Associations between radius low-frequency axial ultrasound velocity and bone fragility in elderly men and women
Summary An exploratory study in elderly women and men from the Geneva Retirees Cohort indicates that low-frequency quantitative ultrasound measurement at the radius captures aBMD, bone size, and cortical tissue mineral density and might be used for screening purposes prior to DXA to evaluate fractur...
Saved in:
Published in | Osteoporosis international Vol. 30; no. 2; pp. 411 - 421 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.02.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Summary
An exploratory study in elderly women and men from the Geneva Retirees Cohort indicates that low-frequency quantitative ultrasound measurement at the radius captures aBMD, bone size, and cortical tissue mineral density and might be used for screening purposes prior to DXA to evaluate fracture risk
.
Introduction
The contribution of distal radius bone mineral density (BMD) and cortical microstructure to fracture risk has recently been demonstrated. In this exploratory study, we investigated whether low-frequency quantitative ultrasound measurement at the distal radius may capture the peripheral determinants of bone fragility assessed with dual-energy X-ray absorptiometry (DXA) and high-resolution peripheral quantitative computed tomography (HR-pQCT).
Methods
Low-frequency velocity (
V
LF
) was measured at the radius using OsCare Sono®, a portable axial transmission ultrasonometer, in 271 community-dwelling postmenopausal women and men (age 71.5 ± 1.4 years) from the Geneva Retirees Cohort. Cortical (Ct) and trabecular (Tb) volumetric (
v
) BMD and microstructure at the distal radius were assessed by HR-pQCT, in addition to areal (
a
) BMD by DXA, at the same time point.
Results
V
LF
was highly correlated with aBMD at the distal third radius (
r
= 0.72,
p
< 0.001). For microstructure parameters, the highest correlation was observed with cortical area (
r
= 0.59,
p
< 0.001).
V
LF
also captured bone geometry (total area) and cortical tissue mineral density independently of aBMD. In models adjusted for age and sex,
V
LF
was significantly associated with prevalent low-trauma fractures [OR 95%CI for one SD decrease of
V
LF
1.50 (1.05, 2.14),
p
= 0.024], with discrimination performance comparable to femoral neck or distal radius aBMD.
Conclusion
Measurement of
V
LF
at the radius captures aBMD, bone size, and cortical tissue mineral density and might be used for screening purposes prior to DXA to evaluate fracture risk
. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0937-941X 1433-2965 |
DOI: | 10.1007/s00198-018-4725-0 |