Analysis of the proficiency of fully connected neural networks in the process of classifying digital images. Benchmark of different classification algorithms on high-level image features from convolutional layers

•Research that investigates CNN architectures for classification task.•Two steps method that combines CNN with other ML classifiers.•Large experimental phase considering different architectures and datasets.•Results used to provide guidelines on the choice of the best classifiers.•CNNs can improve t...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 135; pp. 12 - 38
Main Authors Janke, Jonathan, Castelli, Mauro, Popovič, Aleš
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 30.11.2019
Elsevier BV
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2019.05.058

Cover

Loading…
Abstract •Research that investigates CNN architectures for classification task.•Two steps method that combines CNN with other ML classifiers.•Large experimental phase considering different architectures and datasets.•Results used to provide guidelines on the choice of the best classifiers.•CNNs can improve their performance by using the proposed method. Over the course of research on convolutional neural network (CNN) architectures, few modifications have been made to the fully connected layers at the ends of the networks. In image classification, these neural network layers are responsible for creating the final classification results based on the output of the last layer of high-level image filters. Before the breakthrough of CNNs, these image filters were handcrafted, and any classification algorithm could be applied to their output. Because neural networks use gradient descent to learn their weights subject to the classification error, fully connected neural networks are a natural choice for CNNs. But a question arises: Are fully connected layers in a CNN superior to other classification algorithms? In this work, we benchmark different classification algorithms on CNNs by removing the existing fully connected classifiers. Thus, the flattened output from the last convolutional layer is used as the input for multiple benchmark classification algorithms. To ensure the generalisability of the findings, numerous CNNs are trained on CIFAR-10, CIFAR-100, and a subset of ILSVRC-2012 with 100 classes. The experimental results reveal that multiple classification algorithms, namely logistic regression, support vector machines, eXtreme gradient boosting, random forests and K-nearest neighbours, are capable of outperforming fully connected neural networks. Furthermore, the superiority of a particular classification algorithm depends on the underlying CNN structure and the nature of the classification problem. For classification problems with many classes or for CNNs that produce many high-level image features, other classification algorithms are likely to perform better than fully connected neural networks. It follows that it is advisable to benchmark multiple classification algorithms on high-level image features produced from the CNN layers to improve classification performance.
AbstractList Over the course of research on convolutional neural network (CNN) architectures, few modifications have been made to the fully connected layers at the ends of the networks. In image classification, these neural network layers are responsible for creating the final classification results based on the output of the last layer of high-level image filters. Before the breakthrough of CNNs, these image filters were handcrafted, and any classification algorithm could be applied to their output. Because neural networks use gradient descent to learn their weights subject to the classification error, fully connected neural networks are a natural choice for CNNs. But a question arises: Are fully connected layers in a CNN superior to other classification algorithms? In this work, we benchmark different classification algorithms on CNNs by removing the existing fully connected classifiers. Thus, the flattened output from the last convolutional layer is used as the input for multiple benchmark classification algorithms. To ensure the generalisability of the findings, numerous CNNs are trained on CIFAR-10, CIFAR-100, and a subset of ILSVRC-2012 with 100 classes. The experimental results reveal that multiple classification algorithms, namely logistic regression, support vector machines, eXtreme gradient boosting, random forests and K-nearest neighbours, are capable of outperforming fully connected neural networks. Furthermore, the superiority of a particular classification algorithm depends on the underlying CNN structure and the nature of the classification problem. For classification problems with many classes or for CNNs that produce many high-level image features, other classification algorithms are likely to perform better than fully connected neural networks. It follows that it is advisable to benchmark multiple classification algorithms on high-level image features produced from the CNN layers to improve classification performance.
•Research that investigates CNN architectures for classification task.•Two steps method that combines CNN with other ML classifiers.•Large experimental phase considering different architectures and datasets.•Results used to provide guidelines on the choice of the best classifiers.•CNNs can improve their performance by using the proposed method. Over the course of research on convolutional neural network (CNN) architectures, few modifications have been made to the fully connected layers at the ends of the networks. In image classification, these neural network layers are responsible for creating the final classification results based on the output of the last layer of high-level image filters. Before the breakthrough of CNNs, these image filters were handcrafted, and any classification algorithm could be applied to their output. Because neural networks use gradient descent to learn their weights subject to the classification error, fully connected neural networks are a natural choice for CNNs. But a question arises: Are fully connected layers in a CNN superior to other classification algorithms? In this work, we benchmark different classification algorithms on CNNs by removing the existing fully connected classifiers. Thus, the flattened output from the last convolutional layer is used as the input for multiple benchmark classification algorithms. To ensure the generalisability of the findings, numerous CNNs are trained on CIFAR-10, CIFAR-100, and a subset of ILSVRC-2012 with 100 classes. The experimental results reveal that multiple classification algorithms, namely logistic regression, support vector machines, eXtreme gradient boosting, random forests and K-nearest neighbours, are capable of outperforming fully connected neural networks. Furthermore, the superiority of a particular classification algorithm depends on the underlying CNN structure and the nature of the classification problem. For classification problems with many classes or for CNNs that produce many high-level image features, other classification algorithms are likely to perform better than fully connected neural networks. It follows that it is advisable to benchmark multiple classification algorithms on high-level image features produced from the CNN layers to improve classification performance.
Author Janke, Jonathan
Castelli, Mauro
Popovič, Aleš
Author_xml – sequence: 1
  givenname: Jonathan
  surname: Janke
  fullname: Janke, Jonathan
  email: jonathan.janke@ghcs.de
  organization: Nova Information Management School (NOVA IMS), Universidade Nova de Lisboa. Lisboa, 1070-312, Portugal
– sequence: 2
  givenname: Mauro
  orcidid: 0000-0002-8793-1451
  surname: Castelli
  fullname: Castelli, Mauro
  email: mcastelli@novaims.unl.pt
  organization: Nova Information Management School (NOVA IMS), Universidade Nova de Lisboa. Lisboa, 1070-312, Portugal
– sequence: 3
  givenname: Aleš
  orcidid: 0000-0002-6924-6119
  surname: Popovič
  fullname: Popovič, Aleš
  email: ales.popovic@ef.uni-lj.si
  organization: Nova Information Management School (NOVA IMS), Universidade Nova de Lisboa. Lisboa, 1070-312, Portugal
BookMark eNp9kc9q3DAQxkVJoZu0L9CToGe7I9tr2dBLGvoPAr20ZyHLI1sbrZRK8ga_Zx-ocja59BAYGBDf79PMfJfkwnmHhLxnUDJg7cdDifFBlhWwvoR9ru4V2bGO10XL-_qC7KDf86JhvHlDLmM8ADAOwHfk77WTdo0mUq9pmpHeB6-NMujUuj3pxdqVKu8cqoQjdbgEaXNLDz7cRWrcM6UwPpooK2M0ejVuoqOZTMpyc5QTxpJ-zrbzUYa7TTgarTGgS8-IUTIZ76i0kw8mzcfs5-hsprmweMInG6pRpiVgpDr44zbaydtlA_NHVq4Y4lvyWksb8d1TvyK_v375dfO9uP357cfN9W2hal6loq05dqpu2kHuJdYwtFDDyMa-5diMnGtkPQxaqoEjU1r3vJMgGxwY5wisqq_Ih7NvXv_PgjGJg19CniOKquqgyTdvuqzqzioVfIwBtVD5KNvAKUhjBQOxZSgOYstQbBkK2Ofa0Oo_9D7kI4T1ZejTGcK8-slgEPExTxxNyCGK0ZuX8H_Y8b9S
CitedBy_id crossref_primary_10_1088_1361_6501_acf335
crossref_primary_10_1007_s10103_024_04078_z
crossref_primary_10_1109_ACCESS_2023_3349291
crossref_primary_10_1007_s00170_024_14092_8
crossref_primary_10_1155_2022_8640115
crossref_primary_10_3390_app11062535
crossref_primary_10_1038_s41598_025_93159_2
crossref_primary_10_3390_agriculture13020480
crossref_primary_10_1007_s00500_021_06073_w
crossref_primary_10_3390_ijms22157911
crossref_primary_10_1016_j_eswa_2020_113591
crossref_primary_10_1016_j_eswa_2019_112843
crossref_primary_10_1515_jisys_2024_0042
crossref_primary_10_1016_j_compag_2023_108146
crossref_primary_10_1109_ACCESS_2021_3054436
crossref_primary_10_3390_app10010338
crossref_primary_10_3390_electronics8101154
crossref_primary_10_1016_j_epsr_2022_108148
Cites_doi 10.13052/jcsm2245-1439.825
10.1109/TGRS.2016.2584107
10.1007/s13042-017-0734-0
10.1080/2150704X.2017.1331053
10.5194/isprs-archives-XLII-3-277-2018
10.1109/JSTARS.2014.2329330
10.1109/TGRS.2018.2837142
10.1109/TIP.2018.2799324
10.1109/4235.585893
10.1109/5.726791
10.1109/TGRS.2015.2478379
10.1007/s11263-015-0816-y
10.5121/ijcsit.2018.10206
10.1109/TGRS.2017.2698503
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Nov 30, 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Nov 30, 2019
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2019.05.058
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 38
ExternalDocumentID 10_1016_j_eswa_2019_05_058
S0957417419303938
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
SSH
WUQ
XPP
ZMT
7SC
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c372t-637e8c346ba5ae30b6030d1d967e4d77fe190bfacb7e1cff978a0a4eb177e0123
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Fri Jul 25 03:04:15 EDT 2025
Tue Jul 01 04:05:46 EDT 2025
Thu Apr 24 23:10:34 EDT 2025
Fri Feb 23 02:24:25 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Convolutional neural networks
Computer vision
Image classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-637e8c346ba5ae30b6030d1d967e4d77fe190bfacb7e1cff978a0a4eb177e0123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8793-1451
0000-0002-6924-6119
OpenAccessLink http://hdl.handle.net/10362/95126
PQID 2280495748
PQPubID 2045477
PageCount 27
ParticipantIDs proquest_journals_2280495748
crossref_citationtrail_10_1016_j_eswa_2019_05_058
crossref_primary_10_1016_j_eswa_2019_05_058
elsevier_sciencedirect_doi_10_1016_j_eswa_2019_05_058
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-30
PublicationDateYYYYMMDD 2019-11-30
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-30
  day: 30
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Chen, Lin, Zhao, Wang, Gu (bib0007) 2014; 7
Simonyan, Zisserman (bib0037) 2014
Bodapati, Veeranjaneyulu (bib0004) 2019; 8
Szegedy, Ioffe, Vanhoucke, Alemi (bib0043) 2017
Tang (bib0047) 2013
Hertel, Barth, Käster, Martinetz (bib0015) 2017
Springenberg, Dosovitskiy, Brox, Riedmiller (bib0038) 2014
Zagoruyko, Komodakis (bib0052) 2016
Chen, Jiang, Li, Jia, Ghamisi (bib0006) 2016; 54
Lu, Yuan, Fang (bib0031) 2017
Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (bib0045) 2016
Ma, Fu, Wang, Wang, Yin (bib0032) 2018; 56
Sun, Shrivastava, Singh, Gupta (bib0042) 2017
Thomaz, Carneiro, Patrocinio (bib0048) 2017; Vol. 10134
Jia, Shelhamer, Donahue, Karayev, Long, Girshick, Darrell (bib0019) 2014
Lin, Chen, Yan (bib0027) 2013
Romero, Gatta, Camps-Valls (bib0034) 2016; 54
Glorot, Bengio (bib0011) 2010; 9
LeCun, Bottou, Bengio, Haffner (bib0023) 1998; 86
Huang, Sun, Liu, Sedra, Weinberger (bib0017) 2016
Krizhevsky, Hinton (bib0020) 2009
Krizhevsky, Sutskever, Hinton (bib0021) 2012
Ling, Li, Zou, Guo (bib0028) 2018
He, Zhang, Ren, Sun (bib0014) 2016
Russakovsky, Deng, Su, Krause, Satheesh, Ma, Fei-Fei (bib0035) 2015; 115
Srivastava, Greff, Schmidhuber (bib0039) 2015
Li Fei-Fei, J. J., & Yeung, S. (2017). Stanford computer vision cs231n: Lecture 11 - detection and segmentation.
Stollenga, Masci, Gomez, Schmidhuber (bib0041) 2014
LeCun, Cortes (bib0024) 2010
Minaee, Abdolrashidi, Wang (bib0033) 2017
Goodfellow, Warde-Farley, Mirza, Courville, Bengio (bib0012) 2013; Vol. 28
Srivastava, Mukherjee, Lall, Jaiswal (bib0040) 2017
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Rabinovich (bib0044) 2015
Cao, Zhou, Xu, Meng, Xu, Paisley (bib0005) 2018; 27
HasanPour, Rouhani, Fayyaz, Sabokrou (bib0013) 2016
Sabour, Frosst, Hinton (bib0036) 2017
Ayinde, Inanc, Zurada (bib0003) 2019
Ding, Li, Hu, Zhang, Wang (bib0010) 2018; XLII-3
Chollet (bib0008) 2016
Accessed: 2018-01-02.
Wolpert, Macready (bib0050) 1997; 1
Liu, Sun, Meng, Wang, Fu (bib0030) 2018
Alipourfard, Arefi, Mahmoudi (bib0002) 2018
Valpola (bib0049) 2015
Lapa, Gonçalves, Rundo, Castelli (bib0022) 2019
Alaslani, Elrefaei (bib0001) 2018; 10
Liu, Yu, Zhang, Tan, Yu, Xue (bib0029) 2017; 8
Yang, Zhao, Chan (bib0051) 2017; 55
Zhang, Meng, Wei, Tang, Tang, Wang, Yao (bib0053) 2019
Jagusch, Gonçalves, Castelli (bib0018) 2018
Hoffer, Hubara, Soudry (bib0016) 2018
Corchs, Fersini, Gasparini (bib0009) 2017
Lee, Xie, Gallagher, Zhang, Tu (bib0025) 2015; Vol. 38
Szeliski (bib0046) 2010
Szegedy (10.1016/j.eswa.2019.05.058_bib0044) 2015
Ma (10.1016/j.eswa.2019.05.058_bib0032) 2018; 56
Hertel (10.1016/j.eswa.2019.05.058_bib0015) 2017
Hoffer (10.1016/j.eswa.2019.05.058_bib0016) 2018
Minaee (10.1016/j.eswa.2019.05.058_bib0033) 2017
Chen (10.1016/j.eswa.2019.05.058_bib0007) 2014; 7
HasanPour (10.1016/j.eswa.2019.05.058_bib0013) 2016
Szeliski (10.1016/j.eswa.2019.05.058_bib0046) 2010
LeCun (10.1016/j.eswa.2019.05.058_bib0023) 1998; 86
Sun (10.1016/j.eswa.2019.05.058_bib0042) 2017
Stollenga (10.1016/j.eswa.2019.05.058_bib0041) 2014
Szegedy (10.1016/j.eswa.2019.05.058_bib0045) 2016
Simonyan (10.1016/j.eswa.2019.05.058_bib0037) 2014
Springenberg (10.1016/j.eswa.2019.05.058_bib0038) 2014
Zhang (10.1016/j.eswa.2019.05.058_bib0053) 2019
Zagoruyko (10.1016/j.eswa.2019.05.058_bib0052) 2016
Liu (10.1016/j.eswa.2019.05.058_bib0029) 2017; 8
Huang (10.1016/j.eswa.2019.05.058_bib0017) 2016
Cao (10.1016/j.eswa.2019.05.058_bib0005) 2018; 27
Krizhevsky (10.1016/j.eswa.2019.05.058_bib0020) 2009
LeCun (10.1016/j.eswa.2019.05.058_bib0024) 2010
Sabour (10.1016/j.eswa.2019.05.058_bib0036) 2017
Lu (10.1016/j.eswa.2019.05.058_bib0031) 2017
Valpola (10.1016/j.eswa.2019.05.058_bib0049) 2015
Corchs (10.1016/j.eswa.2019.05.058_bib0009) 2017
Chen (10.1016/j.eswa.2019.05.058_bib0006) 2016; 54
Goodfellow (10.1016/j.eswa.2019.05.058_bib0012) 2013; Vol. 28
Liu (10.1016/j.eswa.2019.05.058_bib0030) 2018
Alipourfard (10.1016/j.eswa.2019.05.058_bib0002) 2018
Lapa (10.1016/j.eswa.2019.05.058_bib0022) 2019
Jia (10.1016/j.eswa.2019.05.058_bib0019) 2014
Glorot (10.1016/j.eswa.2019.05.058_bib0011) 2010; 9
Jagusch (10.1016/j.eswa.2019.05.058_bib0018) 2018
Lee (10.1016/j.eswa.2019.05.058_bib0025) 2015; Vol. 38
Lin (10.1016/j.eswa.2019.05.058_bib0027) 2013
Thomaz (10.1016/j.eswa.2019.05.058_bib0048) 2017; Vol. 10134
10.1016/j.eswa.2019.05.058_bib0026
Srivastava (10.1016/j.eswa.2019.05.058_bib0039) 2015
He (10.1016/j.eswa.2019.05.058_bib0014) 2016
Alaslani (10.1016/j.eswa.2019.05.058_bib0001) 2018; 10
Yang (10.1016/j.eswa.2019.05.058_bib0051) 2017; 55
Szegedy (10.1016/j.eswa.2019.05.058_bib0043) 2017
Ding (10.1016/j.eswa.2019.05.058_bib0010) 2018; XLII-3
Wolpert (10.1016/j.eswa.2019.05.058_bib0050) 1997; 1
Chollet (10.1016/j.eswa.2019.05.058_bib0008) 2016
Ling (10.1016/j.eswa.2019.05.058_bib0028) 2018
Russakovsky (10.1016/j.eswa.2019.05.058_bib0035) 2015; 115
Bodapati (10.1016/j.eswa.2019.05.058_bib0004) 2019; 8
Ayinde (10.1016/j.eswa.2019.05.058_bib0003) 2019
Romero (10.1016/j.eswa.2019.05.058_bib0034) 2016; 54
Tang (10.1016/j.eswa.2019.05.058_bib0047) 2013
Krizhevsky (10.1016/j.eswa.2019.05.058_bib0021) 2012
Srivastava (10.1016/j.eswa.2019.05.058_bib0040) 2017
References_xml – volume: Vol. 38
  start-page: 562
  year: 2015
  end-page: 570
  ident: bib0025
  article-title: Deeply-supervised nets
  publication-title: Proceedings of the eighteenth international conference on artificial intelligence and statistics
– volume: 10
  start-page: 65
  year: 2018
  end-page: 78
  ident: bib0001
  article-title: Convolutional neural network-based feature extraction for IRIS recognition
  publication-title: International Journal of Computer Science and Information Technology
– year: 2017
  ident: bib0033
  article-title: An experimental study of deep convolutional features for iris recognition
– start-page: 2818
  year: 2016
  end-page: 2826
  ident: bib0045
  article-title: Rethinking the inception architecture for computer vision
  publication-title: 2016 IEEE conference on computer vision and pattern recognition, CVPR 2016, Las Vegas, NV, USA, June 27–30, 2016
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: bib0050
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– year: 2015
  ident: bib0039
  article-title: Highway networks
– year: 2014
  ident: bib0037
  article-title: Very deep convolutional networks for large-scale image recognition
– year: 2018
  ident: bib0016
  article-title: Fix your classifier: The marginal value of training the last weight layer
  publication-title: International conference on learning representations
– start-page: 918
  year: 2018
  end-page: 922
  ident: bib0030
  article-title: Feature extraction and classification of hyperspectral image based on 3d- convolution neural network
  publication-title: 2018 ieee 7th data driven control and learning systems conference (DDCLS)
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: bib0023
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proceedings of the IEEE
– year: 2019
  ident: bib0022
  article-title: Enhancing classification performance of convolutional neural networks for prostate cancer detection on magnetic resonance images: A study with the semantic learning machine
  publication-title: Proceedings of the genetic and evolutionary computation conference companion
– volume: 7
  start-page: 2094
  year: 2014
  end-page: 2107
  ident: bib0007
  article-title: Deep learning-based classification of hyperspectral data
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– year: 2010
  ident: bib0046
  article-title: Computer vision: Algorithms and applications
– year: 2014
  ident: bib0019
  article-title: Caffe: Convolutional architecture for fast feature embedding
– year: 2010
  ident: bib0024
  article-title: MNIST handwritten digit database
– year: 2019
  ident: bib0003
  article-title: On correlation of features extracted by deep neural networks
– volume: XLII-3
  start-page: 277
  year: 2018
  end-page: 281
  ident: bib0010
  article-title: Alexnet feature extraction and multi-kernel learning for objectoriented classification
  publication-title: ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
– year: 2009
  ident: bib0020
  article-title: Learning multiple layers of features from tiny images
  publication-title: Technical Report
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0014
  article-title: Deep residual learning for image recognition
  publication-title: 2016 IEEE conference on computer vision and pattern recognition, CVPR 2016, Las Vegas, NV, USA, June 27–30, 2016
– volume: 8
  start-page: 839
  year: 2017
  end-page: 848
  ident: bib0029
  article-title: A semi-supervised convolutional neural network for hyperspectral image classification
  publication-title: Remote Sensing Letters
– start-page: 4780
  year: 2018
  end-page: 4783
  ident: bib0002
  article-title: A novel deep learning framework by combination of subspace-based feature extraction and convolutional neural networks for hyperspectral images classification
  publication-title: IGARSS 2018 - 2018 IEEE international geoscience and remote sensing symposium
– start-page: 1
  year: 2015
  end-page: 9
  ident: bib0044
  article-title: Going deeper with convolutions
  publication-title: IEEE conference on computer vision and pattern recognition, CVPR 2015, Boston, MA, USA, June 7–12, 2015
– start-page: 1
  year: 2018
  end-page: 6
  ident: bib0028
  article-title: Semi-supervised learning via convolutional neural network for hyperspectral image classification
  publication-title: 2018 24th international conference on pattern recognition (ICPR)
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: bib0035
  article-title: Imagenet large scale visual recognition challenge
  publication-title: International Journal of Computer Vision (IJCV)
– year: 2016
  ident: bib0013
  article-title: Lets keep it simple, using simple architectures to outperform deeper and more complex architectures
– year: 2014
  ident: bib0038
  article-title: Striving for simplicity: The all convolutional net
– reference: . Accessed: 2018-01-02.
– volume: Vol. 10134
  start-page: 101342M
  year: 2017
  ident: bib0048
  article-title: Feature extraction using convolutional neural network for classifying breast density in mammographic images
  publication-title: Medical imaging 2017: Computer-aided diagnosis
– year: 2013
  ident: bib0027
  article-title: Network in network
– year: 2017
  ident: bib0015
  article-title: Deep convolutional neural networks as generic feature extractors
– volume: 56
  start-page: 4781
  year: 2018
  end-page: 4791
  ident: bib0032
  article-title: Hyperspectral image classification based on deep deconvolution network with skip architecture
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– start-page: 843
  year: 2017
  end-page: 852
  ident: bib0042
  article-title: Revisiting unreasonable effectiveness of data in deep learning era
  publication-title: IEEE international conference on computer vision, ICCV 2017, Venice, Italy, October 22–29, 2017
– start-page: 4278
  year: 2017
  end-page: 4284
  ident: bib0043
  article-title: Inception-v4, inception-resnet and the impact of residual connections on learning
  publication-title: Proceedings of the thirty-first AAAI conference on artificial intelligence, february 4–9, 2017, San Francisco, California, USA.
– year: 2016
  ident: bib0008
  article-title: Xception: Deep learning with depthwise separable convolutions
– year: 2013
  ident: bib0047
  article-title: Deep learning using linear support vector machines
– start-page: 1
  year: 2017
  end-page: 6
  ident: bib0040
  article-title: Object classification using ensemble of local and deep features
  publication-title: 2017 ninth international conference on advances in pattern recognition (ICAPR)
– year: 2016
  ident: bib0052
  article-title: Wide residual networks
  publication-title: Proceedings of the british machine vision conference 2016, BMVC 2016, York, UK, September 19–22, 2016
– start-page: 3545
  year: 2014
  end-page: 3553
  ident: bib0041
  article-title: Deep networks with internal selective attention through feedback connections
  publication-title: Advances in neural information processing systems 27: Annual conference on neural information processing systems 2014, december 8–13 2014, Montreal, Quebec, Canada
– volume: 9
  start-page: 249
  year: 2010
  end-page: 256
  ident: bib0011
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Proceedings of the thirteenth international conference on artificial intelligence and statistics
– reference: Li Fei-Fei, J. J., & Yeung, S. (2017). Stanford computer vision cs231n: Lecture 11 - detection and segmentation.
– start-page: 2386
  year: 2017
  end-page: 2392
  ident: bib0031
  article-title: JM-net and cluster-SVM for aerial scene classification
  publication-title: Proceedings of the twenty-sixth international joint conference on artificial intelligence, IJCAI-17
– volume: Vol. 28
  start-page: 1319
  year: 2013
  end-page: 1327
  ident: bib0012
  article-title: Maxout networks
  publication-title: Proceedings of the 30th international conference on machine learning
– volume: 54
  start-page: 6232
  year: 2016
  end-page: 6251
  ident: bib0006
  article-title: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– start-page: 143
  year: 2015
  end-page: 171
  ident: bib0049
  article-title: From neural PCA to deep unsupervised learning
  publication-title: Advances in independent component analysis and learning machines
– year: 2017
  ident: bib0009
  article-title: Ensemble learning on visual and textual data for social image emotion classification
  publication-title: International Journal of Machine Learning and Cybernetics
– year: 2019
  ident: bib0053
  article-title: 1d-convolutional capsule network for hyperspectral image classification
– year: 2016
  ident: bib0017
  article-title: Deep networks with stochastic depth
– volume: 55
  start-page: 4729
  year: 2017
  end-page: 4742
  ident: bib0051
  article-title: Learning and transferring deep joint spectral spatial features for hyperspectral classification
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 54
  start-page: 1349
  year: 2016
  end-page: 1362
  ident: bib0034
  article-title: Unsupervised deep feature extraction for remote sensing image classification
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 8
  start-page: 261
  year: 2019
  end-page: 276
  ident: bib0004
  article-title: Feature extraction and classification using deep convolutional neural networks
  publication-title: Journal of Cyber Security and Mobility
– volume: 27
  start-page: 2354
  year: 2018
  end-page: 2367
  ident: bib0005
  article-title: Hyperspectral image classification with Markov random fields and a convolutional neural network
  publication-title: IEEE Transactions on Image Processing
– start-page: 159
  year: 2018
  end-page: 160
  ident: bib0018
  article-title: Neuroevolution under unimodal error landscapes: An exploration of the semantic learning machine algorithm
  publication-title: Proceedings of the genetic and evolutionary computation conference companion
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib0021
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in neural information processing systems
– start-page: 3856
  year: 2017
  end-page: 3866
  ident: bib0036
  article-title: Dynamic routing between capsules
  publication-title: Advances in neural information processing systems
– volume: 8
  start-page: 261
  year: 2019
  ident: 10.1016/j.eswa.2019.05.058_bib0004
  article-title: Feature extraction and classification using deep convolutional neural networks
  publication-title: Journal of Cyber Security and Mobility
  doi: 10.13052/jcsm2245-1439.825
– year: 2017
  ident: 10.1016/j.eswa.2019.05.058_bib0015
– year: 2016
  ident: 10.1016/j.eswa.2019.05.058_bib0008
– start-page: 770
  year: 2016
  ident: 10.1016/j.eswa.2019.05.058_bib0014
  article-title: Deep residual learning for image recognition
– start-page: 4278
  year: 2017
  ident: 10.1016/j.eswa.2019.05.058_bib0043
  article-title: Inception-v4, inception-resnet and the impact of residual connections on learning
– volume: 54
  start-page: 6232
  issue: 10
  year: 2016
  ident: 10.1016/j.eswa.2019.05.058_bib0006
  article-title: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2016.2584107
– start-page: 2386
  year: 2017
  ident: 10.1016/j.eswa.2019.05.058_bib0031
  article-title: JM-net and cluster-SVM for aerial scene classification
– year: 2014
  ident: 10.1016/j.eswa.2019.05.058_bib0038
– start-page: 1097
  year: 2012
  ident: 10.1016/j.eswa.2019.05.058_bib0021
  article-title: Imagenet classification with deep convolutional neural networks
– year: 2016
  ident: 10.1016/j.eswa.2019.05.058_bib0052
  article-title: Wide residual networks
– year: 2017
  ident: 10.1016/j.eswa.2019.05.058_bib0009
  article-title: Ensemble learning on visual and textual data for social image emotion classification
  publication-title: International Journal of Machine Learning and Cybernetics
  doi: 10.1007/s13042-017-0734-0
– year: 2017
  ident: 10.1016/j.eswa.2019.05.058_bib0033
– year: 2010
  ident: 10.1016/j.eswa.2019.05.058_bib0024
– ident: 10.1016/j.eswa.2019.05.058_bib0026
– volume: 8
  start-page: 839
  issue: 9
  year: 2017
  ident: 10.1016/j.eswa.2019.05.058_bib0029
  article-title: A semi-supervised convolutional neural network for hyperspectral image classification
  publication-title: Remote Sensing Letters
  doi: 10.1080/2150704X.2017.1331053
– volume: XLII-3
  start-page: 277
  year: 2018
  ident: 10.1016/j.eswa.2019.05.058_bib0010
  article-title: Alexnet feature extraction and multi-kernel learning for objectoriented classification
  publication-title: ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  doi: 10.5194/isprs-archives-XLII-3-277-2018
– volume: 7
  start-page: 2094
  issue: 6
  year: 2014
  ident: 10.1016/j.eswa.2019.05.058_bib0007
  article-title: Deep learning-based classification of hyperspectral data
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2014.2329330
– start-page: 2818
  year: 2016
  ident: 10.1016/j.eswa.2019.05.058_bib0045
  article-title: Rethinking the inception architecture for computer vision
– year: 2009
  ident: 10.1016/j.eswa.2019.05.058_bib0020
  article-title: Learning multiple layers of features from tiny images
– start-page: 1
  year: 2018
  ident: 10.1016/j.eswa.2019.05.058_bib0028
  article-title: Semi-supervised learning via convolutional neural network for hyperspectral image classification
– volume: 56
  start-page: 4781
  issue: 8
  year: 2018
  ident: 10.1016/j.eswa.2019.05.058_bib0032
  article-title: Hyperspectral image classification based on deep deconvolution network with skip architecture
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2018.2837142
– year: 2010
  ident: 10.1016/j.eswa.2019.05.058_bib0046
– year: 2019
  ident: 10.1016/j.eswa.2019.05.058_bib0053
– year: 2018
  ident: 10.1016/j.eswa.2019.05.058_bib0016
  article-title: Fix your classifier: The marginal value of training the last weight layer
– year: 2019
  ident: 10.1016/j.eswa.2019.05.058_bib0022
  article-title: Enhancing classification performance of convolutional neural networks for prostate cancer detection on magnetic resonance images: A study with the semantic learning machine
– start-page: 3545
  year: 2014
  ident: 10.1016/j.eswa.2019.05.058_bib0041
  article-title: Deep networks with internal selective attention through feedback connections
– start-page: 843
  year: 2017
  ident: 10.1016/j.eswa.2019.05.058_bib0042
  article-title: Revisiting unreasonable effectiveness of data in deep learning era
– volume: Vol. 38
  start-page: 562
  year: 2015
  ident: 10.1016/j.eswa.2019.05.058_bib0025
  article-title: Deeply-supervised nets
– volume: 27
  start-page: 2354
  issue: 5
  year: 2018
  ident: 10.1016/j.eswa.2019.05.058_bib0005
  article-title: Hyperspectral image classification with Markov random fields and a convolutional neural network
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2018.2799324
– year: 2019
  ident: 10.1016/j.eswa.2019.05.058_bib0003
– start-page: 143
  year: 2015
  ident: 10.1016/j.eswa.2019.05.058_bib0049
  article-title: From neural PCA to deep unsupervised learning
– year: 2016
  ident: 10.1016/j.eswa.2019.05.058_bib0013
– year: 2013
  ident: 10.1016/j.eswa.2019.05.058_bib0027
– year: 2015
  ident: 10.1016/j.eswa.2019.05.058_bib0039
– year: 2013
  ident: 10.1016/j.eswa.2019.05.058_bib0047
– start-page: 159
  year: 2018
  ident: 10.1016/j.eswa.2019.05.058_bib0018
  article-title: Neuroevolution under unimodal error landscapes: An exploration of the semantic learning machine algorithm
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.eswa.2019.05.058_bib0050
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.585893
– start-page: 1
  year: 2015
  ident: 10.1016/j.eswa.2019.05.058_bib0044
  article-title: Going deeper with convolutions
– year: 2014
  ident: 10.1016/j.eswa.2019.05.058_bib0037
– start-page: 918
  year: 2018
  ident: 10.1016/j.eswa.2019.05.058_bib0030
  article-title: Feature extraction and classification of hyperspectral image based on 3d- convolution neural network
– start-page: 1
  year: 2017
  ident: 10.1016/j.eswa.2019.05.058_bib0040
  article-title: Object classification using ensemble of local and deep features
– start-page: 3856
  year: 2017
  ident: 10.1016/j.eswa.2019.05.058_bib0036
  article-title: Dynamic routing between capsules
– volume: Vol. 28
  start-page: 1319
  year: 2013
  ident: 10.1016/j.eswa.2019.05.058_bib0012
  article-title: Maxout networks
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.eswa.2019.05.058_bib0023
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.726791
– volume: 54
  start-page: 1349
  issue: 3
  year: 2016
  ident: 10.1016/j.eswa.2019.05.058_bib0034
  article-title: Unsupervised deep feature extraction for remote sensing image classification
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2015.2478379
– start-page: 4780
  year: 2018
  ident: 10.1016/j.eswa.2019.05.058_bib0002
  article-title: A novel deep learning framework by combination of subspace-based feature extraction and convolutional neural networks for hyperspectral images classification
– volume: Vol. 10134
  start-page: 101342M
  year: 2017
  ident: 10.1016/j.eswa.2019.05.058_bib0048
  article-title: Feature extraction using convolutional neural network for classifying breast density in mammographic images
– year: 2014
  ident: 10.1016/j.eswa.2019.05.058_bib0019
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 10.1016/j.eswa.2019.05.058_bib0035
  article-title: Imagenet large scale visual recognition challenge
  publication-title: International Journal of Computer Vision (IJCV)
  doi: 10.1007/s11263-015-0816-y
– volume: 10
  start-page: 65
  year: 2018
  ident: 10.1016/j.eswa.2019.05.058_bib0001
  article-title: Convolutional neural network-based feature extraction for IRIS recognition
  publication-title: International Journal of Computer Science and Information Technology
  doi: 10.5121/ijcsit.2018.10206
– volume: 55
  start-page: 4729
  issue: 8
  year: 2017
  ident: 10.1016/j.eswa.2019.05.058_bib0051
  article-title: Learning and transferring deep joint spectral spatial features for hyperspectral classification
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2017.2698503
– volume: 9
  start-page: 249
  year: 2010
  ident: 10.1016/j.eswa.2019.05.058_bib0011
  article-title: Understanding the difficulty of training deep feedforward neural networks
– year: 2016
  ident: 10.1016/j.eswa.2019.05.058_bib0017
SSID ssj0017007
Score 2.4467437
Snippet •Research that investigates CNN architectures for classification task.•Two steps method that combines CNN with other ML classifiers.•Large experimental phase...
Over the course of research on convolutional neural network (CNN) architectures, few modifications have been made to the fully connected layers at the ends of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12
SubjectTerms Algorithms
Artificial neural networks
Benchmarks
Classification
Computer vision
Convolutional neural networks
Digital imaging
Image classification
Image filters
Neural networks
Regression analysis
Support vector machines
Title Analysis of the proficiency of fully connected neural networks in the process of classifying digital images. Benchmark of different classification algorithms on high-level image features from convolutional layers
URI https://dx.doi.org/10.1016/j.eswa.2019.05.058
https://www.proquest.com/docview/2280495748
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9UwDI-mceEC458YjCkHbih77ZIm7XFMTG8gdoFJu0Vp6myF9_qm127TLnxKPhB2m0xiQjsg5dI0dqPGsZ3I_pmx9wU0TYWGV5Teg1CqykXp9msBeW4aJ4NUge4hv57o-an6fFacbbDDlAtDYZVR9086fdTWsWcW_-bssm1n39A5QHOIrZKUYEoJv0oZkvK9X3dhHgQ_Zya8PSNodEycmWK8oL8h7KG8GtE7qez7v43TPTU92p6jLfYkOo38YJrXM7YB3XP2NBVk4HF_vmC_E8QIXwWOnh0fK3KPb2-pi-7ab7mn2BaPniYnMEvk202h4D1vu0RFyQNE4cm5bsdcKN6051RhhLdL1EH9Hv-IbC-Wbv2TBqZCK0MiiXeB3C3OV-t2uFgiv44TOrJYUKDSxIYHGJFFe055LjS167gX8EMLR-eBl-z06NP3w7mIZRuEl2Z_EFoaKL1UunaFA5nVGhVJkzeVNqAaYwKgE1IH52sDuQ8Bz7EucwoICAvIxXvFNrtVB68ZhyxUhZKulI1RuoRa6xCczMC4SuPCb7M8rZf1EdOcSmssbApe-2FpjS2tsc0KbOU2-3BHczkhejw4ukhiYP-SS4sm50G6nSQzNmqF3hL0kCKpLd_8J9u37DE9TdiTO2xzWF_BO_SKhnp3FPtd9ujg-Mv85A9VZRNi
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELbK9gAX_hGFAj5wQ2aT2omTY6motrTdC63Um-U44zZlN1tt0qK-Jw_ETGJXAqEekHKyPRMrY8-MnZlvGPuYQV2XaHhF4RwIpcpUFHanEpCmurbSS-XpHvJ4ns9O1bez7GyD7cVcGAqrDLp_1OmDtg4t0_A1p1dNM_2OzgGaQ3xKSQmmxQO2SehU2YRt7h4czuZ3PxN0MmZN43hBBCF3Zgzzgu4nwQ-l5QDgSZXf_22f_tLUg_nZf8oeB7-R745Te8Y2oH3OnsSaDDxs0RfsV0QZ4SvP0bnjQ1HuofeWmui6_ZY7Cm9x6GxywrNEvu0YDd7xpo1UlD9AFI7862ZIh-J1c05FRnizRDXUfeZfkO3F0q5_0MBYa6WPJOE6kNvF-Wrd9BdL5NdyAkgWC4pVGtlwDwO4aMcp1YWmdhO2A75oYelI8JKd7n892ZuJULlBOKl3epFLDYWTKq9sZkEmVY66pE7rMtegaq09oB9SeesqDanzHo-yNrEKCAsLyMt7xSbtqoXXjEPiy0xJW8haq7yAKs-9tzIBbcscZb_F0igv4wKsOVXXWJgYv3ZpSMaGZGySDJ9ii326o7kaQT3uHZ3FZWD-WJoGrc69dNtxzZigGDpD6EOKFm7x5j_ZfmAPZyfHR-boYH74lj2inhGKcptN-vU1vEMnqa_eh03wG6bNFhM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+the+proficiency+of+fully+connected+neural+networks+in+the+process+of+classifying+digital+images.+Benchmark+of+different+classification+algorithms+on+high-level+image+features+from+convolutional+layers&rft.jtitle=Expert+systems+with+applications&rft.au=Janke%2C+Jonathan&rft.au=Castelli%2C+Mauro&rft.au=Popovi%C4%8D%2C+Ale%C5%A1&rft.date=2019-11-30&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=135&rft.spage=12&rft.epage=38&rft_id=info:doi/10.1016%2Fj.eswa.2019.05.058&rft.externalDocID=S0957417419303938
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon