An empirical method for approximating stream baseflow time series using groundwater table fluctuations

•Genetic programming is a successful tool for predicting baseflow.•Empirical equation predicts baseflow using groundwater table fluctuations.•The proposed equation performs as well as a recursive filter or a numerical model.•The generalized equation predicts baseflow irrespective of land use or scal...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrology (Amsterdam) Vol. 519; pp. 1031 - 1041
Main Authors Meshgi, Ali, Schmitter, Petra, Babovic, Vladan, Chui, Ting Fong May
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier B.V 27.11.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Genetic programming is a successful tool for predicting baseflow.•Empirical equation predicts baseflow using groundwater table fluctuations.•The proposed equation performs as well as a recursive filter or a numerical model.•The generalized equation predicts baseflow irrespective of land use or scale. Developing reliable methods to estimate stream baseflow has been a subject of interest due to its importance in catchment response and sustainable watershed management. However, to date, in the absence of complex numerical models, baseflow is most commonly estimated using statistically derived empirical approaches that do not directly incorporate physically-meaningful information. On the other hand, Artificial Intelligence (AI) tools such as Genetic Programming (GP) offer unique capabilities to reduce the complexities of hydrological systems without losing relevant physical information. This study presents a simple-to-use empirical equation to estimate baseflow time series using GP so that minimal data is required and physical information is preserved. A groundwater numerical model was first adopted to simulate baseflow for a small semi-urban catchment (0.043km2) located in Singapore. GP was then used to derive an empirical equation relating baseflow time series to time series of groundwater table fluctuations, which are relatively easily measured and are physically related to baseflow generation. The equation was then generalized for approximating baseflow in other catchments and validated for a larger vegetation-dominated basin located in the US (24km2). Overall, this study used GP to propose a simple-to-use equation to predict baseflow time series based on only three parameters: minimum daily baseflow of the entire period, area of the catchment and groundwater table fluctuations. It serves as an alternative approach for baseflow estimation in un-gauged systems when only groundwater table and soil information is available, and is thus complementary to other methods that require discharge measurements.
AbstractList Developing reliable methods to estimate stream baseflow has been a subject of interest due to its importance in catchment response and sustainable watershed management. However, to date, in the absence of complex numerical models, baseflow is most commonly estimated using statistically derived empirical approaches that do not directly incorporate physically-meaningful information. On the other hand, Artificial Intelligence (AI) tools such as Genetic Programming (GP) offer unique capabilities to reduce the complexities of hydrological systems without losing relevant physical information. This study presents a simple-to-use empirical equation to estimate baseflow time series using GP so that minimal data is required and physical information is preserved. A groundwater numerical model was first adopted to simulate baseflow for a small semi-urban catchment (0.043km²) located in Singapore. GP was then used to derive an empirical equation relating baseflow time series to time series of groundwater table fluctuations, which are relatively easily measured and are physically related to baseflow generation. The equation was then generalized for approximating baseflow in other catchments and validated for a larger vegetation-dominated basin located in the US (24km²). Overall, this study used GP to propose a simple-to-use equation to predict baseflow time series based on only three parameters: minimum daily baseflow of the entire period, area of the catchment and groundwater table fluctuations. It serves as an alternative approach for baseflow estimation in un-gauged systems when only groundwater table and soil information is available, and is thus complementary to other methods that require discharge measurements.
•Genetic programming is a successful tool for predicting baseflow.•Empirical equation predicts baseflow using groundwater table fluctuations.•The proposed equation performs as well as a recursive filter or a numerical model.•The generalized equation predicts baseflow irrespective of land use or scale. Developing reliable methods to estimate stream baseflow has been a subject of interest due to its importance in catchment response and sustainable watershed management. However, to date, in the absence of complex numerical models, baseflow is most commonly estimated using statistically derived empirical approaches that do not directly incorporate physically-meaningful information. On the other hand, Artificial Intelligence (AI) tools such as Genetic Programming (GP) offer unique capabilities to reduce the complexities of hydrological systems without losing relevant physical information. This study presents a simple-to-use empirical equation to estimate baseflow time series using GP so that minimal data is required and physical information is preserved. A groundwater numerical model was first adopted to simulate baseflow for a small semi-urban catchment (0.043km2) located in Singapore. GP was then used to derive an empirical equation relating baseflow time series to time series of groundwater table fluctuations, which are relatively easily measured and are physically related to baseflow generation. The equation was then generalized for approximating baseflow in other catchments and validated for a larger vegetation-dominated basin located in the US (24km2). Overall, this study used GP to propose a simple-to-use equation to predict baseflow time series based on only three parameters: minimum daily baseflow of the entire period, area of the catchment and groundwater table fluctuations. It serves as an alternative approach for baseflow estimation in un-gauged systems when only groundwater table and soil information is available, and is thus complementary to other methods that require discharge measurements.
Author Babovic, Vladan
Chui, Ting Fong May
Meshgi, Ali
Schmitter, Petra
Author_xml – sequence: 1
  givenname: Ali
  surname: Meshgi
  fullname: Meshgi, Ali
  email: alimeshgi@nus.edu.sg
  organization: Department of Civil and Environmental Engineering, National University of Singapore, Block E1A, #07-03, No 1 Engineering Drive 2, Singapore, Singapore
– sequence: 2
  givenname: Petra
  surname: Schmitter
  fullname: Schmitter, Petra
  organization: Department of Civil and Environmental Engineering, National University of Singapore, Block E1A, #07-03, No 1 Engineering Drive 2, Singapore, Singapore
– sequence: 3
  givenname: Vladan
  surname: Babovic
  fullname: Babovic, Vladan
  organization: Department of Civil and Environmental Engineering, National University of Singapore, Block E1A, #07-03, No 1 Engineering Drive 2, Singapore, Singapore
– sequence: 4
  givenname: Ting Fong May
  surname: Chui
  fullname: Chui, Ting Fong May
  organization: Department of Civil Engineering, The University of Hong Kong, Room 6-18A, Haking Wong Building, Pokfulam, Hong Kong
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=29025938$$DView record in Pascal Francis
BookMark eNqFkTtvFDEUhS0UJDaBn4DkBolmBr9mxiMKFEW8pEg0UFse-zrxymMvtoeQf4-XXRqauLnN-e71OecSXcQUAaHXlPSU0PHdvt_fP9qcQs8IFT2RPeH8GdpROc0dm8h0gXaEMNbRcRYv0GUpe9Ie52KH3HXEsB589kYHvEK9Txa7lLE-HHL67VddfbzDpWbQK150ARfSA65-BVwgeyh4K0fFXU5btA-6QsZVLwGwC5upW-NTLC_Rc6dDgVfneYV-fPr4_eZLd_vt89eb69vO8InVblhGIahg0yKpNGDNYCYpiFnG0dCB63GS3DI3i0Eso2N21ow4C2JY7DK5eeRX6O1pb_v8zw1KVasvBkLQEdJWFJVsEFQSIZv0zVmqS_Puso7GF3XIzXN-VGwmbJj5Uff-pDM5lZLBKePrX1c1ax8UJerYgtqrcwvq2IIiUrWEGz38R_878BT34cRBS-uXh6yK8RBbJj6Dqcom_8SGP7YDqU0
CODEN JHYDA7
CitedBy_id crossref_primary_10_1007_s42452_019_1222_9
crossref_primary_10_1016_j_ejrh_2023_101325
crossref_primary_10_1016_j_iswcr_2022_01_006
crossref_primary_10_1016_j_engappai_2023_106335
crossref_primary_10_1061__ASCE_EE_1943_7870_0001429
crossref_primary_10_1016_j_jhydrol_2018_06_049
crossref_primary_10_1016_j_jhydrol_2022_128323
crossref_primary_10_1111_gwat_13422
crossref_primary_10_1002_hyp_13548
crossref_primary_10_1002_hyp_10724
crossref_primary_10_1111_gwat_13156
crossref_primary_10_1016_j_jhydrol_2018_09_043
crossref_primary_10_1016_j_jhydrol_2022_128262
crossref_primary_10_1111_1752_1688_13178
crossref_primary_10_1016_j_jhydrol_2024_131483
crossref_primary_10_1680_jwama_20_00062
crossref_primary_10_5194_hess_19_1599_2015
crossref_primary_10_5194_hess_25_4373_2021
crossref_primary_10_1029_2019WR026933
crossref_primary_10_1016_j_jhydrol_2015_04_032
crossref_primary_10_2166_hydro_2021_179
crossref_primary_10_2166_hydro_2021_115
crossref_primary_10_1016_j_jhydrol_2020_125659
Cites_doi 10.1002/hyp.6628
10.1016/j.envsoft.2011.02.007
10.1029/WR024i005p00755
10.1029/2003WR002091
10.1016/j.jher.2013.03.005
10.1177/0309133311402714
10.1016/j.jhydrol.2012.05.025
10.1214/ss/1032280214
10.1016/j.eswa.2008.05.024
10.5194/hess-13-2055-2009
10.1016/j.envsoft.2008.06.009
10.1016/j.jhydrol.2008.01.005
10.1016/j.jhydrol.2006.01.016
10.2136/sssaj2006.0396
10.1016/S0022-1694(98)00247-9
10.2136/sssaj1980.03615995004400050002x
10.1029/96WR01525
10.1002/hyp.5675
10.1002/hyp.1134
10.1016/0022-1694(90)90130-P
10.1029/91WR01007
10.1029/2005WR004130
10.1002/hyp.7678
10.1029/WR026i007p01465
10.2166/hydro.2000.0004
10.1016/j.jhydrol.2007.12.014
10.1016/0022-1694(70)90255-6
10.1029/2002WR001528
10.1002/hyp.7771
10.1016/j.envsoft.2012.11.009
10.1029/93WR00877
10.1016/j.envsoft.2008.09.005
10.1137/0111030
10.1002/hyp.351
10.1002/(SICI)1099-1085(19990415)13:5<701::AID-HYP774>3.0.CO;2-2
10.1111/j.1752-1688.1999.tb03599.x
10.1002/hyp.5862
10.1016/S0022-1694(00)00340-1
10.1029/91WR02518
10.1002/hyp.9621
ContentType Journal Article
Copyright 2014 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7S9
L.6
DOI 10.1016/j.jhydrol.2014.08.033
DatabaseName CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
EndPage 1041
ExternalDocumentID 29025938
10_1016_j_jhydrol_2014_08_033
S002216941400643X
GeographicLocations Far East
Asia
Singapore
United States
GeographicLocations_xml – name: Singapore
– name: United States
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMA
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
Y6R
ZCA
ZMT
~02
~G-
~KM
29K
6TJ
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABGRD
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
D-I
FA8
FEDTE
FGOYB
G-2
HLV
HVGLF
HZ~
H~9
R2-
SEP
SEW
SSH
UQL
VOH
WUQ
ZY4
ABTAH
IQODW
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c372t-5b6441427b818cedc5c7840cb66c153a6783d2f9454b6f2d9a20fde45bdb7f963
IEDL.DBID .~1
ISSN 0022-1694
IngestDate Fri Aug 22 20:26:21 EDT 2025
Wed Apr 02 07:13:52 EDT 2025
Tue Jul 01 03:07:25 EDT 2025
Thu Apr 24 23:02:39 EDT 2025
Fri Feb 23 02:39:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Numerical modeling
Baseflow
Empirical equation
Genetic Programming
base flow
streams
ground water
vegetation
artificial intelligence
drainage basins
aquifers
fluctuations
management
numerical models
discharge
soils
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-5b6441427b818cedc5c7840cb66c153a6783d2f9454b6f2d9a20fde45bdb7f963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1825418048
PQPubID 24069
PageCount 11
ParticipantIDs proquest_miscellaneous_1825418048
pascalfrancis_primary_29025938
crossref_citationtrail_10_1016_j_jhydrol_2014_08_033
crossref_primary_10_1016_j_jhydrol_2014_08_033
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2014_08_033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-11-27
PublicationDateYYYYMMDD 2014-11-27
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-27
  day: 27
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2014
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Babovic, Keijzer (b0025) 2006
McDonnell, Tanaka, Mitchell, Ohte (b0150) 2001; 15
Willems (b0240) 2009; 24
Carsel, Parrish (b9000) 1988; 24
Meshgi, Chui (b0160) 2014; 28
Šimůnek (b0210) 2007
Christophersen, Hooper (b0055) 1992; 28
Efron, Tibshirani (b0080) 1993
Sivapragasam, Maheswaran, Venkatesh (b0225) 2008; 22
Izadifar, Elshorbagy (b0105) 2010; 24
Brown, McDonnell, Burns, Kendall (b0035) 1999; 217
Jakeman, Hornberger (b0110) 1993; 29
Kliner, Knezek (b0125) 1974; XXII
McGlynn, McDonnell (b0155) 2003; 39
Li, Maier, Lambert, Simmons, Partington (b0135) 2013; 41
Eckhardt (b0070) 2005; 19
Eckhardt (b0075) 2008; 352
Chapman, T.G., Maxwell, A.I., 1996. Baseflow separation – comparison of numerical methods with tracer experiments. In: Proceedings of the 23rd Hydrology and Water Resources Symposium, Hobart Australia.
Šimůnek, van Genuchten (b0215) 1996; 32
Uhlenbrook, Hoeg (b0235) 2003; 17
Hooper (b0100) 2003; 39
Šejna, Šimůnek (b0200) 2007
Anctil, Lauzon, Andréassian, Oudin, Perrin (b0005) 2006; 328
Fallah-Mehdipour, Bozorg Haddad, Mariño (b0085) 2013
Barthold (b0030) 2010; 24
Arnold, Allen (b0010) 1999; 35
Parasuraman, Elshorbagy, Si (b0175) 2007; 71
Kim, Kim (b0120) 2008; 351
Jones, Sudicky, Brookfield, Park (b0115) 2006; 42
Marquardt (b0145) 1963; 11
DiCiccio, Efron (b0065) 1996; 11
University of Rhode Island Environmental Data Center, Kingston, Rhode Island.
Christophersen, Neal, Hooper, Vogt, Andersen (b0060) 1990; 116
Šimůnek, J., van Genuchten, M.T., Šejna, M., 2006. The HYDRUS Software Package for Simulating Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, vol. 241. Technical Manual, Version 1.0, PC Progress, Prague, Czech Republic.
Gonzales, Nonner, Heijkers, Uhlenbrook (b0095) 2009; 13
Nash, Sutcliffe (b0165) 1970; 10
Sellinger, C.E., 1996. Computer Program for Performing Hydrograph Separation Using the Rating Curve Method. US Department of Commerce, National Oceanic and Atmospheric Administration, Technical Memorandum ERL GLERL-100.
Ryobi Geotechnique Pty Ltd, 2005. Soil investigation works for campus wide slope monitoring scheme – Phase 3, National University of Singapore, Singapore.
Smakhtin (b0230) 2001; 240
Linsley, Kohler, Paulhus (b0140) 1982
Babovic (b0015) 2005; 19
Nathan, McMahon (b0170) 1990; 26
Gilfedder, Walker, Dawes, Stenson (b0090) 2009; 24
Price (b0185) 2011; 35
Chapman (b0045) 1999; 13
Babovic, Keijzer (b0020) 2000; 2
Rhode Island Digital Atlas, 2014. Aerial Photographs (1939), URL
Kuznetsov, Yakirevich, Pachepsky, Sorek, Weisbrod (b0130) 2012; 450–451
Sedki, Ouazar, El Mazoudi (b0195) 2009; 36
Partington (b0180) 2011; 26
Chapman (b0040) 1991; 27
van Genuchten (b9010) 1980; 44
Carsel (10.1016/j.jhydrol.2014.08.033_b9000) 1988; 24
Li (10.1016/j.jhydrol.2014.08.033_b0135) 2013; 41
Barthold (10.1016/j.jhydrol.2014.08.033_b0030) 2010; 24
Anctil (10.1016/j.jhydrol.2014.08.033_b0005) 2006; 328
Partington (10.1016/j.jhydrol.2014.08.033_b0180) 2011; 26
10.1016/j.jhydrol.2014.08.033_b0050
McDonnell (10.1016/j.jhydrol.2014.08.033_b0150) 2001; 15
Chapman (10.1016/j.jhydrol.2014.08.033_b0040) 1991; 27
Meshgi (10.1016/j.jhydrol.2014.08.033_b0160) 2014; 28
Nathan (10.1016/j.jhydrol.2014.08.033_b0170) 1990; 26
DiCiccio (10.1016/j.jhydrol.2014.08.033_b0065) 1996; 11
10.1016/j.jhydrol.2014.08.033_b0205
Smakhtin (10.1016/j.jhydrol.2014.08.033_b0230) 2001; 240
Price (10.1016/j.jhydrol.2014.08.033_b0185) 2011; 35
Chapman (10.1016/j.jhydrol.2014.08.033_b0045) 1999; 13
Eckhardt (10.1016/j.jhydrol.2014.08.033_b0070) 2005; 19
Brown (10.1016/j.jhydrol.2014.08.033_b0035) 1999; 217
Efron (10.1016/j.jhydrol.2014.08.033_b0080) 1993
Kuznetsov (10.1016/j.jhydrol.2014.08.033_b0130) 2012; 450–451
Eckhardt (10.1016/j.jhydrol.2014.08.033_b0075) 2008; 352
Nash (10.1016/j.jhydrol.2014.08.033_b0165) 1970; 10
Marquardt (10.1016/j.jhydrol.2014.08.033_b0145) 1963; 11
Christophersen (10.1016/j.jhydrol.2014.08.033_b0060) 1990; 116
Fallah-Mehdipour (10.1016/j.jhydrol.2014.08.033_b0085) 2013
Parasuraman (10.1016/j.jhydrol.2014.08.033_b0175) 2007; 71
Gonzales (10.1016/j.jhydrol.2014.08.033_b0095) 2009; 13
Hooper (10.1016/j.jhydrol.2014.08.033_b0100) 2003; 39
Šimůnek (10.1016/j.jhydrol.2014.08.033_b0215) 1996; 32
Kliner (10.1016/j.jhydrol.2014.08.033_b0125) 1974; XXII
McGlynn (10.1016/j.jhydrol.2014.08.033_b0155) 2003; 39
10.1016/j.jhydrol.2014.08.033_b0190
10.1016/j.jhydrol.2014.08.033_b9005
Babovic (10.1016/j.jhydrol.2014.08.033_b0020) 2000; 2
Arnold (10.1016/j.jhydrol.2014.08.033_b0010) 1999; 35
Kim (10.1016/j.jhydrol.2014.08.033_b0120) 2008; 351
Babovic (10.1016/j.jhydrol.2014.08.033_b0015) 2005; 19
Sedki (10.1016/j.jhydrol.2014.08.033_b0195) 2009; 36
Sivapragasam (10.1016/j.jhydrol.2014.08.033_b0225) 2008; 22
Babovic (10.1016/j.jhydrol.2014.08.033_b0025) 2006
Linsley (10.1016/j.jhydrol.2014.08.033_b0140) 1982
Jakeman (10.1016/j.jhydrol.2014.08.033_b0110) 1993; 29
van Genuchten (10.1016/j.jhydrol.2014.08.033_b9010) 1980; 44
10.1016/j.jhydrol.2014.08.033_b0220
Willems (10.1016/j.jhydrol.2014.08.033_b0240) 2009; 24
Gilfedder (10.1016/j.jhydrol.2014.08.033_b0090) 2009; 24
Šejna (10.1016/j.jhydrol.2014.08.033_b0200) 2007
Uhlenbrook (10.1016/j.jhydrol.2014.08.033_b0235) 2003; 17
Izadifar (10.1016/j.jhydrol.2014.08.033_b0105) 2010; 24
Jones (10.1016/j.jhydrol.2014.08.033_b0115) 2006; 42
Christophersen (10.1016/j.jhydrol.2014.08.033_b0055) 1992; 28
Šimůnek (10.1016/j.jhydrol.2014.08.033_b0210) 2007
References_xml – reference: Šimůnek, J., van Genuchten, M.T., Šejna, M., 2006. The HYDRUS Software Package for Simulating Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, vol. 241. Technical Manual, Version 1.0, PC Progress, Prague, Czech Republic.
– volume: 24
  start-page: 311
  year: 2009
  end-page: 321
  ident: b0240
  article-title: A time series tool to support the multi-criteria performance evaluation of rainfall-runoff models
  publication-title: Environ. Model. Softw.
– volume: 240
  start-page: 147
  year: 2001
  end-page: 186
  ident: b0230
  article-title: Low flow hydrology: a review
  publication-title: J. Hydrol.
– volume: 328
  start-page: 717
  year: 2006
  end-page: 725
  ident: b0005
  article-title: Improvement of rainfall-runoff forecasts through mean areal rainfall optimization
  publication-title: J. Hydrol.
– volume: 17
  start-page: 431
  year: 2003
  end-page: 453
  ident: b0235
  article-title: Quantifying uncertainties in tracer-based hydrograph separations: a case study for two-, three- and five-component hydrograph separations in a mountainous catchment
  publication-title: Hydrol. Process.
– volume: 35
  start-page: 411
  year: 1999
  end-page: 424
  ident: b0010
  article-title: Automated methods for estimating baseflow and ground water recharge from streamflow records 1
  publication-title: J. Am. Water Resour. Assoc.
– volume: 217
  start-page: 171
  year: 1999
  end-page: 190
  ident: b0035
  article-title: The role of event water, a rapid shallow flow component, and catchment size in summer stormflow
  publication-title: J. Hydrol.
– volume: 10
  start-page: 282
  year: 1970
  end-page: 290
  ident: b0165
  article-title: River flow forecasting through conceptual models part I — A discussion of principles
  publication-title: J. Hydrol.
– volume: 42
  start-page: W02407
  year: 2006
  ident: b0115
  article-title: An assessment of the tracer-based approach to quantifying groundwater contributions to streamflow
  publication-title: Water Resour. Res.
– volume: 11
  start-page: 431
  year: 1963
  end-page: 441
  ident: b0145
  article-title: An algorithm for least-squares estimation of non-linear parameters
  publication-title: SIAM J. Appl. Math.
– volume: 116
  start-page: 307
  year: 1990
  end-page: 320
  ident: b0060
  article-title: Modelling streamwater chemistry as a mixture of soilwater end-members — a step towards second-generation acidification models
  publication-title: J. Hydrol.
– year: 2007
  ident: b0200
  article-title: HYDRUS (2D/3D): Graphical User Interface for the HYDRUS Software Package Simulating Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media
– year: 2006
  ident: b0025
  article-title: Rainfall-Runoff Modeling Based on Genetic Programming, Encyclopedia of Hydrological Sciences
– volume: XXII
  start-page: 457
  year: 1974
  end-page: 466
  ident: b0125
  article-title: The underground runoff separation method making use of the observation of ground water table
  publication-title: Hydrol. Hydromech.
– reference: >, University of Rhode Island Environmental Data Center, Kingston, Rhode Island.
– volume: 24
  start-page: 2313
  year: 2010
  end-page: 2327
  ident: b0030
  article-title: Identification of geographic runoff sources in a data sparse region: hydrological processes and the limitations of tracer-based approaches
  publication-title: Hydrol. Process.
– volume: 35
  start-page: 465
  year: 2011
  end-page: 492
  ident: b0185
  article-title: Effects of watershed topography, soils, land use, and climate on baseflow hydrology in humid regions: a review
  publication-title: Prog. Phys. Geogr.
– volume: 19
  start-page: 507
  year: 2005
  end-page: 515
  ident: b0070
  article-title: How to construct recursive digital filters for baseflow separation
  publication-title: Hydrol. Process.
– volume: 28
  start-page: 744
  year: 2014
  end-page: 752
  ident: b0160
  article-title: Analysing tension infiltrometer data from sloped surface using two-dimensional approximation
  publication-title: Hydrol. Process.
– volume: 2
  start-page: 35
  year: 2000
  end-page: 60
  ident: b0020
  article-title: Genetic programming as a model induction engine
  publication-title: J. Hydroinform.
– volume: 27
  start-page: 1783
  year: 1991
  end-page: 1784
  ident: b0040
  article-title: Comment on “Evaluation of automated techniques for base flow and recession analyses” by R. J. Nathan and T. A. McMahon
  publication-title: Water Resour. Res.
– volume: 24
  start-page: 3413
  year: 2010
  end-page: 3425
  ident: b0105
  article-title: Prediction of hourly actual evapotranspiration using neural networks, genetic programming, and statistical models
  publication-title: Hydrol. Process.
– volume: 15
  start-page: 1673
  year: 2001
  end-page: 1674
  ident: b0150
  article-title: Hydrology and biogeochemistry of forested catchments
  publication-title: Hydrol. Process.
– reference: Rhode Island Digital Atlas, 2014. Aerial Photographs (1939), URL: <
– volume: 24
  start-page: 755
  year: 1988
  end-page: 769
  ident: b9000
  article-title: Developing joint probability distributions of soil water retention characteristics
  publication-title: Water Resour. Res.
– volume: 39
  start-page: 1310
  year: 2003
  ident: b0155
  article-title: Quantifying the relative contributions of riparian and hillslope zones to catchment runoff
  publication-title: Water Resour. Res.
– year: 2013
  ident: b0085
  article-title: Prediction and simulation of monthly groundwater levels by genetic programming
  publication-title: J. Hydro-Environ. Res.
– volume: 26
  start-page: 1465
  year: 1990
  end-page: 1473
  ident: b0170
  article-title: Evaluation of automated techniques for base flow and recession analyses
  publication-title: Water Resour. Res.
– volume: 44
  start-page: 892
  year: 1980
  end-page: 898
  ident: b9010
  article-title: A closed form equation for predicting the hydraulic conductivity of unsaturated soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 13
  start-page: 2055
  year: 2009
  end-page: 2068
  ident: b0095
  article-title: Comparison of different base flow separation methods in a lowland catchment
  publication-title: Hydrol. Earth Syst. Sci.
– reference: Chapman, T.G., Maxwell, A.I., 1996. Baseflow separation – comparison of numerical methods with tracer experiments. In: Proceedings of the 23rd Hydrology and Water Resources Symposium, Hobart Australia.
– volume: 13
  start-page: 701
  year: 1999
  end-page: 714
  ident: b0045
  article-title: A comparison of algorithms for stream flow recession and baseflow separation
  publication-title: Hydrol. Process.
– reference: Sellinger, C.E., 1996. Computer Program for Performing Hydrograph Separation Using the Rating Curve Method. US Department of Commerce, National Oceanic and Atmospheric Administration, Technical Memorandum ERL GLERL-100.
– reference: Ryobi Geotechnique Pty Ltd, 2005. Soil investigation works for campus wide slope monitoring scheme – Phase 3, National University of Singapore, Singapore.
– volume: 32
  start-page: 2683
  year: 1996
  end-page: 2696
  ident: b0215
  article-title: Estimating unsaturated soil hydraulic properties from tension disc infiltrometer data by numerical inversion
  publication-title: Water Resour. Res.
– volume: 19
  start-page: 1511
  year: 2005
  end-page: 1515
  ident: b0015
  article-title: Data mining in hydrology
  publication-title: Hydrol. Process.
– volume: 24
  start-page: 262
  year: 2009
  end-page: 269
  ident: b0090
  article-title: Prioritisation approach for estimating the biophysical impacts of land-use change on stream flow and salt export at a catchment scale
  publication-title: Environ. Model. Softw.
– volume: 71
  start-page: 1676
  year: 2007
  end-page: 1684
  ident: b0175
  article-title: Estimating saturated hydraulic conductivity using genetic programming
  publication-title: Soil Sci. Soc. Am. J.
– volume: 22
  start-page: 623
  year: 2008
  end-page: 628
  ident: b0225
  article-title: Genetic programming approach for flood routing in natural channels
  publication-title: Hydrol. Process.
– volume: 351
  start-page: 299
  year: 2008
  end-page: 317
  ident: b0120
  article-title: Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling
  publication-title: J. Hydrol.
– volume: 36
  start-page: 4523
  year: 2009
  end-page: 4527
  ident: b0195
  article-title: Evolving neural network using real coded genetic algorithm for daily rainfall–runoff forecasting
  publication-title: Expert Syst. Appl.
– volume: 11
  start-page: 189
  year: 1996
  end-page: 228
  ident: b0065
  article-title: Bootstrap confidence intervals
  publication-title: Stat. Sci.
– year: 1993
  ident: b0080
  article-title: An Introduction to the Bootstrap
– volume: 26
  start-page: 886
  year: 2011
  end-page: 898
  ident: b0180
  article-title: A hydraulic mixing-cell method to quantify the groundwater component of streamflow within spatially distributed fully integrated surface water–groundwater flow models
  publication-title: Environ. Model. Softw.
– volume: 39
  start-page: 1055
  year: 2003
  ident: b0100
  article-title: Diagnostic tools for mixing models of stream water chemistry
  publication-title: Water Resour. Res.
– volume: 28
  start-page: 99
  year: 1992
  end-page: 107
  ident: b0055
  article-title: Multivariate analysis of stream water chemical data: the use of principal components analysis for the end-member mixing problem
  publication-title: Water Resour. Res.
– volume: 41
  start-page: 163
  year: 2013
  end-page: 175
  ident: b0135
  article-title: Framework for assessing and improving the performance of recursive digital filters for baseflow estimation with application to the Lyne and Hollick filter
  publication-title: Environ. Model. Softw.
– volume: 352
  start-page: 168
  year: 2008
  end-page: 173
  ident: b0075
  article-title: A comparison of baseflow indices, which were calculated with seven different baseflow separation methods
  publication-title: J. Hydrol.
– volume: 450–451
  start-page: 140
  year: 2012
  end-page: 149
  ident: b0130
  article-title: Quasi 3D modeling of water flow in vadose zone and groundwater
  publication-title: J. Hydrol.
– year: 2007
  ident: b0210
  article-title: Notes on Spatial and Temporal Discretization
– volume: 29
  start-page: 2637
  year: 1993
  end-page: 2649
  ident: b0110
  article-title: How much complexity is warranted in a rainfall-runoff model?
  publication-title: Water Resour. Res.
– year: 1982
  ident: b0140
  article-title: Hydrology for Engineers
– volume: 22
  start-page: 623
  issue: 5
  year: 2008
  ident: 10.1016/j.jhydrol.2014.08.033_b0225
  article-title: Genetic programming approach for flood routing in natural channels
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.6628
– volume: 26
  start-page: 886
  issue: 7
  year: 2011
  ident: 10.1016/j.jhydrol.2014.08.033_b0180
  article-title: A hydraulic mixing-cell method to quantify the groundwater component of streamflow within spatially distributed fully integrated surface water–groundwater flow models
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2011.02.007
– volume: 24
  start-page: 755
  issue: 5
  year: 1988
  ident: 10.1016/j.jhydrol.2014.08.033_b9000
  article-title: Developing joint probability distributions of soil water retention characteristics
  publication-title: Water Resour. Res.
  doi: 10.1029/WR024i005p00755
– year: 2007
  ident: 10.1016/j.jhydrol.2014.08.033_b0200
– volume: 39
  start-page: 1310
  issue: 11
  year: 2003
  ident: 10.1016/j.jhydrol.2014.08.033_b0155
  article-title: Quantifying the relative contributions of riparian and hillslope zones to catchment runoff
  publication-title: Water Resour. Res.
  doi: 10.1029/2003WR002091
– ident: 10.1016/j.jhydrol.2014.08.033_b0205
– year: 2007
  ident: 10.1016/j.jhydrol.2014.08.033_b0210
– year: 2013
  ident: 10.1016/j.jhydrol.2014.08.033_b0085
  article-title: Prediction and simulation of monthly groundwater levels by genetic programming
  publication-title: J. Hydro-Environ. Res.
  doi: 10.1016/j.jher.2013.03.005
– volume: 35
  start-page: 465
  issue: 4
  year: 2011
  ident: 10.1016/j.jhydrol.2014.08.033_b0185
  article-title: Effects of watershed topography, soils, land use, and climate on baseflow hydrology in humid regions: a review
  publication-title: Prog. Phys. Geogr.
  doi: 10.1177/0309133311402714
– ident: 10.1016/j.jhydrol.2014.08.033_b9005
– volume: 450–451
  start-page: 140
  year: 2012
  ident: 10.1016/j.jhydrol.2014.08.033_b0130
  article-title: Quasi 3D modeling of water flow in vadose zone and groundwater
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.05.025
– volume: 11
  start-page: 189
  issue: 3
  year: 1996
  ident: 10.1016/j.jhydrol.2014.08.033_b0065
  article-title: Bootstrap confidence intervals
  publication-title: Stat. Sci.
  doi: 10.1214/ss/1032280214
– ident: 10.1016/j.jhydrol.2014.08.033_b0050
– volume: 36
  start-page: 4523
  issue: 3, Part 1
  year: 2009
  ident: 10.1016/j.jhydrol.2014.08.033_b0195
  article-title: Evolving neural network using real coded genetic algorithm for daily rainfall–runoff forecasting
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.05.024
– volume: 13
  start-page: 2055
  issue: 11
  year: 2009
  ident: 10.1016/j.jhydrol.2014.08.033_b0095
  article-title: Comparison of different base flow separation methods in a lowland catchment
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-13-2055-2009
– volume: 24
  start-page: 262
  issue: 2
  year: 2009
  ident: 10.1016/j.jhydrol.2014.08.033_b0090
  article-title: Prioritisation approach for estimating the biophysical impacts of land-use change on stream flow and salt export at a catchment scale
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2008.06.009
– ident: 10.1016/j.jhydrol.2014.08.033_b0220
– volume: 352
  start-page: 168
  issue: 1–2
  year: 2008
  ident: 10.1016/j.jhydrol.2014.08.033_b0075
  article-title: A comparison of baseflow indices, which were calculated with seven different baseflow separation methods
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2008.01.005
– volume: 328
  start-page: 717
  issue: 3–4
  year: 2006
  ident: 10.1016/j.jhydrol.2014.08.033_b0005
  article-title: Improvement of rainfall-runoff forecasts through mean areal rainfall optimization
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2006.01.016
– volume: 71
  start-page: 1676
  issue: 6
  year: 2007
  ident: 10.1016/j.jhydrol.2014.08.033_b0175
  article-title: Estimating saturated hydraulic conductivity using genetic programming
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2006.0396
– year: 2006
  ident: 10.1016/j.jhydrol.2014.08.033_b0025
– ident: 10.1016/j.jhydrol.2014.08.033_b0190
– volume: 217
  start-page: 171
  issue: 3–4
  year: 1999
  ident: 10.1016/j.jhydrol.2014.08.033_b0035
  article-title: The role of event water, a rapid shallow flow component, and catchment size in summer stormflow
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(98)00247-9
– year: 1982
  ident: 10.1016/j.jhydrol.2014.08.033_b0140
– volume: 44
  start-page: 892
  issue: 5
  year: 1980
  ident: 10.1016/j.jhydrol.2014.08.033_b9010
  article-title: A closed form equation for predicting the hydraulic conductivity of unsaturated soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1980.03615995004400050002x
– volume: 32
  start-page: 2683
  issue: 9
  year: 1996
  ident: 10.1016/j.jhydrol.2014.08.033_b0215
  article-title: Estimating unsaturated soil hydraulic properties from tension disc infiltrometer data by numerical inversion
  publication-title: Water Resour. Res.
  doi: 10.1029/96WR01525
– volume: 19
  start-page: 507
  issue: 2
  year: 2005
  ident: 10.1016/j.jhydrol.2014.08.033_b0070
  article-title: How to construct recursive digital filters for baseflow separation
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.5675
– volume: 17
  start-page: 431
  issue: 2
  year: 2003
  ident: 10.1016/j.jhydrol.2014.08.033_b0235
  article-title: Quantifying uncertainties in tracer-based hydrograph separations: a case study for two-, three- and five-component hydrograph separations in a mountainous catchment
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.1134
– volume: 116
  start-page: 307
  issue: 1–4
  year: 1990
  ident: 10.1016/j.jhydrol.2014.08.033_b0060
  article-title: Modelling streamwater chemistry as a mixture of soilwater end-members — a step towards second-generation acidification models
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(90)90130-P
– volume: 27
  start-page: 1783
  issue: 7
  year: 1991
  ident: 10.1016/j.jhydrol.2014.08.033_b0040
  article-title: Comment on “Evaluation of automated techniques for base flow and recession analyses” by R. J. Nathan and T. A. McMahon
  publication-title: Water Resour. Res.
  doi: 10.1029/91WR01007
– volume: 42
  start-page: W02407
  issue: 2
  year: 2006
  ident: 10.1016/j.jhydrol.2014.08.033_b0115
  article-title: An assessment of the tracer-based approach to quantifying groundwater contributions to streamflow
  publication-title: Water Resour. Res.
  doi: 10.1029/2005WR004130
– volume: 24
  start-page: 2313
  issue: 16
  year: 2010
  ident: 10.1016/j.jhydrol.2014.08.033_b0030
  article-title: Identification of geographic runoff sources in a data sparse region: hydrological processes and the limitations of tracer-based approaches
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.7678
– year: 1993
  ident: 10.1016/j.jhydrol.2014.08.033_b0080
– volume: 26
  start-page: 1465
  issue: 7
  year: 1990
  ident: 10.1016/j.jhydrol.2014.08.033_b0170
  article-title: Evaluation of automated techniques for base flow and recession analyses
  publication-title: Water Resour. Res.
  doi: 10.1029/WR026i007p01465
– volume: 2
  start-page: 35
  issue: 1
  year: 2000
  ident: 10.1016/j.jhydrol.2014.08.033_b0020
  article-title: Genetic programming as a model induction engine
  publication-title: J. Hydroinform.
  doi: 10.2166/hydro.2000.0004
– volume: 351
  start-page: 299
  issue: 3–4
  year: 2008
  ident: 10.1016/j.jhydrol.2014.08.033_b0120
  article-title: Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2007.12.014
– volume: 10
  start-page: 282
  issue: 3
  year: 1970
  ident: 10.1016/j.jhydrol.2014.08.033_b0165
  article-title: River flow forecasting through conceptual models part I — A discussion of principles
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(70)90255-6
– volume: 39
  start-page: 1055
  issue: 3
  year: 2003
  ident: 10.1016/j.jhydrol.2014.08.033_b0100
  article-title: Diagnostic tools for mixing models of stream water chemistry
  publication-title: Water Resour. Res.
  doi: 10.1029/2002WR001528
– volume: 24
  start-page: 3413
  issue: 23
  year: 2010
  ident: 10.1016/j.jhydrol.2014.08.033_b0105
  article-title: Prediction of hourly actual evapotranspiration using neural networks, genetic programming, and statistical models
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.7771
– volume: 41
  start-page: 163
  year: 2013
  ident: 10.1016/j.jhydrol.2014.08.033_b0135
  article-title: Framework for assessing and improving the performance of recursive digital filters for baseflow estimation with application to the Lyne and Hollick filter
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2012.11.009
– volume: 29
  start-page: 2637
  issue: 8
  year: 1993
  ident: 10.1016/j.jhydrol.2014.08.033_b0110
  article-title: How much complexity is warranted in a rainfall-runoff model?
  publication-title: Water Resour. Res.
  doi: 10.1029/93WR00877
– volume: 24
  start-page: 311
  issue: 3
  year: 2009
  ident: 10.1016/j.jhydrol.2014.08.033_b0240
  article-title: A time series tool to support the multi-criteria performance evaluation of rainfall-runoff models
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2008.09.005
– volume: 11
  start-page: 431
  year: 1963
  ident: 10.1016/j.jhydrol.2014.08.033_b0145
  article-title: An algorithm for least-squares estimation of non-linear parameters
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0111030
– volume: 15
  start-page: 1673
  issue: 10
  year: 2001
  ident: 10.1016/j.jhydrol.2014.08.033_b0150
  article-title: Hydrology and biogeochemistry of forested catchments
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.351
– volume: XXII
  start-page: 457
  issue: 5
  year: 1974
  ident: 10.1016/j.jhydrol.2014.08.033_b0125
  article-title: The underground runoff separation method making use of the observation of ground water table
  publication-title: Hydrol. Hydromech.
– volume: 13
  start-page: 701
  issue: 5
  year: 1999
  ident: 10.1016/j.jhydrol.2014.08.033_b0045
  article-title: A comparison of algorithms for stream flow recession and baseflow separation
  publication-title: Hydrol. Process.
  doi: 10.1002/(SICI)1099-1085(19990415)13:5<701::AID-HYP774>3.0.CO;2-2
– volume: 35
  start-page: 411
  issue: 2
  year: 1999
  ident: 10.1016/j.jhydrol.2014.08.033_b0010
  article-title: Automated methods for estimating baseflow and ground water recharge from streamflow records 1
  publication-title: J. Am. Water Resour. Assoc.
  doi: 10.1111/j.1752-1688.1999.tb03599.x
– volume: 19
  start-page: 1511
  issue: 7
  year: 2005
  ident: 10.1016/j.jhydrol.2014.08.033_b0015
  article-title: Data mining in hydrology
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.5862
– volume: 240
  start-page: 147
  issue: 3–4
  year: 2001
  ident: 10.1016/j.jhydrol.2014.08.033_b0230
  article-title: Low flow hydrology: a review
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(00)00340-1
– volume: 28
  start-page: 99
  issue: 1
  year: 1992
  ident: 10.1016/j.jhydrol.2014.08.033_b0055
  article-title: Multivariate analysis of stream water chemical data: the use of principal components analysis for the end-member mixing problem
  publication-title: Water Resour. Res.
  doi: 10.1029/91WR02518
– volume: 28
  start-page: 744
  issue: 3
  year: 2014
  ident: 10.1016/j.jhydrol.2014.08.033_b0160
  article-title: Analysing tension infiltrometer data from sloped surface using two-dimensional approximation
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.9621
SSID ssj0000334
Score 2.2668047
Snippet •Genetic programming is a successful tool for predicting baseflow.•Empirical equation predicts baseflow using groundwater table fluctuations.•The proposed...
Developing reliable methods to estimate stream baseflow has been a subject of interest due to its importance in catchment response and sustainable watershed...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1031
SubjectTerms artificial intelligence
base flow
Baseflow
basins
Earth sciences
Earth, ocean, space
Empirical equation
empirical research
equations
Exact sciences and technology
Genetic Programming
groundwater
Hydrology. Hydrogeology
mathematical models
Numerical modeling
Singapore
soil
streams
time series analysis
United States
water table
watershed management
watersheds
Title An empirical method for approximating stream baseflow time series using groundwater table fluctuations
URI https://dx.doi.org/10.1016/j.jhydrol.2014.08.033
https://www.proquest.com/docview/1825418048
Volume 519
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iBwURn1gfJYLXbd0ku9k9lmKpip4UegvJJtGWui19oF787c7sQxERweMuO2SZ-TIzIfPNEHKupU_iELyfM1IHAjARpMzCqdVYAIjLrE-QjXx7F_cfxPUgGqyQbs2FwbLKyveXPr3w1tWbdqXN9nQ4RI4vYyHyMEURVwfIYBcSUd56_yrzuOBc1B3D8esvFk971Bo9vdnZBG8gQlF08uT8t_i0OdVz0Jovx1388NxFOOptk60qj6Sd8ld3yIrLd8l6NdL86W2P-E5O3fN0WLQAoeWgaAoZKi26iL8OMVPNHylyRfQzxWDmx5MXirPmKcLSzSnWxD9S5H3k9gVy0hldINGK-vESaScFYvfJQ-_yvtsPqqEKQcYlWwSRwQxIMGkgVIOSsyiTcMjLTBxn4P00BC9umU9FJEzsmU01u_DWichYIz1s1wOymk9yd0ioh2TFZ1FisaNPonVqweDCM-8tt5LxBhG1KlVWdRzHwRdjVZeWjVRlAYUWUDgQk4NY61NsWrbc-Esgqe2kvmFHQVj4S7T5za6fCzK8fk150iBntaEVbDy8TdG5myznKsSzdZiABzz6__rHZAOfkNzI5AlZXcyW7hSynIVpFjBukrXO1U3_7gN9lABd
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB7S9JBCKemLpI9Uhfbo3ViSX4ceQpOwaR6nBPamSpaU7LLxLvtgu5f-qf7BzthyQgglUMjVZiwz70HzzQB80ZnP0xi9nzOZjiTqRFRwi1WrsaggrrQ-JzTy6Vnau5A_-kl_Df60WBhqqwy-v_HptbcOT7qBm93JYEAYX85jwmHKOq72Q2flsVstsW6bfTvaRyF_5fzw4Px7LwqrBaJSZHweJYbyAMkzgwELjyqTMsNSpzRpWqIP0OjCheW-kIk0qee20HzXWycTY03mUWnxu0_gqUR3QWsTOr9v-0p2hZDtiHL6vVvYUHfYGV6t7HRMVx6xrEeHCvGvgPh8omcoJt_s17gXKur4d7gJL0LiyvYa3ryENVe9go2wQ_1q9Rr8XsXc9WRQzxxhzWZqhikxq8eW_xpQalxdMgKn6GtG0dOPxktGy-0Z2YGbMWrCv2QENKnsEpPgKZsTsov50YJwLrWJvIGLR2H1W1ivxpXbAuYxO_JlklsaIZRrXVjUMOm591bYjIttkC0rVRlGnNOmjZFqe9mGKkhAkQQUbeAUSNa5IZs0Mz4eIshbOak7yqowDj1EunNHrjcHcrrvLUS-DZ9bQSu0dLq-0ZUbL2YqpmI-ztHlvvv_8z_BRu_89ESdHJ0dv4dn9IaQlTz7AOvz6cJ9xBRrbnZqlWbw87Ft6C_Ymzvh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+empirical+method+for+approximating+stream+baseflow+time+series+using+groundwater+table+fluctuations&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Meshgi%2C+Ali&rft.au=Schmitter%2C+Petra&rft.au=Babovic%2C+Vladan&rft.au=Chui%2C+Ting+Fong+May&rft.date=2014-11-27&rft.issn=0022-1694&rft.volume=519+p.1031-1041&rft.spage=1031&rft.epage=1041&rft_id=info:doi/10.1016%2Fj.jhydrol.2014.08.033&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon