An empirical method for approximating stream baseflow time series using groundwater table fluctuations
•Genetic programming is a successful tool for predicting baseflow.•Empirical equation predicts baseflow using groundwater table fluctuations.•The proposed equation performs as well as a recursive filter or a numerical model.•The generalized equation predicts baseflow irrespective of land use or scal...
Saved in:
Published in | Journal of hydrology (Amsterdam) Vol. 519; pp. 1031 - 1041 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier B.V
27.11.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Genetic programming is a successful tool for predicting baseflow.•Empirical equation predicts baseflow using groundwater table fluctuations.•The proposed equation performs as well as a recursive filter or a numerical model.•The generalized equation predicts baseflow irrespective of land use or scale.
Developing reliable methods to estimate stream baseflow has been a subject of interest due to its importance in catchment response and sustainable watershed management. However, to date, in the absence of complex numerical models, baseflow is most commonly estimated using statistically derived empirical approaches that do not directly incorporate physically-meaningful information. On the other hand, Artificial Intelligence (AI) tools such as Genetic Programming (GP) offer unique capabilities to reduce the complexities of hydrological systems without losing relevant physical information. This study presents a simple-to-use empirical equation to estimate baseflow time series using GP so that minimal data is required and physical information is preserved. A groundwater numerical model was first adopted to simulate baseflow for a small semi-urban catchment (0.043km2) located in Singapore. GP was then used to derive an empirical equation relating baseflow time series to time series of groundwater table fluctuations, which are relatively easily measured and are physically related to baseflow generation. The equation was then generalized for approximating baseflow in other catchments and validated for a larger vegetation-dominated basin located in the US (24km2). Overall, this study used GP to propose a simple-to-use equation to predict baseflow time series based on only three parameters: minimum daily baseflow of the entire period, area of the catchment and groundwater table fluctuations. It serves as an alternative approach for baseflow estimation in un-gauged systems when only groundwater table and soil information is available, and is thus complementary to other methods that require discharge measurements. |
---|---|
AbstractList | Developing reliable methods to estimate stream baseflow has been a subject of interest due to its importance in catchment response and sustainable watershed management. However, to date, in the absence of complex numerical models, baseflow is most commonly estimated using statistically derived empirical approaches that do not directly incorporate physically-meaningful information. On the other hand, Artificial Intelligence (AI) tools such as Genetic Programming (GP) offer unique capabilities to reduce the complexities of hydrological systems without losing relevant physical information. This study presents a simple-to-use empirical equation to estimate baseflow time series using GP so that minimal data is required and physical information is preserved. A groundwater numerical model was first adopted to simulate baseflow for a small semi-urban catchment (0.043km²) located in Singapore. GP was then used to derive an empirical equation relating baseflow time series to time series of groundwater table fluctuations, which are relatively easily measured and are physically related to baseflow generation. The equation was then generalized for approximating baseflow in other catchments and validated for a larger vegetation-dominated basin located in the US (24km²). Overall, this study used GP to propose a simple-to-use equation to predict baseflow time series based on only three parameters: minimum daily baseflow of the entire period, area of the catchment and groundwater table fluctuations. It serves as an alternative approach for baseflow estimation in un-gauged systems when only groundwater table and soil information is available, and is thus complementary to other methods that require discharge measurements. •Genetic programming is a successful tool for predicting baseflow.•Empirical equation predicts baseflow using groundwater table fluctuations.•The proposed equation performs as well as a recursive filter or a numerical model.•The generalized equation predicts baseflow irrespective of land use or scale. Developing reliable methods to estimate stream baseflow has been a subject of interest due to its importance in catchment response and sustainable watershed management. However, to date, in the absence of complex numerical models, baseflow is most commonly estimated using statistically derived empirical approaches that do not directly incorporate physically-meaningful information. On the other hand, Artificial Intelligence (AI) tools such as Genetic Programming (GP) offer unique capabilities to reduce the complexities of hydrological systems without losing relevant physical information. This study presents a simple-to-use empirical equation to estimate baseflow time series using GP so that minimal data is required and physical information is preserved. A groundwater numerical model was first adopted to simulate baseflow for a small semi-urban catchment (0.043km2) located in Singapore. GP was then used to derive an empirical equation relating baseflow time series to time series of groundwater table fluctuations, which are relatively easily measured and are physically related to baseflow generation. The equation was then generalized for approximating baseflow in other catchments and validated for a larger vegetation-dominated basin located in the US (24km2). Overall, this study used GP to propose a simple-to-use equation to predict baseflow time series based on only three parameters: minimum daily baseflow of the entire period, area of the catchment and groundwater table fluctuations. It serves as an alternative approach for baseflow estimation in un-gauged systems when only groundwater table and soil information is available, and is thus complementary to other methods that require discharge measurements. |
Author | Babovic, Vladan Chui, Ting Fong May Meshgi, Ali Schmitter, Petra |
Author_xml | – sequence: 1 givenname: Ali surname: Meshgi fullname: Meshgi, Ali email: alimeshgi@nus.edu.sg organization: Department of Civil and Environmental Engineering, National University of Singapore, Block E1A, #07-03, No 1 Engineering Drive 2, Singapore, Singapore – sequence: 2 givenname: Petra surname: Schmitter fullname: Schmitter, Petra organization: Department of Civil and Environmental Engineering, National University of Singapore, Block E1A, #07-03, No 1 Engineering Drive 2, Singapore, Singapore – sequence: 3 givenname: Vladan surname: Babovic fullname: Babovic, Vladan organization: Department of Civil and Environmental Engineering, National University of Singapore, Block E1A, #07-03, No 1 Engineering Drive 2, Singapore, Singapore – sequence: 4 givenname: Ting Fong May surname: Chui fullname: Chui, Ting Fong May organization: Department of Civil Engineering, The University of Hong Kong, Room 6-18A, Haking Wong Building, Pokfulam, Hong Kong |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=29025938$$DView record in Pascal Francis |
BookMark | eNqFkTtvFDEUhS0UJDaBn4DkBolmBr9mxiMKFEW8pEg0UFse-zrxymMvtoeQf4-XXRqauLnN-e71OecSXcQUAaHXlPSU0PHdvt_fP9qcQs8IFT2RPeH8GdpROc0dm8h0gXaEMNbRcRYv0GUpe9Ie52KH3HXEsB589kYHvEK9Txa7lLE-HHL67VddfbzDpWbQK150ARfSA65-BVwgeyh4K0fFXU5btA-6QsZVLwGwC5upW-NTLC_Rc6dDgVfneYV-fPr4_eZLd_vt89eb69vO8InVblhGIahg0yKpNGDNYCYpiFnG0dCB63GS3DI3i0Eso2N21ow4C2JY7DK5eeRX6O1pb_v8zw1KVasvBkLQEdJWFJVsEFQSIZv0zVmqS_Puso7GF3XIzXN-VGwmbJj5Uff-pDM5lZLBKePrX1c1ax8UJerYgtqrcwvq2IIiUrWEGz38R_878BT34cRBS-uXh6yK8RBbJj6Dqcom_8SGP7YDqU0 |
CODEN | JHYDA7 |
CitedBy_id | crossref_primary_10_1007_s42452_019_1222_9 crossref_primary_10_1016_j_ejrh_2023_101325 crossref_primary_10_1016_j_iswcr_2022_01_006 crossref_primary_10_1016_j_engappai_2023_106335 crossref_primary_10_1061__ASCE_EE_1943_7870_0001429 crossref_primary_10_1016_j_jhydrol_2018_06_049 crossref_primary_10_1016_j_jhydrol_2022_128323 crossref_primary_10_1111_gwat_13422 crossref_primary_10_1002_hyp_13548 crossref_primary_10_1002_hyp_10724 crossref_primary_10_1111_gwat_13156 crossref_primary_10_1016_j_jhydrol_2018_09_043 crossref_primary_10_1016_j_jhydrol_2022_128262 crossref_primary_10_1111_1752_1688_13178 crossref_primary_10_1016_j_jhydrol_2024_131483 crossref_primary_10_1680_jwama_20_00062 crossref_primary_10_5194_hess_19_1599_2015 crossref_primary_10_5194_hess_25_4373_2021 crossref_primary_10_1029_2019WR026933 crossref_primary_10_1016_j_jhydrol_2015_04_032 crossref_primary_10_2166_hydro_2021_179 crossref_primary_10_2166_hydro_2021_115 crossref_primary_10_1016_j_jhydrol_2020_125659 |
Cites_doi | 10.1002/hyp.6628 10.1016/j.envsoft.2011.02.007 10.1029/WR024i005p00755 10.1029/2003WR002091 10.1016/j.jher.2013.03.005 10.1177/0309133311402714 10.1016/j.jhydrol.2012.05.025 10.1214/ss/1032280214 10.1016/j.eswa.2008.05.024 10.5194/hess-13-2055-2009 10.1016/j.envsoft.2008.06.009 10.1016/j.jhydrol.2008.01.005 10.1016/j.jhydrol.2006.01.016 10.2136/sssaj2006.0396 10.1016/S0022-1694(98)00247-9 10.2136/sssaj1980.03615995004400050002x 10.1029/96WR01525 10.1002/hyp.5675 10.1002/hyp.1134 10.1016/0022-1694(90)90130-P 10.1029/91WR01007 10.1029/2005WR004130 10.1002/hyp.7678 10.1029/WR026i007p01465 10.2166/hydro.2000.0004 10.1016/j.jhydrol.2007.12.014 10.1016/0022-1694(70)90255-6 10.1029/2002WR001528 10.1002/hyp.7771 10.1016/j.envsoft.2012.11.009 10.1029/93WR00877 10.1016/j.envsoft.2008.09.005 10.1137/0111030 10.1002/hyp.351 10.1002/(SICI)1099-1085(19990415)13:5<701::AID-HYP774>3.0.CO;2-2 10.1111/j.1752-1688.1999.tb03599.x 10.1002/hyp.5862 10.1016/S0022-1694(00)00340-1 10.1029/91WR02518 10.1002/hyp.9621 |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. 2015 INIST-CNRS |
Copyright_xml | – notice: 2014 Elsevier B.V. – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7S9 L.6 |
DOI | 10.1016/j.jhydrol.2014.08.033 |
DatabaseName | CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1879-2707 |
EndPage | 1041 |
ExternalDocumentID | 29025938 10_1016_j_jhydrol_2014_08_033 S002216941400643X |
GeographicLocations | Far East Asia Singapore United States |
GeographicLocations_xml | – name: Singapore – name: United States |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA HMA IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SCC SDF SDG SDP SES SPC SPCBC SPD SSA SSE SSZ T5K TN5 Y6R ZCA ZMT ~02 ~G- ~KM 29K 6TJ AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABGRD ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION D-I FA8 FEDTE FGOYB G-2 HLV HVGLF HZ~ H~9 R2- SEP SEW SSH UQL VOH WUQ ZY4 ABTAH IQODW 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c372t-5b6441427b818cedc5c7840cb66c153a6783d2f9454b6f2d9a20fde45bdb7f963 |
IEDL.DBID | .~1 |
ISSN | 0022-1694 |
IngestDate | Fri Aug 22 20:26:21 EDT 2025 Wed Apr 02 07:13:52 EDT 2025 Tue Jul 01 03:07:25 EDT 2025 Thu Apr 24 23:02:39 EDT 2025 Fri Feb 23 02:39:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Numerical modeling Baseflow Empirical equation Genetic Programming base flow streams ground water vegetation artificial intelligence drainage basins aquifers fluctuations management numerical models discharge soils |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c372t-5b6441427b818cedc5c7840cb66c153a6783d2f9454b6f2d9a20fde45bdb7f963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1825418048 |
PQPubID | 24069 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1825418048 pascalfrancis_primary_29025938 crossref_citationtrail_10_1016_j_jhydrol_2014_08_033 crossref_primary_10_1016_j_jhydrol_2014_08_033 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2014_08_033 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-11-27 |
PublicationDateYYYYMMDD | 2014-11-27 |
PublicationDate_xml | – month: 11 year: 2014 text: 2014-11-27 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Journal of hydrology (Amsterdam) |
PublicationYear | 2014 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Babovic, Keijzer (b0025) 2006 McDonnell, Tanaka, Mitchell, Ohte (b0150) 2001; 15 Willems (b0240) 2009; 24 Carsel, Parrish (b9000) 1988; 24 Meshgi, Chui (b0160) 2014; 28 Šimůnek (b0210) 2007 Christophersen, Hooper (b0055) 1992; 28 Efron, Tibshirani (b0080) 1993 Sivapragasam, Maheswaran, Venkatesh (b0225) 2008; 22 Izadifar, Elshorbagy (b0105) 2010; 24 Brown, McDonnell, Burns, Kendall (b0035) 1999; 217 Jakeman, Hornberger (b0110) 1993; 29 Kliner, Knezek (b0125) 1974; XXII McGlynn, McDonnell (b0155) 2003; 39 Li, Maier, Lambert, Simmons, Partington (b0135) 2013; 41 Eckhardt (b0070) 2005; 19 Eckhardt (b0075) 2008; 352 Chapman, T.G., Maxwell, A.I., 1996. Baseflow separation – comparison of numerical methods with tracer experiments. In: Proceedings of the 23rd Hydrology and Water Resources Symposium, Hobart Australia. Šimůnek, van Genuchten (b0215) 1996; 32 Uhlenbrook, Hoeg (b0235) 2003; 17 Hooper (b0100) 2003; 39 Šejna, Šimůnek (b0200) 2007 Anctil, Lauzon, Andréassian, Oudin, Perrin (b0005) 2006; 328 Fallah-Mehdipour, Bozorg Haddad, Mariño (b0085) 2013 Barthold (b0030) 2010; 24 Arnold, Allen (b0010) 1999; 35 Parasuraman, Elshorbagy, Si (b0175) 2007; 71 Kim, Kim (b0120) 2008; 351 Jones, Sudicky, Brookfield, Park (b0115) 2006; 42 Marquardt (b0145) 1963; 11 DiCiccio, Efron (b0065) 1996; 11 University of Rhode Island Environmental Data Center, Kingston, Rhode Island. Christophersen, Neal, Hooper, Vogt, Andersen (b0060) 1990; 116 Šimůnek, J., van Genuchten, M.T., Šejna, M., 2006. The HYDRUS Software Package for Simulating Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, vol. 241. Technical Manual, Version 1.0, PC Progress, Prague, Czech Republic. Gonzales, Nonner, Heijkers, Uhlenbrook (b0095) 2009; 13 Nash, Sutcliffe (b0165) 1970; 10 Sellinger, C.E., 1996. Computer Program for Performing Hydrograph Separation Using the Rating Curve Method. US Department of Commerce, National Oceanic and Atmospheric Administration, Technical Memorandum ERL GLERL-100. Ryobi Geotechnique Pty Ltd, 2005. Soil investigation works for campus wide slope monitoring scheme – Phase 3, National University of Singapore, Singapore. Smakhtin (b0230) 2001; 240 Linsley, Kohler, Paulhus (b0140) 1982 Babovic (b0015) 2005; 19 Nathan, McMahon (b0170) 1990; 26 Gilfedder, Walker, Dawes, Stenson (b0090) 2009; 24 Price (b0185) 2011; 35 Chapman (b0045) 1999; 13 Babovic, Keijzer (b0020) 2000; 2 Rhode Island Digital Atlas, 2014. Aerial Photographs (1939), URL Kuznetsov, Yakirevich, Pachepsky, Sorek, Weisbrod (b0130) 2012; 450–451 Sedki, Ouazar, El Mazoudi (b0195) 2009; 36 Partington (b0180) 2011; 26 Chapman (b0040) 1991; 27 van Genuchten (b9010) 1980; 44 Carsel (10.1016/j.jhydrol.2014.08.033_b9000) 1988; 24 Li (10.1016/j.jhydrol.2014.08.033_b0135) 2013; 41 Barthold (10.1016/j.jhydrol.2014.08.033_b0030) 2010; 24 Anctil (10.1016/j.jhydrol.2014.08.033_b0005) 2006; 328 Partington (10.1016/j.jhydrol.2014.08.033_b0180) 2011; 26 10.1016/j.jhydrol.2014.08.033_b0050 McDonnell (10.1016/j.jhydrol.2014.08.033_b0150) 2001; 15 Chapman (10.1016/j.jhydrol.2014.08.033_b0040) 1991; 27 Meshgi (10.1016/j.jhydrol.2014.08.033_b0160) 2014; 28 Nathan (10.1016/j.jhydrol.2014.08.033_b0170) 1990; 26 DiCiccio (10.1016/j.jhydrol.2014.08.033_b0065) 1996; 11 10.1016/j.jhydrol.2014.08.033_b0205 Smakhtin (10.1016/j.jhydrol.2014.08.033_b0230) 2001; 240 Price (10.1016/j.jhydrol.2014.08.033_b0185) 2011; 35 Chapman (10.1016/j.jhydrol.2014.08.033_b0045) 1999; 13 Eckhardt (10.1016/j.jhydrol.2014.08.033_b0070) 2005; 19 Brown (10.1016/j.jhydrol.2014.08.033_b0035) 1999; 217 Efron (10.1016/j.jhydrol.2014.08.033_b0080) 1993 Kuznetsov (10.1016/j.jhydrol.2014.08.033_b0130) 2012; 450–451 Eckhardt (10.1016/j.jhydrol.2014.08.033_b0075) 2008; 352 Nash (10.1016/j.jhydrol.2014.08.033_b0165) 1970; 10 Marquardt (10.1016/j.jhydrol.2014.08.033_b0145) 1963; 11 Christophersen (10.1016/j.jhydrol.2014.08.033_b0060) 1990; 116 Fallah-Mehdipour (10.1016/j.jhydrol.2014.08.033_b0085) 2013 Parasuraman (10.1016/j.jhydrol.2014.08.033_b0175) 2007; 71 Gonzales (10.1016/j.jhydrol.2014.08.033_b0095) 2009; 13 Hooper (10.1016/j.jhydrol.2014.08.033_b0100) 2003; 39 Šimůnek (10.1016/j.jhydrol.2014.08.033_b0215) 1996; 32 Kliner (10.1016/j.jhydrol.2014.08.033_b0125) 1974; XXII McGlynn (10.1016/j.jhydrol.2014.08.033_b0155) 2003; 39 10.1016/j.jhydrol.2014.08.033_b0190 10.1016/j.jhydrol.2014.08.033_b9005 Babovic (10.1016/j.jhydrol.2014.08.033_b0020) 2000; 2 Arnold (10.1016/j.jhydrol.2014.08.033_b0010) 1999; 35 Kim (10.1016/j.jhydrol.2014.08.033_b0120) 2008; 351 Babovic (10.1016/j.jhydrol.2014.08.033_b0015) 2005; 19 Sedki (10.1016/j.jhydrol.2014.08.033_b0195) 2009; 36 Sivapragasam (10.1016/j.jhydrol.2014.08.033_b0225) 2008; 22 Babovic (10.1016/j.jhydrol.2014.08.033_b0025) 2006 Linsley (10.1016/j.jhydrol.2014.08.033_b0140) 1982 Jakeman (10.1016/j.jhydrol.2014.08.033_b0110) 1993; 29 van Genuchten (10.1016/j.jhydrol.2014.08.033_b9010) 1980; 44 10.1016/j.jhydrol.2014.08.033_b0220 Willems (10.1016/j.jhydrol.2014.08.033_b0240) 2009; 24 Gilfedder (10.1016/j.jhydrol.2014.08.033_b0090) 2009; 24 Šejna (10.1016/j.jhydrol.2014.08.033_b0200) 2007 Uhlenbrook (10.1016/j.jhydrol.2014.08.033_b0235) 2003; 17 Izadifar (10.1016/j.jhydrol.2014.08.033_b0105) 2010; 24 Jones (10.1016/j.jhydrol.2014.08.033_b0115) 2006; 42 Christophersen (10.1016/j.jhydrol.2014.08.033_b0055) 1992; 28 Šimůnek (10.1016/j.jhydrol.2014.08.033_b0210) 2007 |
References_xml | – reference: Šimůnek, J., van Genuchten, M.T., Šejna, M., 2006. The HYDRUS Software Package for Simulating Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, vol. 241. Technical Manual, Version 1.0, PC Progress, Prague, Czech Republic. – volume: 24 start-page: 311 year: 2009 end-page: 321 ident: b0240 article-title: A time series tool to support the multi-criteria performance evaluation of rainfall-runoff models publication-title: Environ. Model. Softw. – volume: 240 start-page: 147 year: 2001 end-page: 186 ident: b0230 article-title: Low flow hydrology: a review publication-title: J. Hydrol. – volume: 328 start-page: 717 year: 2006 end-page: 725 ident: b0005 article-title: Improvement of rainfall-runoff forecasts through mean areal rainfall optimization publication-title: J. Hydrol. – volume: 17 start-page: 431 year: 2003 end-page: 453 ident: b0235 article-title: Quantifying uncertainties in tracer-based hydrograph separations: a case study for two-, three- and five-component hydrograph separations in a mountainous catchment publication-title: Hydrol. Process. – volume: 35 start-page: 411 year: 1999 end-page: 424 ident: b0010 article-title: Automated methods for estimating baseflow and ground water recharge from streamflow records 1 publication-title: J. Am. Water Resour. Assoc. – volume: 217 start-page: 171 year: 1999 end-page: 190 ident: b0035 article-title: The role of event water, a rapid shallow flow component, and catchment size in summer stormflow publication-title: J. Hydrol. – volume: 10 start-page: 282 year: 1970 end-page: 290 ident: b0165 article-title: River flow forecasting through conceptual models part I — A discussion of principles publication-title: J. Hydrol. – volume: 42 start-page: W02407 year: 2006 ident: b0115 article-title: An assessment of the tracer-based approach to quantifying groundwater contributions to streamflow publication-title: Water Resour. Res. – volume: 11 start-page: 431 year: 1963 end-page: 441 ident: b0145 article-title: An algorithm for least-squares estimation of non-linear parameters publication-title: SIAM J. Appl. Math. – volume: 116 start-page: 307 year: 1990 end-page: 320 ident: b0060 article-title: Modelling streamwater chemistry as a mixture of soilwater end-members — a step towards second-generation acidification models publication-title: J. Hydrol. – year: 2007 ident: b0200 article-title: HYDRUS (2D/3D): Graphical User Interface for the HYDRUS Software Package Simulating Two- and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media – year: 2006 ident: b0025 article-title: Rainfall-Runoff Modeling Based on Genetic Programming, Encyclopedia of Hydrological Sciences – volume: XXII start-page: 457 year: 1974 end-page: 466 ident: b0125 article-title: The underground runoff separation method making use of the observation of ground water table publication-title: Hydrol. Hydromech. – reference: >, University of Rhode Island Environmental Data Center, Kingston, Rhode Island. – volume: 24 start-page: 2313 year: 2010 end-page: 2327 ident: b0030 article-title: Identification of geographic runoff sources in a data sparse region: hydrological processes and the limitations of tracer-based approaches publication-title: Hydrol. Process. – volume: 35 start-page: 465 year: 2011 end-page: 492 ident: b0185 article-title: Effects of watershed topography, soils, land use, and climate on baseflow hydrology in humid regions: a review publication-title: Prog. Phys. Geogr. – volume: 19 start-page: 507 year: 2005 end-page: 515 ident: b0070 article-title: How to construct recursive digital filters for baseflow separation publication-title: Hydrol. Process. – volume: 28 start-page: 744 year: 2014 end-page: 752 ident: b0160 article-title: Analysing tension infiltrometer data from sloped surface using two-dimensional approximation publication-title: Hydrol. Process. – volume: 2 start-page: 35 year: 2000 end-page: 60 ident: b0020 article-title: Genetic programming as a model induction engine publication-title: J. Hydroinform. – volume: 27 start-page: 1783 year: 1991 end-page: 1784 ident: b0040 article-title: Comment on “Evaluation of automated techniques for base flow and recession analyses” by R. J. Nathan and T. A. McMahon publication-title: Water Resour. Res. – volume: 24 start-page: 3413 year: 2010 end-page: 3425 ident: b0105 article-title: Prediction of hourly actual evapotranspiration using neural networks, genetic programming, and statistical models publication-title: Hydrol. Process. – volume: 15 start-page: 1673 year: 2001 end-page: 1674 ident: b0150 article-title: Hydrology and biogeochemistry of forested catchments publication-title: Hydrol. Process. – reference: Rhode Island Digital Atlas, 2014. Aerial Photographs (1939), URL: < – volume: 24 start-page: 755 year: 1988 end-page: 769 ident: b9000 article-title: Developing joint probability distributions of soil water retention characteristics publication-title: Water Resour. Res. – volume: 39 start-page: 1310 year: 2003 ident: b0155 article-title: Quantifying the relative contributions of riparian and hillslope zones to catchment runoff publication-title: Water Resour. Res. – year: 2013 ident: b0085 article-title: Prediction and simulation of monthly groundwater levels by genetic programming publication-title: J. Hydro-Environ. Res. – volume: 26 start-page: 1465 year: 1990 end-page: 1473 ident: b0170 article-title: Evaluation of automated techniques for base flow and recession analyses publication-title: Water Resour. Res. – volume: 44 start-page: 892 year: 1980 end-page: 898 ident: b9010 article-title: A closed form equation for predicting the hydraulic conductivity of unsaturated soils publication-title: Soil Sci. Soc. Am. J. – volume: 13 start-page: 2055 year: 2009 end-page: 2068 ident: b0095 article-title: Comparison of different base flow separation methods in a lowland catchment publication-title: Hydrol. Earth Syst. Sci. – reference: Chapman, T.G., Maxwell, A.I., 1996. Baseflow separation – comparison of numerical methods with tracer experiments. In: Proceedings of the 23rd Hydrology and Water Resources Symposium, Hobart Australia. – volume: 13 start-page: 701 year: 1999 end-page: 714 ident: b0045 article-title: A comparison of algorithms for stream flow recession and baseflow separation publication-title: Hydrol. Process. – reference: Sellinger, C.E., 1996. Computer Program for Performing Hydrograph Separation Using the Rating Curve Method. US Department of Commerce, National Oceanic and Atmospheric Administration, Technical Memorandum ERL GLERL-100. – reference: Ryobi Geotechnique Pty Ltd, 2005. Soil investigation works for campus wide slope monitoring scheme – Phase 3, National University of Singapore, Singapore. – volume: 32 start-page: 2683 year: 1996 end-page: 2696 ident: b0215 article-title: Estimating unsaturated soil hydraulic properties from tension disc infiltrometer data by numerical inversion publication-title: Water Resour. Res. – volume: 19 start-page: 1511 year: 2005 end-page: 1515 ident: b0015 article-title: Data mining in hydrology publication-title: Hydrol. Process. – volume: 24 start-page: 262 year: 2009 end-page: 269 ident: b0090 article-title: Prioritisation approach for estimating the biophysical impacts of land-use change on stream flow and salt export at a catchment scale publication-title: Environ. Model. Softw. – volume: 71 start-page: 1676 year: 2007 end-page: 1684 ident: b0175 article-title: Estimating saturated hydraulic conductivity using genetic programming publication-title: Soil Sci. Soc. Am. J. – volume: 22 start-page: 623 year: 2008 end-page: 628 ident: b0225 article-title: Genetic programming approach for flood routing in natural channels publication-title: Hydrol. Process. – volume: 351 start-page: 299 year: 2008 end-page: 317 ident: b0120 article-title: Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling publication-title: J. Hydrol. – volume: 36 start-page: 4523 year: 2009 end-page: 4527 ident: b0195 article-title: Evolving neural network using real coded genetic algorithm for daily rainfall–runoff forecasting publication-title: Expert Syst. Appl. – volume: 11 start-page: 189 year: 1996 end-page: 228 ident: b0065 article-title: Bootstrap confidence intervals publication-title: Stat. Sci. – year: 1993 ident: b0080 article-title: An Introduction to the Bootstrap – volume: 26 start-page: 886 year: 2011 end-page: 898 ident: b0180 article-title: A hydraulic mixing-cell method to quantify the groundwater component of streamflow within spatially distributed fully integrated surface water–groundwater flow models publication-title: Environ. Model. Softw. – volume: 39 start-page: 1055 year: 2003 ident: b0100 article-title: Diagnostic tools for mixing models of stream water chemistry publication-title: Water Resour. Res. – volume: 28 start-page: 99 year: 1992 end-page: 107 ident: b0055 article-title: Multivariate analysis of stream water chemical data: the use of principal components analysis for the end-member mixing problem publication-title: Water Resour. Res. – volume: 41 start-page: 163 year: 2013 end-page: 175 ident: b0135 article-title: Framework for assessing and improving the performance of recursive digital filters for baseflow estimation with application to the Lyne and Hollick filter publication-title: Environ. Model. Softw. – volume: 352 start-page: 168 year: 2008 end-page: 173 ident: b0075 article-title: A comparison of baseflow indices, which were calculated with seven different baseflow separation methods publication-title: J. Hydrol. – volume: 450–451 start-page: 140 year: 2012 end-page: 149 ident: b0130 article-title: Quasi 3D modeling of water flow in vadose zone and groundwater publication-title: J. Hydrol. – year: 2007 ident: b0210 article-title: Notes on Spatial and Temporal Discretization – volume: 29 start-page: 2637 year: 1993 end-page: 2649 ident: b0110 article-title: How much complexity is warranted in a rainfall-runoff model? publication-title: Water Resour. Res. – year: 1982 ident: b0140 article-title: Hydrology for Engineers – volume: 22 start-page: 623 issue: 5 year: 2008 ident: 10.1016/j.jhydrol.2014.08.033_b0225 article-title: Genetic programming approach for flood routing in natural channels publication-title: Hydrol. Process. doi: 10.1002/hyp.6628 – volume: 26 start-page: 886 issue: 7 year: 2011 ident: 10.1016/j.jhydrol.2014.08.033_b0180 article-title: A hydraulic mixing-cell method to quantify the groundwater component of streamflow within spatially distributed fully integrated surface water–groundwater flow models publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2011.02.007 – volume: 24 start-page: 755 issue: 5 year: 1988 ident: 10.1016/j.jhydrol.2014.08.033_b9000 article-title: Developing joint probability distributions of soil water retention characteristics publication-title: Water Resour. Res. doi: 10.1029/WR024i005p00755 – year: 2007 ident: 10.1016/j.jhydrol.2014.08.033_b0200 – volume: 39 start-page: 1310 issue: 11 year: 2003 ident: 10.1016/j.jhydrol.2014.08.033_b0155 article-title: Quantifying the relative contributions of riparian and hillslope zones to catchment runoff publication-title: Water Resour. Res. doi: 10.1029/2003WR002091 – ident: 10.1016/j.jhydrol.2014.08.033_b0205 – year: 2007 ident: 10.1016/j.jhydrol.2014.08.033_b0210 – year: 2013 ident: 10.1016/j.jhydrol.2014.08.033_b0085 article-title: Prediction and simulation of monthly groundwater levels by genetic programming publication-title: J. Hydro-Environ. Res. doi: 10.1016/j.jher.2013.03.005 – volume: 35 start-page: 465 issue: 4 year: 2011 ident: 10.1016/j.jhydrol.2014.08.033_b0185 article-title: Effects of watershed topography, soils, land use, and climate on baseflow hydrology in humid regions: a review publication-title: Prog. Phys. Geogr. doi: 10.1177/0309133311402714 – ident: 10.1016/j.jhydrol.2014.08.033_b9005 – volume: 450–451 start-page: 140 year: 2012 ident: 10.1016/j.jhydrol.2014.08.033_b0130 article-title: Quasi 3D modeling of water flow in vadose zone and groundwater publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.05.025 – volume: 11 start-page: 189 issue: 3 year: 1996 ident: 10.1016/j.jhydrol.2014.08.033_b0065 article-title: Bootstrap confidence intervals publication-title: Stat. Sci. doi: 10.1214/ss/1032280214 – ident: 10.1016/j.jhydrol.2014.08.033_b0050 – volume: 36 start-page: 4523 issue: 3, Part 1 year: 2009 ident: 10.1016/j.jhydrol.2014.08.033_b0195 article-title: Evolving neural network using real coded genetic algorithm for daily rainfall–runoff forecasting publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.05.024 – volume: 13 start-page: 2055 issue: 11 year: 2009 ident: 10.1016/j.jhydrol.2014.08.033_b0095 article-title: Comparison of different base flow separation methods in a lowland catchment publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-13-2055-2009 – volume: 24 start-page: 262 issue: 2 year: 2009 ident: 10.1016/j.jhydrol.2014.08.033_b0090 article-title: Prioritisation approach for estimating the biophysical impacts of land-use change on stream flow and salt export at a catchment scale publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2008.06.009 – ident: 10.1016/j.jhydrol.2014.08.033_b0220 – volume: 352 start-page: 168 issue: 1–2 year: 2008 ident: 10.1016/j.jhydrol.2014.08.033_b0075 article-title: A comparison of baseflow indices, which were calculated with seven different baseflow separation methods publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2008.01.005 – volume: 328 start-page: 717 issue: 3–4 year: 2006 ident: 10.1016/j.jhydrol.2014.08.033_b0005 article-title: Improvement of rainfall-runoff forecasts through mean areal rainfall optimization publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2006.01.016 – volume: 71 start-page: 1676 issue: 6 year: 2007 ident: 10.1016/j.jhydrol.2014.08.033_b0175 article-title: Estimating saturated hydraulic conductivity using genetic programming publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2006.0396 – year: 2006 ident: 10.1016/j.jhydrol.2014.08.033_b0025 – ident: 10.1016/j.jhydrol.2014.08.033_b0190 – volume: 217 start-page: 171 issue: 3–4 year: 1999 ident: 10.1016/j.jhydrol.2014.08.033_b0035 article-title: The role of event water, a rapid shallow flow component, and catchment size in summer stormflow publication-title: J. Hydrol. doi: 10.1016/S0022-1694(98)00247-9 – year: 1982 ident: 10.1016/j.jhydrol.2014.08.033_b0140 – volume: 44 start-page: 892 issue: 5 year: 1980 ident: 10.1016/j.jhydrol.2014.08.033_b9010 article-title: A closed form equation for predicting the hydraulic conductivity of unsaturated soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1980.03615995004400050002x – volume: 32 start-page: 2683 issue: 9 year: 1996 ident: 10.1016/j.jhydrol.2014.08.033_b0215 article-title: Estimating unsaturated soil hydraulic properties from tension disc infiltrometer data by numerical inversion publication-title: Water Resour. Res. doi: 10.1029/96WR01525 – volume: 19 start-page: 507 issue: 2 year: 2005 ident: 10.1016/j.jhydrol.2014.08.033_b0070 article-title: How to construct recursive digital filters for baseflow separation publication-title: Hydrol. Process. doi: 10.1002/hyp.5675 – volume: 17 start-page: 431 issue: 2 year: 2003 ident: 10.1016/j.jhydrol.2014.08.033_b0235 article-title: Quantifying uncertainties in tracer-based hydrograph separations: a case study for two-, three- and five-component hydrograph separations in a mountainous catchment publication-title: Hydrol. Process. doi: 10.1002/hyp.1134 – volume: 116 start-page: 307 issue: 1–4 year: 1990 ident: 10.1016/j.jhydrol.2014.08.033_b0060 article-title: Modelling streamwater chemistry as a mixture of soilwater end-members — a step towards second-generation acidification models publication-title: J. Hydrol. doi: 10.1016/0022-1694(90)90130-P – volume: 27 start-page: 1783 issue: 7 year: 1991 ident: 10.1016/j.jhydrol.2014.08.033_b0040 article-title: Comment on “Evaluation of automated techniques for base flow and recession analyses” by R. J. Nathan and T. A. McMahon publication-title: Water Resour. Res. doi: 10.1029/91WR01007 – volume: 42 start-page: W02407 issue: 2 year: 2006 ident: 10.1016/j.jhydrol.2014.08.033_b0115 article-title: An assessment of the tracer-based approach to quantifying groundwater contributions to streamflow publication-title: Water Resour. Res. doi: 10.1029/2005WR004130 – volume: 24 start-page: 2313 issue: 16 year: 2010 ident: 10.1016/j.jhydrol.2014.08.033_b0030 article-title: Identification of geographic runoff sources in a data sparse region: hydrological processes and the limitations of tracer-based approaches publication-title: Hydrol. Process. doi: 10.1002/hyp.7678 – year: 1993 ident: 10.1016/j.jhydrol.2014.08.033_b0080 – volume: 26 start-page: 1465 issue: 7 year: 1990 ident: 10.1016/j.jhydrol.2014.08.033_b0170 article-title: Evaluation of automated techniques for base flow and recession analyses publication-title: Water Resour. Res. doi: 10.1029/WR026i007p01465 – volume: 2 start-page: 35 issue: 1 year: 2000 ident: 10.1016/j.jhydrol.2014.08.033_b0020 article-title: Genetic programming as a model induction engine publication-title: J. Hydroinform. doi: 10.2166/hydro.2000.0004 – volume: 351 start-page: 299 issue: 3–4 year: 2008 ident: 10.1016/j.jhydrol.2014.08.033_b0120 article-title: Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2007.12.014 – volume: 10 start-page: 282 issue: 3 year: 1970 ident: 10.1016/j.jhydrol.2014.08.033_b0165 article-title: River flow forecasting through conceptual models part I — A discussion of principles publication-title: J. Hydrol. doi: 10.1016/0022-1694(70)90255-6 – volume: 39 start-page: 1055 issue: 3 year: 2003 ident: 10.1016/j.jhydrol.2014.08.033_b0100 article-title: Diagnostic tools for mixing models of stream water chemistry publication-title: Water Resour. Res. doi: 10.1029/2002WR001528 – volume: 24 start-page: 3413 issue: 23 year: 2010 ident: 10.1016/j.jhydrol.2014.08.033_b0105 article-title: Prediction of hourly actual evapotranspiration using neural networks, genetic programming, and statistical models publication-title: Hydrol. Process. doi: 10.1002/hyp.7771 – volume: 41 start-page: 163 year: 2013 ident: 10.1016/j.jhydrol.2014.08.033_b0135 article-title: Framework for assessing and improving the performance of recursive digital filters for baseflow estimation with application to the Lyne and Hollick filter publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2012.11.009 – volume: 29 start-page: 2637 issue: 8 year: 1993 ident: 10.1016/j.jhydrol.2014.08.033_b0110 article-title: How much complexity is warranted in a rainfall-runoff model? publication-title: Water Resour. Res. doi: 10.1029/93WR00877 – volume: 24 start-page: 311 issue: 3 year: 2009 ident: 10.1016/j.jhydrol.2014.08.033_b0240 article-title: A time series tool to support the multi-criteria performance evaluation of rainfall-runoff models publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2008.09.005 – volume: 11 start-page: 431 year: 1963 ident: 10.1016/j.jhydrol.2014.08.033_b0145 article-title: An algorithm for least-squares estimation of non-linear parameters publication-title: SIAM J. Appl. Math. doi: 10.1137/0111030 – volume: 15 start-page: 1673 issue: 10 year: 2001 ident: 10.1016/j.jhydrol.2014.08.033_b0150 article-title: Hydrology and biogeochemistry of forested catchments publication-title: Hydrol. Process. doi: 10.1002/hyp.351 – volume: XXII start-page: 457 issue: 5 year: 1974 ident: 10.1016/j.jhydrol.2014.08.033_b0125 article-title: The underground runoff separation method making use of the observation of ground water table publication-title: Hydrol. Hydromech. – volume: 13 start-page: 701 issue: 5 year: 1999 ident: 10.1016/j.jhydrol.2014.08.033_b0045 article-title: A comparison of algorithms for stream flow recession and baseflow separation publication-title: Hydrol. Process. doi: 10.1002/(SICI)1099-1085(19990415)13:5<701::AID-HYP774>3.0.CO;2-2 – volume: 35 start-page: 411 issue: 2 year: 1999 ident: 10.1016/j.jhydrol.2014.08.033_b0010 article-title: Automated methods for estimating baseflow and ground water recharge from streamflow records 1 publication-title: J. Am. Water Resour. Assoc. doi: 10.1111/j.1752-1688.1999.tb03599.x – volume: 19 start-page: 1511 issue: 7 year: 2005 ident: 10.1016/j.jhydrol.2014.08.033_b0015 article-title: Data mining in hydrology publication-title: Hydrol. Process. doi: 10.1002/hyp.5862 – volume: 240 start-page: 147 issue: 3–4 year: 2001 ident: 10.1016/j.jhydrol.2014.08.033_b0230 article-title: Low flow hydrology: a review publication-title: J. Hydrol. doi: 10.1016/S0022-1694(00)00340-1 – volume: 28 start-page: 99 issue: 1 year: 1992 ident: 10.1016/j.jhydrol.2014.08.033_b0055 article-title: Multivariate analysis of stream water chemical data: the use of principal components analysis for the end-member mixing problem publication-title: Water Resour. Res. doi: 10.1029/91WR02518 – volume: 28 start-page: 744 issue: 3 year: 2014 ident: 10.1016/j.jhydrol.2014.08.033_b0160 article-title: Analysing tension infiltrometer data from sloped surface using two-dimensional approximation publication-title: Hydrol. Process. doi: 10.1002/hyp.9621 |
SSID | ssj0000334 |
Score | 2.2668047 |
Snippet | •Genetic programming is a successful tool for predicting baseflow.•Empirical equation predicts baseflow using groundwater table fluctuations.•The proposed... Developing reliable methods to estimate stream baseflow has been a subject of interest due to its importance in catchment response and sustainable watershed... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1031 |
SubjectTerms | artificial intelligence base flow Baseflow basins Earth sciences Earth, ocean, space Empirical equation empirical research equations Exact sciences and technology Genetic Programming groundwater Hydrology. Hydrogeology mathematical models Numerical modeling Singapore soil streams time series analysis United States water table watershed management watersheds |
Title | An empirical method for approximating stream baseflow time series using groundwater table fluctuations |
URI | https://dx.doi.org/10.1016/j.jhydrol.2014.08.033 https://www.proquest.com/docview/1825418048 |
Volume | 519 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iBwURn1gfJYLXbd0ku9k9lmKpip4UegvJJtGWui19oF787c7sQxERweMuO2SZ-TIzIfPNEHKupU_iELyfM1IHAjARpMzCqdVYAIjLrE-QjXx7F_cfxPUgGqyQbs2FwbLKyveXPr3w1tWbdqXN9nQ4RI4vYyHyMEURVwfIYBcSUd56_yrzuOBc1B3D8esvFk971Bo9vdnZBG8gQlF08uT8t_i0OdVz0Jovx1388NxFOOptk60qj6Sd8ld3yIrLd8l6NdL86W2P-E5O3fN0WLQAoeWgaAoZKi26iL8OMVPNHylyRfQzxWDmx5MXirPmKcLSzSnWxD9S5H3k9gVy0hldINGK-vESaScFYvfJQ-_yvtsPqqEKQcYlWwSRwQxIMGkgVIOSsyiTcMjLTBxn4P00BC9umU9FJEzsmU01u_DWichYIz1s1wOymk9yd0ioh2TFZ1FisaNPonVqweDCM-8tt5LxBhG1KlVWdRzHwRdjVZeWjVRlAYUWUDgQk4NY61NsWrbc-Esgqe2kvmFHQVj4S7T5za6fCzK8fk150iBntaEVbDy8TdG5myznKsSzdZiABzz6__rHZAOfkNzI5AlZXcyW7hSynIVpFjBukrXO1U3_7gN9lABd |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEB7S9JBCKemLpI9Uhfbo3ViSX4ceQpOwaR6nBPamSpaU7LLxLvtgu5f-qf7BzthyQgglUMjVZiwz70HzzQB80ZnP0xi9nzOZjiTqRFRwi1WrsaggrrQ-JzTy6Vnau5A_-kl_Df60WBhqqwy-v_HptbcOT7qBm93JYEAYX85jwmHKOq72Q2flsVstsW6bfTvaRyF_5fzw4Px7LwqrBaJSZHweJYbyAMkzgwELjyqTMsNSpzRpWqIP0OjCheW-kIk0qee20HzXWycTY03mUWnxu0_gqUR3QWsTOr9v-0p2hZDtiHL6vVvYUHfYGV6t7HRMVx6xrEeHCvGvgPh8omcoJt_s17gXKur4d7gJL0LiyvYa3ryENVe9go2wQ_1q9Rr8XsXc9WRQzxxhzWZqhikxq8eW_xpQalxdMgKn6GtG0dOPxktGy-0Z2YGbMWrCv2QENKnsEpPgKZsTsov50YJwLrWJvIGLR2H1W1ivxpXbAuYxO_JlklsaIZRrXVjUMOm591bYjIttkC0rVRlGnNOmjZFqe9mGKkhAkQQUbeAUSNa5IZs0Mz4eIshbOak7yqowDj1EunNHrjcHcrrvLUS-DZ9bQSu0dLq-0ZUbL2YqpmI-ztHlvvv_8z_BRu_89ESdHJ0dv4dn9IaQlTz7AOvz6cJ9xBRrbnZqlWbw87Ft6C_Ymzvh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+empirical+method+for+approximating+stream+baseflow+time+series+using+groundwater+table+fluctuations&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Meshgi%2C+Ali&rft.au=Schmitter%2C+Petra&rft.au=Babovic%2C+Vladan&rft.au=Chui%2C+Ting+Fong+May&rft.date=2014-11-27&rft.issn=0022-1694&rft.volume=519+p.1031-1041&rft.spage=1031&rft.epage=1041&rft_id=info:doi/10.1016%2Fj.jhydrol.2014.08.033&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |