 4729 year: 2017 end-page: 4742 ident: bib0051 article-title: Learning and transferring deep joint spectral spatial features for hyperspectral classification publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 54 start-page: 1349 year: 2016 end-page: 1362 ident: bib0034 article-title: Unsupervised deep feature extraction for remote sensing image classification publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 8 start-page: 261 year: 2019 end-page: 276 ident: bib0004 article-title: Feature extraction and classification using deep convolutional neural networks publication-title: Journal of Cyber Security and Mobility – volume: 27 start-page: 2354 year: 2018 end-page: 2367 ident: bib0005 article-title: Hyperspectral image classification with Markov random fields and a convolutional neural network publication-title: IEEE Transactions on Image Processing – start-page: 159 year: 2018 end-page: 160 ident: bib0018 article-title: Neuroevolution under unimodal error landscapes: An exploration of the semantic learning machine algorithm publication-title: Proceedings of the genetic and evolutionary computation conference companion – start-page: 1097 year: 2012 end-page: 1105 ident: bib0021 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in neural information processing systems – start-page: 3856 year: 2017 end-page: 3866 ident: bib0036 article-title: Dynamic routing between capsules publication-title: Advances in neural information processing systems – volume: 8 start-page: 261 year: 2019 ident: 10.1016/j.eswa.2019.05.058_bib0004 article-title: Feature extraction and classification using deep convolutional neural networks publication-title: Journal of Cyber Security and Mobility doi: 10.13052/jcsm2245-1439.825 – year: 2017 ident: 10.1016/j.eswa.2019.05.058_bib0015 – year: 2016 ident: 10.1016/j.eswa.2019.05.058_bib0008 – start-page: 770 year: 2016 ident: 10.1016/j.eswa.2019.05.058_bib0014 article-title: Deep residual learning for image recognition – start-page: 4278 year: 2017 ident: 10.1016/j.eswa.2019.05.058_bib0043 article-title: Inception-v4, inception-resnet and the impact of residual connections on learning – volume: 54 start-page: 6232 issue: 10 year: 2016 ident: 10.1016/j.eswa.2019.05.058_bib0006 article-title: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2016.2584107 – start-page: 2386 year: 2017 ident: 10.1016/j.eswa.2019.05.058_bib0031 article-title: JM-net and cluster-SVM for aerial scene classification – year: 2014 ident: 10.1016/j.eswa.2019.05.058_bib0038 – start-page: 1097 year: 2012 ident: 10.1016/j.eswa.2019.05.058_bib0021 article-title: Imagenet classification with deep convolutional neural networks – year: 2016 ident: 10.1016/j.eswa.2019.05.058_bib0052 article-title: Wide residual networks – year: 2017 ident: 10.1016/j.eswa.2019.05.058_bib0009 article-title: Ensemble learning on visual and textual data for social image emotion classification publication-title: International Journal of Machine Learning and Cybernetics doi: 10.1007/s13042-017-0734-0 – year: 2017 ident: 10.1016/j.eswa.2019.05.058_bib0033 – year: 2010 ident: 10.1016/j.eswa.2019.05.058_bib0024 – ident: 10.1016/j.eswa.2019.05.058_bib0026 – volume: 8 start-page: 839 issue: 9 year: 2017 ident: 10.1016/j.eswa.2019.05.058_bib0029 article-title: A semi-supervised convolutional neural network for hyperspectral image classification publication-title: Remote Sensing Letters doi: 10.1080/2150704X.2017.1331053 – volume: XLII-3 start-page: 277 year: 2018 ident: 10.1016/j.eswa.2019.05.058_bib0010 article-title: Alexnet feature extraction and multi-kernel learning for objectoriented classification publication-title: ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences doi: 10.5194/isprs-archives-XLII-3-277-2018 – volume: 7 start-page: 2094 issue: 6 year: 2014 ident: 10.1016/j.eswa.2019.05.058_bib0007 article-title: Deep learning-based classification of hyperspectral data publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2014.2329330 – start-page: 2818 year: 2016 ident: 10.1016/j.eswa.2019.05.058_bib0045 article-title: Rethinking the inception architecture for computer vision – year: 2009 ident: 10.1016/j.eswa.2019.05.058_bib0020 article-title: Learning multiple layers of features from tiny images – start-page: 1 year: 2018 ident: 10.1016/j.eswa.2019.05.058_bib0028 article-title: Semi-supervised learning via convolutional neural network for hyperspectral image classification – volume: 56 start-page: 4781 issue: 8 year: 2018 ident: 10.1016/j.eswa.2019.05.058_bib0032 article-title: Hyperspectral image classification based on deep deconvolution network with skip architecture publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2018.2837142 – year: 2010 ident: 10.1016/j.eswa.2019.05.058_bib0046 – year: 2019 ident: 10.1016/j.eswa.2019.05.058_bib0053 – year: 2018 ident: 10.1016/j.eswa.2019.05.058_bib0016 article-title: Fix your classifier: The marginal value of training the last weight layer – year: 2019 ident: 10.1016/j.eswa.2019.05.058_bib0022 article-title: Enhancing classification performance of convolutional neural networks for prostate cancer detection on magnetic resonance images: A study with the semantic learning machine – start-page: 3545 year: 2014 ident: 10.1016/j.eswa.2019.05.058_bib0041 article-title: Deep networks with internal selective attention through feedback connections – start-page: 843 year: 2017 ident: 10.1016/j.eswa.2019.05.058_bib0042 article-title: Revisiting unreasonable effectiveness of data in deep learning era – volume: Vol. 38 start-page: 562 year: 2015 ident: 10.1016/j.eswa.2019.05.058_bib0025 article-title: Deeply-supervised nets – volume: 27 start-page: 2354 issue: 5 year: 2018 ident: 10.1016/j.eswa.2019.05.058_bib0005 article-title: Hyperspectral image classification with Markov random fields and a convolutional neural network publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2018.2799324 – year: 2019 ident: 10.1016/j.eswa.2019.05.058_bib0003 – start-page: 143 year: 2015 ident: 10.1016/j.eswa.2019.05.058_bib0049 article-title: From neural PCA to deep unsupervised learning – year: 2016 ident: 10.1016/j.eswa.2019.05.058_bib0013 – year: 2013 ident: 10.1016/j.eswa.2019.05.058_bib0027 – year: 2015 ident: 10.1016/j.eswa.2019.05.058_bib0039 – year: 2013 ident: 10.1016/j.eswa.2019.05.058_bib0047 – start-page: 159 year: 2018 ident: 10.1016/j.eswa.2019.05.058_bib0018 article-title: Neuroevolution under unimodal error landscapes: An exploration of the semantic learning machine algorithm – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.eswa.2019.05.058_bib0050 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.585893 – start-page: 1 year: 2015 ident: 10.1016/j.eswa.2019.05.058_bib0044 article-title: Going deeper with convolutions – year: 2014 ident: 10.1016/j.eswa.2019.05.058_bib0037 – start-page: 918 year: 2018 ident: 10.1016/j.eswa.2019.05.058_bib0030 article-title: Feature extraction and classification of hyperspectral image based on 3d- convolution neural network – start-page: 1 year: 2017 ident: 10.1016/j.eswa.2019.05.058_bib0040 article-title: Object classification using ensemble of local and deep features – start-page: 3856 year: 2017 ident: 10.1016/j.eswa.2019.05.058_bib0036 article-title: Dynamic routing between capsules – volume: Vol. 28 start-page: 1319 year: 2013 ident: 10.1016/j.eswa.2019.05.058_bib0012 article-title: Maxout networks – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 10.1016/j.eswa.2019.05.058_bib0023 article-title: Gradient-based learning applied to document recognition publication-title: Proceedings of the IEEE doi: 10.1109/5.726791 – volume: 54 start-page: 1349 issue: 3 year: 2016 ident: 10.1016/j.eswa.2019.05.058_bib0034 article-title: Unsupervised deep feature extraction for remote sensing image classification publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2015.2478379 – start-page: 4780 year: 2018 ident: 10.1016/j.eswa.2019.05.058_bib0002 article-title: A novel deep learning framework by combination of subspace-based feature extraction and convolutional neural networks for hyperspectral images classification – volume: Vol. 10134 start-page: 101342M year: 2017 ident: 10.1016/j.eswa.2019.05.058_bib0048 article-title: Feature extraction using convolutional neural network for classifying breast density in mammographic images – year: 2014 ident: 10.1016/j.eswa.2019.05.058_bib0019 – volume: 115 start-page: 211 issue: 3 year: 2015 ident: 10.1016/j.eswa.2019.05.058_bib0035 article-title: Imagenet large scale visual recognition challenge publication-title: International Journal of Computer Vision (IJCV) doi: 10.1007/s11263-015-0816-y – volume: 10 start-page: 65 year: 2018 ident: 10.1016/j.eswa.2019.05.058_bib0001 article-title: Convolutional neural network-based feature extraction for IRIS recognition publication-title: International Journal of Computer Science and Information Technology doi: 10.5121/ijcsit.2018.10206 – volume: 55 start-page: 4729 issue: 8 year: 2017 ident: 10.1016/j.eswa.2019.05.058_bib0051 article-title: Learning and transferring deep joint spectral spatial features for hyperspectral classification publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2017.2698503 – volume: 9 start-page: 249 year: 2010 ident: 10.1016/j.eswa.2019.05.058_bib0011 article-title: Understanding the difficulty of training deep feedforward neural networks – year: 2016 ident: 10.1016/j.eswa.2019.05.058_bib0017 |
SSID | ssj0017007 |
Score | 2.4467437 |
Snippet | •Research that investigates CNN architectures for classification task.•Two steps method that combines CNN with other ML classifiers.•Large experimental phase... Over the course of research on convolutional neural network (CNN) architectures, few modifications have been made to the fully connected layers at the ends of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 12 |
SubjectTerms | Algorithms Artificial neural networks Benchmarks Classification Computer vision Convolutional neural networks Digital imaging Image classification Image filters Neural networks Regression analysis Support vector machines |
Title | Analysis of the proficiency of fully connected neural networks in the process of classifying digital images. Benchmark of different classification algorithms on high-level image features from convolutional layers |
URI | https://dx.doi.org/10.1016/j.eswa.2019.05.058 https://www.proquest.com/docview/2280495748 |
Volume | 135 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9UwDI-mceEC458YjCkHbih77ZIm7XFMTG8gdoFJu0Vp6myF9_qm127TLnxKPhB2m0xiQjsg5dI0dqPGsZ3I_pmx9wU0TYWGV5Teg1CqykXp9msBeW4aJ4NUge4hv57o-an6fFacbbDDlAtDYZVR9086fdTWsWcW_-bssm1n39A5QHOIrZKUYEoJv0oZkvK9X3dhHgQ_Zya8PSNodEycmWK8oL8h7KG8GtE7qez7v43TPTU92p6jLfYkOo38YJrXM7YB3XP2NBVk4HF_vmC_E8QIXwWOnh0fK3KPb2-pi-7ab7mn2BaPniYnMEvk202h4D1vu0RFyQNE4cm5bsdcKN6051RhhLdL1EH9Hv-IbC-Wbv2TBqZCK0MiiXeB3C3OV-t2uFgiv44TOrJYUKDSxIYHGJFFe055LjS167gX8EMLR-eBl-z06NP3w7mIZRuEl2Z_EFoaKL1UunaFA5nVGhVJkzeVNqAaYwKgE1IH52sDuQ8Bz7EucwoICAvIxXvFNrtVB68ZhyxUhZKulI1RuoRa6xCczMC4SuPCb7M8rZf1EdOcSmssbApe-2FpjS2tsc0KbOU2-3BHczkhejw4ukhiYP-SS4sm50G6nSQzNmqF3hL0kCKpLd_8J9u37DE9TdiTO2xzWF_BO_SKhnp3FPtd9ujg-Mv85A9VZRNi |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELbK9gAX_hGFAj5wQ2aT2omTY6motrTdC63Um-U44zZlN1tt0qK-Jw_ETGJXAqEekHKyPRMrY8-MnZlvGPuYQV2XaHhF4RwIpcpUFHanEpCmurbSS-XpHvJ4ns9O1bez7GyD7cVcGAqrDLp_1OmDtg4t0_A1p1dNM_2OzgGaQ3xKSQmmxQO2SehU2YRt7h4czuZ3PxN0MmZN43hBBCF3Zgzzgu4nwQ-l5QDgSZXf_22f_tLUg_nZf8oeB7-R745Te8Y2oH3OnsSaDDxs0RfsV0QZ4SvP0bnjQ1HuofeWmui6_ZY7Cm9x6GxywrNEvu0YDd7xpo1UlD9AFI7862ZIh-J1c05FRnizRDXUfeZfkO3F0q5_0MBYa6WPJOE6kNvF-Wrd9BdL5NdyAkgWC4pVGtlwDwO4aMcp1YWmdhO2A75oYelI8JKd7n892ZuJULlBOKl3epFLDYWTKq9sZkEmVY66pE7rMtegaq09oB9SeesqDanzHo-yNrEKCAsLyMt7xSbtqoXXjEPiy0xJW8haq7yAKs-9tzIBbcscZb_F0igv4wKsOVXXWJgYv3ZpSMaGZGySDJ9ii326o7kaQT3uHZ3FZWD-WJoGrc69dNtxzZigGDpD6EOKFm7x5j_ZfmAPZyfHR-boYH74lj2inhGKcptN-vU1vEMnqa_eh03wG6bNFhM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+the+proficiency+of+fully+connected+neural+networks+in+the+process+of+classifying+digital+images.+Benchmark+of+different+classification+algorithms+on+high-level+image+features+from+convolutional+layers&rft.jtitle=Expert+systems+with+applications&rft.au=Janke%2C+Jonathan&rft.au=Castelli%2C+Mauro&rft.au=Popovi%C4%8D%2C+Ale%C5%A1&rft.date=2019-11-30&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=135&rft.spage=12&rft.epage=38&rft_id=info:doi/10.1016%2Fj.eswa.2019.05.058&rft.externalDocID=S0957417419303938 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |